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the free peptide (Figure 7.7.i) which may lead to non-specific interaction of the 

aggregates with cell surface receptors. In addition, simulation results in Figure 7.8 show 

that the peptide aggregates (P) had a higher energy of interaction with the cell membrane 

than the free peptide, leading to undesired pore formation on the membrane and reduced 

peptide activity. When the peptide was conjugated to PEG (PL0), the peptide aggregates 

were shielded from the cell membrane by surface-bound PEG chains, which slightly 

increased peptide activity. This is consistent with previous results that palmitoylation of 

pro-apoptotic peptides can affect micelle stability and cell uptake.[337]  

The results show that there was higher osteogenic differentiation of encapsulated 

hMSCs when the BMP-2 peptide was dissolved in the hydrogel matrix as compared to 

conjugated peptide (Figure 7.5) which was similar to the previously reported lower 

activity of BMP-2 protein attached to immobilized heparin.[338] Conjugation of the 

peptide to the hydrophilic PEGDA matrix decreased the degree of freedom of the peptide 

beads, which decreased aggregation and increased the free peptide density. Further 

capping the PEG chain with hydrophobic lactide units increased aggregation number of 

the conjugated peptide which can be explained by a decrease in CMC. The free energy of 

micelle formation is related to CMC by [334, 339] 

)ln(0 CMCRTGmic                     (equation 7.7) 

where R and T are the gas constant and absolute temperature respectively and 0

micG is 

the difference in free energy of the peptide between the dissolved and aggregated states. 

CMC and 0

micG  increased with conjugation of the peptide to hydrophilic PEG, leading to 

an increase in free peptide concentration and higher osteoinductive potential of the PEG-

conjugated peptide (cPL0) compared to cP. However, the addition of hydrophobic lactide 
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units to the PEG-peptide conjugate offset the positive effect of PEG conjugation to the 

peptide, leading to an insignificant change in osteoinductive potential of cPL2, cPL4 and 

cPL6 groups compared to cPL0.  

7.5. CONCLUSION 

In this work, the effect of concentration and hydrophobicity of the BMP-2 

peptide, from residues 73-92 of the knuckle epitope of BMP-2 protein, on differentiation 

of hMSCs encapsulated in PEGDA hydrogel was investigated experimentally and by 

molecular dynamic simulation. The encapsulated cells were cultured in osteogenic 

medium without DEX supplemented with the BMP-2 peptide. The index of 

hydrophobicity of the peptide was varied by conjugation to a lactide-capped PEG chain 

with 0-6 lactide units. The BMP-2 peptide dissolved in the hydrogel had significantly 

higher osteoinductive potential than the attached peptide consistent with the fact that 

BMP-2 protein is associated with the soluble not the insoluble fraction of the bone 

matrix. The osteoinductive potential of the BMP-2 peptide was significantly less than the 

protein even at 12000-fold higher molar concentrations which was explained by peptide 

aggregation in aqueous solution. Based on simulation results, the fraction of free peptide 

in solution decreased while the concentration of free peptide increased slightly with 

1000-fold increase in peptide concentration in aqueous solution, which reduced 

osteoinductive potential of the peptide. A decrease in the index of hydrophobicity of the 

peptide by conjugation to PEG increased CMC which increased osteoinductive potential 

of the peptide. Conversely, an increase in the index of hydrophobicity of the peptide by 

conjugation to lactide-capped PEG reduced CMC which reduced the peptide 

osteoinductive potential. Experimental and simulation results indicated that 
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osteoinductive potential of the BMP-2 peptide should be correlated with its 

hydrophobicity index, CMC concentration in aqueous medium, and the concentration of 

free peptide in solution, not the total peptide concentration. 
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CHAPTER 8 

CONCLUDING REMARKS 

This work showed that hydrogels based on star PEG macromonomers chain extended 

with short hydroxyl acid segments (SPEXA) with a wide range of degradation rate, 

gelation kinetics and mechanical properties are potential candidates for delivery of stem 

cells to the site of regeneration in tissue engineering. Although SPEXA hydrogels were 

applied in this work for osteogenic differentiation and mineralization of MSCs, these gels 

can be utilized for a wide range of applications including vasculogenic differentiation of 

endothelial progenitor cells or chondrocyte implantation in cartilage regeneration. 

Further, results of this work demonstrated that the nano-scale characteristics of the 

hydrogels‟ precursor solutions, predicted via meso-scale molecular simulation methods, 

can be utilized for anticipating the hydrogels‟ macroscopic properties including 

degradation rate, gelation kinetics and stiffness. In addition, experimental and simulation 

results revealed that activity of a model osteo-inductive peptide in PEG based hydrogels 

is correlated with the free peptide concentration in aqueous medium and not the total 

concentration. To continue this work it is necessary to study the effect of concentration 

and hydrophobicity of other osteo-inductive peptides on the activity of peptides and 

interaction of peptides with cell-surface receptors. 
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