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Abstract

Computational Genomics, or Computational Genetics, refers to the use of com-

putational and statistical analysis for understanding the structure and the function

of genetic material in organisms. The primary focus of research in computational

genomics in the past three decades has been the understanding of genomes and their

functional elements by analyzing biological sequence data.

The high demand for low-cost sequencing has driven the development of high-

throughput sequencing technologies, next-generation sequencing (NGS), that paral-

lelize the sequencing process, producing thousands or millions of sequences concur-

rently. Moore’s Law is the observation that the number of transistors on integrated

circuits doubles approximately every two years; correspondingly, the cost per tran-

sistor halves. The cost of DNA sequencing declines much faster, which implies more

new DNA data will be obtained.

This large-scale sequence data, produced with high throughput sequencing tech-

nologies, needs to be processed in a time-effective and cost-effective manner.

In this dissertation, we present a high-performance meta-genome gene identifi-

cation framework. This framework includes four modules: filter, alignment, error

correction, and gene identification. The following chapters describe the proposed

design and evaluation of this pipeline.

The most computationally expensive kernel in the framework is the alignment

procedure. Thus, the filter module is developed to determine unnecessary alignment

operations. Without the filter module, the alignment module requires 1.9 hours to

complete all-to-all alignment on a test file of size 512,000 sequences with each sequence
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average length 750 base pairs by using ten Kepler K20 NVIDIA GPU. On the other

hand, when combined with the filter kernel, the total time is 11.3 minutes. Note that

the ideal speedup is nearly 91.4 times faster when new alignment kernel is run on ten

GPUs ( 10*9.14). We conclude that accuracy can be achieved at the expense of more

resources while operating frequency can still be maintained.
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Chapter 1

Introduction

The traditional approach of isolating and culturing microbes has had limited success

in determining the diversity of a microbial community. It is estimated that only

1-10% of all microbial species can be cultured [1, 2, 3, 4]. The new approach is

to access this wealth of genetic information through environmental DNA extraction,

which has provided a means of avoiding the limitations of culture-dependent genetic

exploitation.

From the pioneering experiment of Sanger and Coulson until now, sequence analy-

sis has been the core study of molecular biology. In the past three decades, numerous

projects have successfully deciphered the genomes of various species with correspond-

ing structural and functional annotations.

Sequencing technology has evolved rapidly over the last decade, especially after

2007, with the advantages of lowering cost-per-base and increasing the throughput.

As an example, the cost of the Human Genome Project (HGP) was around three

billion dollars in 2001 and it took over ten years to complete.

The ongoing revolution of next-generation sequencing (NGS) technologies has led

to the production of high-throughput short read (HTSR) data at dramatically lower

cost compared to conventional sequencing technologies. As an example, the cost of

the Human Genome Project (HGP) was around three billion dollars in 2001 and it

took over ten years to complete. Using today’s next-generation sequencing (NGS)

techniques, a human-sized genome can be sequenced for the cost of one thousand

dollars in a day.
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Figure 1.1: Cost per Genome: the cost of sequencing a human-sized genome
[8, 9, 10].

Figure 1.1 shows the reduction of DNA sequencing costs over the past decade

relative to Moore’s Law. In the graph, a logarithmic scale is used on the Y axis. The

sudden and profound out-pacing of Moore’s Law can be seen after 2007.

Designing computational solutions for analyzing NGS data is challenging for a

number of reasons:

1. Large-scale data: The rapid rate of biological sequence cultivation with NGS

technology has led to a rapid growth of publicly available sequence data sets.

Processing large-scale data imposes huge memory and run-time requirements.

2. Computational requirements: Many problems that involve sequence anal-

ysis are computationally difficult. Even polynomial solutions often require a

large run-time and a huge memory for large-scale data sizes. As an example, one

main operation called “alignment” is the computation between two strings. Us-

ing dynamic programming, computing an optimal alignment takes O(l2) time,

and O(l) space where l is the length of two strings l = |s1| = |s2|. However,

2



solving the dynamic programming problem for multiple sequence alignments

rapidly becomes intractable – O(
(

n
2

)
× l2).

My focus will be on solving problems for making core level discoveries of genomic

data. The contribution of this study will be to construct a high-performance meta-

genome gene identification framework.

Figure 1.2: High-performance meta-genome gene identification framework.

The pipeline of the framework can be seen from the figure 1.2, the raw meta-

genome sequences are the input for the filter module. The filter will make a coarse

clustering of the raw set. Then, the alignment procedure will refine the boundaries

of each cluster. Next, the error correction module will repair errors made by the

sequencer which will help to boost specifying open reading frames for the MGC

module. Finally the MGC module will extract genes from the sequences.

1. Filter Module: This module makes a coarse grouping of the raw set.

2. Alignment Module: The alignment module will obtain the list of promising

pairs as its input and run a global alignment procedure to produce the final

clusters from the collection of sequences produced by the filter module.

3. Error correction module: This method will fix the misinterpreted bases by

the sequencer which will help to boost specifing open reading frames for the

next module.

4. MGC module: Finally MGC module will extract genes from the sequences.

The main goal of this work will be the development of methods that can scale to

the largest available sequence data sets. This work is organised as follows. Chapter

3



2 provides a brief overview of the biological concepts required to understand the

problems and applications described in this study.

The following list depicts the portions of the proposed framework I will implement

and test:

I will formulate the meta-genome gene identification problem. Then, I will pro-

vide an extensive review of literature describing the various computational methods.

From Chapter 3 to chapter 6 I will describe the high-performance meta-genome gene

identification framework approach. Chapter 3 will cover the filter partition. Chapter

4 will cover the alignment module. Chapter 5 will cover the error correction module,

as well as identification of possible start and stop codon. Chapter 6 will cover MGC,

the module that identifies genes. Chapter 7 concludes the study with a summary and

with a discussion of future research directions.
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Chapter 2

Background

2.1 DNA: Deoxiribo Nucleic Acid

DNA or Deoxyribo-Nucleic Acid is one of the fundamental molecular entities inside a

cell of a living organism. DNA is not only the hereditary material of an organism, but

also encodes the genetic instructions to carry out its cellular development. The DNA

of an organism is inherited primarily from ancestors. For example, we resemble our

parents simply because our bodies were formed using DNA inherited from them. All

cells in an organism contain copies of the same set of DNA molecules. In terminology,

genome refer to all the DNA molecules within a cell which includes chromosomes and

the mitochondrial DNA of our cell.

A DNA molecule is a helical form that contains two strands intertwined. Each

strand has base molecules bonded to one another as a sequence of four nucleotides:

Adenine A, Cytosine C, Guanine G and Thymine T . The sequence of one strand can

be inferred from the sequence of the other because of the complementary relations

of bases A ↔ T and C ↔ G. Thus, the sequence length of a DNA molecule is

typically measured in base pairs (bp). In contrast to a DNA molecule, a Ribo Nucleic

Acid (RNA) molecule is single stranded and contains the Uracil base, U , instead of

Thymine.

Specific segments of the genome, called genes, encode proteins and Ribonucleic

Acids (or RNAs) that carry out cellular functions. Transcription is a biological process

by which portions of a gene are translated into an RNA molecule. These RNA
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molecules are subsequently released into the cytoplasm of the cell, where they are

translated into their corresponding protein molecules.

“Sequencing” is the process of determining the sequence of a DNA molecule.

Even though the structure of DNA was established as a double helix in 1953, [11] it

was not until 1975 that the first practical procedure to sequence DNA was designed

[12]. Subsequent advances in high-throughput cost-effective sequencing technologies

have resulted in tremendous growth in genomic databases. A wide range of genomes

have been sequenced, from short viral genomes to larger more complicated plant and

mammalian genomes. In order to make sense of the rapidly increasing amount of

genomic data, new analytic tools and computational methods must be developed.

2.2 Sequencing Technologies

Sequencing is the process of determining the precise order of nucleotides in a DNA/RNA

molecule. The first method was “plus and minus” designed in 1975 by Sanger and

Coulson [12] to sequence DNA molecules. Two years later, Sanger et al. designed

another similar method, called the “chain termination method” [13]. Currently, most

sequencing methods are based on this approach. Since the invention of the “chain

termination method,” a great deal of technological advancements have been made

towards increasing the throughput, and towards reducing the cost per base.

Today’s sequencing techniques for DNA are capable of sequencing ∼ 100−1000bp

nucleotides with high accuracy (>98%). However, genetic molecules are much longer;

– DNA and RNA molecules span a few tens of thousands to tens of millions of nu-

cleotides, and a protein may contain hundreds of amino acids. The current approach

to assemble the target molecule is a two phase strategy: (1) sequencing randomly

chosen “fragments” from many copies of the molecule, and (2) subsequently relying

on computational approaches to assemble the target molecule’s sequence.

In the following section, I will briefly review the different sequencing technologies

6



and the types of sequences that can be derived from the specified methods.

2.2.1 Whole genome shotgun sequencing

One popular way to sequence an entire genome is whole genome shotgun (WGS)

sequencing (or shotgun cloning), first used to sequence the genome of a bacterio-

phage [14]. Since the “chain termination method” of DNA sequencing can only be

used for fairly short sequences (100 to 1000bp), the shotgun sequencing method is a

large chunk approach which samples random locations of a target genome, and short

sequences(∼ 5000bp) are then extracted starting at these locations. Next, these se-

quences are cloned in bacterial vector colonies, (BAC) and are finally sequenced from

both sides. The resulting sequences are of length 500−1000bp and are called shotgun

fragments.

In WGS sequencing, multiple overlapping reads for the target genome are ob-

tained by performing several rounds of these processes, such that each target genome

base can be expected to be covered by a specified number of fragments. This num-

ber is called ‘sequencing coverage’ and is denoted by ‘X’. The number of fragments

sequenced in a WGS project is specified by the length of the target genome and

the desired sequencing coverage. For example, a 10X coverage of a one billion base

pair genome will result in approximately 14 million fragments, assuming an average

sequence length of 700bp.

Since the shotgun process is random, it is hard to guarantee that each base will

be covered by at least one fragment. In practice, some genome stretches are left

uncovered in sequencing, and each uncovered stretch is called a “sequencing gap”.

There is a trade-off in that specifying a high coverage decreases the frequency of

gaps, although this choice will lead to a higher sequencing cost.

Whole genome shotgun sequencing is relatively cheap when compared to other se-

quencing technologies. This easy and cheap approach has been used in many projects
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including the Human Genome Project [15, 16, 17].

2.2.2 Hierarchical sequencing

In this approach, a genome is first broken down into clones of up to 150-200Kbp

each called a “Bacterial Artificial Chromosome (BAC)”. Next, a combination of these

BACs that provide a minimum tiling path based on their locations along the genome

is determined. Each selected BAC is then individually sequenced using a shotgun ap-

proach generating numerous short (500−1000bp) shotgun fragments. This method is

also called clone-by-clone sequencing because of its hierarchical strategy. Even though

Hierarchical sequencing is a costlier method than whole genome shotgun sequencing,

this method provides additional information that facilitate an accurate analysis of

the fragments. Hierarchical methods involve different types of colonies such as Yeast

Artificial Chromosomes and Fosmids. This approach has been used for sequencing

several complex eukaryotic genomes including that of maize [NSF (2005)] and the

human [Consortium (2001)].

2.2.3 Next-generation methods

The high demand for low-cost sequencing has driven the development of high-through-

put technologies to parallelize the process, producing thousands of sequences con-

currently. In ultra-high-throughput sequencing as many as one million sequencing

operations may be run in parallel [18, 19].

In the table 2.1, the NGS technologies are summarised. The specifics of NGS

systems such as Solid/Ion Torrent PGM from Life Sciences, HiSeq and MiSeq from

Illumina, and GS FLX Titanium from Roche are presented. This table summarises

many of the important features of computing approaches to next-generation sequenc-

ing. However, this table does not include the initial equipment cost. For example,
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the sequencers from Pacific Bio and Illumina are much more expensive than the Ion

sequencer [20].

Table 2.1: Comparison of next-generation Sequencing Methods

Method Name Read Length Accuracy Reads/run Time/run Cost/Mbp

Single-molecule
sequencing
Pacific Bio

5500 - 8500bp 99.9% 400Mbp 30-120m <$1

Ion Torrent
sequencing
Ion semiconductor

<400bp 98% 80Mbp 120m $1

Pyrosequencing
454

700bp 99.9% 1Mbp 24h $10

Sequencing
by synthesis
Illumina

50-300bp 98% 3Bbp 1-10d 5-15¢

Sequencing
by ligation
SOLiD sequencing

50+50bp 99.9% 1.4Bbp 1-2w 15¢

Chain termination
Sanger sequencing 400-900bp 99.9% - 3h >$2000

2.3 Sequence Alignment

All biological sequences can be represented as strings over a finite alphabet. As shown

in equation 2.1 the alphabet size is 4 for DNA or RNA sequences, and 20 characters is

enough for proteins. The relationship between two sequences is typically established

by comparing the two sequences and detecting any potential overlap between them.

Sequences typically represent much smaller pieces of the original source sequence.

As such the following questions need to be answered.
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1. How can we construct the whole sequence from many small strings?

2. How can we cluster the sequences in a set?

The presence of overlap can be used as an evidence to find similarities between

two sequences or to link two sequences without prior knowledge.

For the remainder of the study, I will use the terms sequence and string inter-

changeably. Also throughout the remainder of this study, I will use the term subse-

quence to mean a substring.

∑
DNA

= {A,C,G, T}∑
RNA

= {A,C,G,U}∑
P ro

= {A,R,N,D,C,Q,E,G,H, I, L,K,M,F, P, S, T,W, Y, V }

(2.1)

A suitable alignment method will help us to detect an overlap between two se-

quences. An alignment between two strings is an ordered list of matches, mismatches,

insertions, and deletions. A gap in an alignment stands for one or more insertions

(alternatively, deletions). An alignment score is computed from the number of its

matches, mismatches and gaps. An optimal alignment is one with the optimum

score.

2.3.1 Alignments Types

There are several types of alignments that can be computed between two strings for

different purposes. Given two strings, s1 and s2, of lengths l1 and l2 (where l1 > 0

and l2 > 0) respectively:

Using dynamic programming, computing an optimal alignment takes O(l1 × l2)

time, and O(l1 + l2) space [21].

Alignments are typically computed using a (l1 + 1)× (l2 + 1) table. Computing a

global alignment between a pair of strings of similar lengths and in which you expect
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high sequence similarity can be accelerated using a banded computation technique

[22]. In this technique, the alignment computation starts on the diagonal of the

dynamic programming table and progressively expands either side in a band until

it can be guaranteed that no optimal alignment can lie outside of the band. The

main idea is to avoid computing the entire table, although it may be necessary in the

worst case. This banded technique can also be extended for non-global alignments if

individual pairs of local regions that are potentially aligning can be identified through

other, quicker means.

For the above alignments, alignment scoring could vary depending on the mecha-

nism used to penalise gaps. A straightforward method is to penalise gaps proportional

to their lengths. Another popular gap function is the affine gap penalty function [23],

in which gaps exceeding a cutoff length are given a constant penalty. Affine gap

penalty functions are generally preferred because they provide a better model for

biological events such as mutations and polymorphisms.

Besides alignment scoring, there are several other ways to measure pairwise se-

quence similarity [24, 25]. While computing these measures may not accurately model

the problem for sequence errors and expected patterns in overlaps, these techniques

are usually sought as faster alternatives to alignment-based methods. For a survey

of alignment and other sequence similarity measures and methods, see [26, 27].

2.3.1.1 Global Alignments

Global alignments, which attempt to align every base in two sequences, are useful

when the sequences are similar and of roughly equal size. A widely accepted and

general global alignment technique is the Needleman-Wunsch algorithm, which is

based on dynamic programming [28].
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2.3.1.2 local Alignments

Local alignments are suitable when s1 and s2 dissimilar sequences are suspected to

contain regions of similarity or similar sequence motifs. The Smith-Waterman algo-

rithm is a widely accepted local alignment method also based on dynamic program-

ming [29].

2.3.1.3 Hybrid Alignment Methods

Hybrid methods (or semi-global methods) attempt to find the best possible alignment

that includes the prefix and suffix of one or the other sequence [30]. This method

is a choice when neither global nor local alignment is entirely appropriate because a

global alignment would attempt to force the alignment to extend beyond the region

of overlap, while a local alignment might not fully cover the region of overlap [30].

Another useful case for semi-global alignment is when one sequence is short and the

other is very long (l1 � l2 or l2 � l1).

2.4 High-performance Computing

Energy consumption is a major problem for integrated circuit designers. Not only

is it difficult to provide energy to a chip, the power-driven heat can cause major

malfunctions. Scaling for chips reached to maximum density, is ultimately limited

by the system capability to cool down the circuit. Consequently, the semiconductor

industry has settled on two trajectories for designing microprocessors. The many-core

approach pays more attention to the execution throughput of parallel applications.

On the other hand, the multi-core idea maintains the execution speed of sequential

programs while using multiple cores. The many-core architecture is split into a large

number of smaller cores. As an example, in NVIDIA GPUs, each core is an in-order,

heavily multi-threaded, single-instruction issue processor that shares cache with other

12



cores.

CUDA, which stands for Compute Unified Device Architecture, is NVIDIA’s GPU

programming environment. The CUDA programming model consists of both host and

device functions. The kernel function which is specific device function and runs on the

GPUs in order to accelerate highly parallel and computationally intensive procedures.

In modern software applications, most of the program segments often includes a

rich amount of data parallelism, a property which allows many arithmetic operations

to be safely performed on program data structures in a simultaneous manner.

Because current GPUs are built on the single-instruction multiple-data (SIMD)

model [31, 32], each SIMD lane can execute its own logical thread for indepen-

dent branching and load/store instructions. This native support for diverging scalar

threads allows memory accesses to exhibit fine-grained characteristics, as memory

addresses are determined at a per-thread granularity.

2.4.1 GPU architecture

2.4.1.1 Streaming Multiprocessor

NVIDIA’s new streaming multiprocessor (SMX) introduces several architectural in-

novations. One SMX has 192 single-precision CUDA cores, 64 double-precision units,

32 special function units (SFU), and 32 load/store units. The SMX count may vary

between 7 and 15 for different chipsets.

Hyper-Q enables multiple CPU cores to launch work on a single GPU simulta-

neously, thereby dramatically increasing the % of temporal occupancy on the GPU.

Hyper-Q increases the total number of connections between the host and the GPU

by allowing 32 simultaneous processes.

GPUDirect is a capability that enables GPUs within a single computer, or GPUs

in different nodes located across a network, to directly exchange data without needing

to use system memory. The RDMA feature in GPUDirect allows third party devices
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to directly access memory on multiple GPUs within the same system, significantly

decreasing the latency of MPI send and receive messages to/from GPU memory. It

also reduces demands on system memory bandwidth and frees the GPU DMA engines

for use by other CUDA tasks.

2.4.1.2 GPU memory model

The memory model of new generation GPU models is slightly different from the older

versions. It has extra cache memory which is dedicated to read-only data.

Figure 2.1: Memory hiearachy of a GPU thread

2.4.1.3 CUDA and MPI programming models

Compute Unified Device Architecture, (CUDA) is a parallel programming language

extending general programming languages, such as C, C++ and Fortran. CUDA

enables users to write parallel scalable programs for CUDA-enabled processors [33]. A

CUDA program is includes two parts: a host program running one or more sequential

threads on a host CPU, and one or more parallel kernels able to execute on Tesla,

Fermi, and Kepler unified graphics and computing architectures [34, 35, 36].
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A kernel is a device function launched on a set of lightweight concurrent threads.

The parallel threads are organized into a grid of thread blocks, where all threads in

a thread block can synchronize through barriers and communicate via a high-speed

shared memory. This hierarchical organization of threads enables thread blocks to

implement coarse-grained task and data parallelism, and lightweight threads provide

fine-grained thread-level parallelism. Threads from different thread blocks in the

same grid are able to cooperate through atomic operations on global memory shared

by all threads.

MPI is a de facto standard for developing portable parallel applications using the

message passing mechanism. MPI works on both shared and distributed memory

machines, offering a highly portable solution to parallel programming on a variety of

machines and hardware topologies. In MPI, each node is defined as a process and

enables the processes to execute different programs. This multiple program, multi-

ple data model offers more flexibility for data-shared or distributed parallel program

design. Within a computation, processes communicate by calling runtime library rou-

tines, specified for the C/C++ and Fortran programming languages, including peer-

to-peer and global communication routines. Peer-to-peer communication is used to

send and receive messages between two specific nodes, suitable for unstructured com-

munications. Global communication is used to perform commonly used operations

e.g. reduction and broadcast operations.
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Chapter 3

Filter Design

3.1 Motivation

Next generation sequencing (NGS) produces huge amount of data. At the same time

pairwise techniques for processing sequences are computationally expensive. One way

of addressing these two problems is to first filter the data by splitting it into several

clusters on the bases of sequence similarity. The filter produces cluster of sequences

as can be seen from the Figure 3.1.

Substring search methods are well suited to finding similarities of sequences [37,

38, 51, 52, 53, 54, 55]. This chapter includes descriptions of two filter approaches.

The first idea is not efficient because it does not have a parallel data structure and

the method requires many data transactions during the execution. For these reasons,

I propose to implement the second approach and compare the timing results with

that of the filter portion of PaCE [37, 38].

PaCE is chosen for comparison because its data structure is closely related to my

approach. PaCE is an open source tool and only PaCE outputs filtering results com-

parable to those of the method I implemented. In addition, PaCE was implemented

for a parallel environment and tested thoroughly [37, 38].

Prior to discuss of the filter structure, we should review the appropriate data

structures for the module. The suitable data structures are: the suffix tree and suffix

array.
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Figure 3.1: Filter module takes raw meta-genomic sequences and create coarse
groupings.

3.2 Implementation

Suffix trees and suffix arrays are versatile data structures fundamental to string pro-

cessing applications. The following subsections describe the suffix tree and suffix

array data structures as well as their construction and use.

3.2.1 Suffix tree

Let r denote a string over the alphabet Σ. Let $ be a unique termination character –

the lexicographically smallest character–, and s be the string resulting from appending

$ to r where s = r$. Let suffi = sisi+1 . . . s|s| be the suffix of the new string starting

at ith position. The suffix tree of s is a compacted trie of all suffixes. Let n = |s|.

The suffix tree of s has the following properties: [39].

• The suffix tree has n leaves, and each leaf corresponds to a suffix of s.

• Each internal node has at least 2 children.

• Each edge in the tree is labeled with a substring of s.

• The concatenation of edge labels from the root to the leaf labeled i is suffi.

The two paths from the root to the leaves i and j corresponding to two different

suffixes suffi and suffj and share up to their longest common prefix (LCP), at which

character they bifurcate. By using the unique $ symbol, we can create a leaf node if
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a suffix of the string is a prefix of another longer suffix, by using $ symbol, we can

assign a new leaf node for the shorter suffix. The suffix tree of the string “BANANA”

is shown in Figure 3.2.

Figure 3.2: The suffix tree for the string “BANANA” (The first leaf node which
represents $ character is removed).

3.2.2 Suffix trees and suffix array relation

Manber and Myers proposed the suffix array as an alternative to suffix trees and

explained the first algorithm for constructing it in 1990 [40, 41]. They also provided

an algorithm to compute an auxiliary data structure, the longest common prefix

(LCP) array, alongside the suffix array in O(nlog(n)) time. the LCP array stores the

lengths of the longest common prefixes between pairs of consecutive suffixes in the

sorted suffix array.

Suffix arrays and suffix trees are closely related data structures. Each one can

easily be converted to the other. A suffix array can be derived from a suffix tree by

performing a depth-first traversal on the tree. A suffix tree can be constructed in

linear time by using a combination of suffix and LCP array [42, 43].

It has been shown that every suffix tree algorithm can be systematically replaced

with an algorithm that uses a suffix array enhanced with additional information

(such as the LCP array) and solves the same problem in the same time complexity.
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Advantages of suffix arrays over suffix trees include improved space requirements, and

easier linear time construction algorithms [40, 42].

3.2.3 Suffix array construction methods

The suffix array is as an alternative data structure to suffix trees which is more suitable

for GPU computing. Since it was announced, suffix array based applications and

suffix array construction algorithms (SACAs) have proliferated. This chapter provides

summaries that highlight the features of these algorithms, while avoiding as much as

possible going into exhaustive detail. I provide comparisons of the algorithms’ worst-

case time complexity and space complexity.

After the Manber and Myers announcement, there has been a great deal of research

on the construction and use of suffix arrays. Over this period, it has been shown that

practical space-efficient SACAs exist that require worst-case time linear in string

length [44, 46].

It has also been proven that suffix arrays and suffix trees have same asymptotic

complexity [42]. Thus, suffix arrays have become the data structure of choice for

many string processing applications for which suffix tree data structure is applicable.

In this section, I do not attempt to cover the entire suffix array literature. The

goal is to provide a comprehensive overview of SACAs, organized into a “taxonomy”

based primarily on the methodology used and their complexity [47].

3.2.4 Suffix arrays basics

Consider a finite nonempty string s of length n = |s| ≥ 1, defined on an alphabet Σ.

The suffix array A of s is defined to be an array of integers providing the starting

positions of suffixes of S in lexicographical order. This means, an entry Ai contains

the starting position of the i-th smallest suffix in the string and thus

∀i, 1 < i ≤ n, s[Ai−1, n] < s[Ai, n]
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Table 3.1: The suffixes of the string, “banana”, and its suffix array and LCP array

i Suffix Suffix A[i] LCP[i]
0 banana$ $ 6
1 anana$ a$ 5 0
2 nana$ ana$ 3 1
3 ana$ anana$ 1 3
4 na$ banana$ 0 0
5 a$ na$ 4 0
6 $ nana$ 2 2

Consider the text s =′banana$′ to be indexed:

i 0 1 2 3 4 5 6

s b a n a n a $

The text ends with the special letter $ that is unique and lexicographically smaller

than any other character.

Suffix arrays usually need an auxiliary data structure called the longest common

prefix array (LCP array). The LCP array stores the lengths of the longest common

prefixes between pairs of consecutive entries in the suffix array. Combining the suffix

array with the LCP array supports an efficient simulation of the suffix tree, [41,

42] and speeds up pattern matching on the suffix array [43]. After computing the

suffix array the LCP array is constructed by comparing lexicographically consecutive

suffixes to determine their longest common prefix:

The rule for constructing an LCP array is,

∀j, 1 < j ≤ n,

lcpj is just the length of the longest common prefix of suffixes Aj−1 and Aj.

The string banana has the following suffixes and sorted suffixes as shown in Table

3.1:
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Table 3.2: The Skew Algorithm on the string, “banana”: (a,b) sorting the
subarrays, and (c) merging

i Suffix

5 a$

1 anana$

4 na$
2 nana$

(a)

+

i Suffix
6 $

3 ana$

0 banana$

(b)

⇒

i Suffix
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

(c)

3.2.5 The skew algorithm

The skew algorithm is much simpler than previous linear time algorithms [46]. The

algorithm also works for the case of an integer alphabet. Let s be a string of length

n over a fixed alphabet Σ. For convenience, assume n is a multiple of three and last

two symbols are empty – sn+1 = sn+2 = 0. The main idea of this algorithm is to

divide suffixes into 3 groups. Table 3.2 depicts the steps of the skew algorithm. For

suffix array construction over the alphabets that can be implemented to run in linear

time using the following sorting subroutine:

1. Recursively sort suffixes beginning at positions:

i mod 3 = 0

2. Sort the remaining suffixes using the information obtained from the previous

step,

i mod 3 6= 0

3. Merge the sorted sequences which are computed in steps one and two.

G6=0 = { (1, ’anana$’), (2, ’nana$’), (4, ’na$’), (5, ’a$’) }

G=0 = { (0, ’banana$’), (3, ’ana$’), (6, ’$’)}
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s b a n a n a $
Type L S L S L L S/L
Pos 0 1 2 3 4 5 6

bucket $ a a a b n n
Step-2 6 5 3 1 0 2 4

Sorted Order 6 5 3 1 0 4 2

3.2.6 Ko and Aluru’s Algorithm

The algorithm of Ko and Aluru [44, 45] partitions suffixes based on the lexicographic

ordering of a suffix with the suffix of its neighbour. Consider a string s of size n over

a fixed alphabet Σ. Again, I use $ to mark the end of s, considered lexicographically

the smallest and $ /∈ Σ.

The symbol ≺ denotes lexicographic ordering. The statement a ≺ b indicates if

the string a is smaller than b. The algorithm starts by classifying suffixes into two

types, S and L. The classification is done as follows: a suffix suffi is in the S class

if suffi ≺ suffi+1, and is of type L if suffi+1 ≺ suffi. The very last suffix, suffn, is

labelled as S/L. The positions of the type S suffixes partition the string into a set of

substrings. I substitute each of these substrings by its rank among all the substrings

and produce a new string t. The suffixes of the new string are then recursively sorted.

The suffix array of t gives the lexicographic order of all type S suffixes. The order of

all other type suffixes can be deduced from this order.

The first step of the algorithm is to classify suffixes into types S and L.

Algorithm 1 Ko and Aluru’s Suffix Array construction Algorithm
1: suffn−1 = S/L
2: for i = n− 2 downto 0 do
3: If si < si+1, suffi is of type S
4: If si > si+1, suffi is of type L.
5: If si = si+1, suffi is of type suffi+1.
6: end for
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Initially, let B be an array containing all suffixes of the string. Let C be a sorted

array of all suffixes of type S. Using C, the sorted order of all suffixes of s can be

computed as follows:

1. group all suffixes of the string according to their first character in the first array

B.

2. The array C is scanned. For each suffix encountered in the scan, move the suffix

to the current end of its bucket in array C, and advance the current end by

one position to the left. After this step, all type S suffixes are in their correct

positions in B.

3. Scan array B. For each entry of Bi, if suffBi−1 is a type L suffix, move it to

the current front of its bucket in the current array, and advance the front of the

bucket by one. At the end of this step, B is the suffix array of s.

We can characterise the main types of SACAs as follows:

Prefix Doubling

Algorithms are based on the idea of Karp, Miller and Rosenberg (1972). The

idea is to find prefixes that mark the ordering of suffixes. The determined prefix

length doubles in every iteration of the algorithm until a unique prefix is found

and this prefix provides the rank of the corresponding suffix. The time required

for prefix doubling SACAs is O(nlog n). There are two algorithms in this class:

Manber and Myers [40, 41] and Larsson and Sadakane [48, 49].

Recursive algorithms

Recursive algorithms follow the same idea that used for constructing a suffix

tree by Farach. These algorithms recursively sort a subset of suffixes. Later, the

sorted subset is then transfered to the suffix array. The overall time requirement
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of these algorithms is Θ(n). There are three main algorithms in this class: Ko

and Aluru [44], Kärkkäinen and Sanders [46], and Kim et. al. [57].

Induced Copying

Induced copying methods and recursive algorithms are similar in the sense that

they use an already sorted subset to induce a fast sort of the remaining suffixes.

The difference is that induce copying methods are non-recursive. In general,

these induce copying algorithms are very efficient in practice, but may have

worst-case asymptotic complexity as high as O(n2logn). [58, 59, 60, 61, 62, 63].

A detailed survey of SACAs has been put together by Puglisi et. al. [64].

Table 3.3: Performance Summary of the SACA Algorithms

Algorithm Year Worst Case Memory
Prefix-Doubling
Manber and Myers 1993 O(nlogn) 8n
Larsson and Sadakane 1999 O(nlogn) 8n
Recursive
Ko and Aluru 2003 O(n) 7-10n
Kärkkäinen and Sanders 2003 O(n) 10-13n
Kim et al. 2004 O(nloglogn) 13-16n
Induced Copying
Itoh and Tanaka 1999 O(n2logn) n
Seward 2000 O(n2logn) n
Burkhardt and Kärkkäinen 2003 O(nlogn) 5-6n
Manzini and Ferragina 2004 O(n2logn) 5n
Schürmann and Stoye 2005 O(n2) 9-10n
Baron and Bresler 2005 O(n

√
logn) 8n

Maniscalco and Puglisi 2007 O(n2logn) 5-6n
Nong et. al. [50] 2009 O(n) –

3.2.7 Filter implementation

In the filter module, I implemented a kernel that computes a cumulative suffix array

for concatenated string t. The concatenated string t is the concatenation of a set of

strings si in S. After forming the suffix array SA of t, the inputs are ready for filter
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kernel. However, an additional step should be taken here for the kernel to prevent

the filter from matching a sequence si with its replica in the total sequence t.

The algorithm of the the filter kernel that I implemented and evaluated is given

in Algorithm 2.

Algorithm 2 Filter Algorithm 2
1: Input : S = {s0, s1, . . . , sn−1}
2: t = ε
3: for s = s0 : sn−1 do
4: t = t+ s
5: end for
6: Compute suffix array of t, SA
7: A = FilterKernel(SA, S)
8: Align (S,A)

I can achieve this by blocking out the corresponding part of the total sequence

for each sequence. Algorithm 2 describes the second filter idea. Finally, I need

to prevent the finding of matches that overlap consequent sequences. Consider the

following situation: Algorithm 2

sj = . . . TTCCCAT . . .

si = . . . ACCTTCC.

si+1 = CATTG . . .

(3.1)

The string sj has the following substring “TTCCCAT” which overlaps both of the

strings si and si+1 which is an artificial match. In order to eliminate this situation, I will

add another unique symbol between the sequences. This can be shown as follows:

∑
=
∑

DNA
∪{#}

t = s0 + # + s1 + # + . . .+ # + sn−1

(3.2)
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3.3 Results

The filtering module generates pairs of sequences (promising pairs) that are sent to the

alignment procedure. We compare our filter timing results with the filter portion of parallel

clustering tool, PaCE. I chose PaCE, because it is an open-source MPI-based tool which

is using suffix tree for filtering purpose. The output format of PaCE and my filter module

are similar which will make easier to compare results. Since PaCE is a developed in MPI,

it will be a fair comparison between GPU timing with PaCE timing.

Data

A genome set were obtained from NCBI for constructing meta-genome sets. We gathered

a total of 25 complete bacteria genomes shown in Table 3.4 and Table 3.5. From these

genomes we constructed two data sets, namely, similar and dissimilar, reflecting taxonomic

relationships. The similar group consists of thirteen Bacillus Genus bacteria genomes. The

dissimilar set elements are in the Proteobacteria Phylum.

Table 3.4: Similar data set : genomes are from – Bacillus Genus

No. Name of the sequence Size
1 Bacillus anthracis str. A0248 5227419
2 Bacillus atrophaeus UCMB-5137 chromosome 4116019
3 Bacillus bombysepticus str. Wang 5295783
4 Bacillus cellulosilyticus DSM 2522 chromosome 4681672
5 Bacillus cereus B4264 chromosome 5419036
6 Bacillus clausii KSM-K16 4303871
7 Bacillus coagulans 36D1 chromosome 3552226
8 Bacillus halodurans C-125 chromosome 4202352
9 Bacillus licheniformis ATCC 14580 chromosome 4222597
10 Bacillus megaterium DSM 319 chromosome 5097447
11 Bacillus pseudomycoides DSM 12442 chromosome 5782514
12 Bacillus subtilis subsp. subtilis str. 168 chromosome 4215606
13 Bacillus weihenstephanensis KBAB4 chromosome 5262775

Total base-pairs 61379317

The purpose is to start based on a common truth. MetaSim is simulating NGS and

printing error positions that we will use later in the Error correction module.
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Table 3.5: Dissimilar data set : genomes are from –Proteobacteria Phylum

No. Name of the sequence Size
1 Achromobacter xylosoxidans NH44784-1996 6916670
2 Acidobacteria bacterium KBS 146 4996384
3 Aeromonas hydrophila ML09-119 5024500
4 Anaeromyxobacter sp. Fw109-5 chromosome 5277990
5 Azoarcus sp. BH72 chromosome 4376040
6 Geminicoccus roseus DSM 18922 5421495
7 Herbaspirillum seropedicae SmR1 5513887
8 Laribacter hongkongensis HLHK9 3169329
9 Marinobacter adhaerens HP15 chromosome 4421911
10 Pandoraea pnomenusa 3kgm 5429298
11 Rhizobium sp. LPU83 4195305
12 Rhodospirillum centenum SW 4355543

Total base-pairs 59098352

NGS data modeling

To simulate the sequencing process, I used MetaSim tool. MetaSim is a sequencing simulator

[65]. Based on a database of given genomes, MetaSim allows the user to design a meta-

genome by specifying the number of genomes present at different levels, and then to collect

reads from the meta-genome using a simulation of a number of different NGS technologies.

The MetaSim sequencing simulator is used to generate collections of synthetic reads of

specified meta-genome data sets.

Coverage (read depth) is the average number of reads representing a given nucleotide

in the reconstructed sequence.

Coverage = N × l∑
iGi

(3.3)

Equation 3.3 depicts the coverage computation. In the equation, Gi and N represent

the length of the ith genome and the number of reads respectively; the average read length

is shown with (l).

If we want to compute 6X read depth for the Bacillus Genus data set, then we derive

N from the equation as shown by the calculation in (3.4).
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Coverage = N × l∑
iGi

6 = N × 750
61379317

N ∼ 500K

(3.4)

Considering a real sequencing process, we wanted to test different coverages. For each

data set, we obtained two files, 512K sequences and 1024K sequences which correspond

approximately to 6X coverage and 12X coverage, respectively. Altogether, we produced

four test files, S-512K, S-1024K, D-512K and D-1024K. We set average sequence length

∼750 base pairs for all data sets.

In addition to the artificial data files, we also obtained a real meta-genome. The meta-

genome file is under the sample name Obese Human Gut which has the sample code

SRS009825 [66]. It has 2038516 reads and the average read length is 270. From this

meta-genome we created 3 more test files which have 256K, 512K and 1024K, respectively.

Table 3.6: Test files, average sequence length is represented by lavg

File Name Size Coverage lavg

O-256K 256000 270
O-512K 512000 270
O-1024K 1024000 270
O-2048K 2038516 270
S-512K 512000 6X 750
D-512K 512000 6X 750
S-1024K 1024000 12X 750
D-1024K 1024000 12X 750

Table 3.6 shows the benchmarks for testing filter module. The performance of PaCE

is summarized in Table 3.8. PaCE can only extract pairs of sequences where match length

is 12. PaCE encounters a memory deficiency when running larger data files. Thus, on the

clusters of 40 and 60 CPUs, PaCE cannot handle D-1024K, S-1024K, O-2048K files.

PaCE does not have 1492.266
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Table 3.7: Comparison of Stampede computing node with GPU used in our tests.

Intel Xeon E5-
2680

NVIDIA K20
GPU

Architecture Sandy Bridge Kepler GK110
Processor
cores 8 13

Threads
/core

2 threads/core, Su-
perscalar specula-
tive out of order

2048 threads/core,
8 instructions
dispatched per cycle
per core in program
order

Clock rate 2.7 GHz 745 MHz
Memory
bandwidth 51.2 GB/s 208 GB/s

Transistors 2.27 billion 7.1 billion
On chip
memory 20 MB L3 cache

∼1 MB (64KB
L1/multiprocessor
core)

Thermal
Dynamic
Power

130 Watts 225 Watts

Table 3.8: PaCE timing results on the benchmarks on different clusters 40, 60, 80,
100 CPUs (fixed match length – 12)

File Name 40 60 80 100
O-256 251.194 227.053
S-512 635.120 597.231 425.129 381.185
D-512 627.483 593.110 411.634 375.124
O-512 515.789 480.159 382.986 288.840
S-1024 962.193 790.931
D-1024 937.878 715.689
O-1024 1195.919 962.683 707.607 638.061
O-2048 1492.266 1254.101 1128.76

The filter module is tested thoroughly on three different size of clusters. The first one

is the base cluster and it includes only one NVIDIA K20 GPU. The filter timing results

which is running on one NVIDIA K20 GPU is given Table 4.1. The filter module requires

more time once the minimum match length is decreased, the filter extracts more pairs of
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Figure 3.3: PaCE timing results on the benchmarks on different clusters 40, 60, 80,
100 CPUs

strings.

Table 3.9: 1 NVIDIA K20 GPU timing results for running filter kernel

File Name 40 30 20 15 12
O-256 72.302 73.008 77.115 78.179 82.425
S-512 244.086 245.733 247.115 251.594 255.962
D-512 241.708 243.206 246.760 247.745 250.601
O-512 145.686 151.749 152.332 153.249 158.653
S-1024 498.332 506.403 514.875 521.220
D-1024 480.538 488.640 497.512 512.953
O-1024 289.987 298.071 305.200 311.848

The longer sequences that a test file has, the more time the filter kernel requires. For

example when match length is set to 15, the filter procedure requires 521.220s for the test file

S-1024 which has an average sequence length 750. On the other hand, the filter completes

the process in 311.848s for the file O-1024 consists of sequences of average length of 270bp.

The second test combination uses a cluster of size 10 NVIDIA K20 GPUs. The results

shown in Table 3.10 are total time for the kernel. The same behavior can be observed here

as we saw in table 4.1 The average performance ratio of 10-GPU cluster/1-GPU cluster is

over 7. Figure 3.5 represents the performance of the 10-GPU cluster.

Finally, the third test run uses a 20-GPU cluster where each GPU has the same specifi-
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Figure 3.4: Filter module timing: 1 NVIDIA K20 GPU timing results for running
filter kernel

Figure 3.5: 10 NVIDIA K20 GPUs timing results for running filter kernel

Table 3.10: 10 NVIDIA K20 GPUs timing results for running filter kernel

File Name 40 30 20 15 12
S-512 31.098 32.128 33.115 33.182 35.224
D-512 29.319 30.081 33.129 34.305 34.339
S-1024 65.710 66.987 71.440 72.766 75.764
D-1024 65.267 66.879 70.426 70.961 73.812
O-1024 50.865 51.543 53.909 53.618 56.229
O-2048 99.015 102.426 104.367 108.944 109.159
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Figure 3.6: 20-GPU cluster timing results

cations. Table 3.11 shows total time for the kernel, as well. The average performance ratio

of 20-GPU cluster/1-GPU cluster is about 13.6. Figure 3.6 represents the performance of

the 20-GPU cluster.

Table 3.11: The filter kernel run-time results on 20 NVIDIA K20 GPUs

File Name 40 30 20 15 12
S-512 17.102 18.171 19.245 21.484 21.845
D-512 16.319 16.812 17.529 18.308 19.110
S-1024 38.221 39.242 39.404 41.869 43.443
D-1024 35.716 36.421 37.347 38.110 39.412
O-1024 27.200 28.373 28.442 29.941 31.356
O-2048 56.498 60.256 61.719 61.429 63.423
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Chapter 4

Alignment Module

4.1 Motivation

The filtering module in the previous chapter only matches the sequences that are similar

based on a threshold value. In order to organise the coarse groups produced by the filter

module into clusters additional processing is required. The alignment module will obtain

the list of promising pairs as its input and run a global alignment procedure to produce the

final clusters from the collection of sequences produced by the filter module.

Figure 4.1: Alignment Module

4.2 Background

There has been recent interest in processing and clustering sequences generated by NGS

sequencing tools [67, 68, 69, 70, 71, 72, 73, 74].

The kernel of our alignment tool uses the Needleman-Wunsch algorithm to compute the

pairwise distances among a large set of short sequences [28]. There are several examples

in the literature that describe GPU accelerated local and global alignment algorithms such

as Needleman-Wunsch [75, 76], Smith-Waterman [77], and BLAST [78]. However, the
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emphasis of these efforts is on local sequence alignment for genomic database searching, in

which a relatively short sequences are aligned against a very long database sequence.

Manavski provided the work in accelerating Smith-Waterman using CUDA [79]. This

early work has been improved upon by the development of libraries such as CUDASW++

[77]. More recently, Razmyslovich has developed an OpenCL implementation of Smith-

Waterman [80] that can achieve three times the performance of CUDASW++ 2.0 in some

circumstances [81].

4.2.1 Needleman-Wunsch global alignment

The Needleman-Wunsch algorithm is a comparison operation between two sequences A and

B given an implicit assumption that when the sequences are not exactly equal, their similar-

ity can be characterised as the number of edit operations that would transform one sequence

into the other. Possible edit operations are character substitutions, substring insertions, and

deletions. The objective of an alignment is to align the matching or substituted characters

that are common in both sequences and to add blank spaces-or gaps- to one of the sequences

when the characters do not align. The distance “penalty” that is contributed by each edit

operation can be specified using a substitution table T and a gap penalty d.

The algorithm works by constructing two matrices, where each matrix has l1 + 1 rows

and l2+1 columns, where l1 and l2 are the lengths of the two strings to be aligned. The score

matrix records the alignment score for every possible alignment between the two strings,

while the movement matrix provides a path through the matrix, from the bottom-right cell

to the upper-left cell, that represents the alignment configuration that yields the minimal

alignment score. In this path, a move to the left (or up) represents a gap that is inserted

into the first (or second) sequence, while a diagonal move represents a matching.

Each cell of the score and movement matrix is computed as shown in Equations 4.1 and

4.2.
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Si,j = min


Si−1,j−1 + Ta,b

Si−1,j + d

Si,j−1 + d

(4.1)

Mi,j =


Diagonal if Si,j = Si−1,j−1 + Ta,b

Up if Si,j = Si−1,j + d

Left if Si,j = Si,j−1 + d

(4.2)

In these equations, Si,j is the score matrix, Ta,b is the substitution penalty resulting

from comparing element a = Ai and element b = Bj, and d is the gap penalty. T and

d are specific to the sequencer technology and are represented as floating-point values.

In order to differentiate minor variations between flows, some authors choose to use

double precision floating-point to perform the comparisons, score accumulation, and

score normalisation [75, 76].

Figure 4.2 shows an example of global alignment. In this example, sequence 1

undergoes three edit operation to produce sequence 2. The final alignment score is

taken from the lower-right cell of the resultant score matrix. The move matrix is

depicted in the figure and shows how characters present in sequence 1 but not in

sequence 2 produce moves to the left, characters present in sequence 2 but not in

sequence 1 produce moves up, and characters that match or are substituted produce

a move diagonally. In this example, for computing the normalised score the final

score is divided by the alignment length of 13.
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4.2.2 Space optimization

The construction of the two matrices represents a major challenge when performing

large-scale batch alignments on GPUs, as the memory requirement will often become

a constraint well before the execution time. Since the actual alignment is not needed,

only the last row of the score matrix and move matrix need to be stored in memory.

However, since our alignment procedure finds the total movement distance in order

to compute normalised score, it originally scored the entire movement matrix [75].

In our improved kernel, we store only one row of the movement matrix as well.

In order to avoid storing the entire movement matrix, the kernel maintains only a

single vector V, where Vj represents the accumulated number of minimal alignment

moves beginning from the current row and from column j. In addition to this vector,

we establish two extra registers, Nm and Lm, to hold intermediate values. Nm holds

the newly computed number of moves and Lm holds the previous number of moves

Figure 4.2: Example Needleman-Wunsch alignment between two sequences.
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from the left cell. If the current move is determined to be diagonal, then we set

Nm = Vi−1 + 1, if the current move is determined to be left, then we set N = L+ 1,

and if the current move is determined to be up, and we set Nm = Vi + 1. After this

we set Vi−1 = Lm, Lm = Nm, and increment j. This processes is described in more

detail below in Algorithm 3.

Algorithm 3 Single Vector Needleman-Wunsch Alignment
1: Input : A,B, T, d
2: Output : normalised score value
3: for i = 1 : |A| do
4: Lm = 0
5: LS = i× d
6: for j = 1 : |B| do
7: NS = min(Sj−1 + TA[i],B[j], LS + d, Sj + d)
8: if NS = Sj−1 + TA[i],B[j] then
9: Nm = Vj−1 + 1
10: else if NS = LS + d then
11: Nm = Lm + 1
12: else
13: Nm = Vj + 1
14: end if
15: Sj−1 = LS

16: LS = NS

17: Vj−1 = Lm

18: Lm = Nm

19: end for
20: Sj−1 = LS

21: Vj−1 = Lm

22: end for
23: return LS/Lm

4.2.3 Arithmetic Intensity

Algorithm 3 shows the version of the Needleman-Wunsch algorithm used in our kernel.

The innermost loop performs all the operations required to calculate a single cell of

both the score and the movement matrices. As shown in the algorithm, this requires

9 double precision floating-point operations, the loading of 2 bytes for Ai and Bj,
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the access of 24 bytes accessed from the score vector, and 8 bytes accessed from the

distance vector. Since all of our test sequences are of length 400, each alignment

requires 4002 = 160, 000 cell updates.

If we begin with the assumption that our kernel is compute bound we consider

that each of the thirteen streaming multiprocessor cores (SMXs) on the NVIDIA K20

can dispatch 128 double precision operations per cycle. Consequently, we should be

able to achieve a throughput of 1/160, 000 alignment/cells ×1/9 cell/ops ×(13×128)

ops/cycle×706e6 cycles/second = 815, 820 alignments/second per GPU. On the other

hand, if we assume that the kernel is memory bound, we should be able to compute

1/34 cell/bytes ×1/160, 000 alignment/cells ×208 GB/s = 38, 235 alignments/second

per GPU. Since the second throughput is lower we conclude that the kernel is indeed

memory bound. We can compute the utilization of this kernel, 38, 235/815, 820 =

4.7% of the computational capability of the GPU.

In order to compute the pairwise distances among sequences, an input dataset

with n sequences will perform a N-W alignment (n2 − n)/2 times to compute. For

a dataset of 218 sequences there are approximately 34 billion required alignments,

which would ideally require 468 minutes on 32 K20 GPUs.

4.2.4 Multi-GPU implementation

Since each individual alignment is independent, the host can assign each GPU a

workload consisting of a subset of the alignments in order to parallelize the pairwise

alignments across multiple GPUs. In our multi-GPU implementation, we divide the

workload across each GPU using MPI.
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4.3 Results

4.3.1 Single GPU performance results

Each node in the TACC Stampede cluster contains dual 2.7 GHz eight-core Intel

Xeon E5-2680 CPUs that can each execute 16 MPI processes. Our first set of exper-

imental results seeks to determine how many of these cluster nodes are equivalent,

in performance, to a single NVIDIA GTX680 GPU for performing a set of pairwise

alignments.

Table 4.1: CPU vs. Single GPU execution time in seconds.

Execution Time
for 8192 Seq.

Execution Time
for 6144 Seq.

32 2479 1394
64 1241 698

Cluster 128 620 698
processes 256 620 349

512 310 175
1024 155 87

GPU GTX680 1230 700

Table 4.1 shows the performance results for alignment, using only Stampede’s

CPUs. The 8K and 6K sequences are nodes on two through 64, and on all 16 pro-

cessors on each node. Our CPU implementation uses the same optimized algorithm

described in Algorithm 4.1, which is approximately six times faster than the base

implementation in AmpliconNoise due to the movement vector optimization. Note

that the speedup is nearly ideal as we scale to larger numbers of processors, except

for the case when scaling from 128 to 256 processors for the 8K dataset and from

64 to 128 processors in the 6K dataset. We assume this is due to communication

overhead related to the placement of the MPI processes on the cluster.

We also ran the same datasets using a single NVIDIA GTX680 GPU. For both

datasets the GPU is equivalent to 64 processors.
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4.3.2 Performance analysis

Combining the alignment method and filter kernel, a partial performance equation

of my framework can be derived by using Amdahl’s Law (see equation 4.3). Let f

be the number of pairs of sequences that are filtered in a second through the filter

engine and let a be the number of alignments that are produced by the alignment

algorithm in a second. The filtering method is removing the sequences that should

not be in a cluster. However, some portion of the sequence pairs need to be sent to

the alignment kernel for further analysis. q denotes the proportion of the sequences

that are sent to alignment algorithm from the filter method. Finally r represents the

overhead.

P = 1
1
f

+ q × 1
a

+ r
(4.3)

Let S be the set of sequences to be clustered, where n = |S| denotes the number

of input sequences, and l denote the average length of a sequence.

I can give an ideal picture by eliminating overhead from the equation. If the filter

throughput is 5×106 sequence-pairs/s and alignment method is capable of producing

4× 104 alignment/s, and assuming that the filter is conveying 1% of the sequences to

the alignment module for getting further detail, the algorithm can cluster 2.2 × 106

sequence/s.

4.3.3 Faster Alignment Module

The alignment module described above is computing in all-to-all fashion. The pipeline

cannot process millions of sequences it will take days or weeks to align (recall Figure

1.2 on the page 3). This process becomes a bottleneck in the framework. Two

options can be considered: (1) Alignment module is computing double precision which
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requires more data to be transferred. Thus the module was limited with memory

bandwidth. So, we can use integer or single precision floating point to speed up. (2)

The number of alignments can be reduced with a pre-scan process.

The alignment kernel in [76] is modified so that the function is returning an integer

score. Table 4.2 depicts the performance of the new alignment kernel. Test files are

a

Table 4.2: Multiple alignment run time results of the modified alignment kernel on
a 10-GPU cluster

File Name Time(s)
S-20 114.328
D-20 112.882

Since we updated the alignment kernel, we can compute the ideal performance

of a GPU. One GPU can achieve ideally 232056 alignments/second (1/(750×750)

alignment/cells ×1/9 cell/ops ×(13 × 128)ops/cycle ×706e6 cycles/second). A 10-

GPU cluster is able to process 2320560 alignments per second.

There are 20000×20000/2 seq all to all sequence alignment

Ideal time for aligning a test file which has 20K sequences (20000×20000/2) align-

ment (1/2320560) = 86.186 seconds.

In our tests, 10-GPU cluster finished aligning 20K (S-20) test file in 114.328

seconds (see Table 4.2). Consider that we measured whole kernel time which includes

initialization, data transfer and printing the result.

The filter module extracts the sequences that are sharing a substring. This process

is decreasing number of alignment significantly.

When we analyze Table 4.3, the required time increases significantly when we

decrease minimum match length because there are more sequence pairs to be aligned.
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Table 4.3: New filter-align module run time results on 1-GPU cluster

File Name 40 30 20 15 12
S-512 362.590 514.961 821.042 1067.495 1134.608
D-512 311.917 468.566 607.93 962.268 1027.849

4.3.4 Multi-GPU performance results

Stampede has 128 nodes that all contain one NVIDIA K20 GPU. For our multi-GPU

experiments, we scaled our GPU kernel up to 10 NVIDIA K20s on Stampede using

data sets of 512K sequences. For this test, workload is shared by GPUs and CPUs in

the Filter kernel, however Stampede’s CPUs remained idle while the GPUs executed

the alignment kernel.

Table 4.4: Multi-GPU performance results

File Name 40 30 20 15 12
S-512 46.811 62.593 101.558 122.336 135.473
D-512 39.973 53.024 75.708 112.612 119.910

The synergy of 10 GPUs is depicted in Table 4.4. When we fix the minimum

match length to 12, a 10-GPU cluster requires 135.473 second to align the test file,

S-512, which is derived from a set of Bacillus Genus genomes (please see Table 3.4).

On the other hand, the same cluster aligns dissimilar test file, D-512, in two minutes.

G-DNA is a multi-GPU/MPI tool for aligning nucleotide reads [82]. G-DNA

requires two files as its input: a) sequence file, b) list of pairs of sequences to be

aligned. According to the author, one NVIDIA GeForce GTX 580 GPU reached 89

Giga cell updates per second –GCUPs, which is a speed measure used for alignment

tools. In our test, G-DNA achieved 58.7 GCUPs on one K-20 GPU. The kernel time

of G-DNA was 3933.560 ms to align 370000 pairs. In Table 4.5, TG−DNA, TAK ,

and Tt are run time results for G-DNA, our alignment kernel and theoretical time
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respectively.

Theoretically, our kernel can finish same alignment process in 370000 / 232056=

1594.440 ms. Thus, the performance ratio of the ideal time over the G-DNA is

Tt/TG−DNA = 2.46. G-DNA has been outperformed by our kernel [76]. Our alignment

kernel is 1.6 times faster than G-DNA.

Table 4.5: Run time comparison of G-DNA with our Alignment kernel only – AK

# of pairs TG−DNA TAK Tt

370000 3933.560 2431.198 1594.440
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Chapter 5

Genetic sequence error correction

5.1 Motivation

NGS is an important tool for many areas of molecular biology, however, its output

data is noisy and is hard to interpret especially for meta-genomics. Even a low error

rate can cause a large number of errors due to the high number of bases being se-

quenced. Identifying sequencing errors from true biological variants is a challenging

task. For organisms without a reference genome, this difficulty is even more chal-

lenging. A newer approach in metagenomics follows another strategy which is to

identify genes directly from sequences, rather than constructing the whole genome.

As mentioned before, the cost and time effort was enormous for the Human Genome

Project (HGP) which was launched in 2001. Using today’s next-generation sequenc-

ing (NGS) techniques, a human-sized genome can be sequenced for the cost of one

thousand dollars in a single day [5]. However, the resulting sequences are much

shorter and contain more errors. In this chapter, the most common sequencing error

types (insertion/deletions and substitutions) are addressed.

5.2 Background

The difficulty of identifying possible sequencing errors is very important, necessitating

the development of alternate error correcting methods. The importance of identifying

and correcting sequence errors has been highlighted by the recent discussion prompted

by the report of the presence of the widespread differences between the human genome
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and sequence reads derived from the corresponding RNA [83]. Once these differences

were considered due to RNA editing. However, after a thorough analysis of the same

data set, it is clear that a huge amount of the differences arose from sequencing errors

[84].

Sequencing errors can occur for a variety of reasons. One source of error originates

from a phenomena referred to as “crosstalk.” Crosstalk occurs when there is an overlap

in the signals used in sequencing machines. This overlap can lead to a possible

substitution error, confusion of the nucleotide G with nucleotide T, and of A with C

[85, 86]. A second cause of errors is referred to as either phasing or dephasing. Since

sequencing is done in cycles, an error in a former cycle may propagate to and effect

subsequent cycles. For an extensive discussion see the review of Ledergerber et al.,

which discusses other possible sources of sequencing errors such as signal decay, mixed

clusters and boundary effects [87]. Additionally, sequence-specific error patterns have

been proposed as an important cause of sequencing errors through dephasing [88].

The issue of sequencing errors is so unavoidable that being able to detect and

correct them is essential in many areas of molecular biology, particularly in the case

of gene identification. In the study of Dohm et al. , the occurrence of errors and their

corresponding rates were investigated by examining Illumina data sets (2.8 million

sequences, each 27 base long) taken from Beta vulgaris and Helicobacter acinonychis.

By aligning reads to the known genomes of these bacteria, error rates were derived

for each of the 12 possible nucleotide substitutions.

There has been considerable research resulting in many methods and tools in

recent years. Early error correction algorithms were based on the spectral alignment

problem (SAP) in [89] and [90].

Another error correcting method based on an algorithm for correcting sequencing

errors uses a “generalized suffix trie” [91]. However, this method requires a refer-

ence genome and assumes that the error distribution is uniform. A similar method
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using suffix arrays is that of Ilie et al. [92]. In an alternative method based on

a “position-dependent error model,” error probabilities are estimated for each nu-

cleotide substitution type [93]. Another approach, that does not rely on a reference

genome, was adopted by Qu et. al. [94]. Short reads are clustered into trees where

the most abundant sequence is taken to be the root of a tree, and children, that differ

by n nucleotide substitutions, are placed at the nth level. These children are classified

either as sequencing errors or biological variants. This approach uses the Illumina

quality scores, which are adjusted by means of actual error rates determined by BAC

sequencing data used as a control [95].

Schreiber et. al. propose a probabilistic model for predicting the occurrence of

sequencing errors in short RNA reads. This method does not require a reference

genome or quality scores [96]. Instead, it is based on the observed frequencies of the

sequence variants. A graph is constructed where reads are connected if they differ by

a single nucleotide substitution.

Another error correction algorithm based on the SAP, called SHREC [97] has

been proposed using a generalized suffix trie data structure. The extended version

of SHREC, Hybrid SHREC is able to correct a mixed set of reads produced from

different sequencers [91]. Due to the large size of NGS datasets, error correction is

both a time and memory consuming process.

GPU computing architectures have evolved rapidly and have already demon-

strated the ability to reduce the execution time of a wide range of demanding bioin-

formatics applications such as multiple sequence alignment [76, 77, 81], and motif

finding [98]. As a first step, Shi et al. [99] implemented CUDA-EC, a parallel error

correction algorithm, using NVIDIA’s compute unified device architecture (CUDA).

This algorithm is based on the SAP approach [100], where a Bloom filter data struc-

ture [101] is used to gain memory space efficiency. This algorithm has been further

optimized by incorporating quality scores and a filtration approach in the work of Shi
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et al. [102].

DecGPU is the first parallel and distributed error correction algorithm for large-

scale NGS datasets using a hybrid combination of CUDA and message passing in-

terface (MPI) [103] parallel programming models. DecGPU provides two versions: a

CPU-based version and a GPU-based version. Compared to the hSHREC algorithm,

DecGPU shows superior error correction quality for both simulated and real datasets

[104].

In a meta-genome analysis, an efficient error correction module is required due

to enormous size of data. The performance of hSHREC decreases while data size

increases which makes hSHREC a weak candidate. DecGPU is fast but its sensitivity

is low when the dataset has long sequences

There are other GPU based sequence error correction methods. Unfortunately,

most of them are focused on repairing short sequences. For example CUDA-EC is

tested with data sets which consists of 35-70bp sequences.

5.3 Method

We propose a parallel error correction algorithm based on the suffix array that works

in two phases as follows:

In the first stage, every sequence in the sequence set is compared with others in

order to explore the error types and positions. Every match, at a greater than a

threshold minimum, are extracted using suffix array. Once a match is determined

between two sequences, a scanning process scans backward and forward to extract

bases that do not match.

Obviously, error correction requires more than pairwise string comparisons. The

second phase of this procedure is the gathering and deciding process. All the update

information for candidate nucleotide errors on a specific string is gathered first. Then

a decision algorithm grades these scores and decide if an update necessary.
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We use a coding scheme that covers all error types. The second phase of the

module uses the coding scheme to make repairs. An extra symbol, x, is used to

specify indel errors. Table 5.1 depicts the code that prposed error correction module

use. From the table, if there is a proposed substitution error from A to C, eAC is the

corresponding label. For a deletion error we use eAx.

∑
fix = ∑

DNA ∪{x}

Table 5.1: Correction code table

A C G T x

A NA eAC eAG eAT eAx

C eCA NA eCT eCT eCx

G eGA eGC NA eGT eGx

T eT A eT C eT G NA eT x

x exA exC exG exT NA

The format of a proposed error code can be given by a triple.

(String Id, Error index in the string, Error code)

Consider the following substring “banana” which all strings share in Table 5.2.

Table 5.2 depicts a deletion error at the position j1 in String1 and a substitution error

in String4.

The scanning algorithm scans the prefixes and suffixes to explore mismatches.

Once a mismatch is found it is written down as shown below.

– Deletion error entries for the String1

(String1, j1, exs) – from the String2

(String1, j1, exs) – from the String3

(String1, j1, exs) – from the String4

In order to fix a deletion error at the position j1 of the String1, there will be three

entries that suggest a new s character should be inserted.

– Substitution error entries for the String4

(String4, i4, eae)
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(String4, i4, eae)

(String4, i4, eae)

These entries suggest that there is a substitution error at i4 in the String4. The

voting stage will count the proposed error entries and decide that the character should

be e.

Table 5.2: Substitution error in String4, and deletion error in String1

1← i1 j1
2→

String1 orang e banana trawberry
i2 j2

String2 orang e banana s trawberry
i3 j3

String3 orang e banana s trawberry
i4 j4

String4 orang a banana s trawberry

5.3.1 MPI and GPGPU programming models

The Error correction model is implemented using the Compute Unified Device Archi-

tecture (CUDA) and Message Passing Interface (MPI). CUDA is a parallel computing

platform and programming model created by NVIDIA.

Moreover, CUDA is a parallel programming language extending general program-

ming languages (C, C++ and Fortran). CUDA enables users to write parallel pro-

grams for NVIDIA GPUs [105]. A typical CUDA program includes two parts, a host

program running one or more sequential threads on a host CPU, and one or more

parallel kernels able to execute on Tesla [106], Fermi [107] and Kepler [108] NVIDIA

unified computing architectures.

A kernel is a piece of program launched on a set of concurrent threads. These

threads are organized into a grid of thread blocks, where all threads in a block can syn-

chronize through barriers and communicate via a high-speed shared memory. Threads

from different thread blocks in the grid are able to cooperate through atomic oper-
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ations on global memory. Unified graphic and computing devices are featured with

multi level memory hierarchy, including global and local memory, cached texture and

constant memory as well as shared memory and registers.

The CUDA-enabled processors are built around a fully programmable scalable pro-

cessor array, organized into a number of streaming multiprocessors (SMXs in Kepler

architecture, SMs in older architectures). Each streaming multiprocessor contains 8

scalar processors (SPs), 32 SPs and 192 SPs in the Tesla, the Fermi and the Kepler

architectures respectively.

While the on-chip memory size was fixed 16 KB on in the Tesla series, in the

later generations each multiprocessor has a configurable shared memory size from the

64 KB on-chip memory. This on-chip memory can be configured as 48 KB of shared

memory with 16 KB of L1 cache or as 16 KB of shared with 48 KB of L1 cache. When

executing a thread block, all the threads in the block are split into small groups of 32

parallel threads, called warps, which are scheduled in a single instruction, multiple

thread (SIMT) fashion. Since all threads of a warp take the same execution path,

branch divergence or warp divergence is allowed for threads when some threads may

need to execute different instructions.

Message Passing Interface (MPI), is a de facto standard for developing portable

parallel applications on a variety of hardware topologies [103]. MPI works on both

shared and distributed memory systems. In MPI, it defines each worker as a pro-

cess and enables the processes to execute different programs. This multiple program,

multiple data model offers more flexibility for data-shared or data-distributed parallel

program design. Within a computation, processes communicate data by calling run-

time peer-to-peer and collective communication routines, specified for the C/C++

and Fortran programming languages.
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5.4 Implementation

The error correction module has two phases. The first phase checks substring matches

between given two strings. The process in this stage is similar to the process of the

filter module.

The promising errors stored in a list which is the byproduct of the scanning stage.

Figure 5.1 depicts the scanning process in the error correction module.

Figure 5.1: Error correction module phase 1: scanning process is for determining
and reporting misinterpreted read positions and error codes into a table for all

sequences that are approved by alignment module.

In the implementation, the scanning procedure runs on a CPU.

The list of promising errors is processed by another function – voting and fixing.

Figure 5.2 depicts the scanning process for error correction module.

Figure 5.2: Error correction module phase 2: voting and fixing process gets the
error table, orders the table which helps decide whether there should be a correction
reporting misinterpreted read positions and error codes for all sequences that are

selected by the alignment module.

My target set will contain longer sequences around >300bp. Since CUDA-EC

is able to handle only short sequences, I compared the results of my module with

DecGPU in terms of time and correction efficiency.
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Even though NGS sequencers can read billions of sequences, the length of the

sequences are generally quite short which is not suitable for my framework. Yet there

are some NGS platforms such as Illumina MiSeq and Ion PGM that are able to read

up to 400 base-pairs.

Table 5.3: Two strings share a substring m, where |m| ≥ min_match_length
1← 2→

String1 α m γ
String2 β m ω

Algorithm 4 Error correction module phase 1: scanning function
1: scan the prefixes α and β backward
2: for all mismatches between String1 and String2 do
3: Record the mismatch positions
4: For String1 (String1, Error position in String1, error code)
5: For String2 (String2, Error position in String2, error code)
6: end for
7: scan the suffixes γ and ω forward
8: for all mismatches between String1 and String2 do
9: Record the mismatch positions
10: For String1 (String1, Error position in String1, error code)
11: For String2 (String2, Error position in String2, error code)
12: end for

Algorithm 4 depicts the scan process on the two sequences listed in Table 5.3. The

function scans prefixes (α, β) and suffixes (γ, ω) to extract more mismatch characters

and record the new promising errors.

Analysis

Since each thread is assigned to update one string in the voting Algorithm 5, we

can analyze the complexity per thread.

Assuming a 2% average sequencing error rate there are approximately 6 and 15

errors for the sequences 300bp and 760bp of length respectively.

Let l, c, and r be the average sequence length, coverage and error rate for a

sequence set respectively. The size of proposed error count for a specific string si at
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Algorithm 5 Error correction module phase 2: voting function
1: Input: S={s0, s1, s2, ...sn−1, }, sequences
2: Input: PE={P0, P1, P2, ...Pn−1, }, Promising error records for each sequence
3: KernelVote function (S, PE)
4: Threadi on si

5: for j =0 to |si| do
6: for k =0 to |Pi| do
7: count the error recordings for the position j
8: end for
9: Update the base at the position j in string si.
10: end for

most can be:

Pi = (c− 1)× l × r

For example, when coverage is 10, error rate 2% and average length is 750, the

size of the proposed error list becomes 135. Keeping the coverage and error rate the

same, for a set of sequences l = 300 the number of proposed error entries becomes

54. Thus, the complexity of the voting algorithm per thread is

O(|Pi| × |si|).

5.5 Results

I compared DecGPU and my error correcting kernel on two sets that contain longer

sequences of around 750bp.

Figure 5.3: Comparing timing of DecGPU and my Error correction Module (when
number of iterations is set to 10 for DecGPU)
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Table 5.4: Comparing timing of DecGPU and my Error correction Kernel (when
number of iterations is set to 10 for DecGPU)

Error

correction

Test File DecGPU Kernel
Performance Ratio

S-220K 295.813 1124.325
3.80

D-220K 273.351 1042.478
3.81

S-512K 857.958 3437.482
4.03

D-512K 822.314 3276.657
3.98

In terms of speed, DecGPU is approximately 3.9 times faster than my error cor-

rection tool because the scan procedure is running on CPU rather than GPU. After

the scanning process is completed, error code list is transferred to GPU to execute

the vote and fix kernel.

All the tests are conducted on a Stampede computing node which has the speci-

fications in Table 3.7. The efficiency of the two error correction tools is displayed in

Figure 5.4.

I have evaluated the performance of my algorithm using the simulated datasets

in terms of the run time and the ability to correct erroneous reads. Table 5.5 shows

the corresponding definitions of true positive (TP), false positive (FP), true negative

(TN) and false negative (FN).

The sensitivity and specificity measures are defined in Equation 5.1. Liu et. al.

proved that when the the coverage is high (≥ 30) and sequences are short the DecGPU

achieves high accuracy. Unfortunately, when the coverage is low and sequences are

long DecGPU sensitivity decreases gradually.
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Sens = TP

TP + FN

Spec = TP

TP + FP

(5.1)

Table 5.5: Definitions for the classification test

Read Condition Classification
Erroneous Error-free

TP FP Detected as erroneous
FN TN Detected as error-free

The performance of correcting erroneous reads is evaluated using the simulated

datasets. The error rates are calculated by doing a base-by-base comparison with

Figure 5.4: The efficiency of DecGPU and my Error correction Module: (a) on the
S-256 and S-512 test files
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Table 5.6: Summary of the classification test for simulated datasets

Data set Algorithm TP FP FN Sens. Spec.
S-220 DecGPU 1098944 424531 2102375 34.32% 72.13%

ECM 1224083 395868 1270282 49.07% 75.56%
S-512 DecGPU 17926822 13354468 39510846 31.21% 57.30%

ECM 20185446 12185673 28150195 41.76% 62.35%

their respective original reads (without errors).

DecGPU has a feature called the number of fixing iterations. This feature can

be modified with the intention to find and correct more than one erroneous base

in a single read. Since the read-length of the test files are significantly long, I set

the number of fixing iterations variable to 10, so that DecGPU produces the highest

sensitivity and specificity scores.

The results of the classification test are shown in Table for the six simulated

datasets, where the sensitivity and specificity values have been multiplied by 100.

From the sensitivity measure, ECM achieves better performance for all datasets. But

the sensitivity is < 41%, meaning that more than half of the erroneous reads remain

undetected. Due to long read length and low coverage (S-220 has 10X coverage and

S-512 has 6X) both of the algorithm suffer to find erroneous bases.
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Chapter 6

Meta-Genome Gene Identification

6.1 Motivation

Once the error correction module fixes sequencing errors, it also extracts all possible

open reading frames (ORFs) present in the fragments. The MGC module evaluates

these ORFs by implementing a parallel version of the MGC algorithm developed by

El Allali and Rose [109].

Next generation sequencing (NGS) is preferred in meta-genomics to traditional

sequencing since NGS can produce a much larger amount of data. However, the

resulting sequences are not complete and may come from many different species.

Therefore, the assembly and annotation of the meta-genomic data is a challenging

task. Meta-genome assembly does not work well due in part to the presence of

homologous sequences from the many species present. One way to deal with these

difficulties is to go directly to gene identification and bypass the assembly step.

Computational gene finding methods have proven their robustness in identifying

genes in complete genomes. However, meta-genomic sequencing has presented new

challenges due to the incomplete and fragmented nature of the data. During the

last few years, attempts have been made to extract complete and incomplete ORFs

directly from short reads and to identify the coding ORFs.
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6.2 Background

New methods are being developed to predict genes specifically in meta-genomics. The

best known methods in this field are MetaGene [110], Orphelia [111], and FragGe-

neScan [112]. MetaGene and GeneMark.hmm [113] have similar approaches. The

method of MetaGene takes into account the GC-content sensitive monocodon and

dicodon models computed from fully annotated genomes.

Orphelia obtains better performance than MetaGene by using a two-stage machine

learning approach. The first stage builds linear discriminants for monocodon and

dicodon usage as well as the translation initiation start (TIS) features extracted from

the ORFs. In this step, the features are linearly extracted from the high dimensional

search space [111]. The next stage combines the features obtained from the linear

discriminants as well as length and GC-content features using a non-linear neural

network which produces the probability that a given ORF encodes a protein. As a

final step, Orphelia uses probabilities from the scoring mechanism in order to find

the overlap.

FragGeneScan is an algorithm based on hidden Markov models (HMM). It is

able to predict genes in both complete genomes and metagenomic fragments [112].

The algorithm combines codon usage, sequence patterns for start/stop codons and

sequencing error models using HMMs. The Viterbi algorithm is used to decide the

best path of hidden states that generates the observed nucleotide fragment. For

further information see Rho et al. [112].

I propose to implement a parallel version of the metagenomics gene caller, MGC

[109], which is based on a two-stage machine learning approach similar to that of the

program Orphelia [111]. According to Chan and Stolfo [114], the models for machine

learning classification learned from disjoint partitions of a dataset performs better

than a single model learned from the entire dataset.

58



MGC learns separate models for several pre-defined GC ranges as opposed to

the single model approach used by Orphelia and applies the appropriate model to

each fragment based on its GC-content. Separating the training data by GC-content

provides MGC with mutually exclusive partitions of the data in order to train multiple

models [109].

GC-content is used to partition the training dataset for the MGC method. The use

of GC-content for this purpose was inspired by the relationship between nucleotide

bias and amino acid composition. Singer and Hickey [115] demonstrated that nu-

cleotide bias can have a strong effect on the amino acid composition of the encoded

proteins. This effect is not only proven in complete genomes but it is also valid for in-

dividual genes [115]. Separating the models by GC-content can ensure that different

compositions are accounted for instead of combining them into one model [109].

GC-content influences codon usage which in turn influences the amino acid usage.

Lightfield et al. demonstrated that use of amino acids encoded by GC-rich codons

increased by approximately 1% for each 10% increase in genomic GC-content, the

conversee was also true for GC-poor codons. Separating GC-contents into several

GC ranges will ensure that the different linear discriminants can separate the codon

and amino acid usage more precisely [116].

6.3 The MGC algorithm

Like Orphelia, MGC has a two-stage machine learning approach [109, 111]. The first

stage includes linear discriminants that are used to compact any high dimensional

feature space into smaller ones.

Several linear discriminants were trained based on GC-content ranges. First the

training data is split into GC ranges which are defined so that the number of training

sequences in all these ranges is the same. For example, El Allali and Rose split

the GC spectrum into ranges where each partition contains 10% of the sequences
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in the training data [109]. They then used the data from each range to create all

the necessary discriminants to compute the features. The first phase of MGC in the

Figure 6.2 illustrates the linear discriminant stage of MGC for a particular GC range

and shows all nine features used in the second stage of the MGC algorithm [109].

The different locations of an ORF in a fragment is illustrated in Figure 6.1.

Figure 6.1: The possible ORF positions within the forward strand of a
fragment. The fragment is depicted by the outside box and gray bars represent
possible ORFs. Candidate translation initiation sites are represented by green

pentagons and red squares indicate stop codons. (Obtained from El Allali and Rose
[109])

Once the models are trained, all possible complete and incomplete ORFs are ex-

tracted from the test set as was done in the training phase [109]. Based on the

GC-content of the fragment, the corresponding neural network model is used to score

the ORF. The output of the neural network is the approximation of the posterior

probability that the ORF is coding. Step 2 in Figure 6.2 illustrates the neural net-

work model. After scoring all hypothetical ORFs, overlapping ORFs resolved. The

same greedy algorithm used by Orphelia is used to determine the overlap between all

candidate ORFs that have a probability greater than 0.5. Given the candidate list

for a particular fragment containing all ORFs i with probability Pi > 0.5, Algorithm
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6 [109] describes the selection scheme used to generate the final list of genes. The

maximum allowed overlap omax = 60bp which is the minimal gene length considered

for prediction.

Algorithm 6 The final candidate selection [109]
1: while L 6= ∅ do
2: Find imax argmaxiPi, ∀i ∈ L
3: Move ORF imax from L to ł
4: Remove all the ORFs in L that overlap with ORF imax by more than omax

5: end while

Figure 6.2: MGC’s scoring scheme: The first steps computes six features from
the ORF based on the corresponding linear discriminant and two additional features
are computed directly from the ORF. The last feature is derived from directly the
fragment. The neural network model from the corresponding GC-range is used to

combine features from the previous step in order to compute a final gene
probability. (Obtained from El Allali and Rose [109])
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6.4 Implementation of MGC model

Features of the Model

In order to train the models in my multi-threaded MGC module, I use the same

nine features that El Allali and Rose derived [109]. Standard discriminant codon

features and the amino discriminant features are derived from amino acid usage in a

similar way. Since there are 20 amino-acids and one stop codon, the monoamino-acid

usage is based on the 21 amino-acid frequencies that represent the occurrences of

successive single amino-acids in the training sequences while the diamino-acid usage

is extracted from the 212 diamino-acid frequencies which represent the occurrences

of successive half-overlapping amino acid tuples in the training sequences. Linear

discriminant analysis based on the monoamino and diamino-acid usage is then used to

reduce this high dimensional space to two features. For further information regarding

how the derivation of linear discriminants see the work of El Allali and Rose [109].

Neural networks

El Allali and Rose combined the nine features in each GC-range in a multilayer

neural network [109]. The output of each network is the posterior probability of an

ORF encoding a protein. This is similar to Orphelia [111] with the exception that El

Allali introduces two more features, and his models are GC-range specific. For each

GC range El Allali obtains a model using features computed from all the sequences

in the training dataset that have GC-content within the GC range. The same GC

ranges used to compute the linear discriminants are used to build the neural network

models. Different splits by GC-content were used to study the effect of the GC range

size on the performance of MGC. In the study of El Allali and Rose, the MGC models

were trained using the 10%, 5% , 2.5% ranges. In my case, if the number of models

that was trained is multiple of the SMX count in a GPU, the occupancy of the GPU

increases which increases throughput of module.
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The neural network used by Orphelia [111] is a standard multilayer perceptron

with one layer of k hidden nodes and a single logistic output function. A binary

classification is produced with classification labels:

yi = 1 for coding and

yi = 0 for noncoding.

The output of the neural network is considered an approximation of the posterior

probability of the coding class which is used in the final step to select the final ORFs.

The k hidden activations zi for a given input feature vector x are:

zi = tanh(wi
I × x+ bi

I) (6.1)

where wi
I are input weight vectors and bi

I are the bias parameters. The prediction

function based on weight vector wo and bias bo is

g(z) = 1
1 + e−(wo×z+bo) (6.2)

where z is a vector containing all the zi vectors.

The output of the trained network f(xi; θ)∀i ∈ (1..N) is computed by minimizing

the objective function E(θ) in equation 6.3 where xi represent the training examples,

N is the number of training examples, the weight and bias parameters are referred

to by the vector θ and the matrix A contains the regularization parameters.

E(θ) =
N∑

i=1
(f(xi; θ)− yi+)2 + θTAθ. (6.3)

Four strictly positive hyper-parameters are needed in the regularization matrix

A = diag(a1, . . . , a1, a2, . . . , a2, a3, . . . , a3, a4) for separate scaling of the parameters

wi
I , bi

I , wo , bo.
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MacKay [118] introduced the evidence framework which is based on a Gaussian

approximation of the posterior distribution of network weights. This adaptation of

the hyper parameters is incorporated into the network training and uses the same

training points [109, 119].

6.4.1 Implementation of HP-MGC

My HP-MGC module follows the same algorithm as the original MGC [109]. The

only difference is that the learning phase and the classification are parallelized.

There are two approaches to running the MGC program in parallel. The first

choice is to run MGC parallel on GC ranges. For example if 10% GC ranges are

considered, the MGC module can compute 10 models in parallel. Let θj, where

j ∈ 1..10, denote the resulting neural network model for a given GC range j. Training

the model θj is similar to training the single model θ as described above only the

training examples that have GC-content within the GC range j. The network output

for a given test sample xi is computed as f(xi; θj) = Pi, where the GC-content of the

fragment that contains xi is within the GC range j.

The second option is to split a dataset into smaller pieces. This approach is much

better than the first one because Orphelia cannot extract ORF information when the

test file is huge. When the size of the dataset is over 100K reads Orphelia encounters

out of memory error after running 73 minutes. The smallest data set that we have is

220000 sequences.

Splitting a dataset into smaller pieces helps Orphelia to extract ORF sequences.

Then, MGC module uses this data.

6.5 Results

Hoff et al. measured the performance of the neural network by using the sensitivity

and specificity measures in equations 6.4 and 6.5 to measure the capability of detecting
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annotated genes and the reliability of gene predictions respectively [119]. TPgene is the

number of ORFs that match at least 60bp on an annotated gene in the same reading-

frame, while FNgene is the number of overlooked genes and FPgene refers to the

number of predicted ORFs that do not match the annotation. For comparison reasons

we follow the same use of the positive likelihood score as a measure of specificity,

this score does not take into account the number of true negatives and is used by

metagenomic gene finders such as Orphelia, FragGeneScan, MetaGene, and MGC.

Sens = TPgene

TPgene + FNgene
. (6.4)

Spec = TPgene

TPgene + FPgene
. (6.5)

The harmonic mean which can be constructed by merging the sensitivity and

specificity:

HarmonicMean = 2× Sens× Spec
Sens+ Spec

. (6.6)

In this study, we did not consider the accuracy of the HP-MGC algorithm be-

cause it will be identical to which has been thoroughly tested and reported in [109].

Consequently, we focus on reporting the timing results of HP-MGC and Orphelia

tool.

In this chapter we give the timing results for classification of HP-MGC only.

Before starting gene identification process, both Orphelia and MGC requires ORF

sets. ORF sequences are extracted by Orphelia, and Table 6.2 summarizes the run

time for this phase. In the table, S-220 and D-220 are datasets which we explained
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Table 6.1: The timing result for extracting ORF sequences

Partitions TS − 220 (s) # of ORFs TD − 220 (s) # of ORFs
0-20K 105.084 689498 239.452 1564093
20-40K 93.225 651825 215.455 1572245
40-60K 152.087 920056 209.194 1563241
60-80K 143.571 879489 207.671 1559486
80-100K 142.812 868452 211.409 1565714

100-120K 121.644 658522 212.365 1561857
120-140K 97.680 635460 207.857 1557170
140-160K 91.654 661298 210.916 1565213
160-180K 224.836 1120229 211.257 1562981
180-200K 128.586 652557 203.755 1530482
200-220K 117.847 695548 202.373 1525938

Table 6.2: Orphelia run time results for gene identification

Partitions S-220 D-220
0-20K 657.33 1631.341
20-40K 746.375 1638.475
40-60K 916.405 1638.073
60-80K 924.385 1540.895
80-100K 899.933 1589.206
100-120K 983.878 1606.096
120-140K 966.104 1554.535
140-160K 985.852 1560.147
160-180K 866.905 1627.653
180-200K 675.524 1568.865
200-220K 1063.637 1410.300

in Table 3.6. Each test file is fragmented into partitions where each segment includes

20K sequences. Extraction phase run time varies because each fragment has different

gene content. Since D-220 dataset has more diversity, it has more ORF sequences.

There is a strong correlation between number of ORF sequences and run times for

identifying genes. In the gene identification phase Orphelia is approximately 4.3 times

faster than HP-MGC per processing a partition. In the future, I plan to implement

a GPU kernel to speed up HP-MGC module.
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Table 6.3: HP-MGC model timing results

Partitions S-220 D-220
0-20K 3347.409 7830.050
20-40K 3159.125 7885.205
40-60K 3150.280 7846.274
60-80K 3174.445 7392.043
80-100K 3013.026 7528.547
100-120K 3225.641 7409.265
120-140K 3273.300 7285.859
140-160K 3164.474 7327.085
160-180K 3161.145 7517.305
180-200K 3142.785 7226.415
200-220K 3177.740 7029.609

Table 6.3 depicts the timing result of HP-MGC model. In Stampede supercom-

puter we are able to run 12 Matlab threads simultaneously. In this test, it takes at

most 3177.74 seconds for a fragment. Totally HP-MGC can identify genes in an hour

for each test file.
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Chapter 7

Conclusion

Traditional sequencing techniques are not suitable for determining the diversity of a

microbial community because only a very small portion of all microbial species can be

cultured. Thus, researchers are following an alternative approach in meta-genomics.

Bypassing the assembly process provides a means of avoiding the limitations of

culture-dependent genetic exploitation. The contribution of this study was to con-

struct a high-performance meta-genome gene identification framework. The pipeline

of the framework was presented in Figure 1.2 in Chapter 1.

The main goal of this work is the development of methods that can scale to the

largest available sequence data sets.

During the research, I used the Planck hybrid supercomputer and the Maxwell

super computer here at USC mainly for development purposes. The Planck Cluster

combines a mixture of 264 CPU cores. It also includes 57 Nvidia GPGPU accelerators

boards. The theoretical peak performance of Planck Cluster is 59 Teraflops. The

hardware of the Maxwell supercomputer combines a mixture of 40 GL390 Nodes

each with 12 cores per node, Intel Xeon 2.4 GHz, 24 GB RAM and 6 SL250 nodes

with 16 cores per node, Intel Xeon 2.60GHz, 32 GB RAM. The head node is a DL380

with 12 core, 48GB RAM. The storage attached to the Maxwell supercomputer is 24

TB.

In order to test modules in the framework, I used the TACC Stampede supercom-

puter. Each node in the TACC Stampede cluster contains dual 2.7 GHz eight-core

Intel Xeon E5-2680 CPUs that can each execute 16 MPI processes. Also each node
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has a NVIDIA K20 accelerator (see Table 3.7).

The contribution of this study is to design and develop the high-performance meta-

genome gene identification framework. The following list depicts the portions of the

framework I designed, implemented and tested:

1. Filter Module: This module makes a coarse clustering of the raw NGS set.

2. Alignment Module: The alignment module receives the list of promising

pairs as its input and run a global alignment procedure to produce the final

clusters from the collection of sequences produced by the filter module.

3. Error correction module: This method corrects bases that were misinter-

preted by the sequencer, which helps boost identification of open reading frames

by the next module.

4. HP-MGC module: Finally, HP-MGC module extracts genes from the se-

quences.

The filter and error correction modules were implemented from scratch. The align-

ment kernel function was inserted between these modules. Finally the core function

in MGC module was modified so that it can run parallel.

7.1 Future work

In the future, we plan to improve the error correction module by implementing a

GPU kernel function for scanning process. Consequently, all the component of the

error module will run on GPU.

Even though we accelerated the filter, alignment, and error correction modules, the

HP-MGC module still runs on the host device. We will improve our high-performance

meta-genomic gene identification framework by implementing a GPU version HP-

MGC.
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