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CHAPTER 1 : INTRODUCTION 

Exploratory and statistical spatial data analyses are commonly used in a wide 

range of research fields. For example, in spatial epidemiology, the detection of significant 

disease clusters can help epidemiologists identify environmental factors and spreading 

patterns associated with disease and therefore direct investigation of particular disease 

(Aamodt et al. 2006). For such analysis, unsupervised classification (e.g. clustering) 

methods and statistical inference approaches are both required. The detection of 

statistically significant spatial clusters is a critical task in epidemiology, disease 

surveillance and crime analysis (Duczmal et al. 2006).   

Spatial scan statistic is widely applied in detection of geographical clusters, e.g., 

areas with significantly high rates of disease or crime (Ceccato 2005, Heffernan et al. 

2004, Kulldorff 1997). In general, the methods of spatial scan statistic all follow similar 

steps: 1) scan the study region with a scanning window of various sizes and limited 

choice of regular shapes (e.g., circle); 2) calculate a likelihood statistic for each 

associated scanning window; 3) consider the scanning window with the highest statistic 

value as the candidate cluster; 4) obtain a null distribution of the statistic through Monte 

Carlo simulations, and derive a p-value for the candidate cluster. The drawback of 

traditional scan statistics is that its scanning window is of certain regular shape (e.g., 

circle or ellipse) and consequently it might miss important clusters of different and 

irregular shapes.  
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Increasing amount of spatial interaction (SI) data has become available with 

technology development. SI data represents the movements over space such as human 

migration, daily travels, commodity flows, and information spread. Human mobility, a 

unique type of SI data, represents the flows of individual-moving from one location to 

another. It is of great importance to identify the patterns and trends of human mobility, 

which is useful for various domains such as epidemiology, demography, urban planning 

and development, tourism, transportation, and so on. From a network perspective, spatial 

interactions form a complex graph embedded in space, where locations are nodes and 

interactions are connections among locations. Nodes and connections also have 

attributes/characteristics.  

There are two major methodology types for SI data analysis: spatial interaction 

modeling and exploratory network analysis. Spatial interaction models assume that the 

flow volume between two places is to some degree associated with the properties of the 

two places (e.g. population or gross flow) and the flow connection (e.g., distance) 

(Erlander & Stewart 1990). For example, migration flows may be correlated to various 

factors such as distance between two locations and employment opportunities at different 

locations. Spatial interaction modeling intends to estimate flow volume between each pair 

of origins and destinations based on a set of selected factors (Barthélemy 2011, Jung et 

al. 2008, Kaluza et al. 2010, Balcan et al. 2009).  

The second type of methodologies for spatial interaction analysis is based on 

exploratory and network approaches, which aim to extract non-trivial network structures 

from spatial interaction data (Fortunato 2010, Guo 2009, Newman 2006, Thiemann et al. 

2010). Human mobility networks are embedded in the geographic space, where network 
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structures (e.g., community structure or clusters) have explicit spatial meanings such as 

neighborhoods and functional regions. Existing methods usually focus on either network 

properties (with spatial variables such as distance) or the spatial distribution of network 

measures related to connections and nodes. There is much less attention paid on the 

combined complexity of both spatial distribution and network structure. 

This dissertation develops three new methodologies for the analysis of spatial 

lattice data and spatial interaction data with a focus on statistical and modeling 

perspective.  

In the first paper (Chapter 2), two methods of spatial scan statistics with a simple 

and a hierarchical merge procedure are developed for geographic cluster detection. 

Traditional spatial scan statistics might miss irregular clusters since their scan window of 

shape is of limited choices (i.e. circle or ellipse). The new methods presented in this study 

are based on regionalization approaches to detect spatially contiguous clusters with 

optimization approaches. Smoothing techniques are also integrated to obtain stable 

statistical measures, which can alleviate the small-area rate problem and avoid oversized 

clusters with extraordinary shape. Benchmark data sets with circular and irregular 

clusters are used to assess the new methods. Comparisons with the circular, elliptic, and 

double-link constraint spatial scan statistics are conducted. The proposed methods have 

three major contributions: 1) they are able to detect clusters with irregular shape, without 

defining a specific scanning window; 2) they dramatically reduce the number of cluster 

candidates and alleviate multiple-testing problems by building cluster candidates through 

regionalization; and 3) they alleviate small-area rate problem and avoid oversized clusters 

with extraordinary shape. 
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The second paper (Chapter 3) describes a new flow scan statistic method for 

spatial interaction data. Different from existing spatial scan statistics, which just use a 

scan window, the proposed Flow Scan Statistic method adopts a flow tube, which is 

defined by a base window on the flow origin and the other window on the destination, to 

scan spatial interaction data and detect significant flow clusters. The construction of flow 

tubes is based on the population or inflow/outflow volume at each location, which 

controls flow cluster size and reduces computational complexity. A flow Poisson 

Generalized Likelihood Ratio, which does not depend on population, is proposed to serve 

as a test statistic. The new approach employs Monte Carlo simulation to produce a null 

distribution for the test statistic. The proposed flow scan statistic can be applied to both 

area-based and point-based spatial interaction data, demonstrated by two case studies: 1) 

internal county-to-county U.S. migration data in Census 2000, and 2) a synthetic point-

based data set. The evaluation results show that the Flow Scan Statistic has a good 

detection power, that it is not sensitive to pre-defined flow tube sizes. The uniqueness of 

flow scan statistic is that it not only clusters the data based on flow weights, but also 

determines the significance by taking advantage of Monte Carlo simulation. 

The third paper (Chapter 4) presents an exploratory framework for the residual 

analysis of fitted spatial interaction models. The proposed framework consists of three 

stages: 1) fitting a spatial interaction model with the piecewise Poisson regression, taking 

distance, masses of locations and a competing destination variable into consideration; 2) 

extending the Local Moran’s I statistic to examine the spatial distribution and clustering 

of model residuals; and 3) applying a new mapping approach to visualize local flow 

patterns (spatial clusters of model residuals) that cannot be explained by the configured 
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model and global patterns. The model outcome captures the global trends and the 

autocorrelation and mapping discovers hidden patterns that cannot be explained by the 

fitted model in the first stage. The framework is applied to internal U.S. migration 

between 358 Metropolitan Statistical Areas for seven age groups. The determined 

significant distance breakpoints are range from 590-1410 km by configured models. 

Significant clusters of flow prediction residuals are identified for seven age group 

migration data in terms of the proposed Flow Local Moran’s I. The results suggest that 

the framework performs well for all seven age groups. The major contribution of 

proposed framework is to extend Local Moran’s I to examine spatial interaction model 

residuals which represent the impacts of hidden factors other than the ones considered in 

modeling stage. 

Although the three papers are separated, they are connected in several ways. Both 

the first and second papers are concentrating on scan statistics: the first one improves the 

existing spatial scan statistics by detecting irregular cluster, and the second one extends it 

to investigate higher-dimensional data (spatial interaction data). The second and third 

ones focus on better understanding spatial interaction data. The second one aims at 

extracting significant clusters of spatial interaction, and the third one examines the local 

associations of spatial interaction residuals. 
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CHAPTER 2 : A SPATIAL SCAN STATISTIC METHOD WITH 

SMOOTHING AND REGIONALIZATION 

2.1 ABSTRACT 

Spatial scan statistics are commonly used for detecting geographic clusters, e.g., 

areas with significantly excessive concentration of disease incidences or crimes. Existing 

methods of spatial scan statistics often adopt an exhaustive search strategy to identify 

clusters with regular shapes (e.g. circle or ellipse). In this chapter, I present two new 

methods of spatial scan statistics with smoothing and regionalization techniques, each of 

which (1) apply a smoothing technique to each unit to get reliable incident rates; 2) use 

simple or hierarchical merge strategies to aggregate data into a set of spatially contiguous 

regions (i.e., cluster candidates) to maximize the Likelihood Ratio; and (3) test the 

significance of regions (cluster candidates) with a Monte Carlo permutation. These new 

approaches have three main advantages over existing methods. First, they can detect 

significant spatial clusters of different shapes and sizes. Second, the number of candidate 

clusters being evaluated is much smaller, dramatically alleviating a multiple-testing 

problem and reduce the computational complexity. Third, the integration of smoothing 

technique can alleviate small-area rate problem and avoid oversized clusters with bizarre 

shape. I use benchmark data sets with circular and irregular clusters to evaluate the new 

methods and compare the results with the circular, elliptic, and 
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double-link constrained spatial scan statistics methods. Robustness analysis suggests that 

new approaches are not sensitive to the choice and setting of smoothing functions. 

2.2 INTRODUCTION 

Detection and evaluation of statistically significant spatial clusters is a crucial task 

in epidemiology, disease surveillance and crime analysis (Duczmal et al. 2006). Spatial 

scan statistic is commonly used for the detection of particular geographical clusters, e.g., 

areas with significantly high rates of disease or crime (Ceccato 2005, Heffernan et al. 

2004, Kulldorff 1997). Conceptually, a spatial scan statistic method takes three steps: (1) 

search through all candidate clusters (e.g., areas around different locations and of 

different sizes and shapes) and calculate a statistical measure for each candidate cluster; 

(2) use a Monte Carlo permutation to generate a large number of random data sets under 

the null hypothesis, repeat step (1) for each random data set, and thus establish an 

empirical distribution of the statistical measure under the null hypothesis; and (3) assign a 

p-value (i.e., significance level) to each cluster based on its measure value (from step 1) 

and the null distribution (from step (2)).  

However, the number of candidate clusters is often extremely large even for a 

moderate-sized data set, making it infeasible to enumerate all possible clusters. To 

alleviate this problem, existing methods often take three approaches. One is to assume a 

fixed shape of candidate clusters (e.g., circle, ellipse), which would dramatically reduce 

the number of potential clusters and make it computationally tractable (Kulldorff 1997). 

Such an assumption of a cluster shape, however, might cause the miss of important 

clusters of different and irregular shapes. For example, the widespread of disease along a 

river may not be of a circular shape, thus would not be captured by a circular candidate 
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cluster. The second kind of alleviation approach is to allow a more flexible shape 

definition (e.g., an ellipse (Kulldorff et al. 2006)) or incorporate a shape measure (e.g. 

compactness) in the statistical measure (Assunção et al. 2006, Duczmal & Assunção 

2004, Duczmal et al. 2007, Duczmal et al. 2006), and then use a heuristic-based approach 

(such as genetic algorithms or Tabu optimization) to search clusters without enumerating 

all possible candidates. These approaches, however, also have their own limitations and 

challenges. First, they involve a number of subjective parameters (e.g., shape measure), 

which are difficult to configure and interpret. Second, the number of candidate clusters to 

be evaluated is still very large, which not only makes the search process very time-

consuming but also leads to the multiple-testing problem. Moreover, candidate clusters 

would substantially overlap with each other and thus the tests of different candidate 

clusters cannot be assumed as independent, which not only adversely impacts the 

statistical testing power but wastes substantial computing time in evaluating unnecessary 

candidates as well. The third kind of approach solves this problem by adding certain 

screening criteria. Patil & Taillie (2004) proposed an Upper Level Set clustering 

detection which reduces the size of spatial cluster candidates by only considering the 

connected components of possible upper level sets. Tango (2008) investigated spatial 

scan statistic with restricted likelihood ratio which added a screening criterion in measure 

formula.  

An alternative to reduce the computation consuming time is to avoid 

randomization testing. Neill et al (2006) provided a Bayesian method for Spatial Scan 

Statistics, which incorporated prior information and estimated the posterior probability of 

each cluster candidate. Chan (2009) replaced the maximum likelihood ratio with average 
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likelihood ratio, which allowed bypassing the Monte Carlo procedure, and they suggested 

that the average likelihood ratio statistic is more superior than the maximum statistic.  

Assuncao et al (2006) introduced a graph structure partition method based on 

minimum spanning tree to control the candidate size, and they claimed that Upper Level 

Set method of Patil and Taillie is one particular case of theirs. However, Costa et al 

(2012) argued that Assunocal’s method would cause the octopus effect, oversized cluster 

with extraordinary shape (Duczmal & Assuncao 2004), Instead, they presented an 

improved approach by integrating double-connected constraint to achieve a balance 

between likelihood maximization and cluster compactness. Although this method 

preserves a compact shape of cluster, adding double connected constraint in the candidate 

construction is too arbitrary to step across certain inconsistent unit due to the spurious 

data variation. It is known that the disease data for each unit may be unstable if the base 

population is too small, which means that the rate for small areas within a true disease 

cluster may reveal spurious variation. In general, the variation could be alleviated by area 

aggregation or choosing a higher analysis scale. In other words, double connected 

constraint leads that the cluster detection heavily depends on the choice of spatial scales.  

For example, given a cluster detected at county-level, if the same data is scaled down to a 

lower level (i.e. tract-level), variation of study rate at the lower level (i.e. tract) will be 

higher in cluster area than the one at the higher level (i.e. county). A unit with relatively 

low rate in the true cluster might lead to the miss of the cluster due to the double-

connected constraint. 

Regionalization is a spatial analysis technique that concerns the aggregation of a 

large number of spatial units into a small number of non-overlapping and spatially 
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contiguous regions while optimizing an objective function. REDCAP (Guo 2008) is a 

family of hierarchical regionalization methods that are based on contiguity constrained 

hierarchical clustering and partitioning. The REDCAP methods take two steps: (1) 

construct a spatially contiguous tree by enforcing a contiguity constraint in a hierarchical 

clustering method, e.g., the average-linkage, complete-linkage, or the Ward clustering 

method; and (2) partition the tree to generate a hierarchy of homogeneous regions while 

optimizing a within-region homogeneity measure, e.g., the sum of squared differences 

(SSD). REDCAP methods can also be integrated with smoothing techniques, such as 

empirical Bayes smoothing or kernel-based smoothing, to reduce the impact of spurious 

data variation due to the small-area problem and significantly improve the quality of 

constructed regions (Guo & Wang 2011). 

In this paper, two new approaches to spatial scan statistics are presented, which 

neither assume a fixed shape nor evaluate a huge number of candidates. The proposed 

approaches incorporate smoothing technique to reduce the influence of spurious data 

variation, and generate cluster candidates based on simple merge or adaptive merging 

strategies, which are borrowed from regionalization methods. The smoothing technique is 

purposely brought in to overcome the limitations of random units, which could result in 

consistent detection ability at different scales. In addition, the integration of smoothing 

can help avoid the octopus effect by borrowing information from neighbors.  Benchmark 

datasets with circular and irregular clusters from existing literature (Duczmal et al. 2006, 

Kulldorff et al. 2003) are used to evaluate the new methods and compare them with the 

well-known circular and elliptic spatial scan statistic methods in SaTScan (Kulldorff, 

1997), and double-link constrained scan statistic from (Costa et al. 2012). I also execute 
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robustness analysis to determine the sensitivity to smoothing functions and neighborhood 

definitions. 

In Section 2.3, I provide the necessary background of Kulldorff’s and double-

connected spatial scan statistic. Section 2.4 presents the new approaches to spatial scan 

statistics and Section 2.5 provides the evaluation results based on the synthetic data sets. I 

conclude with discussions in Section 2.6. 

2.3 RELATED WORK 

2.3.1 SPATIAL SCAN STATISTIC 

Scan statistics was originally designed for one dimensional data analysis (e.g., 

Naus 1995) and then extended to two-dimensional geographical data (Kulldorff 1997, 

Openshaw et al. 1987, Walther 2010). Here I provide a brief introduction to the spatial 

scan statistics method in (Kulldorff 1997), which is implemented in SaTScan (available 

at www.satscan.org). SaTScan enumerates all possible circular areas of varying sizes and 

locations over the studied area. The purpose is to find the circular window(s) that has 

significantly high rates of certain observations (e.g., disease incidents). Let p be the risk 

within a window Z and q the risk outside the window Z in the studied area. The null 

hypothesis is that H0: p = q, and the alternative hypothesis is Ha: p > q (or p < q). With 

the Poisson model, the test statistic, likelihood ratio (λ), for a certain window Z is defined 

as: 

𝜆 =
(

𝑂𝑍
𝑃𝑍

)
𝑂𝑍

(
𝑂𝑊−𝑂𝑍
𝑃𝑊−𝑃𝑍

)
𝑂𝑊−𝑂𝑍

(
𝑂𝑊
𝑃𝑊

)
𝑂𝑊

𝐼(
𝑂𝑍

𝑃𝑍
>

𝑂𝑊−𝑂𝑍

𝑃𝑊−𝑃𝑍
)    (2.1) 

where OZ and PZ denote the counts of observations (e.g. the number of disease cases) and 
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the population within Z, respectively; OW and PW are the counts of observations and 

population for the whole studied area. Likelihood ratio based on Bernoulli model was 

also provided in Kulldorff (1997). The likelihood ratio λ is computed for each window 

and the maximum value is recorded. In implementation, SaTScan places a circle over 

each observation location and then varies the radius of the circle to enumerate all possible 

circular windows. For example, suppose the data set has N spatial units (e.g., counties), 

the scan process may need to process as many as N
2 

circles. Practically, circles covering 

more than 50% of the total population in the studied area are usually not considered as 

clusters in SaTScan. 

After the calculation of the likelihood ratio λ for each circular window, a Monte 

Carlo simulation is used to generate a realtively large number (i.e. 999) of replications of 

the data set under the null hypothesis. For each replication, the maximum likelihood ratio 

among all the windows is obtained as explained above. With these maximum values of 

likelihood ratio, an empirical distribution can be constructed and a p-value can be 

assigned to each circular cluster according to its likelihood ratio. To detect low risk 

clusters, one can simply change the direction of the inequality sign in the indicator 

function in Equation 2.1. For computational consideration, log(λ), i.e., log likelihood ratio 

(LLR), is usually used instead of the likelihood ratio λ in implementation.  

Kulldorff et al. (2006) extended the circular scan statistic by adding ellipses as 

scanning windows. Elliptic scan statistic varies the shapes of elliptic windows by 

changing the ratio of the longer axis to the shorter axis (i.e. 1.5, 2, 3, 4, and 5) and the 

number of angels (4, 6, 9, 12, and 15) of the ellipse. It also introduces a non-compactness 

penalty, the formula of which is [4s/(s+1)
2
]
a
 ,where s is ratio of the major axis to the 
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minor axis of the ellipse, and a is a penalty parameter. The penalty is added as a factor in 

likelihood ratio calculation, which will favor more compact windows even if they have a 

marginally smaller likelihood ratio compared with those less compact ones. 

2.3.2 DOUBLE-CONNECTED SCAN STATISTIC 

The double-connected scan statistic (Costa et al. 2012) constructs cluster 

candidates by building minimum spanning trees based on graph theory, instead of 

applying a large number of scanning windows,. In graph theory, the contiguous 

geographical units in the studied area could be considered as an undirected connected 

graph, each edge of which represents a pair of geographically contiguous neighbors. This 

method builds a tree for each spatial unit in the studied area. When expanding the trees, 

the neighbor unit will be considered if at least two connections are found between the 

neighbor and the units in the current tree except for the first edge. The expansion stops 

whenever no increase in likelihood ratio or no satisfied neighbors. All the trees rooted in 

each unit will be considered as cluster candidates. The double-connected constraint, 

without explicit penalization, achieves good cluster compactness of clusters and 

alleviates the octopus effect. However, it is too conservative in overcoming random 

obstacles due to the small-area problem. Moreover, its definition of double connectedness 

is highly dependent on data resolution, where a doubly connected component can become 

disconnected when the data is represented at a finer resolution (i.e., smaller units).  

Consequently, it might only find partial clusters and fail to discover true patterns. 

2.4 SPATIAL SCAN STATISTIC WITH SMOOTHING 

To overcome the drawbacks aforementioned, I propose two new methods to 
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spatial scan statistic: one is based on a simple merge strategy and the other is based on a 

hierarchical merge strategy, both of which integrate a smoothing method. The general 

idea is to firstly use smoothing method to obtain a more robust measurement value for 

each unit to avoid the small-area problem; then construct a set of regions as cluster 

candidates with the smoothed values; and finally use a Monte Carlo procedure to derive a 

p-value for the test statistic for each cluster candidate. The test statistic adopted in the 

new methods is the log likelihood ratio (LLR), same as that in traditional scan statistic. 

There are three advantages of the new methods. First, they can detect clusters (regions) of 

arbitrary shapes. Second, the number of candidate clusters to be tested is very small, 

which helps alleviate both the multiple-testing problem and the computational burden. 

Third, the power of the new methods does not depend on data resolution and thus has 

boarder and more flexible applications.  

 Smoothing is a technique to alleviate the spatial variance by borrowing 

information from spatial neighbors besides the observation at hand. Kernel smoother is 

one of the most commonly used spatial smoothers. In essence, it assigns a set of weights 

to the neighbors of each unit in terms of kernel function. Kernel function is a distance 

decay function with bandwidth, a threshold beyond which the weight is set to zero. A 

kernel function can be formulated as 𝐾𝑖𝑗 (
𝑑𝑖𝑗

ℎ𝑖
), where dij is the distance between i and j, 

and hi is the bandwidth. The bandwidth is typically set as the maximum distance within 

local neighborhood. In this study, neighborhood is defined as followed: if the sum of 

population within the first-order geographic neighbors is larger than the threshold, the 

neighborhood is set as the first-order neighbors. Otherwise, the search is extended to the 

next-order neighbors by distance until the threshold is satisfied. A demonstration of 
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neighborhood definition is shown in Figure 2.1. Threshold can be determined as a certain 

percentage of the total population (i.e. 1%), but the user is free to set to the most 

appropriate value based on their own studied problem and data. Several types of kernel 

functions are commonly used: Gaussian, quadratic, quartic, and etc. Smoothed cases and 

population size for a unit can be obtained by: 

�̂�𝑖 = ∑ 𝐾𝑖𝑗𝑂𝑗𝑗 , and  �̂�𝑖 = ∑ 𝐾𝑖𝑗𝑃𝑗𝑗 . 

These new smoothed values are used to calculate LLR for the associated unit. The 

remainder of this section introduces methodologies of two proposed scan statistics. 

 

 

Figure 2.1: Demonstration of neighborhood definition for smoother. On the left is a graph 

representing contiguous information, in which two contiguous units are linked by an 

edge. On the right is a table listing the population size of each unit. Given that the 

population threshold is set to 30 here, the total population of units A’s first-order 

neighborhood {A, B, C, D, E, F} is 24. Since it does not meet the threshold, the search is 

expended to the second-order neighborhood {G, H, I, J, K, L, M, N, O, P} by distance. 

After adding the nearest units P and H in the second-order neighborhood, the total 

population is increased to 42, which exceeds the threshold. Consequently the 

neighborhood for unit A is {A, B, C, D, E, F, P, H}. 
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2.4.1 SIMPLE MERGE 

 

Figure 2.2: The simple merge algorithm. Initially contiguous units are linked by dotted 

lines as figure a. The algorithm enumerates all the links (edges) and searches the ones 

which provide LLR increases. Those links marked as solid lines are saved but not merged. 

Based on the marked links, all the geographically connected components are discovered 

and the one with the highest adjusted LLR value is saved as cluster candidate. 

 

The simple-merge method starts with calculating the LLR value for each unit 

based on its smoothed values of cases and population size. Then all the neighbouring 

pairs in terms of the graph construction are enumerated to compare the aggregated LLR 

value with the individual LLR values. If the aggregated value is larger than both 

individual values of two nodes, then this pair would be added into a pair list. After the 

enumeration, geographical contiguous components are identified in the pair list. The LLR 
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values for the components are calculated based on the adjusted cases and population 

sizes. In each component, the adjusted cases and population size are defined as �̂�𝐶 =

∑ 𝑤′𝑖𝑂𝑖𝑖 , and  �̂�𝐶 = ∑ 𝑤′𝑖𝑃𝑖𝑖 , where 𝑤′𝑖 = max(𝐾𝑘𝑖) , 𝑘 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡. The 

component with the highest LLR value is considered as the cluster candidate. The simple 

merge algorithm is demonstrated in Figure 2.2. 

The algorithm is described as follows: 

(1) For each unit i in the studied area, 

a. find i’s associated neighborhood for smoothing, 

b. apply a smoother to obtain the smoothed cases �̂�𝑖 and population size �̂�𝑖 

for the unit; 

c. calculate its LLR value 𝑙𝑖 based on its smoothed cases �̂�𝑖 and population 

size �̂�𝑖; 

(2) For each pair (i, j) of contiguous neighbors, 

a. compute the merged LLR value 𝑙𝑖𝑗 based on the sums of smoothed cases 

(�̂�𝑖 and �̂�𝑗) and population sizes (�̂�𝑖 and �̂�𝑗); 

b. if the merged LLR value 𝑙𝑖𝑗  is larger than both of the individual LLR 

values 𝑙𝑖 and 𝑙𝑗, then put these two units into set S; 

(3) Find all the geographically connected components in set S; 

(4) Calculate the LLR values for the connected components based on the adjusted 

cases and population size; 

(5) Save the component with the highest LLR value as the cluster candidate. 

 

 

2.4.2 HIERARCHICAL MERGE 

The major difference between the hierarchical-merge and the simple-merge is that 

the hierarchical merge method iteratively aggregates neighbours with the largest increase 

until all the pairs are aggregated. To aggregate two clusters in a neighbour pair, remove 

one of the two clusters, and update the other cluster’s cases and population size as the 

total of two clusters’ cases and population sizes, respectively. The LLR increases for all 

the pairs involving the aggregated clusters need to be updated after the aggregation. The 

process continues until no pair in the list. The adjusted cases and population size are 
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defined in the same way as the ones for geographical contiguous components in the 

simple merge approach. Figure 2.3 illustrates the hierarchical merge process. 

 

Figure 2.3: The hierarchical merge algorithm. Initially each unit is considered as a single 

cluster and the contiguous information is represented as dotted lines (figure a).  The 

algorithm searches the link with largest LLR increase which is link (C, D) marked as solid 

line in figure b. Clusters C and D is merged into one cluster, and related information is 

updated accordingly. The process of searching largest increase is repeated until no 

increase for any link.  The merged cluster with largest adjusted LLR value is picked as 

cluster candidate.  

 

The steps are: 

(1) For each unit i in the studied area, 

a. initialize the unit as a cluster, 

b. find i’s associated neighborhood for smoothing, 

c. apply a smoother to get the smoothed cases �̂�𝑖 and population size �̂�𝑖 for 

the unit; 
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d. calculate its LLR value 𝑙𝑖 based on smoothed cases �̂�𝑖 and population size 

�̂�𝑖; 

(2) For each pair (i, j) of the contiguous neighbors, 

a. compute the merged LLR value 𝑙𝑖𝑗 based on the sums of smoothed cases 

(�̂�𝑖 and �̂�𝑗) and population sizes (�̂�𝑖 and �̂�𝑗); 

b. if the merged LLR value 𝑙𝑖𝑗  is larger than both of the individual LLR 

values 𝑙𝑖 and 𝑙𝑗, then put this pair (edge) into pair list P; 

(3) While P is not empty, 

a. aggregate the pair with the largest increase, 

b. update the pair list P. Remove one of the clusters, replace the other by the 

union of the two, update the increase of involved pairs; 

(4) Calculate the LLR values for the merged clusters based on the adjusted cases and 

population size; 

(5) Save the cluster with the highest LLR value as the cluster candidate. 

 

2.5 EVALUATION AND COMPARISON 

2.5.1 DATA 

To evaluate the new proposed approaches and compare the results with the 

circular, elliptic, and double-link spatial scan statistic methods, I use a set of benchmark 

data sets with three circular clusters from Kulldorff et al.  (2003) and seven irregular 

clusters from Duczmal et al. (2006). The study region of the benchmark dataset contains 

245 counties in the North-eastern United States (see Figure 2.4). The population of 

women from the 1990 census is used as background population, the total of which is 

29,535,210. Three circular clusters are generated in rural, mixed, and urban area, 

respectively (Figure 2.4a); seven irregular clusters are constructed based on landscape 

features including Connecticut River (cluster A), Hudson River (Cluster B), Lake Ontario 

Coast (Cluster C), and Susquehanna River (Clusters D and E), or geopolitical boundaries 

of Pennsylvania (Clusters J and K) (see Figure 2.4b and c).  
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Figure 2.4: Simulated data clusters (shaded areas) for the North-eastern U.S. Circular 

clusters are presented in a, and irregular clusters are identified by the letters in b and c. 

Cluster E consists of cluster D and five nearby counties. Cluster K contains the entire 

Cluster J and several inner counties (lightly shaded).  

 

There are a total of 600 simulated disease cases among the 245 counties. Outside 

the cluster, the cases are randomly distributed in proportion to the population under the 

null hypothesis. The null hypothesis (H0) assumes that the disease rate is the same at any 

location and therefore the expected number of cases under H0 is the overall disease rate 

times the total population in a cluster. A higher relative risk is assigned to the counties 

within each cluster, which is determined by the rule that the null hypothesis would be 

rejected with probability 0.999 while running a standard binomial test given that the true 

cluster locations are known. The population size, the expected number of cases under the 

null and alternative hypotheses, and the relative risk of each cluster are given in the Table 

2.1.  

As a result, there are a total of ten clusters generated (i.e. three circular and seven 

irregular clusters). 10000 data sets are generated to perform the comparisons for each 

cluster. For each data set I applied the circular, elliptic (no penalty), double-connected 
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scan statistic and my approaches. And 9999 random data sets are generated under the null 

hypothesis to estimate the cut-off point for significance. It was proved before that the 

results for both Poisson and Bernoulli probability models are almost identical (Costa et al. 

2012), so only the results for the Poisson model are evaluated. 

 

Table 2.1: Cluster information. E[c|H0] and E[c|Ha] are the expected numbers of cases 

under the null and alternative hypotheses, respectively. Total number of cases is 600 

(simulated).  

Cluster Region #counties Population E(c|H0) E(c|HA) Relative Risk 

Circular Rural 16 360275 7.32 27.57 3.90 

 Mixed 16 1684327 34.22 67.61 2.10 

 Urban 16 7627173 154.94 208.52 1.53 

Irregular A 13 1057407 21.48 47.59 2.32 

 B 16 1672387 33.97 63.44 1.97 

 C 7 709519 14.41 37.52 2.71 

 D 15 119235 2.42 5.52 2.29 

 E 21 1483995 30.15 58.96 2.06 

 J 55 3198049 64.97 99.13 1.63 

 K 78 7775129 157.95 194.26 1.34 

 

 

To compare with other methods, quartic kernel function with 200,000 as the 

population threshold is applied to my methods. Robustness analysis is also conducted by 

applying different kernel functions and population thresholds. The results in section 2.5.4 

demonstrate that the proposed methods are not sensitive to either of these settings. 

2.5.2 EVALUATION MEASURES 

Following Costa et al. (Costa et al. 2012), the two proposed approaches and other 

three methods are examined with respect to statistical power, and three accuracy 

measures: the sensitivity, the positive predictive value (PPV) and misclassification rate. 
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Figure 4.11: Spatial autocorrelation of net residuals for age group 5-14, overlaid by NMR. 

 

Figure 4.12: Spatial autocorrelation of net residuals of age group 15-19. 



 

84 

 

 

Figure 4.17: Spatial autocorrelation of net residuals for age group above 60. 

 

4.7 DISCUSSION AND CONCLUSION 

In this chapter I presented a framework for the extraction of migration patterns 

with both model configuration and exploratory analysis of model residuals. Different 

from existing researches that primarily focus on model calibration and global pattern, my 

approach focuses more on model residuals and local patterns such as spatial clustering 

and spatial autocorrelation, which are usually not detectable by a global model alone. The 

spatial autocorrelation results point to significant flow residuals mediated by other socio-

cultural and economic factors besides size and distance, accessibility variable considered 

in modeling stage. I analyzed MSA-to-MSA migration data set in the U.S. for Census 

2000 and present a series of patterns for seven age groups discovered from the data, 
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Chapter 3 presents a new flow scan statistic for spatial interaction data, which is 

designed to uncover the significant flow patterns. Instead of using a single scanning 

window as in existing spatial scan statistics, the new method applies a flow tube, which 

consists of a circular window on the origin and a circular window on the destination, to 

scan spatial interaction data and discover flow clusters. A statistical measure based on 

GLR, which is independent from neighbourhood size (e.g., population at the origin and 

destination), is developed as the test statistic for flow scanning. Monte Carlo simulation 

is adopted to generate a null distribution of GLR to enable significance testing of flow 

clusters. Evaluations with case studies using both area-based and point-based spatial 

interaction data have demonstrated the detection power and effectiveness of the new flow 

scan statistic.  

Chapter 4 introduces an exploratory framework for the analysis of global and 

local patterns in spatial interaction data. The framework consists of three components: 1) 

a gravity model to discover global patterns, taking into consideration factors including 

distance, mass and competing destination variables; 2) an extended local Moran’s I to 

discover spatial clustering of residuals in the flow model, which enables the detection of 

local patterns; and 3) a novel flow mapping technique to visualize local flow patterns for 

visual interpretation and understanding. To evaluate the framework, the U.S. internal 

migration data among 358 Metropolitan Statistical Areas in Census 2000 is stratified into 

seven age groups and analyzed by applying this newly designed framework. Interesting 

migration patterns are discovered for each age group, which existing methods cannot 

detect and compare.  The results show that migration patterns in each age group are 

different but to some degree related. Migrants in age groups 15-19 and 20-24 tend to 
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move to nearby cities for education. Large cities with more job opportunities are more 

attractive to people in the age group 25-29. Patterns of movers in the age group 05-14 are 

closely correlated with those of the age group 30-44, because children always move with 

their parents. Florida and Arizona are considerably hot destinations for migrants in the 

age groups of 45-59 and above 60. 

The flow scan statistic (Chapter 2) and local flow Moran’s I statistic (Chapter 3) 

are different in several aspects. First, the flow scan statistic detects significant spatial 

flow clusters with more-than-expected flows, while local flow Moran’s I measures spatial 

autocorrelation in spatial flows. In addition to the spatial association of high-high or low-

low values, the local Moran’s I could also discover large flows surrounded by low flows 

or low flow surrounded by high flows. Second, the local Moran’s I for spatial interaction 

data could be used to assess patterns of net flows, while the proposed flow scan statistic 

is not able to handle net flows because the GLR is not meaningful for net flows. Third, 

the flow scan statistic is able to deal with point-based spatial interaction, while Local 

Moran’s I could not measure the association of point-based data because each flow in 

point-based data only represents one individual movement (and hence they are all equal 

in value). 

The overall goal of this dissertation work is to develop models, algorithms and 

frameworks for extracting statistically significant patterns from spatial lattice and spatial 

interaction data. The proposed methodologies can potentially be extended to analyze 

temporal trends or spatio-temporal patterns in spatial lattice or spatial interaction data. 
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5.2 LIMITATIONS AND FUTURE DIRECTIONS 

The developed approaches, in their current form, also have several limitations. 

Although the new spatial scan statistics is designed to detect clusters with different 

shapes, due to incorporation of smoothing techniques, the proposed spatial scan statistics, 

theoretically, are not capable of capturing individual clusters (only one unit in the cluster). 

They assume one single outstanding unit as the random noise and thus exclude its 

possibility of being a cluster.  

The construction strategy of flow tubes used in the flow scan statistic could be 

further improved. Currently it uses a circular base on each end of the tube, which could 

be replaced by more comprehensive approach to detect flow clusters between irregular-

shaped regions. This is similar to the situation for traditional spatial scan statics. The idea 

of spatial scan statistic with smoothing and regionalization methods could be borrowed. 

The challenge is that, a more complicated search strategy with irregular-shaped bases 

would dramatically increase the computational cost.  

The presented approaches for spatial interaction analysis (Chapter 3 and Chapter 

4) do not consider the temporal dimension, for which future work is needed since the 

time dimension is inherent in SI data. The series of methodologies and framework 

introduced in this dissertation can be extended to capture spatio-temporal patterns in 

spatial interaction data. 

From the implementation perspective, the presented methods of scan statistics 

using Monte Carlo simulation could take advantage of parallel computing because each 

simulation is independent of others. An implementation with parallel computing 

capabilities would reduce the computing time, which can be useful in practice.  
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