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Abstract

Functional neuroimaging is a relatively young discipline within the neurosciences that

has led to significant advances in our understanding of the human brain and progress

in neuroscientific research related to public health. Accurately identifying activated

regions in the brain showing a strong association with an outcome of interest is

crucial in terms of disease prediction and prevention. Functional magnetic resonance

imaging (fMRI) is the most widely used method for this type of study as it has the

ability to measure and identify the location of changes in tissue perfusion, blood

oxygenation, and blood volume. In practice, the three-dimensional brain locations or

coordinates of the local maximum of these changes are reported. By nature, fMRIs

are noninvasive, slowly becoming more available, have relatively high spatiotemporal

resolution, and have the remarkable ability to map the entire network of the brain’s

function during the thought process. However, due to their high costs, fMRI studies

tend to have a very small number of participants, which cause inflated type II error

and lack reproducibility. This gives rise to the need for fMRI meta analyzes, which

combines studies in order to increase overall sample size and testing power. In this

dissertation, two methods are proposed that aim to identify regions of brain activation

using fMRI coordinate-based meta analysis; a spatial Cox process and a mixture of

Dirichlet processes model.

The first method was motivated by the desire to identify significant regions of

brain activation using fMRI coordinate-based meta data. To identify these regions

we elected to implement a Bayesian spatial Cox process. We considered two levels

of clustering, latent foci center and study activation center, utilizing the Dirichlet
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process (DP) built into a spatial Cox process used to model the distribution of foci.

Commonly used spatial clustering methods model the random variation of the inten-

sity governed by a process such that peaks in these processes would relate to areas

of elevated aggregation in the events. However, methods of this type all assume

three-dimensional normality, which is inappropriate for fMRI due to the nature of

brain functioning and brain structure, and can possibly cause misclassification of foci

and increase error in prediction and estimation. We relax this normality assumption

and model intensity as a function of distance between the focus and the center of

the cluster of foci using Gaussian kernels and the foci center will be identified by

the use of a Dirichlet process. Simulation studies were conducted to evaluate the

sensitivity and robustness with respect to cluster identification and underlying data

distributions. An additional application of the proposed method was applied to an

fMRI meta data of emotion foci. Both simulations and real data application produced

promising results that highlighted the ability to correctly cluster.

The second method was motivated by the spatial Cox process’ inability to statis-

tically distinguish between clusters via a limitation to the Dirichlet process. However,

it still aimed to identify significant regions of brain activation. This method modeled

the realization of the data as a linear association with the overall mean of the data

and adjusts for some study effect. The mean of the data was modeled as a mixture

of unknown finite number of components and adjusted for a study effect modeled

as a Dirichlet process. Similarly, each component was modeled as a Dirichlet pro-

cess. Conditional on the mean of the data and some study effect, the distribution

of the random error is standard multivariate normal. By modeling the mean as a

mixture of Dirichlet processes, this still allows the method flexibility in capturing

irregular spatial patterns and relaxes the typical normality assumptions, but can also

statistically distinguish between a cluster or a mode within a cluster. The Bayesian

framework was again implemented to draw model inferences. Simulation studies were
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conducted to explore the sensitivity and robustness of the method, but illustrated a

mediocre ability to correctly identify clusters. As an additional application, we ap-

plied the proposed method to the same fMRI meta data as was done in the first

proposed method. The number of clusters identified were significantly lower and

cluster centers identified were not in close proximity to any of those identified in the

first proposed method. Both simulation studies and real data applications indicate

this second proposed method is not sensitive enough to correctly identify clusters.
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Chapter 1

Introduction

1.1 Background

Functional neuroimaging is a relatively young discipline within the neurosciences that

has led to significant advances in our understanding of the human brain and progress

in neuroscientific research related to public health. Accurately identifying activated

regions in the brain showing strong association with an outcome of interest is crucial

in terms of disease prediction and prevention. Functional magnetic resonance imag-

ing (fMRI) is the most widely used method for this type of study and has the ability

to measure changes in tissue perfusion, blood oxygenation, and blood volume [Logo-

thetis, 2008]. The amount and location of these changes are measured when subjects

are under some situational environment or experiment that provokes a thought, emo-

tion, or action. Specifically, these changes are measured using the blood oxygen level

depend (BOLD) contrast method, which measures the change in blood flow in re-

spect to the amount of energy used by the brain cells [Bandettini et al., 1992, Ogawa

et al., 1990]. The resulting fMRI presents an image of the brain with a color-based

BOLD signal scale and a set of X,Y,Z coordinates to represent local maximum BOLD

contrasts.

Positron emission tomography (PET) scans are sometimes used in addition to

fMRI. PET works by exposing the subject via intravenously to a positron-emitting

radionuclide (tracer). The PET scanner is then able to measure activation by exposing

the subject to low levels of radiation which is reflected by the tracer in the blood flow
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of the brain. Similar to fMRI, PET scanners can produce an image and coordinates.

Furthermore, these scan also have the ability to measure the brain in the process

of thought over a given period of time. However, they are limited by how quickly

the tracer is absorbed by the body which limits the stimulation, lower spatial and

temporal resolution, and lower availability of machines Devlin et al. [2000], Ojemann

et al. [1998]. Studies have been conducted to explicitly compare PET and fMRI

using motor, perceptual, and higher-level cognitive activity with successful results

while other studies were unable to reproduce results between the two methods Devlin

et al. [2000].

Depending on the fMRI software, these results have been standardized to one of

two space scales or brain atlases, Talairach or the Montreal Neurological Institute

(MNI) templates [Laird et al., 2010]. The Talairach space, was originally devel-

oped by Jean Talairach and P. Tournoux under the assumption that all distances

within the brain are proportional to the overall brain size. Based on a postmortem

dissection of a single human brain, they defined their brain space with the overall di-

mensions (x=136 mm, y= 172 mm, z=118 mm) with the primary axis lying between

the anterior commissure and posterior commissure and the origin being the anterior

commissure [Talairach and Tournoux, 1988, Laird et al., 2010]. The MNI template

was originally defined in two stages. In the first stage, anatomical landmarks were

manually identified in 250 brains from healthy right-handed adults using MRI scans.

This allowed the edges and orientation or primary axis to be defined for each brain.

Next, all 250 brains were scaled to those equivalent landmarks in the Talairach space

and thus resulting in the original 250 MNI brain atlas [Evans et al., 1992]. However,

immediate advancements were made when an additional 55 subjects were mapped to

the 250 MNI brain atlas by least-squares linear regression. These 55 and 250 were

then averaged together to create the more commonly used 305 MNI brain atlas [Laird

et al., 2010, Lancaster et al., 2007, Evans et al., 1993, Collins et al., 1994].
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The Talairach and MNI spaces mentioned above are not directly comparable due

to the different brain sizes and orientations [Laird et al., 2010, 2005]. Thus, the issue

of transforming these coordinates to fit the other or to an overall standard scale is

a necessity for meta-analyzes. Currently, the two most widely used transformations

are the Brett transformation [Brett et al., 2002] and the Lancaster transformation

[Lancaster et al., 2007]. The Brett transformation applies several non-linear transfor-

mations to different regions of the brain to match the MNI with the Talariach space

[Brett et al., 2002]. The Lancaster transformation is a scaled transformation whose

parameters were derived from 100 brains using least-squared error methods [Lan-

caster et al., 2007]. Studies have shown that the Lancaster transformation provides

the least amount of disparity between MNI and Talairach coordinates [Laird et al.,

2010, Lancaster et al., 2007]. These normalizations, or the scaling of an individual’s

coordinates to the respective space of MNI or Talairach, are most often done within

the fMRI software.

By nature, fMRI’s are noninvasive, slowly becoming more available, have rela-

tively high spatiotempral resolution, and have the remarkable ability to map the

entire network of the brain’s function during the thought process [Logothetis, 2008].

However, it is limited in that it measures surrogate signal whose spatial specificity

and temporal response are subject to both physical and biological constraintsİ and

whose signal reflect neuronal mass activity [Logothetis, 2008]. In other words, brain

activation is recorded before and after the expected stimulation and thus gives rise

to noise and therefore must decipher which areas of activation, statistically greater

than the noise [Smith, 2004]. Furthermore, due to the high cost, fMRI studies tend

to have very small number of participants (less than 20) which cause inflated type

II error (low power) and lack reproducibility [Thirion et al., 2007]. This gives rise

to the need for fMRI meta analyzes to combine these studies to increase sample size

and thus testing power [Fox et al., 1997, Kober et al., 2008, Eickhoff et al., 2009,
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Salimi-Khorshidi et al., 2009, Kang et al., 2011].

In practice, peak activation coordinates and not full fMRI image data are often

given. Thus, coordinate-based meta analyzes (CBMA) are configured by merging

coordinates from groups of fMRI studies, given they are on the same atlas system

[Salimi-Khorshidi et al., 2009] and measure the same type of stimulant response such

as an emotional response. The analysis of CBMA is specific to this format and

aims to identify areas within the brain that are statistically activated during a given

stimulant. The identification of these areas can be performed using various methods

but we aim to achieve this by exercising two forms of spatial clustering analysis, Cox

process and finite mixture model, while using the Bayesian framework to estimate

the appropriate parameters.

1.2 Existing Methods for Coordinate-based Meta-Analysis

The most common statistical methods for CBMA include: activation likelihood es-

timation (ALE), kernel density analysis (KDA), and spatial point process modeling.

Additional research has been done with ALE and KDA to include the methods modi-

fied activation likelihood estimation (modALE) and multi-level kernel density analysis

(MKDA).

1.2.1 Kernel Density Analysis

Kernel density analysis (KDA) was first implemented with fMRI data in Wager et al.

[2003] and seeks to identify regions of significant brain activation. This method

applies a smoothing kernel to each brain voxel. A voxel is a pre-specified block of the

brain, i.e. 2 mm3, that collectively make up the entire brain space. This smoothing

kernel, with a pre-specified radius is applied to each voxel within the brain producing

a smoothed histogram. This smoothed histogram reflects the estimated density of

nearby reported activation locations within that voxel [Wager et al., 2003, 2004,
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2007]. These estimated densities are then compared to a threshold for an indication

of significance; testing against a null hypothesis. This threshold level is derived using

Monte Carlo procedures by generating a number of permutated datasets of randomly

drawn foci to create a set of statistical maps under the null hypothesis that the

number of nearby peaks is equal or less than what is expected by chance. KDA

searches for densities that can reject this and controls the chances of false positives at

a rate of 5% [Wager et al., 2003, 2004, 2007]. This is done by recording the maximum

KDA statistic for each Monte Carlo dataset and setting the threshold to the value

that exceeds the maximum KDA statistic in 95% of the permutated datasets.

Wager et al. [2007] made improvements upon this original KDA method, termed

multilevel kernel density analysis (MKDA), by letting the proportion of studies be the

test statistic, and therefore the peaks are nested within the studies. MKDA creates

an indicator map for each study where these maps indicate which voxels contain one

or more foci within a radius. These maps are then averaged to provide a proportion

of studies with foci within a given radius in a particular voxel [Salimi-Khorshidi et al.,

2009, Wager et al., 2007]. This averaged map identifies statistical activations using

a certain number of permutated datasets as described in the KDA except that these

datasets are generated uniformly over the randomly selected indicated areas from the

study indicator maps. Familywise error rate is applied as it was in KDA but by using

the maximum proportion of activated contrasts [Wager et al., 2007].

The dominant drawbacks to these methods are the pre-specified voxel and radius

bandwidth sizes and lack of any spatial model or component [Wager et al., 2007, Kang

et al., 2011]. In the original KDA model, the threshold calculation was based upon

the null distribution equally across the entire brain; treating each focus as spatially

independent within and across studies. This drawback was sanctified in the revised

MKDA method by incorporating the proportion of studies into the test statistic.

Thus, the threshold and null distributions were based upon areas where activation
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occurred and not uniformly across the entire brain [Wager et al., 2007].

1.2.2 Activation Likelihood Estimate

Similar to KDA, the activation likelihood estimate (ALE) also aims to identify areas

of the brain that are significantly activated during given stimulants. ALE identifies

these areas by again dividing the brain onto voxels but instead of implementing a

smoothing kernel as in the previous method, implements a three-dimensional Gaus-

sian function to estimate the density of reported activation locations within that

voxel. The summation of these densities (union of probabilities) gives the resulting

ALE value and can be interpreted as the probability of at least one activated foci lay-

ing within a given voxel. As in KDA, these probabilities are compared to a threshold

to determine statistical significance or which union of probabilities exceeds random

chance [Turkeltaub et al., 2002]. This threshold is derived in much of the same way

as in KDA: that is, based on permutated datasets [Laird et al., 2005].

Eickhoff et al. [2009] and Eickhoff et al. [2012] pointed out limitations to the cur-

rent ALE method such as the inability to address variances within the fMRI data itself

and the calculation of the threshold. They proposed adjustments to the ALE calcu-

lation, termed modALE, that incorporated empirical estimations for between-subject

and between-template variances from fMRI studies into the probability distribution

and adjusted the Monte Carlo threshold to incorporate further familywise error rate

and clustering inference (Eickhoff et al. [2009],Eickhoff et al. [2012]).

This new threshold proposed in Eickhoff et al. [2012], refutes the general null

hypothesis that foci are uniformly throughout the brain. This is performed by first

calculating the modelled activation (MA) map for each study or experiment in the

fMRI data. This is calculated for each voxel by summing the Gaussian probability of

each individual foci using in that voxel. The ALE value is then calculated by summing

all of these MA maps. Intuitively, each brain voxel has an MA value thus produces
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a map of MA values and therefore the name MA maps. All voxels expressing the

same MA value are combined to a single histogram-bin. Once all voxels have been

combined, this produces an entire histogram representing groups of voxels with the

same MA values. This process is repeated for all studies or experiments and the

histograms are continually merged to finally produce the null-distribution of ALE

values under spatial independence. The p-value for each study or experimental ALE

is the probability of observing that ALE value or one more extreme. The threshold

for a particular ALE value is dependent upon the histogram-bin the value is located

and all other bins more extreme to calculate the chance of observing this ALE value

or a more extreme one [Eickhoff et al., 2012].

Even though this newly proposed method for correcting the family-wise error rate

and cluster-level significance greatly improved the original ALE method, there are

still two main drawbacks, specifically with the cluster-based thresholding. The first

is that it produces low spatial specificity when clusters are large and the decision of

the primary threshold can greatly affect the the significance and robustness of clusters

making them appear larger [Woo et al., 2014].

1.2.3 Hierarchical Spatial Point Process

The other method, hierarchical spatial point process modeling, was introduced in

Kang et al. [2011]. Unlike the previous two methods, it does not estimate the density

distribution by voxels using kernel estimation. This article presents a hierarchical

spatial point process model using Bayesian methods to estimate parameters that

will identify regions of highly dense foci, which in turn will suggests regions of high

activation across studies [Kang et al., 2011]. The model consists of three layers. The

first layer models the individual foci, assumed independent, by clustering with an

independent cluster process controlled by a random intensity function. At this level,

two types of foci are considered: singly and multiply reported, which were assigned a
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mark or indicator as to identify the specific types. The second level models the latent

study activation center, again assumed independent and clustered by an independent

cluster process and driven by a random intensity function. These two layers are both

assumed conditional on the realisation of latent study activation centers or latent

population center, respectively, and normally distributed. Also, both layers allow

for individual foci and study centers to be singleton clusters and model this by an

independent homogeneous Cox process, hence the random intensity functions. The

third and final level models the latent population centers with a homogeneous Cox

process controlled by a homogeneous random intensity. Posterior distributions are

estimated using a spatial birth death processes nested within a MCMC simulation

algorithm [Kang et al., 2011].

Kang noted that the number of population centers were sensitive to priors and

that the concept of a spatial model could take practitioners time to adjust to from

voxel-wise assessments such as those from KDA, MKDA, ALE, and the modALE. It

can also be conceded that a potential limitation is the assumption of normality. This

assumption forces the identified clusters to be spherical in nature.

This dissertation is built upon the model in Kang et al. [2011]. We consider two

methods aiming to improve the flexibility of the methods by relaxing the normality

assumption and identifying cluster of reaction regions with study effects adjusted.

Both methods are in the Bayesian framework. In the next section, we discuss the

general construction of Bayesian models.

1.3 Bayesian Methods

Bayesian methods arise from the need of inferences on observed data, y, conditional

on some unknown parameter(s), θ. Although these parameters are unknown, there

is some prior information available [Congdon, 2007]. This prior information is pre-

sented as a density, P (θ) and therefore the likelihood or probability of the presented
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data and its conditional parameters is presented as P (y|θ) or some specified model.

Therefore, in order to make inferences on the posterior, P (θ|y), Bayes theorem can

be implemented. Bayes theorem was defined by Thomas Bayes as

P (B|A) = P (A ∩B)
P (A) = P (A|B)P (B)

P (A) .

Following the Bayes theorem, we have

P (θ|y) = P (θ ∩ y)
P (y) = P (y|θ)P (θ)∫

θ P (y|θ)P (θ)dθ ∝ P (y|θ)P (θ). (1.1)

The proportionality in (1.1) is due to the conditionality on y. P (y|θ) and P (θ) as

the prior distribution, hence it’s assumed prior density or distribution. Inferences

on the posterior distribution can take several forms, but most often are in summary

form such as means, variances, or medians [Congdon, 2007]. The derivation of these

summaries statistics follow from their generic definitions, i.e.

E(θ) =
∫
θP (θ|y)dθ (1.2)

V ar(θ) =
∫
θ2P (θ|y)dθ − [E(θ|y)]2

= [E(θ2|y)]− [E(θ|y)]2. (1.3)

These summary statistics offer useful insights into the nature of posterior distribu-

tion; the posterior mean indicates the central tendency of the distribution, posterior

variance offers the overall spread of the distribution, and posterior median can also

indicate central tendency [Congdon, 2007]. Credible intervals, 100(1- α)% can also

be calculated for θ which is interpreted that there is a 1-α% probability that θ lies

within the interval [lower, upper] [Congdon, 2007]. Lower and upper are calculated

by α
2 and 100− α

2 quantiles of the posterior density [Congdon, 2007]. Another credible

interval is the 100(1-α)% highest probability density (HPD) interval, thus the density

for each point within the interval exceeds that for every point outside of the inter-

val. It immediately follows that this is also the shortest possible 100(1-α)% credible

interval [Congdon, 2007].
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If the posterior distribution takes an analytical form, the summary statistics

are rather straightforwardly calculated from their pre-derived formulas. However,

if the posterior is not a standard distribution, the integrals can be difficult to cal-

culate [Congdon, 2007]. This directly illustrates the link between Bayesian inference

and sampling-based estimation methods. More general, Markov chain Monte Carlo

(MCMC) methods are a set of algorithms that simulate the stochastic process of

posterior densities [Geyer, 1992]. These methods propose various ways of sampling

from the posterior distribution. From the theory of Strong Law of Large Numbers,

repeated sampling will eventually converge and allow for an empirical estimate of

these summary statistics.

The most basic MCMC algorithm used to simulate a Markov chain with a station-

ary posterior distribution is referred to as the Metropolis-Hastings (MH) algorithm

[Hastings, 1970, Metropolis et al., 1953]. The sampling is conducted at each iteration

of the chain over a pre-specified total number of iterations, T . The current value is

denoted as θ(t) with P (θ|y) as its stationary distribution [Congdon, 2007]. The chain

is updated from its current value, θ(t), to θ∗ with the probability:

α(θ∗|θ(t)) = min(1, P (θ∗|y)f(θ(t)|θ∗)
P (θ(t)|y)f(θ∗|θ(t))), (1.4)

where f() is a jumping density [Chib and Greenberg, 1995]. The jumping density is

the probability of moving back and forth between θ∗ and θ(t); specifically, f(θ∗|θ(t)) is

the probability of moving to θ∗ from the center, θ(t) and f(θ(t)|θ∗) is the probability

of moving back to θ(t) from θ∗. If θ∗ is accepted then θ(t+1) = θ∗ else θ(t+1) = θ(t).

If the jumping distribution is symmetric (i.e. normal), the acceptance probability

reduces to:

α(θ∗|θ(t)) = min(1, P (θ∗|y)
P (θ(t)|y)), (1.5)

which is known as random walk MH [Gelman et al.]. Another scheme for sampling

allows the proposal or jumping distribution to be independent of θ(t), f(θ∗), which
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is known as independence sampler [Congdon, 2007]. The rate at which the proposal

value, θ∗, is accepted indicates the proximity of the proposal and current values. If

acceptance is too high or too low, the variance of the proposal density may need to

be adjusted [Congdon, 2007].

This sampling scheme can be extended to more than one parameter when θ is

multidimensional. Although all parameters can be updated simultaneously, it is much

easier and simpler to update one at a time while holding all other parameters constant

at their current values. For example, let θ[j] = (θ1, θ2, ..., θj−1, θj+1, ..., θD) all D

number of parameters excluding the jth parameter and θ(t)
j denote the value of θj at

the t iteration [Congdon, 2007]. Since each parameter is updated individually at the

t iteration, when updating the jth parameter then all preceding parameters, j− 1 are

already updated and thus denoted θ(t,t+1)
[j] = (θ(t+1)

1 , θ
(t+1)
2 , ..., θ

(t+1)
j−1 , θ

(t)
j+1, ..., θ

(t)
D ). The

acceptance probability of selecting the candidate value, θ(t)
j , is defined as:

α(θ∗j , θ
(t)
j , θ

(t,t+1)
[j] ) = min[1,

P (θ∗j |θ
(t,t+1)
[j] )f(θ(t)

j |θ∗j , θ
(t,t+1)
[j] )

P (θ(t)
j |θ

(t,t+1)
[j] )f(θ∗j |θ

(t)
j , θ

(t,t+1)
[j] )

]. (1.6)

A second algorithm, a special case of the MH algorithm specifically for a mul-

tidimensional parameter space, is called Gibbs sampler [Gelfand and Smith, 1990,

Congdon, 2007] originally developed by Geman and Geman [1984]. In the Gibbs

sampler, the proposal density equals the full conditional, P (θ∗j |θ[j]), and therefore the

acceptance probably reduces to 1 and thus the candidate values are always accepted

[Congdon, 2007]. Each parameter is again updated one at a time, conditional on

all other parameters. Letting θ= (θ1, θ2, ..., θD), the sampling distribution for each
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parameter is:

θ
(t+1)
1 ∼ f(θ1|θ(t)

2 , θ
(t)
3 , . . . , θ

(t)
D )

θ
(t+1)
2 ∼ f(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
D )

...

θ
(t+1)
D ∼ f(θD|θ(t+1)

1 , θ
(t+1)
2 , . . . , θ

(t+1)
D−1 ).

(1.7)

By repeatedly sampling in this fashion, the initial values for θ are irrelevant which

gives a "memoryless" property in addition to converging to a stationary sampling

distribution [Congdon, 2007]. These full conditional sampling distributions are ob-

tainable by implementing Bayes theorem from the full joint distribution (full model

distribution equivalently proportional to the likelihood time prior density) while han-

dling all other parameters other than θj as constant. In order for the Gibbs sampler

to be convenient and efficient, these full conditional distribution generally produce a

known or standard distribution making sampling effortless [Congdon, 2007]. If these

produce non-standard distributions, MH is generally used.

One practice that is used across all MCMC algorithms to assist with calculations

of summary statistics is the removal of the first B iterations, or burn-on iterations.

As mentioned above, these MCMC algorithms have a "memoryless" property that in

the convergence of the sampling distribution, the initial values are forgotten. Thus,

the initial and other beginning iterations do not need to be considered when making

or calculating inferences. This bears no difference in the resulting convergence.

Convergence of sampling distributions with non-standard forms for MCMC meth-

ods is pertinent to achieve approximate inferences. The assessment of convergence

many unanswered questions [Congdon, 2007]. Therefore, for this dissertation, con-

vergence was checked visually and by acceptance rates. Visual inspection requires

plotting the chain of some parameter. If convergence is met, the chain will result in

12



a relatively linear fashion but is at discretion of the observer. Optimal acceptance

rates are around 37% [Blum, 2010].

1.4 Existing Methods for Clustering Analysis

Since the focus of the dissertation is on clustering, in this section we review clustering

methods, supervised and unsupervised methods.

Methods for clustering have become increasing popular across various fields of

study. They are often used in disciplines such as data mining, document retrieval,

image segmentation and pattern classification [Filippone et al., 2008]. The general

aim of clustering methods is to create partitions, groups, or clusters based on the

similarity (or dissimilarity) of a specified criteria [Filippone et al., 2008]. The sim-

ilarity criteria and similarity measure is defined by the particular method. Some

methods derive better cluster qualities depending on the type of data clustered, cate-

gorical, continuous, ordinal and binary [Zaït and Messatfa, 1997]. Clustering methods

can be divided into four distinct categories of clustering methods: hierarchical clus-

tering, partitioning clustering, density-based clustering, model-based clustering, and

Bayesian clustering.

1.4.1 Hierarchical Clustering

Hierarchical clustering is probably considered the most popular of the four categories

with 6,723 articles related to "hierarchical clustering" via a PubMed search and aims

at clustering subjects or some variable. In general, this method clusters by levels

where at the initial level, all observations desired to be clustered are considered to be

in a cluster of their own. At each subsequent level, observations or groups of observa-

tions are clustered based on their similarity to each other. The clustering continues

until all observations are clustered into a single cluster. Different methods use differ-

ent similarity measures to cluster and to decipher which level produces the optimal
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clustering [Milligan and Cooper, 1987]. The distance between two observations or

clusters is most often used as similarity measure. This is based on the underlying

assumption that the closer two objects are the more likely the two are similar. The

agglomerative approach just described is not the only way hierarchical clustering is

achieved. Other methods of hierarchical clustering using a divisive approach where

the initial level clusters all observations into a single cluster. At each subsequent level

clusters divide until all observations are single separate clusters. Regardless of the

agglomerative or divisive approach, clusters never overlap and once observations or

groups are clustered or unclustered, they remain so. These are often depicted visu-

ally in a dendrogram. Specific examples of the different methods for this clustering

category include: single linkage, complete linkage, average linkage, centroid method,

Ward’s method, two-stage density and the Kth nearest neighbor [Zaït and Messatfa,

1997]. The methods differ in the derivation of their similarity criteria. For example,

in single-linkage clustering, the two clusters with the smallest minimum pairwise Eu-

clidean distance are grouped for that level while in complete linkage, the two clusters

with the smallest maximum pairwise Euclidean distance are grouped for that level.

Although Euclidean is the most popular, other distance measures may be used as

well. These methods come with an ease of application but results may not always be

easily inferred and potentially requires large CPU time and memory space [Zaït and

Messatfa, 1997].

1.4.2 Partitioning Clustering

Similar to hierarchical clustering, this method aims to group subjects or some vari-

able of interest. However, partition clustering or sometimes called centroid-based

clustering differs in that it partitions in a single step rather than repetitive lev-

els of sub-partitions as in the hierarchical clustering [Filippone et al., 2008]. This

non-hierarchical clustering method also requires less CPU time and memory. The
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partitions are achieved by the optimization of an appropriate objective function [Fil-

ippone et al., 2008]. Perhaps the most common partitioning method is K-means

[MacQueen et al., 1967, Pollard, 1982, Lloyd, 1982] but also include relational data

analysis (RDA), Autoclass, Fuzzy c-Means, self-organizing maps (SOM or Kohonen

maps) and Neural Gas to name a few [Zaït and Messatfa, 1997, Filippone et al., 2008].

The general algorithm for partition clustering take the following steps:

1. Determine the number of clusters if not prespecified.

2. Initialize the cluster centers.

3. Compute partitioning for data.

4. Compute (update) cluster centers.

5. If the partitioning is unchanged (or the algorithm has converged), stop; other-

wise, return to step 3.

If the number of clusters is unknown, the partitive algorithm can be repeated for a

different set of number of clusters typically from two to
√

(N) where N is the number

of samples in the dataset [Vesanto and Alhoniemi, 2000]. For illustration purposes,

an example of the error function in K-means that is minimized is:

E =
C∑
k=1

∑
x∈Qk
||x− ck||2

where C is the number of clusters and ck is the center of cluster k [Vesanto and

Alhoniemi, 2000]. To choose between different partitioning, an validity index may

be calculated. Several have been suggested in Bezdek and Pal [1998] and Milligan

and Cooper [1985] but for K-means the Davies-Bouldin index [Davies and Bouldin,

1979] is most appropriate because of its low values that indicate good clustering

for spherical clusters [Vesanto and Alhoniemi, 2000]. The Davies-Bouldin index is

calculated:
1
C

C∑
k=1

{
Sc(Qk) + Sc(Ql)
dce(Qk, Ql)

}
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where Sc represents within cluster distance, dce for between clusters distance and C is

the number of clusters. Although partitioned clusters can be computationally quicker,

they are limited by generally requiring the number of clusters to be pre-specified and

assume a spherical form; K-means clusters by searching for spheres [Vesanto and

Alhoniemi, 2000].

1.4.3 Density-based Clustering

Density-based clustering imitates the steps of partition clustering but with the ex-

ception that the number of clusters does not have to be specified and the distance

between two groups or "measure of connectivity" is only considered if their density

(most often estimated by kernels), P (x), is above a pre-specified threshold λ [Kriegel

et al., 2011]. Generally speaking, if two groups or observations have relatively high

densities and are in close proximity to each other, they will be clustered together.

Those data with densities below λ are considered "noise" and therefore no need to

measure their "connectivity" with other data [Ester et al., 1996, Kriegel et al., 2011].

Thus, as with partition clustering, the different methods of density-based clustering

address the different manners in which the threshold and distance or connectivity are

defined. The most popular method is density-based spatial clustering of applications

with noise or DBSCAN introduced in Ester et al. [1996]. BDSCAN groups a data

point p with another data point q if p is within a certain distance, ε, from q and if

q is surrounded by a certain number of other data points. Thus, the BDSCAN has

two parameters that must be defined by the user, the minimal distance ε and the

minimal number of point required for a dense region, minPt. The distance can typi-

cally be estimated using a K-distance graph but the parameter minPt is set by the

user. The advantage to this method of clustering is the flexibility of the shape of the

clusters as there are no restrictions on the density distribution and that the number

of clusters is data-driven and not pre-specified. The disadvantages is the parameter
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pre-specification from the user, points that lie on the edge of clusters can often be

grouped into one cluster or another, and DBSCAN has a difficult time clustering data

with large differences in densities [Ester et al., 1996, Kriegel et al., 2011].

1.4.4 Model-based Clustering

Model-based clustering or sometimes known as probability models model data un-

der the assumption that it follows a specific distribution. The different methods

of model-based clustering arise from the various ways to model or implement these

distributions as well as the form the models are elected to take. More specifically,

the estimation of the parameters via frequentist or Bayesian approach lead to vari-

ous methods. The main advantage to these models are the flexibility they provide

and allow them to be implemented in numerous disciplines and applications such as

character recognition [Murtagh and Raftery, 1984], tissue segmentation [Banfield and

Raftery, 1993], minefield and seismic fault detection [Dasgupta and Raftery, 1998],

identification of textile flaws from images [Campbell et al., 1997], and classification

of astronomical data [Celeux and Govaert, 1995].

Model-based clustering or probability models can be divided in to roughly 5 clas-

sifications depending on the nature of the data. The classifications are partition-type

models for data vectors, partition-type models for dissimilarity data, partition-type

models for random similarity relations and random graphs, testing for homogeneity

and for a clustering structure, and probabilistic models for hierarchical and tree-like

classifications [Bock, 1996]. Given the data this dissertation explores, we will only

review partition-type models for data vectors which can be defined as mixture models

or point cluster processes [Bock, 1996]. Other partition-type models such as the fixed-

classification model, multi-modality and high-density (density-contour) clusters, and

mode clusters are summarized in Bock [1996].
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1.4.4.1 Clustering-based on Mixture Models

The finite mixture models assume that given the data y = (y1, ..., yn) there exist M

number of partitions or clusters in which this data may be grouped. Each cluster

shares a known parametric family f(·; θ) and therefore also contains specific family

parameters θ = (θ1, ..., θm) such that the resulting likelihood is:

L(θ; y) =
n∏
i=1

M∑
k=1

πkfk(yi|θk)

where f(·) is the density function and its respective parameter θ of the kth cluster

and πk is the mixing proportion or probability that an observation is assigned to the

kth cluster (π = (π1, ..., πm);∑k=1
M πk = 1) [Bock, 1996, Duda and Hart, 1973, Binder,

1978, Scott and Symons, 1971]. Mixture parameters may be estimated in a number of

ways with the two most popular methods being the expectation maximization (EM)

algorithm and Markov chain Monte Carlo.

The expectation maximization (EM) algorithm was originally introduced in Demp-

ster et al. [1977] and utilizes the maximum likelihood to estimate parameters. It treats

the individual data clustering assignment as a missing or latent variable z such that

z = (z1, ..., zn) [Dempster et al., 1977]. The EM algorithm works in two steps, "E-step"

and "M-step". During the "E-step" the conditional expectation of the complete-data

log-likelihood given the observed data and current parameter estimates is calculated.

The complete-data refers to the observed data and its latent variable and can be

notated as xi = (yi, zi). The log-likelihood for the complete data is

l(θ, π, z|x) =
n∑
i=1

M∑
k=1

log(πkf(yi|θk))

with z being estimated by the expectation of

Q(θ, π|θ(t), π(t)) = E

[
n∑
i=1

M∑
k=1

log(πkf(yi|θk))
]
.
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During the "M-step" the log-likelihood is maximized in terms of π and θ with z held

constant at the values calculated in the "E-step" as illustrated below

θ(t+1) = argmin
θ

Q(θ, π|θ(t), π(t))

π(t+1) = argmin
π

Q(θ, π|θ(t), π(t)).

Some general limitations with EM are its potentially slow numerical convergence and

the convergence to the maximum likelihood may not always be the global maximum

[Wu, 1983].

Another method to estimate mixture and model parameters is by sampling from

their posterior distribution calculated using the Bayes’ therom discussed earlier. One

of the most popular ways to achieve this is through the Birth-Death process. The

Birth-death process was originally introduced in Preston [1975] and is continual-time

Markov process. During the MC chain, "births" and "deaths" occur at certain time

points that jump throughout the chain that allow the number of components to in-

crease by one or decrease by one, respectively [Moller and Waagepetersen, 2004].

Births and deaths are binominally modeled with non-negative rates, birth rate β(x)

and a death rate δ(x), to randomly select if a birth or a death will at that spe-

cific time point. This jumping time point is typically modeled with the exponential

distribution [Moller and Waagepetersen, 2004]. Similar to the EM algorithm, most

Birth-death algorithms incorporate a latent variable, z, to model the clustering as-

signment for each observations such that z = (z1, ..., zn). Once the selection of a

birth or death has been calculated, all individual observation must be assigned to a

cluster using the multinominally probabilities from the mixture proportions and all

mixture parameters must be updated. Non-mixture parameters, such as θ, are sam-

pled from their conditional posterior distributions at every iteration of the Markov

chain Monte Carlo (MCMC) simulations. Several different algorithms to implement

the Birth-Death process can be found in the literature [Preston, 1975, Moller and

Waagepetersen, 2004]. These algorithms differ in how the birth rate, death rate, and
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jumping rates are defined as well as the algorithm implementation of Birth-Death.

For this dissertation, we elect to use the algorithm defined in Stephens [2000] and

provide algorithm details in Chapter 3. The primary advantage to this type of process

is not only are we able to select the best model but are able to use the results and

information form over models such as the exchangeability of the mixture components

throughout the MC chain [Stephens, 2000].

Another method of modeling clusters with mixtures is through the Dirichlet pro-

cess (DP). Originally discussed in [Antoniak, 1974, Ferguson, 1973], the DP is a

simpler and more elegant way to model latent classes that can explain dependencies

between observations [Neal, 2000]. The DP is a mixture of probability distributions

and thus when assigned as the distribution of a parameter it becomes a distribution of

probability distributions. Its this discreetness property that allows for the partition

of probabilities and thus clustering. The general DP can be applied in the form

y|θi ∼ F (θi)

θi ∼ G

G ∼ DP (G0, α)

where θi ∈ (θ1, ..., θn) is the parameter to be estimated. Please note that the notation

∼ means "distributed as". It is assumed that the observed data y are model as

some probability model F (θ), and G is the prior distribution assigned to θi and G is

assigned as a DP with a base distribution G0 and precision parameter α. The DP is

based on assumptions of discreteness, independency, and exchangeability meaning its

is assumed that the distribution is from a mixture of distributions, each parameter

θi is independent and exchangeable (order of the data is of not matter) [Ferguson,

1973, Antoniak, 1974, Neal, 2000]. The DP itself is defined as

P (θi|θ(i)) ∼ αG0

α + n− 1 +
∑n
j=1,j 6=i δθj(θi)
α + n− 1 ,
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where θ(i) denotes all parameters excluding θi, θ
(i) = (θ1, ..., θi−1, θi+1, ..., θn), and

δθj(θi) denotes the unit point mass at θ = θi or the distribution concentrate at the

single point θ [Escobar and West, 1995, Neal, 2000]. Without the assumption of

independency and exchangeability this probability could not be calculated.

Following the Bayesian framework, in order to sample values for θi we need to sam-

ple from the conditional posterior distribution, which is proportional to P (y|θi)P (θi).

Depending on the probability model assigned to y the prior for θi may be a conju-

gate or non-conjugate prior. Models with conjugate priors are easily implemented via

Gibbs sampler but non-conjugate priors cause Gibbs sampler to have complex and

potentially impossible numerical integration [Neal, 2000]. Some have attempted to

provide methods to approximate these complex numerical integrations such as West

who implemented Monte Carlo approximation but produced a large error or MacEach-

ern and Müller [1998] who attempted to handle non-conjugate priors using an exact

approach using a mapping from a set of auxiliary parameters. Their algorithms to

implement these proved inefficient [Neal, 2000]. Walker and Damien [1998] used these

same algorithms with different auxiliary parameters but proved unsuitable in a gen-

eral sense [Neal, 2000]. Other existing methods for handling non-conjugate priors

are summarized in Neal [2000]. However, also presented in Neal [2000] is a sampling

algorithm similar to that of MacEachern and Müller [1998] with the incorporation

of auxiliary parameters. This algorithm differs in that the auxiliary parameter are

temporary and therefore allows more flexibility [Neal, 2000]. We elect to implement

this algorithm in both of our methods and is described in detail in Chapter 2 section

2.2.2.

1.4.4.2 Point Processes

In this dissertation, the Birth-Death process noted in section 1.4.4.1 is implemented

in the context of point process. In this section, we provide a brief introduction on
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this topic.

Point processes are a type of spatial statistics which can be very useful for identify-

ing clusters when spatial information is available. They model data (spatial points) as

a random element whose values are "point patterns" on a set S. This random process

is for point data, X1, X2, ...Xn whose realizations are a random locally finite subset of

a space S, assuming S ⊂ Rp [Bock, 1996, Moller and Waagepetersen, 2004]. For any

subset x ⊆ S, let n(x) denote the cardinality of x and when the point configuration

x is restricted to B where B ⊆ S is bounded, denoted xB = x ∩ B, then X takes

the values in the space defined by N = {x ⊆ S : n(xB <∞ for all bounded B ⊆ S){

[Bock, 1996, Moller and Waagepetersen, 2004]. Point process methods include marked

point process, poisson point process, marked poisson point process, Cox process and

Markov point process [Moller and Waagepetersen, 2004]. A primary concern with

these types of models are with the estimation of their associated parameters [Bock,

1996]. We elect to use a spatial Cox process in one of the methods presented in this

body of work. More details are provided in Chapter 2.

1.4.4.3 Goodness-of-fit

Model-based clustering attempts to fit pre-specified probability model to observed

data. It is well known that models with larger number of parameters may often over

fit the data and therefore raises the issue of how to determine if and how well a model

fits the data. The model and its respective clusters can been chosen based on a any

number of criteria. For this dissertation, we will only look at the three most popular,

Bayes information criterion (BIC) [Schwarz et al., 1978, Raftery, 1995, 1999], Akaike

information criterion (AIC) [Akaike, 1987], and deviance information criterion (DIC)

[Spiegelhalter et al., 2002].

The Bayes information criteria is a criteria for model selection that is a function

the likelihood while adjusting for the number of parameters estimated. The BIC has
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the following formula for data y and model m:

BIC = log [p(y|θm)]−
(
d

2

)
log [n]

where p(y|θm) is the likelihood of the observed data given the parameters in model

m, d is the number of estimable parameters and n is the number of observations.

This criteria penalizes the likelihood for the model’s complexity (greater number

of estimable parameters) according to the log of the sample size [Congdon, 2007,

Raftery, 1995]. Similarly, AIC was constructed to again penalize the likelihood for

the model’s complexity but arguable does not penalize to the extent of BIC as it does

not incorporate sample size

AIC = 2d− 2log [p(y|θm)] .

The DIC criterion of Spiegelhalter et al. [2002] is a generalization of BIC and AIC

and is particular useful for models with parameters estimated using the Bayesian

paradigm. It estimates the expected deviance while adjusting for the model’s com-

plexity. Mathematically, the DIC is defined as

DIC = 2D −D(θ|y),

where

D = 1
T

T∑
t=1

D(y, θ(t))

D(y, θ(t)) = −2logP (y|θ(t))

D(θ|y) = D(y, θ).

In the above, θ(t) is the parameter estimate(s) at current time t, θ is mean or median of

the parameter estimate(s) for times t = 1, ..., T and y is the data [Congdon, 2007].For

all three methods, the smaller the criteria the better the model fits the data. The

advantage of DIC over BIC and AIC, particularly for the Bayesian setting, is its easy

of calculation while the other two require calculating the likelihood at its maximum

over θ, which is not readily available from the MCMC simulation.
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1.4.5 Bayesian Clustering

Bayesian clustering methods are typically implemented via computer programs. They

are also the dominant method for clustering genetic data and other molecular data

[Chen et al., 2007]. Specifically, they aim to identify groups of individuals for infer-

ences at the population level with out assuming predefined populations [Chen et al.,

2007]. The most popular Bayesian clustering programs which are built for genetic

data are STRUCTURE [Falush et al., 2003, Pritchard et al., 2003, 2000], PARTI-

TION [Dawson and Belkhir, 2001], BAPS [Corander et al., 2003, 2004, Corrander

et al., 2006], GENELAND [Guillot et al., 2005], GENECLUST [François et al., 2006],

and TESS [Chen et al., 2007]. The first three methods, STRUCTURE, PARTITION,

and BAPS are non-spatial methods that cluster by minimizing Hardy-Weinberg and

linkage disequilibria. Each individual observation is then assigned to a respective clus-

ter probabilistically [Chen et al., 2007]. These methods perform best with genetic

differential is relatively low [Latch et al., 2006]. The other three methods incorporate

the spatial information of the data by incorporating the geographical coordinates of

individuals in their prior distributions [Chen et al., 2007, Guillot et al., 2005, François

et al., 2006, Wasser et al., 2004]. GENELAND is specific for populations within a

designed study area and implements a hidden partition model [Chen et al., 2007].

GENECLUST and TESS are almost identical in that they both exercise the concept

of Hidden Markov Random Field (HMRF) to model the spatial dependency [Chen

et al., 2007]. TESS differs in that it’s program allows for more algorithm options like

data structures, proposal kernels, and other numerical options [Chen et al., 2007].

When these three methods were compared with STRUCTURE in Chen et al. [2007],

they proved just as efficient in certain criteria. TESS was most appropriate when

identifying number of populations, correct assignment to populations when there was

moderate geographical admixture, and identifying recent migrants. STRUCTURE

proved superior for correction assignment to populations when there was high geo-
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graphical admixture and at detecting clinal variation. GENELAND and TESS per-

formed equally at correctly assigning to populations when there was no geographical

admixture. STRUCTURE and TESS had equal computation speeds [Chen et al.,

2007].
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1.5 Outline

The remainder of this dissertation is laid out as three chapters. The following chapter,

Chapter 2, outlines and describes the first method, a spatial Cox point process model.

This model aims to identify regions of activation within the brain using fMRI meta-

data. This was performed by clustering on two levels, latent foci center and study

activation center, with a spatial Cox point process utilizing the Dirichlet process to

describe the distribution of foci. Intensity was modeled as a function of distance

between the focus and the center of the cluster of foci using Gaussian kernels. All

parameters were estimated using Bayesian methods. Simulations are conducted to

demonstrate and asses the method. A real meta-analysis dataset was also explored

and the results and conclusions are discussed.

Chapter 3 presents the second method, a mixture model. The distribution of

the foci is assumed to be conditional, multivariate normal with a mean being the

mixture of a study effect and individual foci effect. The study effect was assumed to

follow a distribution generated from a Dirichlet process and the individual foci effect

assumed a mixture of clusters, where the foci in each cluster was also assumed to

follow a distribution generated from a Dirichlet process. The Bayesian paradigm was

once again employed. As in Chapter 2, besides the presentation of the method, we

conduct intensive simulations and perform real data applications.

Overall conclusions and discussions on the two methods presented appear in Chap-

ter 4. It is here that limitations and further research directions are mentioned.

26



Chapter 2

Spatial Cox Process

This chapter presents a spatial Cox point process model with an intensity function

modeled using a Gaussian Kernel that aims to identify regions of activation within

the brain using fMRI meta-analysis data.

2.1 Introduction

Point processes, specifically Cox point processes, are often used for the determination

of spatial patterns as they served as the "tractable model class" for spatial randomness

[Moller and Waagepetersen, 2004]. The general spatial point processX can be defined

by a random countable subset of a space S, such that S ⊆ <3 and the realization

of X is restricted to locally finite subsets of S. Furthermore, for any subset s ⊆ S

let n(x) denote the cardinality of x and is locally finite, n(xW ) < ∞, whenever

W ⊆ S is bounded, and where xW = x ∩ W [Moller and Waagepetersen, 2004].

This naturally extends to a spatial Poisson point process which is defined by an

intensity function ϕ : S → [0,∞) that is locally integrable,
∫
W ϕ(ξ)dξ < ∞ for

all bounded W ⊆ S. This calculated integration is called an intensity measure µ

defined as µ(W ) =
∫
W ϕ(ξ)dξ,W ⊆ S. When the intensity function is defined as

a realisation of a random field, the result is a doubly stochastic Poisson process

called Cox processes [Moller and Waagepetersen, 2004, Cox, 1995]. For notation

purpose, suppose Z = Z(ξ) : ξ ∈ S be a nonnegative random field with probability

one, ξ → Z(ξ) is locally integrable function. The density of a Cox processX restricted
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to a set W ⊆ S with |W | <∞ is defined as:

f(x) = exp
(
|W | −

∫
W
Z(ξ)dξ

)∏
ξ∈x

Z(ξ).

Due to the process’ ability to model and cluster within spatial randomness, we can

directly apply this model to any spatial data but in particular, coordinate-based

meta-analysis (CBMA) data. The rest of this chapter is designated to explore the im-

plementation of this process to coordinate-based meta-analysis brain data. The next

section will explicitly layout the format of the model and discuss the spatial kernel

and Bayesian framework. Following, various simulated dataset assess the sensitivity

and robustness of the proposed method and the results. Section 2.4 implements a

real meta-analysis dataset and discusses the results and implications. Section 2.5 is

included to present conclusions and a discussion of the proposed method.

2.2 The Model

Let sij = (x, y, z) denote a single focus which represents a talairach coordinate, for

study i, i = 1, ..., I, and the jth foci in study i, j = 1, ..., Ji. We have ∑I
i=1 Ji = n,

where n is the total number of observed foci. Denoted by s = s1,1...sI,JI represents

all foci in the CBMA study. Continuing, a study effect must be considered to adjust

for the differences or similarities between studies, denoted pi for each study i, while

letting θij represent each individual foci effect for the jth foci in study i.

The N-dimensional Gaussian kernel takes the form:

K(x) = 1
(
√

2πσ)N
exp

(
||x||2

2σ2

)
.

Similar to the standard deviation in a general Gaussian or normal distribution, σ

controls the width of the kernel and by nature always positive. The first term,∫∞
−∞ exp

−x2
2σ2 dx =

√
2πσ, is called the normalizing constant which ensures that the

area under the curve remains unity as the kernel width, σ, changes.
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To describe the distribution pattern of s, we follow the suggestion by Kang et al.

[2011] via a Cox point process,

f(s) = f [λ(s)]
∏
sij∈s

λ(sij),

where

f [λ(s)] = exp (|B| − µ(B)) ∝ exp
(
−
∫
B
λ(s)ds

)
,

and B represents the brain space, and λ(s) is the intensity at focus s. To model the

intensity λ(s), we use Gaussian kernels aiming to gain flexibility. We thus have for

focus sij,

f [λ(s)] ∝ exp(−
∫
B
exp(aijK(sij − pi − θij))ds),∏

sij∈s
λ(sij) =

∏
sij∈s

exp(aijK(sij − pi − θij)),

K(sij − pi − θij) = exp

{
−||sij − pi − θij||

2

ρ

}
,

where aij is individual cluster effect, pi is study effect for study i and θij is the

individual cluster center for the jth foci in study i. Function K(·) is a Gaussian

kernel with regulation parameter ρ. A Gaussian kernel function is in similar manners

as exponential and Laplacian kernels [Shawe-Taylor and Cristianini, 2004]. This leads

to

f(s) = exp

[
−
∫
B
exp

(
aijexp

{
−||sij − pi − θij||

2

ρ

})
dsij

]

×
∏
sij∈s

exp

[
aijexp

{
−||sij − pi − θij||

2

ρ

}]

≈ exp

−
∑
B exp

(
aijexp

{
− ||sij−pi−θij ||

2

ρ

})
n

+
∑
sij∈s

aijexp

{
−||sij − pi − θij||

2

ρ

} .
We let the contribution of each focus be comprised of two components: expected

3-D individual focus effect (θij) and expected 3-D study effect (pi). The parameter
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aij allows a multiplicative focus impact on the intensity. It is possible that the foci

are in groups and each groups represents specific types of functions. To this end, we

assume the realization of each sij is from the following mixture for individual clusters,

c = (1, .., C):

f(s) ∝
C∑
c=1

exp

(
−
∫
B
exp

[
acexp

(
acexp

(
−||sij − pi − θc||

2

ρ

))]
dsij

)
,

after adjusting for study effect. To infer clusters and their centers, we implement a

fully Bayesian approach. In the next section we discuss the choice of prior distribu-

tions.

2.2.1 Prior and hyperprior Distributions

Following the standard Bayesian frame work, all estimable parameters are assigned

a prior distribution. We assume the study effect, pi, follows distribution G1, which

is generated from a Dirichlet process (DP), pi ∼ G1 and G1 ∼ DP (α1, G01) where

α1 is a precision parameter and G01 is a base distribution. The base distribution,

G01, is set to MVN3(µ,Σ1) with hyper-prior distribution µ ∼MVN3(0, 0.1∗ I3) and

Σ1 = σ2
1I3, with σ2

1 ∼ IG(0.5, 0.5), where I3 is a 3-dimensional identity matrix. The

hyper-prior distribution for a noninformative prior was chosen as suggested by Kass

and Wasserman [1995]. Similarly, we assume θij ∼ G2 and G2 ∼ DP (α2, G02), with a

base distribution of G02 = MVN3(c0,Σ2) where c0 takes the median of the observed

data in each dimension, and Σ2 = σ2
2I3, with σ2

2 ∼ IG(0.5, 0.5). In both DPs, we

assume the precision parameters α1 and α2 are known. We discuss their selection in

the section "selection of α". Lastly, the prior for multiplicative effect aij is conditional

on clusters and aij|θc ∼ N(0, σ2
a) with σ2

a known and large. The normalizing constant,

ρ is set to 1.
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2.2.2 Conditional posterior distributions and posterior computing

Posterior inference of pi, θij, and aij is obtained by successfully sampling values from

their full conditional posterior distributions through the Markov Chain Monte Carlo

(MCMC) simulations, specifically, the Gibbs sampling scheme. Given the observed

CBMA data, we would like to sample values for pi, θij, aij, and their hyper-prior

parameters from the joint posterior:

P (pi, θij, aij,µ,Σ1, α1,Σ2, α2|s) ∝ P (s|pi, θij, aij,µ,Σ1, α1,Σ2, α2)
I∏
i

P (pi|G1)

×P (G1|α1, G01)× P (pi|G01;µ,Σ1)P (µ)P (Σ1)

×
∏
c∈C

∏
i,j∈c

P (aij|θij)
∏
j∈Ji

P (θij|G2)

×P (G2|α2, G02)P (θij|G02; c0,Σ2)P (Σ2).

Following the Gibbs sampling scheme, the full conditional posteriors for pi, θij, aij,

along with their hyper-priors are defined below with the notation "·" representing all

other parameters,

P (pi|sij, θij, ·) ∝ P (sij|pi, θij, ·)P (θij|·)P (pi|G1)P (G1|α1, G01)

= exp

−
∑
B exp

(
aijexp

{
− ||sij−pi−θij ||

2

ρ

})
n

+
Ji∑
j=1

aijexp

{
−||sij − pi − θij||

2

ρ

}
× α1

(α1 + I − 1)MVN3(µ,Σ1) +
∑I
q=1,q 6=i δpq(pi)

(α1 + I − 1)

P (µ|Σ1, pi, ·) ∝
I∏
i

P (pi|G01;µ,Σ1)P (Σ1)P (µ)

= exp

[
−1

2

{
I∑
i

(pi − µ)′Σ−1
1 (pi − µ) + µ′(0.1I3)−1µ

}]
µ|· ∼ MVN3

(
(10 + Iσ−2

p )−1(Iσ−2
p p), (10 + Iσ−2

p )−1I3
)
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P (σ2
1|µ, pi, ·) ∝

I∏
i

P (pi|G01;µ,Σ1)P (µ)P (Σ1)

= exp

[
−1

2

{
I∑
i

(pi − µ)′(σ2
1I3)−1(pi − µ)

}
+−0.5

σ2
1

]

σ2
1|· ∼ IG

(
1 + I

2 ,

∑I
i {||pi − µ||2}+ 1

2

)

P (θij|sij, pi, ·) ∝ P (sij|θij, pi, ·)P (pi|·)P (θij|G2)P (G2|α2, G02)

= exp

−
∑
B exp

(
aijexp

{
− ||sij−pi−θij ||

2

ρ

})
n

+aijexp
{
−||sij − pi − θij||

2

ρ

}]

× α2

(α2 + n− 1)MVN3(c0,Σ2) +
∑n
q=1,q 6=ij δθq(θij)
(α2 + I − 1)

P (σ2
2|c0, θij, ·) ∝

I∏
i

Ji∏
j

P (θij|G02; c0, σ
2
2)P (σ2

2)

= exp

−1
2


I∑
i

Ji∑
j

(θij − c0)′(σ2
2I3)−1(θij − c0)

+−0.5
σ2

2


σ2

2|· ∼ IG

(
1 + n

2 ,

∑n
i,j ||θij − c0||2 + 1

2

)

P (aij|sij, pi, θij, c, ·) ∝
∏
i,j∈c

P (sij|θij, pi, ·)P (θij|c, ·)P (pi|·)P (aij)

= exp

−
∑
B exp

(
aijexp

{
− ||sij−pi−θij ||

2

ρ

})
n

+
∑
i,j∈c

aijexp

{
−||sij − pi − θij||

2

ρ

}
− (aij)2
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Non-standard conditional posteriors, aij, are updated using Metropolis-Hastings steps

in the Gibbs sampler. The parameters pi and θij are sampled via using an algorithm

introduced in Neal [2000] that is discussed below.
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The algorithm, specifically algorithm 8, noted in Neal [2000], is appropriate for

models with non-conjugate priors. It introduces m auxiliary parameters to represent

potential values for our parameter of interest, pi or θij, that are not associated with

any other observations [Neal, 2000]. The original algorithm for updating cluster

assignments, c, is as follows:

• Let the state of the Markov chain consist of c = {c1, ..., cn} and Φ = (φc c ∈

c1, ..., cn) with φc density cluster parameters. In our application, φc refers to the

center of individual cluster or study cluster c. Repeatedly sample as follows:

• For i = 1, ..., n : Let k− be the number of distinct cl for l 6= i, and let h = k−+m.

Label these cl with values in {1, ..., k−}. If ci = cl for some l 6= i, draw values

independently from base distribution G0 for those φc for which k− < c ≤ h. If

ci 6= cl for all l 6= i, let ci have the label k− + 1, and draw values independently

from G0 for those φc for which k− + 1 < c ≤ h. Draw a new value for ci from

{1, ..., h} using the following probabilities:

P (ci = c|c−i, yi, φ1, ..., φh) ∝


n−i,c
n−1+αF (yi, φc) for 1 ≤ c ≤ k−

(α/m)
n−1+αF (yi, φc) for k− < c ≤ h

,

where F (yi, θc) is the likelihood with θc and observation i, yi, involved. In our

case, the observed data yi is sij.

• Where n−i,c is the number of cl for l 6= i that are equal to c. Change the state

to contain only those φc that are now associated with one or more observation.

• For all c ∈ {c1, ..., cn}: Draw a new values from P (φc|yi) such that ci = c, or

perform some other update to φc that leaves this distribution invariant [Neal,

2000].

To illustrate, F (yi, φc) and P (φc|yi) in our application are F (sij, θc) for θij and
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P (θc|sij, c, ·), respectively, with:

F (sij, θc) = exp

{
−
∫
B

(
exp

{
aijexp

[
−||sij − pi − θc||

2

ρ

]})
dsij

+aijexp
[
−||sij − pi − θc||

2

ρ

]}
,

and

P (θc|sij, c, ·) ∝ exp

−
∑
B

(
exp

{
aijexp

[
− ||sij−pi−θc||

2

ρ

]})
n

+
∑
sij∈c

aijexp

[
−||sij − pi − θc||

2

ρ

]
×exp

(
−1

2(θc − c0)′Σ−1
2 (θc − c0)

)
,

where θc is the center for individual foci cluster c.

To accommodate the 3-D nature of our data and to improve sampling efficiency,

we modified algorithm 8 by introducing auxiliary parameters into one, two, or three

dimensions of the centers at the current MCMC iteration. Taking θij as an example,

we take m = 7 auxiliary parameters. Let θci = {φ(x)
ci
, φ(y)

ci
, φ(z)

ci
} be the center for focus

i and let φ0 = {φ(x)
0 , φ

(y)
0 , φ

(z)
0 } be a single draw generated from G02. An auxiliary

parameter can be chosen as any combination of the current cluster center and the

G02 sampled center such as (φ(x)
ci
, φ(y)

ci
, φ

(z)
0 ) which gives:

P (ci = c|c, sij, θ1, ..., θm) =



nc
n+αF (sij, θc) for 1 ≤ c ≤ k

α/m
n+αF (sij, (φ(x)

ci
, φ(y)

ci
, φ

(z)
0 )) for c = k + 1

α/m
n+αF (sij, (φ(x)

ci
, φ

(y)
0 , φ(z)

ci
)) for c = k + 2

α/m
n+αF (sij, (φ(x)

0 , φ(y)
ci
, φ(z)

ci
)) for c = k + 3

α/m
n+αF (sij, (φ(x)

ci
, φ

(y)
0 , φ

(z)
0 )) for c = k + 4

α/m
n+αF (sij, (φ(x)

0 , φ(y)
ci
, φ

(z)
0 )) for c = k + 5

α/m
n+αF (sij, (φ(x)

0 , φ
(y)
0 , φ(z)

ci
)) for c = k + 6

α/m
n+αF (sij, (φ(x)

0 , φ
(y)
0 , φ

(z)
0 )) for c = m,

(2.1)

34



where F (sij, θc) was defined in equation 2.1. By defining auxillary parameters as in

equation 2.1, the variation between iteration will be smaller, which potentially im-

proves convergence efficiency. Similar settings are applied to pi. Related probability

density functions for pi for study clusters k ∈ K are,

F (sij, pk) = exp

{
−
∫
B

(
exp

{
aijexp

[
−||sij − pk − θij||

2

ρ

]})
dsij

+
Ji∑
j=1

aijexp

[
−||sij − pk − θij||

2

ρ

] ,
where pk is the center for study cluster k, and

P (pk|k, sij, ·) ∝
∏
pi∈k

P (sij|pk, k, ·)P (pk|G1)P (G1|α,G01)P (G01|k,µ,Σ1)P (µ)P (Σ1)

=
∏
pi∈k

exp

−
∑
B

(
exp

{
aijexp

[
− ||sij−pk−θij ||

2

ρ

]})
n

+
∑
i∈k

Ji∑
j=1

aijexp

[
−||sij − pk − θij||

2

ρ

]
×exp

(
−1

2(pk − µ)′Σ−1
1 (pk − µ)

)
.

2.2.3 Determining the clusters

To infer point estimates for cluster centers and cluster assignment, we implement the

least-squared Euclidean distance method introduced in Dahl [2006]. This method

draws the inferences based on a set of converged MCMC iterations and chooses one

iteration as the final estimates on the clusters and related parameters. This final

MCMC iteration is selected due to its smallest Euclidean distance to the expected

cluster assignments estimated based on a set of independent converged MCMC iter-

ations. The procedure is outline as follows,

1. After B iterations for burn-in, run the MCMC chain for an additional W iter-

ations and estimated the expected cluster assignments as,

Pij = # of iterations such that ci = cj
W

,
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where Pij represents the probability that observations i and j are in one cluster.

This will form an n× n matrix with entry (i, j) being Pij.

2. Run another T iterations, and select one iteration such that the cluster assign-

ment in that iteration minimizes the following Euclidean distance,

argmin
t∈(1,...T )

ij∑
h=1

ij∑
g=1

(
δ

(t)
h,g − Ph,g

)2

where δ(t)
h,g = 1 if observations h and g are in the same cluster and 0 otherwise.

3. The iteration determined in step 2) provides a point estimate on the number of

clusters along with estimates on other parameters.

Inferring clusters in this manner, incorporates all clustering information in the

MCMC sample process [Dahl, 2006]. We would like to note that the clustering pattern

to be summarized is for individual foci clusters as they are our primary interest.

2.2.4 Selection of α

Selection of α can have a potentially significant effect on the number of clusters

identified due to its direct impact on the aggregation of G about G0. A smaller

choice of α places less weight upon the base distribution, therefore resulting in a

smaller number of clusters. A larger choice of α indicates a greater weight placed

on the base distribution and therefore a large number of clusters. The extent of

the precision parameter’s sensitivity and various ways to estimate this parameter

have been discussed in a number of studies, e.g., Liu [1996], McAuliffe et al. [2006],

Kyung et al. [2010], Dorazio et al. [2008], Doss [2008, 2012], Naskar and Das [2004,

2006] and many others. Several of these articles [Liu, 1996, McAuliffe et al., 2006,

Dorazio et al., 2008] collectively suggest an empirical Bayes approach where posterior

inferences are computed conditional on the maximum likelihood estimator of the

precision parameter. As Dorazio et al. [2008] acknowledges that this calculation is
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very computationally intensive and may not capture a true maximum in the situation

of a flat likelihood [Kyung et al., 2010]. Naskar and Das [2004, 2006] implemented

the Monte Carlo expectation and maximization algorithm to empirically estimate

α but did not further investigate the estimate’s properties while Doss [2008, 2012],

Kyung et al. [2010] calculated an estimate with a marginal or profile likelihood. These

methods can not avoid intensive computational burden and require repeated Gibbs

samplers. So far, it seems that an objective and efficient method for determining α

is not available.

Given the importance of α, we decided to select an estimate based on information

in the data and chose α based on the posterior likelihood. More specifically, the choice

of α1 for pi and α2 for θij were selected iteratively based on a grid search on a set of

possible values for α1 and α2 that optimize the deviance information criterion (DIC)

[Congdon, 2007]. The DIC is an estimate for the expected deviance that is adjusted

for the models complexity as to not overfit the data [Congdon, 2007, Spiegelhalter

et al., 2002]. Specifically, DIC is defined as

DIC = 2D −D(θ|s),

where

D = 1
T

T∑
t=1

D(s, θ(t))

D(y, θ(t)) = −2logP (s|θ(t))

D(θ|s) = D(s, θ).

In the above, θ(t) is the parameter estimate(s) at current time t, θ is mean or median

of the parameter estimate(s) for times t = 1, ..., T and s is the data [Congdon, 2007].

A smaller DIC indicates a better fit of the model.
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2.3 Simulation Studies

Simulations were used to demonstrate and asses the proposed method. In total, 50

studies each with 10 foci were considered. Three individual foci clusters are spatially

centered at (1, 1, 1)T , (2, 2, 2)T , and (4, 4, 4)T containing 150, 150, and 200 foci, re-

spectively. Two study clusters are assumed with centers held at (0.1, 0.1, 0.1)T and

(0.4, 0.4, 0.4)T with each including 25 studies (250 foci each). In addition, we consid-

ered the following simulation scenarios,

1. For the purpose of illustration, we simulate the data for each cluster via mul-

tivariate normal with mean set at the individual foci centers and variance

Σ = 0.002I3. Thus each cluster is sphere with small variation and we expect

the method to have the ability to correctly identify the clusters.

2. To demonstrate its ability to cluster outliers, we follow the same setting as in

scenario 1) but added an additional focus in the third individual foci cluster

located in the right 5% tail in a multivariate normal distribution with mean

(4, 4, 4)T and covariance matrix 0.002I3

3. It is important to examine the robustness of the method with respect to abnor-

mal patterns. The same scenarios as in 1) are followed to simulate individual

foci clusters 1 and 2. Cluster 3 is simulated using truncated normal distribution

with mean (4, 4, 4)T and variance 0.002I3 with a lower bound (1, 1, 1)T .

4. The last scenario is designed to asses the robustness of the method with respect

to the distance between and among clusters. To this end, besides Σ = 0.002I3,

we considered four additional levels of Σ: Σ = 0.01I3, 0.05I3, 0.1I3, and 0.2I3

representing gradually closer distances among clusters. Other settings are as in

scenario 1).
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In total, 100 Monte Carlo (MC) replicates are generated for each scenario. For

each setting, we randomly chose one dataset to estimate α1 and α2 through gird search

by minimizing DIC. Possible values of α1 and α2 are ranged from 0.1 to 1.5 with 0.1

representing small influence of the base distribution on the number of clusters and

1.5 large influence. After α1 and α2 are chosen for each scenario, for each dataest,

after burn in, we run 2,500 working iterations to determine the probability matrix

noted in section 2.4 and 1,000 additional iterations to infer the number of clusters

and individual foci cluster centers.

Model assessment consists of three evaluations: sensitivity, specificity, and per-

centage of correct clustering. Sensitivity is defined per cluster as the proportion of

foci that are correctly assigned to that given cluster, Se=TP/(TP+FN) and speci-

ficity is defined per cluster as the proportion of foci that are correctly not assigned to

a cluster, Sp=TN/(TN+FP). In these definitions, true positive (TP) denotes a focus

in that respective cluster is also assigned to that cluster, false negative (FN) denotes

a focus in that respective cluster but not assigned to that cluster, true negative (TN)

is a focus that is not in the respective cluster and not assigned to that cluster, and

false positive (FP) denotes a focus that is not in that respective cluster but assigned

to that cluster. Percentage of correct clustering is an overall measure defined as the

proportion of foci that are correctly clustered. Note that the definition of correctness

takes into account both TP and TN.

To illustrate the selection of α1 and α2 via grid search, we use scenario 1). All

possible combination of candidate values for α1 and α2 are considered and the DIC

for each combination is calculated based on the converged 3,500 MCMC samples. As

indicated in Figure 2.1, the best DIC is achieved with α1 = 1.5 and α2 = 0.5. These

two precision parameters are then applied in to infer the individual foci clusters.

Table 2.1 summaries the findings on individual foci cluster identification and the

quality of the identified clusters. Overall, the method is robust with respect to outlier,
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skewness, and large variation. Among the 100 MC replicates, the proposed method

correctly assigned most foci to clusters except for the situation of large variance,(Σ =

0.2I3) for generating individual foci clusters. When the variance is comparable to

the study effect it can severely impact the estimate of study effect, which might have

been the cause for low sensitivity and correctness rates.

The scenarios we chose represent important facets of variability that a spatial

models need to be able to handle and overcome in order to accurately perform. Based

on our simulations, it can be inferred that across all the scenarios our proposed model

in general performs well in correctly identifying the individual foci clusters.

2.4 Real Data Analysis

In this section, we apply the proposed model to a meta-analysis dataset. This dataset

was first discussed in Kober et al. [2008] and further studied in Kang et al. [2011].

The analysis consists of a total of 162 neuroimaging publications with 57 PET and

105 fMRI were considered. PET scans are very similar to fMRI in respect to its data

smoothness and interpretation of the signal [Feng et al., 2004]. Among these 162

publications, there were 437 contrasts or studies. Only those foci that were deemed

significantly activated by their study specific criteria were included for a total of 2,478

foci. This meta-analysis analyzed emotions and therefore there exist specific brain

regions that were of interest to researchers. Foci that lie within these regions were

noted. As seen in Table 2.2, there was an average of 15.11 foci per publication and 5.67

foci per study. Additionally there was an average of 2.67 studies per publication. The

emotion "affective" (Table 2.3) was the most frequent emotion found in 175 studies

and surprise the least frequent emotion found in only 2 studies. Of the total 2,478

foci, 711 foci fell within regions of interest (ROI). Figure 2.2 presents an illustration

of the meta-data.

To assist with the magnitude of the likelihood calculations, the data was scaled
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down by 10. Iterative grid search was implemented to calculate precision parameters

via DIC. Potential precision parameters values for α1 were 0.1, 0.5, 1.0, and 1.5, and

for α2 were 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. Each combination was performed

over 8,000 iterations, 4,000 of those for burn-in, 3,000 for the probability matrix

calculation, and final 1,000 to infer individual clusters and their centers.

It was found that the precision parameter combination of α1 = 0.5 and α2 = 1.5

produced the smallest DIC. Convergence over 8,000 iterations, with the initial 4,000

discarded, was checked visibly. Based on the proposed method, we identified 13 study

clusters and 53 individual clusters (Tables 2.4, 2.5). The break down of each cluster

by it’s center location, foci frequency and emotion frequency can be seen in Tables 2.6,

2.7, 2.8, 2.9. Of the 53 individual clusters, only 3 of those contained more than five

percent of the total number of foci: cluster 1 centered at (-17.08,-10.75,-5.88), cluster

2 centered at (26.67,-9.91,-7.14), and cluster 3 centered at (45.29,14.25,0.76). How-

ever, less than 50% of those foci fell within regions of interest (Table 2.4). Of the 53

clusters, 40 of those contained foci related to at least 6 of the 8 emotions. More specif-

ically, with the exception of the emotion "affective" that was present in every cluster

with more than 5 foci, 35 clusters had a majority of foci that catered to a specific

emotion: 12 clusters identified foci associated mainly with fear, 12 clusters identified

foci associated mainly with sadness, 10 clusters identified foci associated mainly with

disgust and one cluster identified foci associated mainly with happiness(Tables 2.6,

2.7, 2.8, 2.9). This implies that multiple regions in the brain contribute to one emo-

tion Another eight clusters did not have a majority foci related to a specific emotion;

the percentages of the foci for different emotions found within that cluster were equal

(Tables 2.6, 2.7, 2.8, 2.9). The remaining nine clusters were not included in this

comparison has they had less than 5 foci (Tables 2.6, 2.7, 2.8, 2.9).

When only interested in those foci that fell within ROI boundaries, 48 clusters

were identified with 7 clusters identifying a majority of foci associated with fear,
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14 clusters identifying a majority of foci associated with sadness, 5 clusters clusters

identifying a majority of foci associated with disgust, two clusters clusters identifying

a majority of foci associated with happiness and one cluster identifying a majority

of foci associated with mixed emotions (Tables 2.10, 2.11, 2.12). Another 10 clusters

did not have a majority foci related to a specific emotion; the percentages of the foci

for different emotions found within that cluster were equal (Tables 2.10, 2.11, 2.12).

The remaining eight clusters were not included in this comparison has they had less

than 5 foci (Tables 2.10, 2.11, 2.12).

This clustering demonstrates the model’s ability to incorporate spatial information

after adjusting for similarities between studies and adequately cluster foci. From here,

the primary interest would be assess what physiological similarities exist between the

clusters with the help of a neuroscientist to determine the precision of the clustering.

Based on these results and due to the Bayesian nature, some of the priors may need

to be adjusted.

2.5 Conclusion and Discussion

The proposed spatial Cox point process model with a Gaussian kernel driven inten-

sity function was motivated by the need to spatially cluster coordinated-based meta

analysis data to identify activated regions with the brain. Furthermore, the Gaussian

kernel incorporated a study and sub-study effects that were estimated using a Dirich-

let Process. The advantage of implementing a DP is that it allows the sub-study

clusters to not only include spatial information and adjust for study effect but to

have flexible distributions and therefore irregularly shaped clusters.

Simulation studies were performed to asses the model’s accuracy, sensitivity, flex-

ibility, and robustness. With the exception of one setting that simulated three spher-

ical clusters that overlapped, the model performed extremely well with average sen-

sitivity, specificity, and percent of correct clustering ranging from 82-100% for all
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sub-study or individual clusters. Specifically, when the model estimated skewed or

irregularly shaped clusters it correctly identified all three individual cluster that were

simulated.

The model was further applied to an emotion meta dataset in which it identified

53 individual foci clusters. These clusters can not be directly compared with those

derived in previous methods such as MKDA (Kober et al. [2008]) and hierarchical

spatial clustering (Kang et al. [2011]) due to inconsistent interpretability. However,

several regions of interest appear in multiple clusters suggesting the overlapping over

clusters. It also stands to mention the natural limitation this meta-data as it contains

studies using both fMRI and PET scans. As discussed in Chapter 1, there is potential

for differences between fMRI and PET scans due to different resolutions and time

constraints. Therefore, activations identified in one may not be consistent in the

other. For more consistent and interpretable results, the proposed method should be

applied to additional fMRI data that is not a combination of fMRI and PET scans.

Other than the advantage of having the flexibility to identify irregular patterns,

this model can also be extended to analyze any type of spatial data and adjust for

any number of covariates. There are no assumptions or restrictions placed on the

model that require it to be only fMRI brain data. Therefore, this proposed model

can be applied to a variety of settings.

The method was limited by the inability to identify the correct cluster centers

if the study effect was large. If the study effect center was shifted, the sub-study

or individual cluster centers mimicked to offset this shift and therefore the incorrect

center was identified. Generally these shifts were small and stricter priors helped to

minimize this shift. The inclusion of a contrast would set some reference estimate be-

tween two studies and provide more accurate cluster center estimates. Additionally,

the clustering nature of the DP aims to identify mixtures of distributions. However,

given the precision parameter and variance of the base distribution the DP may be
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over sensitive and too flexible such that it identifies multiple clusters as a single mul-

timodal distribution. This model is further limited by it’s inability to explicitly test

whether distribution peaks should be separate clusters with a different distribution

or a single cluster with multimodes. Therefore, we propose to model the distribution

of the individual foci effects as a mixture of Dirichlet processes. Handling the θij in

this manner will still allow the clusters, or components of the mixture, the flexibility

to capture irregular shapes but while explicitly modeling if a distribution peak is gen-

erated from a different base distribution or a mode or peak within another cluster.

We implement this setting in the next chapter.
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Table 2.1 Simulation assessments

Median Num. Cluster Average Average Average %
Scenario: of Clusters index Sensitivity Specificity Correctness rate

(SD)* (SD)* (SD)* (SD)*

Normal

1 1.00 (0.00) 1.00 (0.00)
**IC: 3 (0.55) 2 1.00 (0.01) 1.00 (0.00) 1.00 (0.00)

3 1.00 (000) 1.00 (0.00)

**SC: 3 (0.55) 1 0.89 (0.14) 1.00 (0.00) 0.92 (0.09)2 0.94 (0.11) 1.00 (0.00)

Outlier

1 0.80 (0.26) 0.94 (0.1)
IC: 3 (0.86) 2 0.79 (0.29) 0.91 (0.11) 0.78 (0.22)

3 0.77 (0.28) 0.92 (0.13)
1 0.55 (0.29) 0.84 (0.26)

SC: 5 (1.99) 2 0.51 (0.33) 0.87 (0.23) 0.53 (0.21)
3 0.44 (0.5) 0.93 (0.11)

Skewed

1 1.00 (0.00) 1.00 (0.02)
IC: 3 (0.35) 2 1.00 (0.00) 1.00 (0.03) 0.99 (0.04)

3 0.99 (0.1) 1.00 (0.00)

SC: 2 (0.35) 1 0.99 (0.04) 1.00 (0.01) 0.99 (0.03)2 0.99 (0.05) 1.00 (0.00)

Large1

1 0.81 (0.32) 0.94 (0.1)
IC: 3 (1.02) 2 0.8 (0.31) 0.89 (0.15) 0.82 (0.19)

3 0.83 (0.25) 0.93 (0.16)

SC: 2 (1.02) 1 0.36 (0.41) 1.00 (0.02) 0.61 (0.19)2 0.86 (0.17) 0.48 (0.48)

Large2

1 0.99 (0.01) 1.00 (0.00)
IC: 3 (0.45) 2 0.99 (0.01) 1.00 (0.00) 1.00 (0.00)

3 1.00 (0.00) 1.00 (0.00)

SC: 2 (0.45) 1 0.99 (0.02) 0.99 (0.02) 0.99 (0.02)2 0.99 (0.03) 1 (0.01)

Large3

1 0.91 (0.14) 0.98 (0.04)
IC: 3 (1.09) 2 0.89 (0.21) 0.96 (0.08) 0.90 (0.16)

3 0.89 (0.21) 0.97 (0.07)

SC: 3 (1.09) 1 0.86 (0.14) 0.96 (0.05) 0.86 (0.13)2 0.86 (0.15) 0.95 (0.06)

Large4

1 0.47 (0.18) 0.98 (0.01)
IC: 13 (2.57) 2 0.44 (0.16) 0.98 (0.01) 0.46 (0.1)

3 0.47 (0.16) 0.99 (0.01)

SC: 5 (2.57) 1 0.21 (0.28) 0.92 (0.13) 0.41 (0.17)2 0.62 (0.18) 0.53 (0.25)

*SD: standard deviation across 100 MC replicates;**IC: individual foci cluster; SC:
study effect clusters
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Table 2.2 Descriptive statistics*

Min. 1st Qu. Median Mean 3rd Qu. Max.
Number of foci per pub. 1.00 5.75 10.00 15.11 17.25 110.00
Number of foci per study 1.00 2.00 4.00 5.67 7.00 47.00
Number of subjects per pub. 4.00 9.00 11.00 12.26 14.00 40.00
Number of studies per pub. 1.000 1.000 2.000 2.67 4.000 12.000

*Min: minimum, 1st Qu: 25% percentile, 3rd Qu: 75% percentile, Max: maximum,
pub: publication

Table 2.3 Frequency of emotions

Emotions Frequency of studies Frequency of foci
(% of total studies) (% of total foci)

aff* 175 (40.05%) 881 (35.55%)
anger 26 (5.95%) 166 (6.7%)
disgust 44 (10.07%) 337 (13.6%)
fear 68 (15.56%) 367 (14.81%)
happy 36 (8.24%) 178 (7.18%)
mixed 41 (9.38%) 195 (7.87%)
sad 45 (10.3%) 348 (14.04%)
surprise 2 (0.46%) 6 (0.24%)
Total 437 2478

*aff:affective
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Table 2.4 Meta-data cluster results
Individual Foci Clusters

Cluster Centers/ Cluster # of foci # of studies
Brain Regions Index per cluster(% per cluster(%

of total foci) of all studies)
(-17.08,-10.75,-5.88)/R Extra-Nuclear 1 183 (7.38) 143 (32.72)

(26.67,-9.91,-7.14)/R Inferior Temporal Gyrus 2 149 (6.01) 119 (27.23)
(45.29,14.25,0.76)/R Insula 3 126 (5.08) 100 (22.88)

(47.48,-72.58,1.09)/L Precuneus 4 112 (4.52) 92 (21.05)
(-0.3,-14.27,7.4)/R Caudate 5 90 (3.63) 71 (16.25)

(1.87,-30.38,3.51)/Inter-Hemispheric 6 86 (3.47) 74 (16.93)
(-35.31,-71.65,-4.73)/Inter-Hemispheric 7 86 (3.47) 75 (17.16)
(-1.37,31.21,6.94)/R Extra-Nuclear 8 82 (3.31) 66 (15.1)

(3.35,47.18,31.23)/R Cingulate Gyrus 9 74 (2.99) 63 (14.42)
(55.65,-46.89,15.04)/L Culmen 10 74 (2.99) 62 (14.19)

(-2.12,33.27,32.1)/R Lentiform Nucleus 11 66 (2.66) 54 (12.36)
(48.51,0.71,-10.4)/L Extra-Nuclear 12 64 (2.58) 58 (13.27)
(-37.69,24.09,0.55)/R Thalamus 13 63 (2.54) 57 (13.04)

(27.35,-4.86,-3.95)/L Lentiform Nucleus 14 62 (2.5) 57 (13.04)
(41.85,-57.43,-7.42)/L Insula 15 60 (2.42) 55 (12.59)

(-39.8,4.44,35.17)/L Lentiform Nucleus 16 59 (2.38) 50 (11.44)
(-38.99,11.35,3.37)/R Superior Temporal Gyrus 17 57 (2.3) 49 (11.21)
(21.18,-12.28,-5.21)/Superior Frontal Gyrus 18 57 (2.3) 52 (11.9)
(34.18,23.77,3.01)/R Middle Frontal Gyrus 19 55 (2.22) 49 (11.21)

(24,-61.44,-1.15)/R Lingual Gyrus 20 54 (2.18) 49 (11.21)
(-29.1,7.9,-6.26)/L Extra-Nuclear 21 50 (2.02) 48 (10.98)

(-0.03,16.64,-3.9)/R Inferior Frontal Gyrus 22 49 (1.98) 43 (9.84)
(0.8,-69.87,28.61)/Inter-Hemispheric 23 48 (1.94) 45 (10.3)
(43.57,9.69,9.73)/L Extra-Nuclear 24 47 (1.9) 42 (9.61)
(18.77,-23.02,6.35)/L Extra-Nuclear 25 46 (1.86) 38 (8.7)

(5.67,3.4,65.88)/R Sub-Gyral 26 45 (1.82) 40 (9.15)
(4.62,18.8,37.87)/L Lentiform Nucleus 27 45 (1.82) 38 (8.7)

(-27.34,-0.65,-4.96)/L Superior Temporal Gyrus 28 44 (1.78) 39 (8.92)
(-28.99,-12.74,-3.07)/R Extra-Nuclear 29 42 (1.69) 40 (9.15)

(-18.91,21.88,-4.63)/R Lentiform Nucleus 30 39 (1.57) 37 (8.47)
(-41.65,-7.56,7.19)/L Insula 31 37 (1.49) 36 (8.24)
(10.46,1.51,7.67)/R Declive 32 37 (1.49) 34 (7.78)

(-51.89,-45.89,16.5)/L Extra-Nuclear 33 36 (1.45) 35 (8.01)
(12.03,16.41,-1.39)/L Insula 34 32 (1.29) 30 (6.86)

(54.01,19.46,13.7)/Inter-Hemispheric 35 32 (1.29) 29 (6.64)
(-29.4,-11.36,-4.44)/L Precentral Gyrus 36 30 (1.21) 28 (6.41)

R: right hemisphere, L: left hemisphere
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Table 2.5 Meta-data cluster results continued
Individual Foci Clusters

Cluster Centers/ Cluster # of foci # of studies
Brain Regions Index per cluster(% per cluster(%

of total foci) of all studies)
(-9.18,-65.39,-4.97)/L Sub-Gyral 37 30 (1.21) 26 (5.95)

(3.14,20.59,26.82)/R Insula 38 26 (1.05) 23 (5.26)
(-23.15,-18.05,8.45)/R Insula 39 21 (0.85) 20 (4.58)

(-22.9,26.18,7.38)/L Lentiform Nucleus 40 17 (0.69) 16 (3.66)
(47.44,-11.21,18.75)/L Extra-Nuclear 41 13 (0.52) 13 (2.97)

(19.72,-44.58,13.05)/R Insula 42 12 (0.48) 12 (2.75)
(29.06,-57.28,-15.73)/L Extra-Nuclear 43 11 (0.44) 10 (2.29)
(-24.27,27.54,-5.33)/L Cingulate Gyrus 44 10 (0.4) 10 (2.29)
(49.2,14.09,33.83)/L Extra-Nuclear 45 5 (0.2) 5 (1.14)
(-8.85,-29.91,2.45)/L Extra-Nuclear 46 3 (0.12) 3 (0.69)
(20.87,20.34,-4.63)/R Extra-Nuclear 47 2 (0.08) 2 (0.46)
(42.09,-57.93,-22.84)/R Extra-Nuclear 48 2 (0.08) 2 (0.46)

(21.63,-11.55,-4.57)/L Thalamus 49 2 (0.08) 2 (0.46)
(-16.54,-47.93,2.98)/L Parahippocampal Gyrus 50 2 (0.08) 2 (0.46)

(45.29,-12.79,1.23)/R Insula 51 2 (0.08) 2 (0.46)
(-19.18,3.8,19.44)/R Culmen 52 1 (0.04) 1 (0.23)

(-37.84,-6.45,0.55)/R Extra-Nuclear 53 1 (0.04) 1 (0.23)

R: right hemisphere, L: left hemisphere
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Table 2.6 Breakdown of emotions and their frequencies by individual foci cluster*

Cluster Index: Total foci in that cluster
Emotion Frequency of emotion (% of total cluster foci)

Cluster: 1 183 Cluster: 2 149 Cluster: 3 126
aff 62 (33.88) aff 56 (37.58) aff 49 (38.89)

anger 9 (4.92) anger 10 (6.71) anger 8 (6.35)
disgust 21 (11.48) disgust 19 (12.75) disgust 11 (8.73)
fear 45 (24.59) fear 24 (16.11) fear 18 (14.29)
happy 11 (6.01) happy 7 (4.7) happy 9 (7.14)
mixed 14 (7.65) mixed 14 (9.4) mixed 10 (7.94)
sad 21 (11.48) sad 19 (12.75) sad 21 (16.67)

Cluster: 4 112 Cluster: 5 90 Cluster: 6 86
aff 33 (29.46) aff 32 (35.56) aff 32 (37.21)

anger 10 (8.93) anger 5 (5.56) anger 5 (5.81)
disgust 15 (13.39) disgust 9 (10) disgust 18 (20.93)
fear 18 (16.07) fear 9 (10) fear 10 (11.63)

happy 9 (8.04) happy 6 (6.67) happy 7 (8.14)
mixed 7 (6.25) mixed 5 (5.56) mixed 6 (6.98)
sad 20 (17.86) sad 23 (25.56) sad 8 (9.3)

surprise 1 (1.11)
Cluster: 7 86 Cluster: 8 82 Cluster: 9 74

aff 29 (33.72) aff 32 (39.02) aff 20 (27.03)
anger 8 (9.3) anger 4 (4.88) anger 5 (6.76)
disgust 11 (12.79) disgust 9 (10.98) disgust 16 (21.62)
fear 12 (13.95) fear 5 (6.1) fear 8 (10.81)
happy 9 (10.47) happy 16 (19.51) happy 7 (9.46)
mixed 8 (9.3) mixed 4 (4.88) mixed 9 (12.16)
sad 9 (10.47) sad 12 (14.63) sad 8 (10.81)

surprise 1 (1.35)
Cluster: 10 74 Cluster: 11 66 Cluster: 12 64

aff 29 (39.19) aff 20 (30.3) aff 22 (34.38)
anger 4 (5.41) anger 9 (13.64) anger 5 (7.81)
disgust 7 (9.46) disgust 8 (12.12) disgust 7 (10.94)
fear 7 (9.46) fear 10 (15.15) fear 7 (10.94)

happy 5 (6.76) happy 5 (7.58) happy 9 (14.06)
mixed 5 (6.76) mixed 7 (10.61) mixed 3 (4.69)
sad 17 (22.97) sad 7 (10.61) sad 10 (15.62)

surprise 1 (1.56)

*aff:affective
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Table 2.7 Breakdown of emotions continued*
Cluster Index: Total foci in that cluster

Emotion Frequency of emotion (% of total cluster foci)
Cluster: 13 63 Cluster: 14 62 Cluster: 15 60

aff 20 (31.75) aff 23 (37.1) aff 21 (35)
anger 7 (11.11) anger 4 (6.45) anger 3 (5)
disgust 6 (9.52) disgust 7 (11.29) disgust 9 (15)
fear 10 (15.87) fear 15 (24.19) fear 9 (15)
happy 4 (6.35) happy 2 (3.23) happy 2 (3.33)
mixed 10 (15.87) mixed 6 (9.68) mixed 5 (8.33)
sad 6 (9.52) sad 5 (8.06) sad 11 (18.33)

Cluster: 16 59 Cluster: 17 57 Cluster: 18 57
aff 22 (37.29) aff 17 (29.82) aff 15 (26.32)

anger 4 (6.78) anger 4 (7.02) anger 4 (7.02)
disgust 8 (13.56) disgust 8 (14.04) disgust 13 (22.81)
fear 9 (15.25) fear 8 (14.04) fear 7 (12.28)
happy 6 (10.17) happy 2 (3.51) happy 5 (8.77)
mixed 2 (3.39) mixed 4 (7.02) mixed 2 (3.51)
sad 8 (13.56) sad 12 (21.05) sad 11 (19.3)

surprise 2 (3.51)
Cluster: 19 55 Cluster: 20 54 Cluster: 21 50

aff 27 (49.09) aff 21 (38.89) aff 18 (36)
anger 3 (5.45) anger 4 (7.41) anger 2 (4)
disgust 10 (18.18) disgust 5 (9.26) disgust 4 (8)
fear 3 (5.45) fear 13 (24.07) fear 11 (22)

happy 1 (1.82) happy 5 (9.26) happy 2 (4)
mixed 2 (3.64) mixed 4 (7.41) mixed 4 (8)
sad 9 (16.36) sad 2 (3.7) sad 9 (18)

Cluster: 22 49 Cluster: 23 48 Cluster: 24 47
aff 19 (38.78) aff 23 (47.92) aff 16 (34.04)

anger 3 (6.12) anger 4 (8.33) anger 3 (6.38)
disgust 9 (18.37) disgust 7 (14.58) disgust 10 (21.28)
fear 6 (12.24) fear 6 (12.5) fear 11 (23.4)

happy 2 (4.08) happy 2 (4.17) happy 2 (4.26)
mixed 4 (8.16) sad 6 (12.5) mixed 1 (2.13)
sad 6 (12.24) sad 4 (8.51)

*aff:affective
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Table 2.8 Breakdown of emotions continued*
Cluster Index: Total foci in that cluster

Emotion Frequency of emotion (% of total cluster foci)
Cluster: 25 46 Cluster: 26 45 Cluster: 27 45

aff 18 (39.13) aff 18 (40) aff 19 (42.22)
anger 3 (6.52) anger 6 (13.33) disgust 11 (24.44)
disgust 6 (13.04) disgust 1 (2.22) fear 4 (8.89)
fear 9 (19.57) fear 4 (8.89) happy 3 (6.67)
happy 4 (8.7) happy 4 (8.89) mixed 4 (8.89)
mixed 3 (6.52) mixed 5 (11.11) sad 4 (8.89)
sad 3 (6.52) sad 7 (15.56)

Cluster: 28 44 Cluster: 29 42 Cluster: 30 39
aff 15 (34.09) aff 14 (33.33) aff 13 (33.33)

anger 5 (11.36) anger 2 (4.76) anger 3 (7.69)
disgust 10 (22.73) disgust 7 (16.67) disgust 7 (17.95)
fear 4 (9.09) fear 7 (16.67) fear 6 (15.38)

happy 2 (4.55) happy 2 (4.76) mixed 5 (12.82)
mixed 4 (9.09) mixed 2 (4.76) sad 5 (12.82)
sad 4 (9.09) sad 7 (16.67)

surprise 1 (2.38)
Cluster: 31 37 Cluster: 32 37 Cluster: 33 36

aff 16 (43.24) aff 13 (35.14) aff 11 (30.56)
anger 1 (2.7) anger 1 (2.7) anger 1 (2.78)
disgust 5 (13.51) disgust 5 (13.51) disgust 7 (19.44)
fear 2 (5.41) fear 5 (13.51) fear 4 (11.11)

happy 1 (2.7) happy 4 (10.81) happy 2 (5.56)
mixed 6 (16.22) mixed 3 (8.11) mixed 5 (13.89)
sad 6 (16.22) sad 6 (16.22) sad 6 (16.67)

Cluster: 34 32 Cluster: 35 32 Cluster: 36 30
aff 11 (34.38) aff 13 (40.62) aff 9 (30)

anger 4 (12.5) anger 3 (9.38) anger 2 (6.67)
disgust 5 (15.62) disgust 3 (9.38) disgust 5 (16.67)
fear 5 (15.62) fear 2 (6.25) fear 5 (16.67)
happy 3 (9.38) happy 2 (6.25) happy 3 (10)
mixed 1 (3.12) mixed 3 (9.38) mixed 1 (3.33)
sad 3 (9.38) sad 6 (18.75) sad 5 (16.67)

Cluster: 37 30 Cluster: 38 26 Cluster: 39 21
aff 14 (46.67) aff 4 (15.38) aff 3 (14.29)

disgust 4 (13.33) anger 3 (11.54) anger 2 (9.52)
fear 4 (13.33) disgust 2 (7.69) disgust 3 (14.29)
happy 4 (13.33) fear 2 (7.69) fear 5 (23.81)
sad 4 (13.33) happy 2 (7.69) happy 4 (19.05)

mixed 5 (19.23) mixed 4 (19.05)
sad 8 (30.77)

*aff:affective
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Table 2.9 Breakdown of emotions continued*
Cluster Index: Total foci in that cluster

Emotion Frequency of emotion (% of total cluster foci)
Cluster: 40 17 Cluster: 41 13 Cluster: 42 12

aff 6 (35.29) aff 7 (53.85) aff 3 (25)
anger 1 (5.88) fear 3 (23.08) disgust 1 (8.33)
disgust 1 (5.88) mixed 3 (23.08) fear 4 (33.33)
fear 1 (5.88) happy 1 (8.33)

happy 2 (11.76) mixed 1 (8.33)
mixed 2 (11.76) sad 2 (16.67)
sad 4 (23.53)

Cluster: 43 11 Cluster: 44 10 Cluster: 45 5
aff 4 (36.36) aff 6 (60) aff 2 (40)

disgust 3 (27.27) disgust 3 (30) anger 1 (20)
fear 3 (27.27) sad 1 (10) mixed 1 (20)
sad 1 (9.09) sad 1 (20)

Cluster: 46 3 Cluster: 47 2 Cluster: 48 2
aff 1 (33.33) mixed 1 (50) aff 1 (50)
fear 2 (66.67) sad 1 (50) fear 1 (50)

Cluster: 49 2 Cluster: 50 2 Cluster: 51 2
aff 1 (50) disgust 1 (50) fear 2 (100)
fear 1 (50) fear 1 (50)

Cluster: 52 1 Cluster: 53 1
anger 1 (100) aff 1 (100)

*aff:affective
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Table 2.10 Breakdown of emotions and their frequencies by individual foci cluster
for ROI*

Cluster Index: Total foci in that cluster
Emotion Frequency of emotion (% of total cluster foci)

Cluster: 1 74 Cluster: 2 51 Cluster: 3 48
aff 25 (33.78) aff 21 (41.18) aff 20 (41.67)

anger 2 (2.7) anger 4 (7.84) anger 2 (4.17)
disgust 13 (17.57) disgust 11 (21.57) disgust 4 (8.33)
fear 14 (18.92) fear 8 (15.69) fear 6 (12.5)
happy 6 (8.11) happy 2 (3.92) happy 3 (6.25)
mixed 5 (6.76) mixed 2 (3.92) mixed 1 (2.08)
sad 9 (12.16) sad 3 (5.88) sad 12 (25)

Cluster: 4 35 Cluster: 5 25 Cluster: 6 24
aff 16 (45.71) aff 12 (48) aff 10 (41.67)

anger 3 (8.57) disgust 3 (12) disgust 2 (8.33)
disgust 2 (5.71) fear 5 (20) happy 5 (20.83)
fear 6 (17.14) happy 1 (4) mixed 1 (4.17)
happy 4 (11.43) mixed 1 (4) sad 6 (25)
sad 4 (11.43) sad 3 (12)

Cluster: 7 24 Cluster: 8 24 Cluster: 9 23
aff 12 (50) aff 12 (50) aff 10 (43.48)

anger 1 (4.17) anger 1 (4.17) anger 1 (4.35)
disgust 2 (8.33) disgust 2 (8.33) disgust 2 (8.7)
fear 3 (12.5) fear 2 (8.33) fear 3 (13.04)
happy 3 (12.5) happy 2 (8.33) happy 1 (4.35)
mixed 1 (4.17) mixed 4 (16.67) mixed 2 (8.7)
sad 2 (8.33) sad 1 (4.17) sad 4 (17.39)

Cluster: 10 23 Cluster: 11 22 Cluster: 12 22
aff 11 (47.83) aff 9 (40.91) aff 8 (36.36)

disgust 5 (21.74) anger 2 (9.09) anger 2 (9.09)
fear 1 (4.35) disgust 3 (13.64) disgust 1 (4.55)

happy 1 (4.35) fear 2 (9.09) fear 3 (13.64)
sad 5 (21.74) mixed 1 (4.55) mixed 3 (13.64)

sad 5 (22.73) sad 5 (22.73)
Cluster: 13 21 Cluster: 14 19 Cluster: 15 19

aff 7 (33.33) aff 11 (57.89) aff 5 (26.32)
disgust 1 (4.76) disgust 1 (5.26) anger 1 (5.26)
fear 4 (19.05) fear 1 (5.26) disgust 2 (10.53)
happy 3 (14.29) sad 6 (31.58) fear 4 (21.05)
mixed 3 (14.29) happy 1 (5.26)
sad 3 (14.29) mixed 4 (21.05)

sad 2 (10.53)

*ROI: region of interest; aff: affective
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Table 2.11 Breakdown of emotions and their frequencies by individual foci cluster
for ROI continued*

Cluster Index: Total foci in that cluster
Emotion Frequency of emotion (% of total cluster foci)

Cluster: 16 17 Cluster: 17 16 Cluster: 18 16
aff 9 (52.94) aff 10 (62.5) aff 10 (62.5)

anger 1 (5.88) anger 1 (6.25) fear 2 (12.5)
disgust 1 (5.88) disgust 1 (6.25) happy 1 (6.25)
fear 4 (23.53) fear 2 (12.5) sad 3 (18.75)
sad 2 (11.76) sad 2 (12.5)

Cluster: 19 16 Cluster: 20 16 Cluster: 21 16
aff 8 (50) aff 5 (31.25) aff 6 (37.5)

disgust 2 (12.5) anger 1 (6.25) disgust 4 (25)
fear 1 (6.25) disgust 2 (12.5) fear 4 (25)

happy 2 (12.5) fear 3 (18.75) sad 2 (12.5)
mixed 1 (6.25) happy 1 (6.25)
sad 2 (12.5) sad 4 (25)

Cluster: 22 15 Cluster: 23 15 Cluster: 24 14
aff 8 (53.33) aff 4 (26.67) aff 7 (50)

disgust 6 (40) anger 2 (13.33) disgust 2 (14.29)
mixed 1 (6.67) disgust 2 (13.33) fear 2 (14.29)

fear 1 (6.67) happy 1 (7.14)
happy 1 (6.67) mixed 1 (7.14)
mixed 1 (6.67) sad 1 (7.14)
sad 4 (26.67)

Cluster: 25 13 Cluster: 26 13 Cluster: 27 13
aff 5 (38.46) aff 5 (38.46) aff 7 (53.85)

anger 1 (7.69) disgust 2 (15.38) anger 1 (7.69)
disgust 2 (15.38) fear 2 (15.38) disgust 3 (23.08)
fear 1 (7.69) mixed 2 (15.38) sad 2 (15.38)

mixed 1 (7.69) sad 2 (15.38)
sad 3 (23.08)

Cluster: 28 13 Cluster: 29 13 Cluster: 30 12
aff 6 (46.15) aff 7 (53.85) aff 6 (50)

anger 1 (7.69) anger 1 (7.69) disgust 1 (8.33)
disgust 2 (15.38) disgust 2 (15.38) fear 5 (41.67)
mixed 1 (7.69) fear 1 (7.69)
sad 3 (23.08) mixed 1 (7.69)

sad 1 (7.69)

*ROI: region of interest; aff: affective
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Table 2.12 Breakdown of emotions and their frequencies by individual foci cluster
for ROI continued*

Cluster Index: Total foci in that cluster
Emotion Frequency of emotion (% of total cluster foci)

Cluster: 31 11 Cluster: 32 11 Cluster: 33 11
aff 6 (54.55) aff 6 (54.55) aff 1 (9.09)

disgust 2 (18.18) disgust 1 (9.09) disgust 1 (9.09)
fear 1 (9.09) fear 1 (9.09) fear 1 (9.09)
sad 2 (18.18) sad 3 (27.27) happy 2 (18.18)

mixed 2 (18.18)
sad 4 (36.36)

Cluster: 34 10 Cluster: 35 9 Cluster: 36 9
aff 6 (60) aff 4 (44.44) aff 2 (22.22)

anger 1 (10) anger 1 (11.11) anger 2 (22.22)
disgust 1 (10) fear 1 (11.11) disgust 1 (11.11)
happy 2 (20) happy 2 (22.22) fear 2 (22.22)

sad 1 (11.11) happy 1 (11.11)
sad 1 (11.11)

Cluster: 37 9 Cluster: 38 6 Cluster: 39 6
aff 6 (66.67) aff 2 (33.33) aff 5 (83.33)

disgust 3 (33.33) disgust 1 (16.67) fear 1 (16.67)
fear 1 (16.67)
sad 2 (33.33)

Cluster: 40 5 Cluster: 41 5 Cluster: 42 4
aff 2 (40) aff 3 (60) aff 2 (50)

anger 1 (20) disgust 2 (40) disgust 2 (50)
disgust 1 (20)
mixed 1 (20)

Cluster: 43 3 Cluster: 44 2 Cluster: 45 2
aff 2 (66.67) aff 1 (50) aff 1 (50)
sad 1 (33.33) sad 1 (50) anger 1 (50)

Cluster: 46 1 Cluster: 47 1 Cluster: 48 1
fear 1 (100) aff 1 (100) disgust 1 (100)

*ROI: region of interest; aff: affective

56



Chapter 3

Mixture Model

Motivated by the limitations of the spatial Cox process discussed in Chapter 2, this

chapter presents a second method to identify areas of brain activation using fMRI

meta-data. In this model, the mean of the data is assumed to be a mixture of unknown

finite number of components. Conditional on the mean of the data, the distribution

of random error satisfies a multivariate normal distribution.

3.1 Introduction

Finite mixture models are generally used to model data thought to be grouped or

clustered [Stephens, 2000, Aitkin and Rubin, 1985, McLachlan and Basford, 1988].

These mixture components typically share a common parametric family with each

component containing different parameters [Stephens, 2000, Aitkin and Rubin, 1985].

Each component also has a mixing proportion or weight that is respective to the

frequency of the component in the data as a whole [Stephens, 2000]. Because of

the model’s ease of implementation, this allows various applications such as pattern

recognition, computer vision, signal and image analysis, and machine learning to

list a few [Figueiredo and Jain, 2002]. A comprehensive review of applications is in

Titterington et al. [1985], McLachlan and Basford [1988], and McLachlan and Peel

[2004].

The general form of a finite mixture model is applied to a random sample X =

(XT
1 , ..., X

T
n ) where T denotes the transpose and Xj ∈ (X1, ..., Xn) denotes a d-

dimensional random vector. Let x = (x1, ..., xn) denote the realization of X with
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a probability density P (xj) on <d such that

P (xj) =
K∑
k=1

πkf(xj; θk),

where f(xj; θk) are the densities and their respective parameters, θk, of each unique

component k = 1, ..., K and πk are the mixing proportions that sum to unity and

satisfy 0 ≤ πk ≤ 1 for k = (1, ..., K) [McLachlan and Peel, 2004]. The number of finite

components may be known or unknown but range from 1 to n, with one component

resulting in a fully parametric model while more than one component results in a

nonparametric distribution, assuming the component distribution is of standard form

[McLachlan and Peel, 2004]. Based on a PubMed web search, the most common

distribution applied to each component for continuous data is the Gaussian family

(univariate or multivariate). For a few examples see Rasmussen [1999], Figueiredo and

Jain [2002] and McLachlan and Peel [2004]. Other applicable distributions include

the exponential family [Feldmann and Whitt, 1997], the log-normal family [McLaren

et al., 1986, McLachlan and Jones, 1988], and the Wiebull family [Zhang et al., 2001].

For discrete data, the most common distribution applied to each component is a

Poisson distribution via PubMed search. For some examples see Royle [2004], Leroux

and Puterman [1992] and Chen et al. [2001]. Other distributions applicable include

the binomial family [Kéry et al., 2005] and negative binomial family [Zhou and Carin,

2013], to name a few. However, components may also be assigned non-parametric

distributions such as the Dirichlet process (DP), discussed in detail in Chapter 1,

section 1.4.4.1.

The decision of the component density typically depends on the structure of the

observed data. Thus, the density decision directly affects how well the model fits

the data; if an inappropriate distribution is selected or a standard distribution is

unable to accurately explain the behavior of the data, the model may fit poorly.

Because standard form distributions are fixed to their distribution pattern, this is a

primary advantage of applying the DP. The flexible selection of the base distribution
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and precision parameter create a mixture distribution that can better explain non-

standard patterns. Furthermore, if outliers are present, the robustness of DP can

better model these while mixtures with standard densities can have a difficult time

recognizing and handling them [Figueiredo and Jain, 2002]. Mixture parameters may

be estimated in a number of ways with the two most popular methods being the

expectation maximization (EM) algorithm and Markov chain Monte Carlo methods.

Another issue to consider with mixture models is the estimate of the unknown

number of components, K. Often times the model fit is sensitive to the number of

components identified. If too many components are identified, the model may over-

fit the data, while inversely, if the model does not identify enough components, the

nature of the data may not accurately described [Figueiredo and Jain, 2002]. Some of

the most popular methods for identifying K for mixture models is the EM algorithm

[Dempster et al., 1977], the reversible jump Markov chain Monte Carlo (RJMCMC)

[Green, 1995, Green and Hastie, 2009], and birth-death process [Preston, 1975, 1976,

Stephens, 2000].

The expectation maximization (EM) algorithm was originally introduced in Demp-

ster et al. [1977] and utilizes the maximum likelihood to estimate parameters including

the number of componnents, K. It treats the individual data clustering assignment

as a missing or latent variable z such that z = (z1, ..., zn) [Dempster et al., 1977].

The EM algorithm works in two steps, "E-step" and "M-step". During the "E-step",

the conditional expectation of the complete-data log-likelihood given the observed

data and current parameter estimates is calculated. The complete-data refers to the

observed data and its latent variables. The log-likelihood for the complete data is

l(θ,π, z|x) =
n∑
j=1

K∑
k=1

log(πkf(xj, zj|θk))

with z being estimated by the expectation of

Q(θ, π|θ(t), π(t)) = E

 n∑
j=1

K∑
k=1

log(πkP (xj, zj|θk))
 .
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During the "M-step" the log-likelihood is maximized in terms of π and θ with z held

constant at the values calculated in the "E-step" as illustrated below

θ(t+1) = argmin
θ

Q(θ, π|θ(t), π(t))

π(t+1) = argmin
π

Q(θ, π|θ(t), π(t)).

The advantage to the EM algorithm is it’s easy of implementation to any situation

where a likelihood can be calculated. However, the EM has potentially slow numerical

convergence, local maximum and not global maximum likelihoods may be identified,

and uncertainty in how to identify the number of components [Wu, 1983]. Attempts

have been made with some progress to rectify the disadvantage of convergence speed

by the implementation of constraints such as the expectation conditional maximiza-

tion (ECM) algorithm that updates each compartment parameter(s) individually and

conditionally in the M step [Meng and Rubin, 1993] and the generalized expectation

maximization (GEM) that performs the same individual conditional updating but

in both the E and M steps [Neal and Hinton, 1998]. Also, because the likelihood

function of a mixture model is not always unimodal, the maximum likelihood may

converge at a local maximum or at the boundary of the parameter space thus pro-

duce parameter estimates that have no logical interpretation [Figueiredo and Jain,

2002]. In addition, the calculation of these likelihoods is conditional on the number of

components, which leads to the question of how to choose the number of components

and the distinction between these varying choices.

The alternative methods, RJMCMC and birth-death process, for model inferences

fall under the Bayesian paradigm. Under this framework, we can simultaneously es-

timate the number of components and parameter values. It is also worth mentioning

that if a DP is assigned as the prior for component distributions, by it’s discreteness

aspect and influence of the precision parameter, it will naturally determine the num-

ber of clusters. The reversible jump MCMC (RJMCMC), introduced in Green [1995],

is a type of Metropolis-Hastings (MH) algorithm that simultaneously considers mul-
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tiple models with various number of components k and corresponding parameters.

In summary, this method allows the simulation of the posterior distribution to vary

in dimensions, meaning the number of clusters and corresponding parameters may

"jump" from its current model state with k components to another with a larger or

smaller number of components. The chance of the model changing states is based

on the acceptance probability defined in Green [1995] or Green and Hastie [2009].

The major disadvantage to the RJMCMC is that it can be computationally chal-

lenging and intensive when determining the acceptance probability due to a Jacobian

calculation [Marin et al., 2005, Green and Hastie, 2009]. Also, inefficient proposal

distributions can lead to slow convergence [Green and Hastie, 2009].

The birth-death process, formally introduced in Preston [1976], is very similar to

the RJMCMC in that the current model state, including the number of components

and corresponding parameters, is allowed to jump throughout the MC chain such

that the number of components may increase or decrease. The difference is that at

every jump the change is always accepted and the component change is always an

increment of one; the number of clusters always increases (a birth) or decrease (a

death) by one. Both births or deaths occur continuously over time, but births occur

constantly at a rate of λb while deaths occur at a rate relative to the stationary distri-

bution of the process [Stephens, 2000]. When the state of the model changes (number

of components changes) the respective mixture parameters, such as component pa-

rameters and mixing proportions, are immediately updated [Marin et al., 2005]. The

advantage of the birth-death process in comparison to the RJMCMC is that by mod-

eling each jump as an accepted birth or death, this removes the Jacobian calculation

in the acceptable probability needed for the RJMCMC. Also, it’s straightforward im-

plementation utilizes the missing data formulation discussed in EM algorithm section

above for data component assignment so that identifiable is not an issue [Marin et al.,

2005].
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Regardless of the estimation method for K, it is important to statistical differ-

entiate between model fits of different models with different number of clusters and

parameter estimates. In order decipher the optimal model, a selection criterion can

be applied. For example, a set of candidate models may be obtained via post-EM

algorithm implementation, each corresponding to a different number of components.

In order to determine which model contains the optimal number of components, each

is given a selection criteria that can generally be described as

C(θ̂(k), k) = −logP (x|θ̂(k)) + P(k),

where P (x|θ̂(k)) is the likelihood conditional on θ̂(k) which is an estimate of the

model parameters for k components and P(k) is an increasing function penalizing

higher values of k to prevent model over-fitting [Figueiredo and Jain, 2002]. The

smaller the selection criterion, the better the model fit to the data. Some examples of

selection criterions are Laplace-empirical criterion (LEC) [McLachlan and Peel, 2000],

Bayesian inference criterion (BIC) [Schwarz et al., 1978], minimum description length

(MDL) [Rissanen, 1989], Akaike’s information criterion (AIC) [Akaike, 1987], clas-

sification likelihood criterions (CLC) [Biernacki and Govaert, 1997], and integrated

classification likelihood (ICL) [Biernacki et al., 2000], to name a few. According to

McLachlan and Peel [2000] the ICL and LEC outperform all other criteria mentioned

above. One last selection criterion worth mentioning is the deviance information

criterion (DIC) discussed in Chapters 1 and 2.

In this chapter, we examine an application of a mixture of Dirichlet processes to

estimate the expected value of our observed data after adjusting for a study effect.

More specifically, we model our observed data as a linear association with it’s re-

spective study effect, individual foci cluster effect, and some standard multivariate

normal random error with the individual foci cluster effect modeled as a mixture of

unknown number of Dirichlet processes. We elect to utilize the birth-death process

to make model inferences. This is motivated from the limitation of the spatial Cox
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process application and it’s inability to statistically distinguish between clusters. In

that application we modeled the individual foci cluster effect a single DP. However,

by modeling the clusters in this manner, there was no statistical determination in

the number of clusters. In other words, there was no statistical differentiation be-

tween clusters and to check whether two clusters are actually a single cluster with two

modes. Therefore, in this model we let the individual foci clusters be modeled as a

mixture of DPs and incorporate a statistical determination of the number of clusters

by exercising the birth-death process while still allowing flexibility by modeling the

components as DPs.

The remainder of this section is dedicated to further reviewing the birth-death

process and an algorithm introduced in Stephens [2000] to assist in it’s implementa-

tion. The next section will explicitly layout the format of the model, it’s notation,

and discuss the Bayesian framework under which parameters are estimated. Follow-

ing, we present two simulated datasets to asses the sensitivity and robustness of the

proposed method, those results, and a comparison with the same datasets analyzed

in Chapter 2. Section 3.4 reanalyzes the fMRI meta-analysis discussed in Chapter 2

and discusses those results, implications, and comparison with the results from the

spatial Cox process. Section 3.5 summarizes the conclusions and a discussion of the

proposed method.

The birth-death process: As briefly discussed in Chapter 1 and above, a mixture

model assumes the data x = (x1, ..., xn) is able to be partitioned into K number of

components that each share a common distribution family f(·;φk, η) with an associ-

ated parameter φk. Let φ = (φ1, ..., φK , η) be a vector of cluster parameters and η is

a common parameter to all components. The likelihood for the mixture is:

P (x|φ) =
n∏
j=1

K∑
k=1

πkf(xj;φk, η)

where πk is the mixing proportion of each cluster such that ∑K
k=1 πk = 1 and let π =

(π1, ..., πK). This parameter represents the multinominal probability of an observation
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being assigned to a particular cluster [Stephens, 2000].

The birth-death process is a type of continuous-time Markov chain originally in-

troduced in Preston [1975]. This type of process is often used to simulate realizations

of point processes as they can be difficult to directly sample from [Stephens, 2000].

These realizations are then further used for likelihood inferences for model param-

eters [Stephens, 2000]. The birth-death scheme allows events to randomly occur

throughout the chain; these events are either a "birth" or "death". If a birth occurs,

the number of components increases by one while if a death occurs, the number of

components decreases by one.

Considering a finite mixture for data x = (x1, ..., xn) that are assumed indepen-

dently distributed with each generated from one of the K distributions, f(x;φ1, η),...,

f(x;φK , η), i.e.,

P (x|π,φ, η) = π1f(x;φ1, η) + · · ·+ πkf(x;φk, η)

whereK is unknown, π = (π1, ..., πK) are the mixing proportions, φ = (φ1, ..., φK) are

the component specific parameters and η is a common parameter to all components.

In addition, an index variable zj, j = 1, ..., n, is introduced to indicate the component

assignment of observation j and Zj takes the values of 1 to K. Denoted zj ∈ z

such that z = (z1, ..., zn) represents the realization of independent and identically

distributed discrete random variables Z = (Z1, ..., Zn) with probability mass function

P (Zj = k|π,φ, η) = πk (j = 1, ..., n; k = 1, ..., K).

Given the component assignment, the xj’s are independently distributed with density

P (xj;φk, η). The likelihood function is then given as

L(K,π,φ, η) =
n∏
j=1

[π1f(xj;φ1, η) + · · ·+ πkf(xj;φk, η)] .

To carry out a Bayesian inference, prior distributions are assigned to K, π, and φ,

denoted by P (K,π,φ). The joint posterior distribution, up to a normalizing constant,
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is

P (K,π,φ|x, η) ∝ L(K,π,φ, η)P (K,π,φ).

From here, the birth-death algorithm and Markov chain can be described.

1. Starting with the initial model y = {(π1, φ1), ..., (πK , φK)} let the birth rate

β(y) = λb.

2. Calculate the death rate for each component:

δk(y) = L(y\(πk, φk))
L(y)

P (K − 1|η, ·)
KP (K|η, ·) (k = 1, ..., K).

3. Calculate the total death rate δ(y) = ∑K
k=1 δk(y). To quicken convergence, we

elected not to model the time to next jump as exponential and allowed an event

to occur at each iteration of the Markov chain.

4. Simulate the type of event, birth or death with the respective probabilities

P (birth) = β(y)
β(y) + δ(y) , P (death) = δ(y)

β(y) + δ(y) .

5. Adjust the model y to reflect the birth or death by

• Birth: Simulate new component (πK+1, φK+1) from each parameters re-

spective (independent) prior distributions, πK+1 fromDir(γ = 1) ∝ K(1−

π)K−1 and φK+1 from it’s prior distribution P̃ (φ|η, ·) such that the model

becomes y = {(π1, φ1), ..., (πK , φK), (πK+1, φK+1)}. It can be mentioned

that K(1 − π)K−1 is the Beta distribution with parameters (1, K) and

can be easily simulated from Y1 ∼ Γ(1, 1) and Y2 ∼ Γ(K, 1) such that

πK+1 = Y1
Y1+Y2

.

• Death: Select a component to die with the probabilities δk(y)/δ(y) for

k = 1, ..., K such that the model becomes y = {(π1, φ1), ..., (πK−1, φK−1)} .

6. Given the current state of the model at time t, simulate values for all parameters:
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• Sample (z)(t+1) from P (z|K(t+1),π(t),φ(t), η(t), ·(t),x)

• Sample η(t+1), · · ·(t+1) from P (η, ·|K(t+1),π(t),φ(t),x, z(t+1))

• Sample π(t+1),φ(t+1) from P (π,φ|K(t+1), η(t+1), ·(t+1),x, z(t+1))

7. Go to step 2.

3.2 The Model

Following similar notation as in Chapter 2, let srj = (x, y, z) denote a single focus

which represents a talairach coordinate defined in the brain space, for study r, r =

1, ..., R, and the jth foci in study r, j = 1, ..., Jr. We have ∑R
r=1 Jr = n, where n is

the total number of observed foci. Denoted by s = s1,1...sR,JR represents all foci in

the CBMA study. We model srj as

srj = pr + θrj + ε

where pr denotes the effect of each study r, while θrj represents the mean of srj for

the jth foci in study r after adjusting for study effect, pr, and ε denotes some random

error. By modeling the random error as a standard multivariate normal distribution,

the distribution of srj satisfies,

srj ∼MVN(pr + θrj,Σ)

with

P (srj|pr, θrj,Σ) = (2π) 3
2 |Σ| 12 exp

[
−1

2(srj − pr − θrj)′Σ−1((srj − pr − θrj))
]
,

where Σ = σ2I3 is the covariance matrix .

3.2.1 Prior and hyperprior Distributions

Since the foci included in the meta-study are results from different emotions, it is

possible that foci from certain types of emotions are clustered together. To ful-

fill this goal, we assumed the prior of θrj is a mixture of DPs, that is, θrj ∼
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∑K
k=1 πkGk where π = (π1, ..., πK) is assumed to follow a Dirichlet distribution,

Dir(γ = (γ1, ..., γK)) = 1
B(γ)

∏K
k π

γk−1
k , with γ = 1 and Gk ∼ DP (α,G0k), α specified

later, G0k = MVN3(µk,Σk). Each compartments’ hyper-parameters originate from

the the same hyper-prior distributions, µk ∼ MVN3(ξ, κ−1) where ξ = (ξ1, ξ2, ξ3),

the respective midpoint of observed intervals of variation of the data, and

κ =


1
R2

1
0 0

0 1
R2

2
0

0 0 1
R2

3


and Σk = σk ∗ I3 with σk ∼ IG(20, 0.5). For study effect, pr, we assume pr ∼ Gp

where Gp ∼ DP (αp, G0p) with αp specified later and G0p = MVN3(µp,Σp). We let

µp ∼MVN3(0, I3) and Σp = σ2
pI3, with σ2

p ∼ IG(3, 0.5). The variance component of

the random error, Σ = σ2I3, σ2 is assumed to follow Inverse Gamma (IG) distribution,

σ2 ∼ IG(0.5, 0.5). In both the component and study DPs, we assume the precision

parameters α and αp are known and discuss their selection in the section "selection of

α". We assign a truncated Poisson distribution, P (K) = λK

K! exp(−λ), (K = 1, ..., n),

as the prior distribution on the number of components, K. The birth-death process

is conditional on the pre-specified birth rate, λb. This birth rate, that controls how

often a "birth" of a new component occurs, was set to 0.2× 10−4.

3.2.2 Conditional posterior distributions and posterior computing

Sampling parameter estimates from their posterior distributions can be achieved via

Gibbs sampler. The joint posterior distribution is, up to a normalizing constant,

P (Φ|s) ∝
R∏
r

P (pr|Gp)P (Gp|α,G0p)G0p(pr;µp, σ2
p)P (µp)P (σ2

p)
Jr∏
j

P (srj|φ)

×P (θrj|z,π, G1, ..., GK)
K∏
k=1

P (Gk|α,G0k)G0k(θrj;µk, σ2
k)P (µk)P (σ2

k)

×P (π)P (K)P (Z)P (σ2),
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where Φ = (pr, θrj, σ2, αp,µp, σ
2
p, K,µ1, ...,µK , σ

2
1, ..., σ

2
K , α,π) is a vector of all es-

timable parameters. The likelihood for removing cluster i is

P (Φ\(πi, Gi)|s) ∝
R∏
r

P (pr|Gp)P (Gp|α,G0p)G0p(pr;µp, σ2
p)P (µp)P (σ2

p)
Jr∏
j

P (srj|φ)

×P (θrj|z,π, G1, ..., GK)
K(i)∏
k=1

P (Gk|α,G0k)G0k(θrj;µk, σ2
k)

×P (µk)P (σ2
k)P (π)P (K)P (Z)P (σ2),

whereK(i) = i /∈ (1, ..., K). Given the decision of a birth, the new cluster’s parameters

µK+1,σ2
K+1, and πK+1 are sampled from their prior distributions,

µK+1 ∼ MVN3(ξ, κ−1)

σ2
K+1 ∼ IG(20, 0.5)

πK+1 ∼ K(1− π)K−1.

The mixing proportions are adjusted by multiplying all current proportions by (1−

πK+1) if a birth occurs or dividing by (1 − πi) if a death occurs. To implement

the Gibbs sampler, we present the conditional posterior distribution below where "·"

denotes data and other parameters conditional on. The conditional posterior of Zrj

is

P (Zrj = k|π, θrj, Gk, ·) ∝ P (θrj|Zrj = k,Gk, ·)P (Gk|·)P (Zrj = k)

=

 α

α + nk − 1MVN3(µk,Σk) +

Ck∑
c=1 δc(θrj)
α + nk − 1

 πk
where c = 1, ..., Ck is the number of sub-clusters for cluster k ∈ (1, ..., K), nk is the

number of foci in cluster k, and δc(θrj) denotes the unit point mass. The conditional

posterior distribution of π only depends on Z.

P (π|Z) ∝ P (Z|π)P (π)

= 1
B(γ)

K∏
k=1

πγ−1
k × 1!

n1! · · ·nK !π
n1
1 · · · π

nK
K

∝ πn1
1 · · · π

nK
K

π|Z ∼ Dir(n1 + 1, ..., nK + 1).
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P (θrj|·) ∝
∏
Zrj∈k

P (srj|pr, θrj, ·)P (θrj|Zrj = k,Gk)P (Gk|G0k, α)G0k(θrj;µk, σ2
k)

=
∏
Zrj∈k

{
MVN3(pr + θrj, σ

2I3)
}{ α

α + nk − 1MVN3(µk, σ2
kI3)

+
∑Ck
c=1 δc(θrj)

α + nk − 1

}

∝ exp

−1
2

 ∑
Zrj∈k

(srj − pr − θrj)′(srj − pr − θrj)
σ2

+(θrj − µk)′(θrj − µk)
σ2
k

}]
θrj|· ∼ MVN3((σ−2

k + nkσ
−2)−1(σ−2

k µk + nkσ
−2(srj − pr)), (σ−2

k + nkσ
−2)−1I3),

where δc(θrj) denotes the unit point mass and nk,c are the number of foci in some

cluster k ∈ (1, ..., K) and sub-cluster c ∈ (C1, ..., Ck),

P (µk|·) ∝
∏
Zrj∈k

P (θrj|Zrj = k,G0k,µk, σ
2
k)G0k(θrj;µk, σ2

k)P (µk)

= exp

−1
2

 ∑
Zrj∈k

(θrj − µk)′(θrj − µk)
σ2
k

+ (µk − ξ)′κ(µk − ξ)




µk|· ∼ MVN3((κ+ nkσ
−2
k I3)−1(κξ + nkσ

−2
k I3θ̄rj), (κ+ nkσ

−2
k I3)−1),

where the notation denotes the mean, and

P (σ2
k|·) ∝

∏
Zrj∈k

P (θrj|Zrj = k,Gk)P (Gk|G0k)G0k(θrj;µk, σ2
k)P (σ2

k)

= exp

−1
2

 ∑
Zrj∈k

(θrj − µk)′(θrj − µk)
σ2
k

+

+
(
− 3
σ2
k

)
σ2
k|· ∼ IG(nk2 + 3, 0.5 + 1

2
∑
Zrj∈k

(θrj − µk)′(θrj − µi)),
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where nk is the number of foci in cluster k. The conditional posterior of pr is still a

DP,

P (pr|·) ∝
R∏
r=1

P (srj|pr, θrj, ·)P (θrj|·)P (pr|Gp)P (Gp|G0p, αp)G0p(pr;µp, σ2
p)

=
R∏
r=1

{
MVN3(pr + θrj, σ

2I3)
} αp

αp +R
MVN3(µp, σ2

pI3) +
∑Cp
c=1 δc(pr)
αp +R

 ,
∝ exp

[
−1

2

{∑
r∈R

(srj − pr − θrj)′(srj − pr − θrj)
σ2

+(pr − µp)′(pr − µp)
σ2
p

}]
pr|· ∼ MVN3((σ−2

p +Rσ−2)−1(σ−2
p µp +Rσ−2(srj − θrj)), (σ−2

p +Rσ−2)−1I3).

The conditional posterior distribution for the related hyper-parameters are,

P (µp|·) ∝
R∏
r=1

P (pr|Gp)P (Gp|αp, G0p)G0p(pr;µp, σ2
p)P (µp)

= exp

[
−1

2

{
R∑
r=1

(pr − µp)′(pr − µp)
σ2
p

+ (µp)′(µp)
}]

µp|· ∼ MVN3((1 +Rσ−2
p )−1(Rσ−2

p (pr)), (1 +Rσ−2
p )−1I3),

and

P (σ2
p|·) ∝

R∏
r=1

P (pr|Gp)P (Gp|αp, G0p)G0p(pr;µp, σ2
p)P (σ2

p)

= exp

[
−1

2

{
R∑
r=1

(pr − µp)′(pr − µp)
σ2
p

}
+
(
−0.5
σ2
p

)]

σ2
p|· ∼ IG(3 + R

2 ,
∑R
r=1(pr − µp)2 + 1

2 ),

where Cp are the unique study clusters. Lastly, the sampling distribution for Σ is:

P (σ2|·) ∝
R∏
r

Jr∏
j

P (srj|pr, θrj, σ2, ·)P (θrj|·)P (pr|·)P (σ2)

= exp

−1
2

 ∑
Zrj∈n

(srj − pr − θrj)′(srj − pr − θrj)
σ2

+−0.5
σ2


σ2|· ∼ IG(n+ 1

2 ,
1 +∑

Zrj∈n(srj − pr − θrj)′(srj − pr − θrj)
2 ).
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Neal’s algorithm 8 [Neal, 2000], as discussed in Chapter 2, can still be exercised

to sample unique values for θrj and pr for their respective clusters. The value for θrj

for those foci in cluster k and sub-cluster c may be sampled from

P (θk,c|·) ∝
∏

Zrj∈k,c
P (srj|pr, θrj, Zrj = k, ·)P (θrj|Zrj = k,Gk)P (Gk|G0k, α)

×G0k(θk,c;µk, σ2
k)

=
∏

Zrj∈k,c
MVN3(pr + θrj,Σ){ α

α + nk − 1MVN3(µk,Σk) + nk,c
α + nk − 1}

= exp

−1
2

 ∑
Zrj∈k,c

(srj − pr − θrj)′(srj − pr − θrj)
σ2

+(θk − µk)′(θk − µk)
σ2
k

}]
θk,c|· ∼ MVN3((σ−2

k + nk,cσ
−2)−1(σ−2

k µk + nk,cσ
−2(srj − pr)),

(σ−2
k + nkσ

−2)−1I3),

where nk,c are the number of foci in some cluster k and sub-cluster c. The value for

pr for those studies in cluster c may be sampled from

P (pc|·) ∝
∏
r∈c

P (srj|pc, c, ·)P (pc|Gp)P (Gp|αp, G0p)G0p(pc;µp, σ2
p)

=
∏
pr∈c

MVN3(pr + θrj,Σ){ αp
αp +R

MVN3(µp,Σp) + nc
αp +R

}

= exp

[
−1

2

{∑
r∈c

(srj − pr − θrj)′(srj − pr − θrj)
σ2

+(pc − µp)′(pc − µp)
σ2
p

}]
pc|· ∼ MVN3((σ−2

p + ncσ
−2)−1(σ−2

p µp + ncσ
−2(srj − θrj)), (σ−2

p + ncσ
−2)−1I3),

where nc is the number of studies in cluster c.

3.2.3 Determining the clusters

To estimate the number of clusters and the center of each cluster and cluster assign-

ment, we implement the least-squared Euclidean distance method introduced in Dahl
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[2006]. This method draws inference of clusters based on a set of converged MCMC

iterations and chooses one iteration as the final estimates on the clusters and related

parameters. This final MCMC iteration is selected due to its smallest Euclidean dis-

tance to the expected cluster assignments estimated based on a set of independent

converged MCMC iterations. This approach incorporates all clustering information

in the MCMC sampling process [Dahl, 2006]. As in Chapter 2, the clustering pattern

to be summarized is for individual foci clusters as they are our primary interest. For

more details, see section 2.2.3.

3.2.4 Selection of α

As discussed in Chapter 2 section 2.2.4, the selection of α can have a potentially

significant effect on the number of clusters identified due to its direct impact on the

aggregation of G about the base distribution, G0. Given the importance of α, we

decided to select estimates by again implementing the grid search that minimized the

deviance information criterion (DIC) [Congdon, 2007]. The DIC is an estimate for

the expected deviance that is adjusted for the models complexity as to not overfit the

data [Congdon, 2007, Spiegelhalter et al., 2002]. Specifically, DIC was defined as

DIC = D + var(D)
2 ,

where

D = 1
T

T∑
t=1

D(s,Φ(t))

D(s,Φ(t)) = −2logP (s|Φ(t))

var(D) = 1
T

T∑
t=1

(D(s,Φ(t))−D)2.

In the above, Φ(t) denotes the parameter estimate(s) at current time t and s is the

data. A smaller DIC indicates a better fit of the model.
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3.3 Simulation Studies

Simulations were utilized to illustrate and asses the proposed method. In total, 50

studies each with 10 foci were considered. Three individual foci clusters are spatially

centered at (1, 1, 1)T , (2, 2, 2)T , and (4, 4, 4)T containing 150, 150, and 200 foci, re-

spectively. Two study clusters are assumed with centers held at (0.1, 0.1, 0.1)T and

(0.4, 0.4, 0.4)T with each including 25 studies (250 foci each). In addition, we consid-

ered the following simulation scenarios,

1. We simulate the data for each cluster via multivariate normal with mean set

at the individual foci centers and variance Σ = 0.002I3. This creates spheres

with little variation and we expect the method to have the ability to correctly

identify the clusters.

2. The method’s ability to cluster in the presence abnormal patterns is an im-

portant factor in spatial clustering. The same scenarios as in 1) are followed

to simulate individual foci clusters 1 and 2. Cluster 3 is simulated using trun-

cated normal distribution with mean (4, 4, 4)T and variance 0.002I3 with a lower

bound (1, 1, 1)T .

3. The last scenario is designed to asses the robustness of the method with respect

to the distance between and among clusters. To this end, besides Σ = 0.002I3,

we considered four additional levels of Σ: Σ = 0.01I3, 0.05I3, 0.1I3, and 0.2I3

representing gradually closer distances among clusters. Other settings are as in

scenario 1).

For each setting, we implemented a grid search for a single dataset to estimate

values of αp and α based on the minimization of DIC. We let precision parameter

values be 0.1, 0.5, 1, 2, and 5. Based on αp and α estimates, 100 MC datasets

were generated with 300 burn in iterations, 100 working iterations to determine the
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probability matrix noted in section 2.2.3, and 100 additional iterations to infer the

number of clusters and individual foci cluster centers.

Model assessment consists of three evaluations: sensitivity, specificity, and per-

centage of correct clustering. Sensitivity is defined per cluster as the proportion of

foci that are correctly assigned to that given cluster, Se=TP/(TP+FN) and speci-

ficity is defined per cluster as the proportion of foci that are correctly not assigned to

a cluster, Sp=TN/(TN+FP). In these definitions, true positive (TP) denotes a focus

in that respective cluster is also assigned to that cluster, false negative (FN) denotes

a focus in that respective cluster but not assigned to that cluster, true negative (TN)

is a focus that is not in the respective cluster and not assigned to that cluster, and

false positive (FP) denotes a focus that is not in that respective cluster but assigned

to that cluster. Percentage of correct clustering is an overall measure defined as the

proportion of foci that are correctly clustered. Note that the definition of correctness

takes into account both TP and TN.

Table 3.1 summaries the findings on individual foci cluster identification and the

quality of the identified clusters. The method adequately assigned foci to their correct

clusters approximately 50% of the time or lower for all simulations. This produced

low sensitivity percentages across all scenarios. It had a more difficult time identifying

those foci that were in the two clusters centered at (1, 1, 1)T and (2, 2, 2)T than the last

cluster centered at (4, 4, 4)T . This was indicated by the higher sensitivity percentages

for this latter cluster across all settings. Although the model did a poor job at identify

which foci belong to the first two clusters, it did an excellent job of deciphering which

foci truly did not belong in those clusters, which is indicated by the high specificity

percentages for those two clusters. It is worth mentioning that when the model could

not properly adjust for study effect, which is suggested by the high standard deviation

of the median number of study clusters (larger than 1 across almost all settings) and

low average of the correctness rate (roughly 50% or less), the model also had a difficult
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time identifying the correct number of individual foci clusters and their centers. The

incorrect number of individual clusters is suggested by the high standard deviation

for median number of clusters, low sensitivity rates, and low correctness rate.

When compared to the results for these same scenarios analyzed by the spatial

Cox process, the spatial Cox process out-performed this method across all measures

and scenarios. However, both methods performed poorly when clusters were large

and overlapping such as when simulated variances were allowed to be 0.1 and 0.2.

This suggest both models lack the sensitivity to identify clusters when there is not

distinct grouping within the data. The current proposed method performed more

poorly out of the two methods.

3.4 Real Data Analysis

For this application, we applied the proposed method to the same meta-analysis

dataset as in Chapter 2 (section 2.4). Recall this data consists of a total of 162

neuroimaging publications with 57 PET and 105 fMRI were considered. Among

these 162 publications, there were 437 contrasts or studies. Only those foci that were

deemed significantly activated by their study specific criteria were included for a total

of 2,478 foci. This meta-analysis analyzed emotions and therefore there exist specific

brain regions that were of interest to researchers. Foci that lie within these regions

were noted. Summary statistics for this data can be seen in tables 2.2 and 2.3.

As with the simulation studies, grid search and DIC were exercised to estimate

values for αp and α. Potential precision parameters values were 0.1, 0.5, 1.0, 2.0 and

5. Each combination was performed over 1,300 iterations, 800 of those for burn-in,

400 for the probability matrix calculation, and final 100 to infer individual clusters

and their centers. To assist with the magnitude of the likelihood calculations, the

data was scaled down by 10.

It was found that the precision parameter combination of αp = 0.1 and α = 0.1
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produced the smallest DIC. Convergence over 1,300 iterations, with the initial 800

discarded, was checked visibly. Based on the proposed method, we identified two

study clusters and three individual foci clusters (Tables 3.2). The break down of the

three individual foci clusters by center location, foci frequency and emotion frequency

can be seen in Table 3.3. Of the three individual clusters, cluster 1 centered at (30.66,

-5.83, -29.58) contained 1646 foci, cluster 2 centered at (26.73, -1.29, -26.38) contained

763 foci, and cluster 3 centered at (0.91, -6.03, -2.52) contained 69 foci. The neutral

emotion, affective, was present in all three clusters as well as the emotion of fear

being the second dominating emotion. However, when only analyzing those foci that

fell within the region of interest, as seen in Table 3.4, the dominating emotion, other

than affective, was sadness (clusters 1 and 2) and fear (cluster 3). When compared

to the meta-analysis results from Chapter 2 using the spatial Cox process, there were

significantly fewer clusters identified and no clusters appeared have similar cluster

centers. Following the patterns of disagreement between the simulation studies of the

two methods, this is not surprising.

The low number of clusters illustrates the model’s lack of sensitivity, especially

when the data is not distinctly grouped. This particular data does not visually

indicate distinct clusters and is closer to a more uniform distribution throughout the

brain which may lead to a smaller number of identifiable clusters. However, it can

be inferred from the difference of clusters and simulation studies that the spatial Cox

process is a more sensitive method.

3.5 Conclusion and Discussion

The modeling of the observed foci as a linear association with study effect, individual

foci cluster effect and a standard multivariate normal random error, was motivated by

the limitation of the spatial Cox process to statistically distinguish between a cluster

and a mode or peak of a cluster. It’s overall aim is to identify activated regions
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within the brain using fMRI CBMA data. By modeling the data in this fashion, it

was hopeful that the distribution could statistical differential between clusters and

modes of clusters while retaining the flexibility and robustness to mimick the behavior

of the data.

Simulation studies demonstrated that the method does not readily fit data gener-

ated from normal or abnormal distributions. Although the model has the ability to

correctly identify clusters, it was accurate only about 50% of the time. If study effects

were not correctly identified, the method tended to also incorrectly identify individ-

ual clusters which resulted in low sensitivity percentages. When compared to the

spatial Cox process method, this proposed method was significantly out-performed.

However, both methods were unable to correctly identify clusters when they were

large and overlapped.

When applied to a fMRI meta dataset, the method identified a very small number

of clusters. Given the low sensitivity findings in the simulated studies, it can be

concluded that these clusters have a high likelihood of being incorrect. When the

same data was analyzed with the spatial Cox process, the difference in the results

was extreme. Not only were the number of clusters substantially less, but none of

the cluster centers identified from the proposed method came close to those identified

in the first method. Given the more favorable simulation results of the spatial Cox

process, this further suggests a poor performance by the proposed method. It’s

worth mentioning that the meta data is not distinctly grouped and is more uniformly

distributed throughout the brain. Therefore, there may not be enough variation

within the data for the mixture of DPs to identify a large number of clusters. Also,

the limitations of this dataset discussed in Chapter 2 (combining fMRI and PET)

still hold and would be beneficial to explore this proposed method using additional

fMRI data.

The primary advantage to this method, besides it’s flexibility, is it’s statistical dif-
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ferentiation between clusters with different base distribution or a multimodal cluster.

Because of its adaptable nature, this model can also adjust for any covariate of inter-

est. However, based on simulation studies and the fMRI meta-data application, the

proposed method tends to be insensitive and has a difficult time identifying clusters,

especially when the data fails to encompass natural groupings. It’s clustering ability

is limited by the identification of study effects which may be improved by stronger

restrictions. Another potential improvement, also mentioned in the first method,

would be to include contrasts that would allow comparisons between foci to better

estimate study and individual foci effects.
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Table 3.1 Simulation assessments

Median Num. Cluster Average Average Average %
Scenario: of Clusters index Sensitivity Specificity Correctness rate

(SD)* (SD)* (SD)* (SD)*

Normal

1 0.36 (0.43) 0.92 (0.16)
**IC: 3 (1.12) 2 0.27 (0.43) 0.97 (0.10) 0.48 (0.30)

3 0.72 (0.28) 0.59 (0.36)

**SC: 2 (0.98) 1 0.26 (0.43) 0.98 (0.09) 0.57 (0.24)2 0.88 (0.16) 0.35 (0.40)

Skewed

1 0.38 (0.41) 0.88 (0.18)
IC: 3 (1.25) 2 0.19 (0.39) 0.99 (0.06) 0.46 (0.26)

3 0.72 (0.26) 0.58 (0.34)

SC: 10 (4.35) 1 0.27 (0.38) 0.95 (0.09) 0.38 (0.30)2 0.49 (0.27) 0.73 (0.2)

Large1

1 0.34 (0.44) 0.94 (0.15)
IC: 3 (1.07) 2 0.26 (0.43) 0.97 (0.1) 0.49 (0.29)

3 0.78 (0.27) 0.54 (0.39)

SC: 3 (1.47) 1 0.26 (0.42) 0.98 (0.07) 0.54 (0.26)2 0.82 (0.19) 0.42 (0.37)

Large2

1 0.32 (0.4) 0.86 (0.21)
IC: 3 (1.06) 2 0.1 (0.3) 0.99 (0.06) 0.43 (0.21)

3 0.75 (0.25) 0.47 (0.36)

SC: 1 (0.47) 1 0.01 (0.1) 1 (0.01) 0.5 (0.05)2 0.98 (0.04) 0.02 (0.1)

Large3

1 0.11 (0.26) 0.93 (0.17)
IC: 2 (1.05) 2 0.01 (0.07) 1 (0.02) 0.34 (0.09)

3 0.76 (0.26) 0.29 (0.3)

SC: 11 (3.06) 1 0.1 (0.15) 0.94 (0.09) 0.25 (0.09)2 0.4 (0.18) 0.65 (0.21)

Large4

1 0.09 (0.23) 0.93 (0.18)
IC: 2 (0.92) 2 0 (0.05) 1 (0.04) 0.35 (0.06)

3 0.79 (0.25) 0.25 (0.28)

SC: 1 (0.48) 1 0 (0) 1 (0) 0.49 (0.02)2 0.98 (0.04) 0.02 (0.05)

*SD: standard deviation across 100 MC replicates;**IC: individual foci cluster; SC:
study effect clusters
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Table 3.2 Meta-data cluster results
Individual Foci Clusters

Cluster Centers/ Cluster # of foci # of studies
Brain Regions Index per cluster(% per cluster(%

of total foci) of all studies)
(30.66,-5.83,-29.58)/R Third Ventricle 1 1646 (66.42) 402 (91.99)

(26.73,-1.29,-26.38)/R Uncus 2 763 (30.79) 320 (73.23)
(0.91,-6.03,-2.52)/R Uncus 3 69 (2.78) 61 (13.96)

R: right hemisphere, L: left hemisphere

Table 3.3 Breakdown of emotions and their frequencies by individual foci cluster*

Cluster Index: Total foci in that cluster
Emotion Frequency of emotion (% of total cluster foci)

Cluster: 1 1646 Cluster: 2 763 Cluster: 3 69
aff 586 (35.6) aff 269 (35.26) aff 26 (37.68)

anger 116 (7.05) anger 44 (5.77) anger 6 (8.7)
disgust 222 (13.49) disgust 110 (14.42) disgust 5 (7.25)
fear 243 (14.76) fear 111 (14.55) fear 13 (18.84)
happy 118 (7.17) happy 55 (7.21) happy 5 (7.25)
mixed 128 (7.78) mixed 61 (7.99) mixed 6 (8.7)
sad 230 (13.97) sad 110 (14.42) sad 8 (11.59)

surprise 3 (0.18) surprise 3 (0.39)

*aff: affective

Table 3.4 Breakdown of emotions and their frequencies by individual foci cluster
for ROI*

Cluster Index: Total foci in that cluster
Emotion Frequency of emotion (% of total cluster foci)

Cluster: 1 514 Cluster: 2 247 Cluster: 3 18
aff 219 (42.61) aff 116 (46.96) aff 7 (38.89)

anger 26 (5.06) anger 7 (2.83) anger 1 (5.56)
disgust 66 (12.84) disgust 34 (13.77) disgust 2 (11.11)
fear 72 (14.01) fear 25 (10.12) fear 3 (16.67)

happy 33 (6.42) happy 10 (4.05) happy 2 (11.11)
mixed 24 (4.67) mixed 15 (6.07) mixed 1 (5.56)
sad 74 (14.4) sad 40 (16.19) sad 2 (11.11)

*ROI: region of interest; aff: affective
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Chapter 4

Conclusion and Future Work

This dissertation has presented two methods that were motivated by the desire to

identify regions of significant brain activation using fMRI meta-data. These methods

included a spatial Cox point process and multivariate normal mixture of Dirichlet

processes model.

FMRI data has proven to be an informative and noninvasive method of accurately

measuring the brain functionality with specific locations and intensities over a pre-

specified period of time. However, this method is relatively costly and typically only

contains a small number of subjects. To offset this disadvantage, meta-data analysis

has become very popular for both image-based and coordinate-based fMRI. The latter

is not only more readily available in the literature but is easier to handle and combine.

Current methods for analyzing coordinate-based fMRI meta-data include activation

likelihood estimation (ALE), kernel density analysis (KDA), and spatial point process

modeling. The overall disadvantage for these models is that each contains some

specified parameter or distribution that directly effects the size, number, and shape of

the clusters identified. In both ALE and KDA, voxel based kernels are incorporated

that estimate voxel densities with a specified bandwidth measurement. The size

of the bandwidth controls the radius of the kernel and directly plays a role in the

density calculation. The dimension of the voxel can further alter the kernel density.

Thus, both voxel and bandwidth size affect the models’ capability and are set by

the user. The spatial point process is modeled under the Bayesian framework and

allows clustering inferences at the individual, study, and population level. However,
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at each of these levels, the distribution is assumed multivariate normal, potentially

limiting or missing irregular spatial patterns. Our focus was to present two methods

that aim to eradicate user dependency and allow spatial information to play a role

in creating more flexible clusters. Specifically, in both methods we incorporated a

Diriclet process to model cluster distributions which relaxed the previous methods’

restrictions and allowed for more flexible and irregular spatial patterns.

In the first method we proposed, the spatial Cox point process, we clustered on

two levels, latent foci center and study activation center. We utilized the Dirichlet

process to describe the distribution of foci. The intensity measure associated with

the Cox point process was modeled as a function of distance between the focus and

the center of the cluster of foci using Gaussian kernels. Simulation studies provided

an illustration of the model’s sensitivity and robustness with respect to cluster identi-

fication and underlying data distributions. We provided an additional demonstration

with an fMRI meta-dataset. This clustering method implemented in this model incor-

porates spatial information via Gaussian kernels while adjusting for some covariate,

study effect in this case. Therefore, this method may be extended to any spatial data

and may include any number of covariate of interest. The Dirichlet process prior

assigned to the foci distribution uniquely identities cluster with regular or irregular

patterns. It was noted that when study effect was large, the method had a difficult

time identifying the correct individual foci centers. This identifiability issue was par-

tial rectified by placing prior knowledge restrictions on the study effect distribution.

By comparing two studies and estimating their differences (use a contrast) may be an

alternate solution to this issue. Also, as a natural limitation to the Dirichlet process,

the method lacked the ability to statistically differentiate if a peak was a cluster or

a cluster with multiple modes. This led to the motivation of the second proposed

method.

In our second method we proposed to model the data as a linear association with
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a study effect, individual foci effect, and a random error term. The study effect

was assumed to follow a Dirichlet process, the individual foci effect was assumed

to be a mixture of unknown number of Dirichlet processes, and the random error

was modeled as standard multivariate normal. Therefore, the individual foci effect

represents the mean of the data after adjusting for the study effect. Simulation

studies were conducted to asses the model’s sensitivity and robustness and indicated

a mediocre performance. When compared with the same simulation studies analyzed

by the spatial Cox process, the proposed method was out-performed and produced

significantly lower sensitivity measures. However, both methods performed poorly

when simulated clusters were large and overlapped. As a further demonstration, we

applied the model to the same fMRI meta data analyzed above and identified only a

fraction of the clusters with no similar cluster centers. The advantage to this method

was it’s ability to statistically differentiate between peaks of a distribution as being a

cluster or a cluster with multimodes. Although this method was also implemented for

modeling irregular shaped distribution patterns, it lacked the sensitivity to properly

identify clusters.
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Appendix A

R code for spatial Poisson point process coding

with real data
%\begin{lstlisting}
library(MASS)
library(pscl)
library(cluster)
library(msm)
library(tmvtnorm)
library(plyr)
data<-read.csv(’C:\\Users\\Meredith\\Documents\\USC\\Dissertation\\Data\\
meta061106.JianKangcopy.csv’,header=T)
colnames(data)
#> colnames(data)
# [1] "Study" "headstable" "Scan"
# [4] "ROI" "CoordSys" "Subjects"
# [7] "Women" "Gender" "Mode"
#[10] "FixedRandom" "Stimuli" "Method_"
#[13] "Emotion" "Valence" "EERMean"
#[16] "EERSD" "EERRS" "Subtraction"
#[19] "Contrast" "Target" "Ref"
#[22] "Other" "Intrascan_cog" "x"
#[25] "y" "z" "zscore"
#[28] "tscore" "p_threshold" "pcorrection"
#[31] "Region" "Notes" "SubjectiveWeights"
#[34] "Affect_focus" "Cog_load" "object_eval"
#[37] "feel_arousal" "phys_arous"
###Extracting Columns needed###
data1<-data[,c("x","y","z","Study","Contrast")]
colnames(data1)<-c("X","Y","Z","pub","sub_study")
data1[,1:3]<-data1[,1:3]/10
n<-nrow(data1)
nn<-length(unique(data1$sub_study))
cluster <- as.numeric(c(rep(1,n)))
a_ij <- c(rep(6.5,n))
phi_X <- c(rep(mean(data1[,1], na.rm=FALSE),n))
phi_Y <- c(rep(mean(data1[,2], na.rm=FALSE),n))
phi_Z <- c(rep(mean(data1[,3], na.rm=FALSE),n))
X_0 <- median(data1[,1]-phi_X, na.rm=FALSE)
Y_0 <- median(data1[,2]-phi_Y, na.rm=FALSE)
Z_0 <- median(data1[,3]-phi_Z, na.rm=FALSE)
c_0 <- as.numeric(t(c(X_0,Y_0,Z_0)))
phi_Px <- c(rep(0,n))
phi_Py <- c(rep(0,n))
phi_Pz <- c(rep(0,n))
study <- as.numeric(c(rep(1,n)))
study.indicator<-NULL
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for(ss in unique(data1$sub_study)){
study.indicator<-c(study.indicator,match(ss,data1$sub_study))}
sub.study.indicator<-c(rep(0,n))
sub.study.indicator[study.indicator]<-1
data <- data.frame(data1,study,cluster,phi_X,phi_Y,phi_Z,a_ij,phi_Px,
phi_Py,phi_Pz,sub.study.indicator)
colnames(data)<-c("X","Y","Z","pub","sub_study","study","cluster",
"phi_X","phi_Y","phi_Z","a_ij","phi_Px","phi_Py","phi_Pz","indicator")
##Functions##
#Log-Likehihood - All Subjects#
likelihood_inter <- function(a){

vec<-cbind((data$X-data$phi_Px -data$phi_X),
(data$Y-data$phi_Py -data$phi_Y),(data$Z-data$phi_Pz -data$phi_Z))
distance5 <- sqrt(diag(vec%*%t(vec)))
kernel5 <- data$a_ij*exp(-(distance5*distance5)/rho)
all_sum_ind5 <- -(sum(exp(kernel5))/n) + sum(kernel5)

return(all_sum_ind5)
}
#Log-Likelihood - Individuals#
likelihood_I <- function(a,b,c,d){

vec<-c((data$X[i]-data$phi_Px[i]-a),(data$Y[i]-data$phi_Py[i]-b),
(data$Z[i]-data$phi_Pz[i]-c))
distance1 <- sqrt(t(vec)%*% vec)
kernel1<-d*exp(-(distance1*distance1)/rho)
individual1 <- -exp(kernel1)/n + kernel1

return(individual1)
}
#Log-Likehihood - cluster effect - updated theta in cluster e#
likelihood_A <- function(a,b,c,d,e){

ind<-which(data$cluster==e)
vec<-cbind((data$X[ind]-data$phi_Px[ind]-a),
(data$Y[ind]-data$phi_Py[ind]-b),(data$Z[ind]-data$phi_Pz[ind]-c))
distance0 <- sqrt(diag(vec %*% t(vec)))
kernel0 <- d*exp(-(distance0*distance0)/rho)
individ.cluster<- -sum(exp(kernel0))/n + sum(kernel0)

return(individ.cluster)
}
#Log-Likelihood - Study Effect#
likelihood_P.new <- function(a,b,c){

ind<-which(data$sub_study==j)
vec<-cbind((data$X[ind]-a-data$phi_X[ind]),
(data$Y[ind]-b-data$phi_Y[ind]),
(data$Z[ind]-c-data$phi_Z[ind]))
distance1 <- sqrt(diag(vec %*% t(vec)))
study_dist1 <- data$a_ij[ind]*exp(-(distance1*distance1)/rho)
study.individ<- -sum(exp(study_dist1))/n + sum(study_dist1)

return(study.individ)
}
#Log-Likelihood - Study cluster - updated p in cluster e#
likelihood_P.all <- function(a,b,c,d){

ind<-which(data$study==d)
vec<-cbind((data$X[ind]-a-data$phi_X[ind]),
(data$Y[ind]-b-data$phi_Y[ind]),
(data$Z[ind]-c-data$phi_Z[ind]))
distance1 <- sqrt(diag(vec %*% t(vec)))
study_dist1 <- data$a_ij[ind]*exp(-(distance1*distance1)/rho)
study.cluster<- -sum(exp(study_dist1))/n + sum(study_dist1)

return(study.cluster)
}
##Parameters for Priors##
h1 <- 0.5
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m1 <- 0.5
I <- diag(3)
alpha_0 <- 0
sigma_a <- 25
m <- 7
mm <- 3
a.hyper<-1.1
b.hyper<-0.1
’%ni%’ <- Negate(’%in%’)
mu_mu<-c(0,0,0)
sigma_mu<-0.04
q<-2
l<-1
#####Algorithm#####
burn.in<-4000
working<-3000 + burn.in
final<-1000
nloops <-working+final
DIC<-loglike<-NULL
alpha_1<-0.5
alpha_2<-1.5
rho <- 1
limit<-0.15*abs(apply(data[,c("X","Y","Z")],2,max)-
apply(data[,c("X","Y","Z")],2,min))
mu_conditional<-matrix(c(0,0,0),nrow=nloops+1,ncol=3)
sigma_conditional<-rep(1,nloops+1)
sigma2_conditional<-rep(1,nloops+1)
cluster_matrix <- matrix(0,ncol=n, nrow=n)
median.obs<-c(median(data$X),median(data$Y),median(data$Z))
lower<-c(min(data$X),min(data$Y),min(data$Z))
upper<-c(max(data$X),max(data$Y),max(data$Z))
ls.cluster<-1000000000000000
Dev<-NULL
off = TRUE
combo<-data.frame(matrix(NA,nrow=m,ncol=5))
colnames(combo)<-c("phi_X","phi_Y","phi_Z","a_ij","Freq")
rownames(combo) <- c("Aux1","Aux2","Aux3","Aux4","Aux5","Aux6","Aux7")
combo2<-matrix(NA,nrow=m,ncol=3)
colnames(combo2)<-c("phi_X","phi_Y","phi_Z")
combo3<-matrix(NA,nrow=m,ncol=4)
colnames(combo3)<-c("phi_Px","phi_Py","phi_Pz","Freq")
rownames(combo) <- rownames(combo2)<-rownames(combo3)<-c("Aux1","Aux2",

"Aux3","Aux4","Aux5","Aux6","Aux7")
########Algorithm#######
for (x in 1:nloops){
###Individual Clustering###
data.individual<-as.matrix(cbind(data$X-data$phi_Px,data$Y-data$phi_Py,
data$Z-data$phi_Pz))
cluster.current<-data.frame(cbind(do.call("rbind",
as.list(by(data[,c("phi_X","phi_Y","phi_Z","a_ij")],
data$cluster,tail,n=1))),table(data$cluster)))[,-5]
for (i in 1:n){
#Updating cluster probabilities
if(any(cluster.current$Freq==0)==TRUE){
cluster.current=cluster.current[-which(cluster.current$Freq==0),]
}
remove<-which(rownames(cluster.current) == data$cluster[i])
cluster.current[remove,5]<-cluster.current[remove,5]-1
phi_A <- matrix(rtmvnorm(1,median.obs, sigma2_conditional[x]*I,
lower=lower,upper=upper), ncol=3,nrow=1)

combo[c(1,2,4),1]<-data$phi_X[i]
combo[c(3,5,6,7),1]<-phi_A[1,1]

combo[c(1,3,5),2]<-data$phi_Y[i]
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combo[c(2,4,6,7),2]<-phi_A[1,2]
combo[c(2,3,6),3]<-data$phi_Z[i]
combo[c(1,4,5,7),3]<-phi_A[1,3]
combo[,4]<- data$a_ij[i]
combo[,5]<-(alpha_2/m)

cluster.aux<-data.frame(rbind(cluster.current,combo))
max.cluster<-eval(1+max(data$cluster))

matrix.temp<-as.matrix(matrix(rep(data.individual[i,],
nrow(cluster.aux)),nrow=nrow(cluster.aux),byrow=T)
-cluster.aux[,-c(4:5)])

distance1<-sqrt(diag(matrix.temp%*%t(matrix.temp)))
kernel1<-cluster.aux[,4]*exp(-{distance1*distance1}/rho)
prob<-log(cluster.aux[,5])+{-exp(kernel1)/n + kernel1}
max<-max(prob)
new_cluster <- rmultinom(1, 1, exp(prob-max))
inds = which(new_cluster == max(new_cluster), arr.ind=TRUE)
cluster_name = rownames(new_cluster)[inds[,1]]
rnames = rownames(new_cluster)[inds[,1]]

ind<-which(rownames(cluster.aux) == rnames)
data$phi_X[i] <- cluster.aux[ind,1]
data$phi_Y[i] <- cluster.aux[ind,2]
data$phi_Z[i] <- cluster.aux[ind,3]
data$a_ij[i] <- cluster.aux[ind,4]

if(ind %ni% (nrow(cluster.aux)-6):nrow(cluster.aux)){
data$cluster[i] <- as.numeric(rnames);
cluster.current[ind,5]<-cluster.current[ind,5]+1

}else{
rownames(cluster.aux)[ind]<-data$cluster[i]<-max.cluster;
cluster.aux[ind,5]<-1;
cluster.current<-rbind(cluster.current,cluster.aux[ind,]);
rownames(cluster.current)<-c(rownames(cluster.current)[

-nrow(cluster.current)],data$cluster[i])
}
} #end of individual cluster loop

###Updating theta for each cluster###
for(d in unique(data$cluster)){

cluster.X <- data$phi_X[data$cluster==d]
cluster.Y <- data$phi_Y[data$cluster==d]
cluster.Z <- data$phi_Z[data$cluster==d]
cluster.a <- data$a_ij[data$cluster==d]
theta_MH<- as.numeric(cluster.current[{rownames(cluster.current)==d},
1:3])

cand.sd2 <- 0.005
can.theta <- rtmvnorm(1,theta_MH, cand.sd2*I,lower=lower,
upper=upper)

combo2[c(1,2,4),1]<-theta_MH[1]
combo2[c(3,5,6,7),1]<-can.theta[1]
combo2[c(1,3,5),2]<-theta_MH[2]
combo2[c(2,4,6,7),2]<-can.theta[2]
combo2[c(2,3,6),3]<-theta_MH[3]
combo2[c(1,4,5,7),3]<-can.theta[3]
pcan.max<-apply(combo2,1,function(y) log(dtmvnorm(c(y[1],y[2],y[3]),
c_0,sigma2_conditional[x]*I,lower=lower,upper=upper))
+likelihood_A(y[1],y[2],y[3],cluster.a,d))
pcan.ind<-which(pcan.max == max(pcan.max))
if(length(pcan.ind) > 1 && pcan.max[pcan.ind][1] == ’Inf’){
pcan.like<-sample(pcan.ind,1)
pcan.ind<-pcan.like

}
pcur2 <-likelihood_A(theta_MH[1],theta_MH[2],theta_MH[3],cluster.a,d)+

log(dtmvnorm(c(theta_MH[1],theta_MH[2],theta_MH[3]), c_0,
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sigma2_conditional[x]*I,lower=lower,upper=upper))
jcan2<-log(dtmvnorm(combo2[pcan.ind,],theta_MH, cand.sd2*I,
lower=lower,upper=upper))
jcur2<-log(dtmvnorm(theta_MH,combo2[pcan.ind,], cand.sd2*I,
lower=lower,upper=upper))
min<-pcan.max[pcan.ind]-pcur2+jcur2-jcan2
if(log(runif(1))<=min){data$phi_X[data$cluster==d]<-combo2[pcan.ind,

1]
data$phi_Y[data$cluster==d]<-combo2[pcan.ind,2]
data$phi_Z[data$cluster==d]<-combo2[pcan.ind,3]

}else{data$phi_X[data$cluster==d]<-theta_MH[1]
data$phi_Y[data$cluster==d]<-theta_MH[2]

data$phi_Z[data$cluster==d]<-theta_MH[3]
}

}#end up updating theta
###Updating A_ij after each loop###
MH.iter2<-100
c <- 0
for(d in unique(data$cluster)){

c <- c+1
a_ij_MH2<- 0
cluster.X <- data$phi_X[data$cluster==d]
cluster.Y <- data$phi_Y[data$cluster==d]
cluster.Z <- data$phi_Z[data$cluster==d]

for (p in 1:MH.iter2){
cand.sd2 <- 2
can2 <- rnorm(1,a_ij_MH2[p], cand.sd2)

pcan2<-likelihood_A(cluster.X[1],cluster.Y[1],cluster.Z[1],can2,d)
+log(dnorm(can2, 0, sigma_a))

pcur2<-likelihood_A(cluster.X[1],cluster.Y[1],cluster.Z[1],a_ij_MH2[p],d)
+log(dnorm(a_ij_MH2[p], 0, sigma_a))

compare<-(pcan2-pcur2)
if (log(runif(1)) <= compare){

a_ij_MH2 <- c(a_ij_MH2,can2)
}else{

a_ij_MH2 <- c(a_ij_MH2,a_ij_MH2[p])
}
}

data$a_ij[data$cluster == d] <- mean(a_ij_MH2[MH.iter2-50:MH.iter2])
}#end updating a_ij
###Sigma_2 full conditional posterior###
vec<- cbind((data$phi_X-median.obs[1]),(data$phi_Y-median.obs[2]),
(data$phi_Z-median.obs[3]))
distance3 <-sum(diag(vec%*%t(vec)))+1
sigma2_conditional[x+1]<-rigamma(1,(n+1)/2 , 0.5*distance3)
###Study Clustering###
cluster.current2<-data.frame(cbind(do.call("rbind",
as.list(by(data[,c("phi_Px","phi_Py","phi_Pz")],data$study,tail,n=1))),
table(data$study[data$indicator==1])))[,-4]
for (j in unique(data$sub_study)){
if(any(cluster.current2$Freq==0)==TRUE){

cluster.current2=cluster.current2[-which(cluster.current2$Freq==0),]
}
remove<-which(rownames(cluster.current2)==unique(data$study[
data$sub_study==j]))
cluster.current2[remove,4]<-cluster.current2[remove,4]-1
phi_A2 <- rtmvnorm(1,c(mu_conditional[x,]), sigma_conditional[x]*diag(3),

lower=-limit,upper=limit)
combo3[c(1,2,4),1]<-data$phi_Px[data$sub_study==j&data$indicator==1]
combo3[c(3,5,6,7),1]<-phi_A2[1,1]
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combo3[c(1,3,5),2]<-data$phi_Py[data$sub_study==j&data$indicator==1]
combo3[c(2,4,6,7),2]<-phi_A2[1,2]
combo3[c(2,3,6),3]<-data$phi_Pz[data$sub_study==j&data$indicator==1]
combo3[c(1,4,5,7),3]<-phi_A2[1,3]

combo3[,4]<-(alpha_1/mm)
cluster.aux<-data.frame(rbind(cluster.current2,combo3))
max.study<-eval(1+max(data$study))

prob2<-apply(cluster.aux,1,function(x)
log(x[4])+likelihood_P.new(x[1],x[2],x[3]))

max<-max(prob2)
new_cluster <- rmultinom(1, 1, exp(prob2-max))
rownames(new_cluster) = names(prob2)
inds = which(new_cluster == max(new_cluster), arr.ind=TRUE)
rnames = rownames(new_cluster)[inds[,1]]
ind<-which(rownames(cluster.aux) == rnames)
data$phi_Px[data$sub_study==j] <- cluster.aux[ind,1]
data$phi_Py[data$sub_study==j] <- cluster.aux[ind,2]
data$phi_Pz[data$sub_study==j] <- cluster.aux[ind,3]

if(ind %ni% (nrow(cluster.aux)-6):nrow(cluster.aux)){
data$study[data$sub_study==j] <- as.numeric(rnames);
cluster.current2[ind,4]<-cluster.current2[ind,4]+1

}else{
rownames(cluster.aux)[ind]<-data$study[data$sub_study==j]<-max.study;
cluster.aux[ind,4]<-1;
cluster.current2<-rbind(cluster.current2,cluster.aux[ind,])

}
} #end of loop for study
###Updating p_i for each cluster###
for(d in unique(data$study)){

cluster.p <- data[data$study==d,c("phi_Px","phi_Py","phi_Pz")][1,]
theta_MH2<- as.numeric(cluster.p)
cand.sd2 <- 0.005
can.theta2 <- rtmvnorm(1,theta_MH2, cand.sd2*I, lower=-limit

,upper=limit)
combo2[c(1,2,4),1]<-theta_MH2[1]
combo2[c(3,5,6,7),1]<-can.theta2[1]
combo2[c(1,3,5),2]<-theta_MH2[2]
combo2[c(2,4,6,7),2]<-can.theta2[2]
combo2[c(2,3,6),3]<-theta_MH2[3]
combo2[c(1,4,5,7),3]<-can.theta2[3]
pcan.max<-apply(combo,1,function(y) log(dtmvnorm(c(y[1],y[2],y[3]),
mu_conditional[x,],sigma_conditional[x]*I,lower=-limit,upper=limit))
+likelihood_P.all(y[1],y[2],y[3],d))
pcan.ind<-which(pcan.max == max(pcan.max))
if(length(pcan.ind) > 1 && pcan.max[pcan.ind][1] == ’Inf’||
pcan.max[pcan.ind][1] == ’-Inf’){pcan.like<-sample(pcan.ind,1)

pcan.ind<-pcan.like}
pcur2 <-likelihood_P.all(theta_MH2[1],theta_MH2[2],theta_MH2[3],d)

+log(dtmvnorm(c(theta_MH2[1],theta_MH2[2],theta_MH2[3]),
mu_conditional[x,],
sigma_conditional[x]*I,lower=-limit,upper=limit))
jcan2<-log(dtmvnorm(combo2[pcan.ind,],theta_MH2, cand.sd2*I,
lower=-limit,upper=limit))
jcur2<-log(dtmvnorm(theta_MH2,combo2[pcan.ind,], cand.sd2*I,
lower=-limit,upper=limit))
min<-pcan.max[pcan.ind]-pcur2+jcur2-jcan2

if(log(runif(1))<=min){data$phi_Px[data$study==d]<-combo2[pcan.ind,1]
data$phi_Py[data$study==d]<-combo2[pcan.ind,2]
data$phi_Pz[data$study==d]<-combo2[pcan.ind,3]

}else{
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data$phi_Px[data$study==d]<-theta_MH2[1]
data$phi_Py[data$study==d]<-theta_MH2[2]

data$phi_Pz[data$study==d]<-theta_MH2[3]
}

}#end updating p_i
###Mu Full Conditional Posterior - Study effect###
study.temp<-data[data$indicator == 1,c("phi_Px","phi_Py","phi_Pz")]
mean.study <- colSums(study.temp)/nn
mu_hyper<-rtmvnorm(1,1/(nn*(1/sigma_conditional[x])

+(1/sigma_mu))*(nn*(1/sigma_conditional[x])*mean.study
+(1/sigma_mu)*mu_mu),solve((nn*(1/sigma_conditional[x])
+(1/sigma_mu))*I),lower=-limit,upper=limit)

mu_conditional[x+1,] <- mu_hyper
###Sigma Full Conditional Posterior - Study effect###
vec<-as.matrix(study.temp - mu_conditional[x+1,])
distance4 <- sum(diag(vec %*% t(vec)))
sigma_conditional[x+1] <- rigamma(1,((nn/2) + q) , 0.5*distance4 + l)
###least squares clustering###
#Updating clustering indicator Matrix#
if(x >= burn.in & x < working){

for(ind in unique(data$cluster)){
matrix_indicator<-which(data$cluster == ind)
cluster_matrix[matrix_indicator,matrix_indicator] <-

cluster_matrix[matrix_indicator,matrix_indicator] + 1
}

}
#Calculating the average probability matrix at the#
#last Wth or working iteration#
if(x == working){

cluster_average<-cluster_matrix/{x-burn.in}
best.distance=10000000

}
#F or final iterations#
if(x >= working){

cluster_matrix.temp<-matrix(0,nrow=n,ncol=n)
for(ind in unique(data$cluster)){
matrix_indicator<-which(data$cluster == ind)
cluster_matrix.temp[matrix_indicator,matrix_indicator]<-
cluster_matrix.temp[matrix_indicator,matrix_indicator]+1

}
ls.distance<-sum({cluster_matrix.temp-cluster_average}

*{cluster_matrix.temp-cluster_average})
if(ls.distance <= best.distance){

best.distance<-ls.distance
cluster.data<-data
updated.run<-x

}
}
#DIC Calculations#
if(x > burn.in){Dev<- c(Dev,-2*likelihood_inter(0))}
cat(alpha_1," ",alpha_2," ",x," ","\n")
} #end of program
data<-cluster.data
#DIC<-2*(median(Dev))-Dev[(length(Dev))]
#DIC2<-2*(mean(Dev))-Dev[(length(Dev))]
DIC<-2*(median(Dev))-Dev[(updated.run-burn.in)]
DIC2<-2*(mean(Dev))-Dev[(updated.run-burn.in)]
loglike<-likelihood_inter(0)
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Appendix B

R code for multivariate normal mixture model
%\begin{lstlisting}
library(MASS)
library(pscl)
library(cluster)
library(stats)
library(mvtnorm)
library(MCMCpack)
library(msm)
library(tmvtnorm)
data<-read.csv(’C:\\Users\\Meredith\\Documents\\USC\\Dissertation\\Data\\
meta061106.JianKangcopy.csv’,header=T)
n<-500
nn<-50
set.seed(1)
#Cluster 1 - mu1.c = 1#
c1s1<-matrix((mvrnorm(75, c(1,1,1), diag(3)* .002)),75,3)
c1s2<-matrix((mvrnorm(75, c(1,1,1), diag(3)* .002)),75,3)
#Cluster 2 - mu2.c = 20#
c2s1<-matrix((mvrnorm(75, c(2,2,2), diag(3)* .002)),75,3)
c2s2<-matrix((mvrnorm(75, c(2,2,2), diag(3)* .002)),75,3)
#Cluster 3 - mu3.c = 50#
c3s1<-matrix((mvrnorm(100, c(4,4,4), diag(3)* .002)),100,3)
c3s2<-matrix((mvrnorm(100, c(4,4,4), diag(3)* .002)),100,3)
a<-rep(1:25, each=10)
b<- rep(26:50, each = 10)
s1 <- sample(a, 250, replace = FALSE, prob = NULL)
s2 <- sample(b, 250, replace = FALSE, prob = NULL)
study_1 <- rbind(c1s1,c2s1,c3s1)+0.4
study_2 <- rbind(c1s2,c2s2,c3s2)+0.1
#Combining to creat complete simulated dataset#
data1<-rbind(study_1, study_2) #removed rescaling data down by 1000
means<-colMeans(data1)
phi_Px <- data1[,1]*.05
phi_Py <- data1[,2]*.05
phi_Pz <- data1[,3]*.05
phi_X <- data1[,1]-phi_Px
phi_Y <- data1[,2]-phi_Py
phi_Z <- data1[,3]-phi_Pz
study.ori <- as.numeric(c(rep(1,250),rep(2,250)))
study <- c(s1,s2)
#study <- as.numeric(c(rep(1,n)))
sub_study <- c(s1,s2)
study.indicator<-NULL
for(ss in 1:50){
phi_Px[sub_study==ss] <- mean(phi_Px[sub_study==ss])
phi_Py[sub_study==ss] <- mean(phi_Py[sub_study==ss])
phi_Pz[sub_study==ss] <- mean(phi_Pz[sub_study==ss])
study.indicator<-c(study.indicator,match(ss,sub_study))}
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sub.study.indicator<-c(rep(0,n))
sub.study.indicator[study.indicator]<-1
original <- c(rep(1,75),rep(2,75),rep(3,100),rep(1,75),rep(2,75),rep(3,100))
cluster <- as.numeric(c(rep(1,n)))
mu_X <- rep(0,n)
mu_Y <- rep(0,n)
mu_Z <- rep(0,n)
X_0 <- median(data1[,1], na.rm=FALSE)
Y_0 <- median(data1[,2], na.rm=FALSE)
Z_0 <- median(data1[,3], na.rm=FALSE)
c_0 <- t(c(X_0,Y_0,Z_0))
sig_X <- rep(1,n)
sig_Y <- rep(1,n)
sig_Z <- rep(1,n)
cluster_e<-1:500
pi <-c(rep(1,n))
obs<-1:n
data.full <- data.frame(data1,study.ori,study, sub_study,original,
cluster,phi_Px, phi_Py, phi_Pz, sig_X,sig_Y,sig_Z,mu_X,mu_Y,mu_Z,
sub.study.indicator, pi,obs,phi_X,phi_Y,phi_Z,cluster_e)
colnames(data.full)<-c("X","Y","Z","study_ori","study","sub_study",
"original","cluster","phi_Px","phi_Py","phi_Pz","sig_X", "sig_Y","sig_Z",
"mu_X","mu_Y","mu_Z","indicator","pi","obs","phi_X","phi_Y","phi_Z",
"cluster_e")
data<-data.full
#############Functions Needed##############
###Total Model###
###Compartment Death Probabilities###
comp.prob <- function(b){
death.comp<-NULL
param.temp<-data.frame(cbind(do.call("rbind", as.list(by(
data[,c("cluster","pi","mu_X","mu_Y","mu_Z","sig_X","sig_Y","sig_Z",
"phi_X","phi_Y","phi_Z")],
data$cluster,tail,n=1))),table(data$cluster)))
clus<-length(unique(data$cluster))
probs<-matrix(0,nrow=nrow(data),ncol=clus)
for(k in 1:clus){

probs[,k]<-apply(as.matrix(data[,c("phi_X","phi_Y","phi_Z","cluster",
"cluster_e")]),1,function (x)

(alpha1/(alpha1+as.numeric(param.temp[k,13])))*
dmvnorm(x[1:3],as.numeric(param.temp[k,3:5]),

(as.numeric(param.temp[k,6:8])*diag(3)))
+(as.numeric(length(data$cluster_e[data$cluster==param.temp[k,1]&

data$cluster_e == x[5]]))/(alpha1+as.numeric(param.temp[k,13]))))
}

for(miss in 1:clus){
full.temp<-probs%*%param.temp[,2]
partial.pi<-(param.temp[,2]/(1-param.temp[miss,2]))
partial.pi[miss]<-0
partial.temp<-probs%*%partial.pi
temp<-prod(partial.temp/full.temp)
death.comp<-c(death.comp,(b/lambda)*temp)

}
return(death.comp)

}
###Birth/Death Decision###
bd.decision <- function(b,d){
if(any(d==’Inf’)==TRUE){prob.dec<-c(0,1)
}else{prob.dec<-c(b/(b+sum(d)), sum(d)/(b+sum(d)))}
new_cluster<-rmultinom(1, 1, prob.dec)
rownames(new_cluster) = c(’birth’,’death’)
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inds = which(new_cluster == max(new_cluster), arr.ind=TRUE)
rnames = rownames(new_cluster)[inds[,1]]
return(rnames)
}
###Compartment Death Decision###
comp.decision <- function(d){
if(any(d==’Inf’)==TRUE){prob.death<-rep(0,length(d));
prob.death[which(d==’Inf’)]<-1
}else{prob.death<-c(d/sum(d))}
new_cluster<-rmultinom(1, 1, prob.death)
rownames(new_cluster) = c(sort(unique(data$cluster)))
inds = which(new_cluster == max(new_cluster), arr.ind=TRUE)
rnames = rownames(new_cluster)[inds[,1]]
return(rnames)
}
#phi likelihood update#
likelihood_phi<-function(a,b,c,d){
temp.data<-data[which(data$cluster_e == d),]
ni<-length(which(data$cluster == temp.data[1,8]))
like<-apply(temp.data,1,function (x) dmvnorm(x[1:3],x[9:11]
+c(a,b,c),x[12:14]*I))
prior<-(alpha1/(alpha1+ni))*dmvnorm(c(a,b,c),
as.numeric(temp.data[15:17][1,]),as.numeric(temp.data[12:14][1,])*I)
+(nrow(temp.data)/(alpha1+ni))
output=list(like=like,prior=prior)
output
}
#Study likelihood#
study.like<-function(a,b,c,d){
temp.study<-data[data$sub_study==a,c("X","Y","Z","phi_X","phi_Y","phi_Z")]
study.out<-apply(temp.study,1,function(x) dmvnorm(c(x[1:3]),
c(x[4:6]+c(b,c,d)),sig_S[ii]*diag(3)))
return(prod(study.out))
}
#Least Squares Clustering#
l.s<-function(a,b){
sub.matrix<- ((a-b)*(a-b))
row.matrix<-rowSums(sub.matrix)
sum(row.matrix)
}
########Inital Rates/Hyperpriors########
n<-nrow(data) #number of foci
nn<-length(unique(data$sub_study)) #number of sub-studies
kappa<-matrix(c(1/((max(data$X)-min(data$X))^2),0, 0, 0,
1/((max(data$Y)-min(data$Y))^2),0,0,0,1/((max(data$Z)-min(data$Z))^2)),
byrow=T,ncol=3)
xi<-c(median(data$X),median(data$Y),median(data$Z))
lambda.b<-0.0002 #some small constant(constant)
lambda<-lambda.b
m<-7 #auxiliary parameters for Neal’s algorithm###
mm<-3
n<-nrow(data) #number of individual
nn<-length(unique(data$sub_study)) #number of sub-studies
I=diag(3)
alpha<-0.5 #for study effect
alpha1<-2 #for individual cluster
’%ni%’ <- Negate(’%in%’)
aa<-0.5 ###hyperpriors for sigma for S, observed values###
bb<-0.5 ##################################################
sig_S<- 5 #initial value for sigma for S, all observed values
#########Individual Base Distribution Parameters############
g<-20 ####hyperpriors for sigma for base distributions###
h<-0.5 ###################################################
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#############Study Effect Parameters#################
mu_mu<-c(0,0,0) ###hyperprior parameters for mu for study effect###
#sigma_mu<-0.04 ###################################################
sigma_mu<-0.1 ###################################################
q<-3 ###hyperprior parameters for sigma for study effect###
l<-0.5 ######################################################
mu_conditional<-matrix(c(0,0,0),nrow=1,ncol=3)
sigma_conditional<-0.1
limit<-0.15*abs(apply(data[,c("X","Y","Z")],2,max)-
apply(data[,c("X","Y","Z")],2,min))
burn.in<-300
working<-100 + burn.in
final<-100
#burn.in<-800
#working<-400 + burn.in
#final<-100
nloops<-working+final
Dev<-log.like<-rep(NA,nloops+1)
DIC<-full.like<-NULL
cluster_matrix <- matrix(0,ncol=n, nrow=n)
ls.cluster<-1000000000000000
off=FALSE
time=1
combo<-data.frame(matrix(NA,nrow=m,ncol=4))
colnames(combo)<-c("phi_X","phi_Y","phi_Z","Freq")
rownames(combo) <- c("Aux1","Aux2","Aux3","Aux4","Aux5","Aux6","Aux7")
combo3<-matrix(NA,nrow=m,ncol=4)
colnames(combo3)<-c("phi_Px","phi_Py","phi_Pz","Freq")
rownames(combo) <- c("Aux1","Aux2","Aux3","Aux4","Aux5","Aux6","Aux7")
rownames(combo3)<-c("Aux1","Aux2","Aux3","Aux4","Aux5","Aux6","Aux7")
for (ii in 1:nloops){

if(length(unique(data$cluster))== 1){decision = ’birth’
d.rate=0}else{
d.rate<-comp.prob(lambda.b)
decision<-bd.decision(lambda.b,d.rate)
}
jump<-rexp(1,rate=(lambda.b+sum(d.rate)))
if(jump < 1){jump <- 1}else{jump<-ceiling(jump)}
time<-ii+1

#If Birth, sample new pi,mu, and sigma#
if(decision == ’birth’){

k<-length(unique(data$cluster))
y1<-rgamma(1,1,1)
y2<-rgamma(1,k,1)
new.pi<- y1/(y1+y2)
data$pi<-data$pi*(1-new.pi)

new.mu<-rtmvnorm(1,mean=xi,sigma=solve(kappa),lower=c(min(data$X),
min(data$Y),min(data$Z)),upper=c(max(data$X),max(data$Y),max(data$Z)))

new.sig<-rigamma(3,g,h)
new.phi<-rmvnorm(1,new.mu,new.sig*I)

}
#If Death, pick which cluster is removed#
if(decision == ’death’){

cluster.dead<-as.numeric(comp.decision(d.rate))
old.pi<-data$pi[which(data$cluster == cluster.dead)][1]
data$pi<-data$pi/(1-old.pi)

}
#Updaing individual clustering labeling, Z#
param.temp<-cbind(do.call("rbind", as.list(by(data[,
c("cluster","pi","mu_X","mu_Y","mu_Z","sig_X","sig_Y","sig_Z")],
data$cluster,tail,n=1))))
if(decision == ’death’){param.temp<-param.temp[-which(
param.temp$cluster == cluster.dead),]}
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if(decision == ’birth’){param.temp<-rbind(param.temp,
c(max(data$cluster)+1,new.pi,new.mu,new.sig,new.phi))}
for(j in 1:n){

if(nrow(param.temp) > 1){
individ.prob<-apply(param.temp,1,function (x) as.numeric(x[2])*
((alpha1/(alpha1+nrow(data[data$cluster ==x[1],])))*
dmvnorm(c(data$phi_X[j],data$phi_Y[j],data$phi_Z[j]),
c(as.numeric(x[3]),as.numeric(x[4]),as.numeric(x[5])),
(c(as.numeric(x[6]),as.numeric(x[7]),as.numeric(x[8]))*diag(3)))
+(1/(alpha1+nrow(data[data$cluster ==x[1],])))*
(length(data$cluster_e[which(data$cluster == x[1] &

data$cluster_e == data$cluster_e[j])]))))
}else{individ.prob<-1}
zj<-rmultinom(1,1,individ.prob)
zj.row<-which(zj == max(zj), arr.ind=TRUE)[1]
data$cluster[j]<-param.temp$cluster[zj.row]
data$pi[j]<-param.temp$pi[zj.row]
data$mu_X[j]<-param.temp$mu_X[zj.row]
data$mu_Y[j]<-param.temp$mu_Y[zj.row]
data$mu_Z[j]<-param.temp$mu_Z[zj.row]
data$sig_X[j]<-param.temp$sig_X[zj.row]
data$sig_Y[j]<-param.temp$sig_Y[zj.row]
data$sig_Z[j]<-param.temp$sig_Z[zj.row]

}
#Updating each cluster’s mixing proportion, pi#
total.clusters<-sort(unique(data$cluster))
if(length(total.clusters)>= 2){

clus.loc<-0
alpha.test<-c(apply(table(data$cluster),1,max))
pi_conditional<-rdirichlet(1, alpha.test+1)

}else{clus.loc<-0
pi_conditional<-1}

loc<-0
for(u in total.clusters){

loc<-loc+1
data$pi[which(data$cluster == u)]<-pi_conditional[loc]

}
###############
for(ee in unique(data$cluster)){

nni<-which(data$cluster == ee)
ni<-length(nni)
mu.temp<-c(data$mu_X[nni][1],data$mu_Y[nni][1],data$mu_Z[nni][1])
sigma.temp<-c(data$sig_X[nni][1],data$sig_Y[nni][1],data$sig_Z[nni][1])
cluster.current<-data.frame(cbind(do.call("rbind",

as.list(by(data[data$cluster==ee,c("phi_X","phi_Y","phi_Z")],
data$cluster_e[data$cluster==ee],tail,n=1))),
table(data$cluster_e[data$cluster==ee])))[,-4]
for(e in nni){

if(any(cluster.current$Freq==0)==TRUE){cluster.current=
cluster.current[-which(cluster.current$Freq==0),]}

remove<-which(rownames(cluster.current)==unique(data$cluster_e[e]))
cluster.current[remove,4]<-cluster.current[remove,4]-1
phi_A <-rmvnorm(1,mu.temp,sigma.temp*I)

combo[c(1,2,4),1]<-data$phi_X[e]
combo[c(3,5,6,7),1]<-phi_A[1,1]
combo[c(1,3,5),2]<-data$phi_Y[e]
combo[c(2,4,6,7),2]<-phi_A[1,2]
combo[c(2,3,6),3]<-data$phi_Z[e]
combo[c(1,4,5,7),3]<-phi_A[1,3]
combo[,4]<-(alpha1/m)
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cluster.aux<-data.frame(rbind(cluster.current,combo))
max.cluster<-eval(1+max(data$cluster_e))
prob<-apply(cluster.aux,1,function(x) x[4]*
dmvnorm(c(data$X[e],data$Y[e],data$Z[e]),
c(data$phi_Px[e],data$phi_Py[e],data$phi_Pz[e])
+c(x[1],x[2],x[3]),sig_S[ii]*I))
new_cluster <- rmultinom(1, 1, {(prob)/sum(prob)})
rownames(new_cluster) = names(prob)
inds = which(new_cluster == max(new_cluster), arr.ind=TRUE)
rnames = rownames(new_cluster)[inds[,1]]
ind<-which(rownames(cluster.aux) == rnames)
data$phi_X[e] <- cluster.aux[ind,1]
data$phi_Y[e] <- cluster.aux[ind,2]
data$phi_Z[e] <- cluster.aux[ind,3]
if(ind %ni% (nrow(cluster.aux)-6):nrow(cluster.aux)){

data$cluster_e[e] <- as.numeric(rnames);
cluster.current[ind,4]<-cluster.current[ind,4]+1

}else{
rownames(cluster.aux)[ind]<-data$cluster_e[e]<-max.cluster;
cluster.aux[ind,4]<-1;
cluster.current<-rbind(cluster.current,cluster.aux[ind,])
}

} #end of single cluster
#Updating phi_rj within each cluster_e after assignment#

for(gg in unique(data$cluster_e[nni])){
phi.temp<-data[which(data$cluster_e == gg & data$cluster==ee),]

mean.obs<-apply(phi.temp[,c("X","Y","Z")] -
phi.temp[,c("phi_Px","phi_Py","phi_Pz")],2,mean)

new.phi<-rmvnorm(1,as.numeric(solve(nrow(phi.temp)*
solve(sig_S[ii]*I)+solve(sigma.temp*I))%*%
(nrow(phi.temp)*solve(sig_S[ii]*I)%*%mean.obs
+ solve(sigma.temp*I)%*%mu.temp)),
solve(nrow(phi.temp)*solve(sig_S[ii]*I)+solve(sigma.temp*I))*I)

data$phi_X[data$cluster_e == gg & data$cluster==ee]<-new.phi[1]
data$phi_Y[data$cluster_e == gg & data$cluster==ee]<-new.phi[2]
data$phi_Z[data$cluster_e == gg & data$cluster==ee]<-new.phi[3]

} #end of phi_rj update
#Updating mu and sigma within each cluster#
#mu conditional#
mu.temp.conditional<-rmvnorm(1,solve(solve(kappa)+ni*
solve(sigma.temp*I))%*%(solve(kappa)%*%xi+ni*solve(sigma.temp*I)%*%
c(mean(data$phi_X[nni]),mean(data$phi_Y[nni]),mean(data$phi_Z[nni]))),
solve(solve(kappa)+ni*solve(sigma.temp*I)))

data$mu_X[nni]<-mu.temp.conditional[1]
data$mu_Y[nni]<-mu.temp.conditional[2]
data$mu_Z[nni]<-mu.temp.conditional[3]
#sigma conditional#
distance3<-sum((sqrt((data$phi_X[nni]-mu.temp[1])*

(data$phi_X[nni]-mu.temp[1])+(data$phi_Y[nni]-mu.temp[2])*
(data$phi_Y[nni]-mu.temp[2])+(data$phi_Z[nni]-mu.temp[3])*
(data$phi_Z[nni]-mu.temp[3])))^2)

beta = 0.5*distance3
sigma.temp.conditional <- rigamma(3,(ni/2)+ g, beta + h)
data$sig_X[nni]<-sigma.temp.conditional[1]
data$sig_Y[nni]<-sigma.temp.conditional[2]
data$sig_Z[nni]<-sigma.temp.conditional[3]

} #end of all clusters
#Updating Study Effect p_r#
###Study Clustering###
cluster.current2<-data.frame(cbind(do.call("rbind",
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as.list(by(data[,c("phi_Px","phi_Py","phi_Pz")],data$study,tail,n=1))),
table(data$study[data$indicator==1])))[,-4]
for (r in unique(data$sub_study)){
if(any(cluster.current2$Freq==0)==TRUE){

cluster.current2=cluster.current2[-which(cluster.current2$Freq==0),]
}
remove<-which(rownames(cluster.current2) ==
unique(data$study[data$sub_study==r]))
cluster.current2[remove,4]<-cluster.current2[remove,4]-1
phi_A2 <- rtmvnorm(1,c(mu_conditional[ii,]), sigma_conditional[ii]*diag(3),

lower=-limit,upper=limit)
combo3[c(1,2,4),1]<-data$phi_Px[data$sub_study==r&data$indicator==1]
combo3[c(3,5,6,7),1]<-phi_A2[1,1]
combo3[c(1,3,5),2]<-data$phi_Py[data$sub_study==r&data$indicator==1]
combo3[c(2,4,6,7),2]<-phi_A2[1,2]
combo3[c(2,3,6),3]<-data$phi_Pz[data$sub_study==r&data$indicator==1]
combo3[c(1,4,5,7),3]<-phi_A2[1,3]
combo3[,4]<-(alpha/m)

cluster.aux<-data.frame(rbind(cluster.current2,combo3))
max.study<-eval(1+max(data$study))
prob2<-apply(cluster.aux,1,function(x) x[4]*

study.like(r,x[1],x[2],x[3]))
new_cluster <- rmultinom(1, 1, {(prob2)/sum(prob2)})
rownames(new_cluster) = names(prob2)
inds = which(new_cluster == max(new_cluster), arr.ind=TRUE)
rnames = rownames(new_cluster)[inds[,1]]
ind<-which(rownames(cluster.aux) == rnames)

data$phi_Px[data$sub_study==j] <- cluster.aux[ind,1]
data$phi_Py[data$sub_study==j] <- cluster.aux[ind,2]
data$phi_Pz[data$sub_study==j] <- cluster.aux[ind,3]

if(ind %ni% (nrow(cluster.aux)-6):nrow(cluster.aux)){
data$study[data$sub_study==r] <- as.numeric(rnames);
cluster.current2[ind,4]<-cluster.current2[ind,4]+1

}else{
rownames(cluster.aux)[ind]<-data$study[data$sub_study==r]<-max.study;
cluster.aux[ind,4]<-1;
cluster.current2<-rbind(cluster.current2,cluster.aux[ind,])
}

} #end of loop for study
#Updating each study’s parameter, pr#
for(d in unique(data$study)){

temp<-data[data$study == d,]
n.study<-length(unique(temp$sub_study))
mean.temp<-c(mean(temp$X-temp$phi_X),mean(temp$Y-temp$phi_Y),
mean(temp$Z-temp$phi_Z))

data[data$study == d, c("phi_Px","phi_Py","phi_Pz")]<-
matrix(rep(rtmvnorm(1,as.numeric(solve(n.study*solve(sig_S[ii]*I)
+solve(sigma_conditional[ii]*I))%*%(n.study*solve(sig_S[ii]*I)%*%
mean.temp+solve(sigma_conditional[ii]*I)%*%mu_conditional[ii,])),
solve(n.study*solve(sig_S[ii]*I)+solve(sigma_conditional[ii]*I)),
lower=-limit,upper=limit),each=nrow(temp)),nrow=nrow(temp),ncol=3)

}
#Mu Full Conditional Posterior
study.temp<-data[data$indicator == 1,c("phi_Px","phi_Py","phi_Pz")]
mean.study <- apply(study.temp,2,mean)
mu_hyper<-rmvnorm(1,solve(nn*solve(sigma_conditional[ii]*I)

+solve(sigma_mu*I))%*%(nn*solve(sigma_conditional[ii]*I)%*%mean.study
+solve(sigma_mu*I)%*%mu_mu),solve(nn*solve(sigma_conditional[ii]*I)
+solve(sigma_mu*I)))

mu_conditional <- rbind(mu_conditional,mu_hyper)
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#Sigma Full Conditional Posterior#
distance4 <- sum(diag(as.matrix(study.temp - mu_conditional[ii+1,])
%*% I %*% as.matrix(t(study.temp - mu_conditional[ii+1,]))))
beta2 = 0.5*distance4
sigma_conditional<-c(sigma_conditional,rigamma(1,((nn/2)+q),beta2+l))

#Updating Sigma for overall data#
distance5 <- 0.5*(sum(diag(as.matrix(data[,c("X","Y","Z")]
-data[,c("phi_Px","phi_Py","phi_Pz")]
-data[,c("phi_X","phi_Y","phi_Z")])%*%
I%*%t(as.matrix(data[,c("X","Y","Z")]
-data[,c("phi_Px","phi_Py","phi_Pz")]-
data[,c("phi_X","phi_Y","phi_Z")])))))

sig_S<-c(sig_S,rigamma(1,((n/2)+aa),distance5+bb))
###least squares clustering###
#Updating clustering indicator Matrix#
if(ii >= burn.in & ii < working){

for(ind in unique(data$cluster)){
matrix_indicator<-which(data$cluster == ind)
cluster_matrix[matrix_indicator,matrix_indicator] <-
cluster_matrix[matrix_indicator,matrix_indicator] + 1}

}
#Calculating the average probability matrix at the #
#last Wth or working iteration#
if(ii == working){

cluster_average<-cluster_matrix/{ii-burn.in}
best.distance<-10000000

}
#F or final iterations#
if(ii >= working){

cluster_matrix.temp<-matrix(0,nrow=n,ncol=n)
for(ind in unique(data$cluster)){
matrix_indicator<-which(data$cluster == ind)
cluster_matrix.temp[matrix_indicator,matrix_indicator] <-

cluster_matrix.temp[matrix_indicator,matrix_indicator] + 1
}

ls.distance<-sum((cluster_matrix.temp-cluster_average)*
(cluster_matrix.temp-cluster_average))

if(ls.distance <= best.distance){
best.distance<-ls.distance
cluster.data<-data
updated.run<-ii
}

#Loglikelihoods#
param.temp<-data.frame(cbind(do.call("rbind",

as.list(by(data[,c("cluster","pi","mu_X","mu_Y","mu_Z","sig_X",
"sig_Y","sig_Z","phi_X","phi_Y","phi_Z")],data$cluster,tail,n=1))),
table(data$cluster)))

clus<-length(unique(data$cluster))
probs<-matrix(0,nrow=nrow(data),ncol=clus)
for(k in 1:clus){
probs[,k]<-apply(as.matrix(data[,c("phi_X","phi_Y","phi_Z",

"cluster","cluster_e")]),1,function (x)
{alpha1/{alpha1+as.numeric(param.temp[k,13])}}*
dmvnorm(x[1:3],as.numeric(param.temp[k,3:5]),

(as.numeric(param.temp[k,6:8])*diag(3)))
+(as.numeric(length(data$cluster_e[data$cluster==param.temp[k,1]&

data$cluster_e == x[5]]))/(alpha1+as.numeric(param.temp[k,13]))))
}

full.like<-(probs%*%param.temp[,2])
log.like[ii]<-sum(log(full.like))

}
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#DIC Calculations#
if(ii > burn.in){Dev[ii]<--2*log.like[ii]}
} #end of loops
DIC<-mean(na.omit(Dev)) + {var(na.omit(Dev))/2}
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