
University of South Carolina
Scholar Commons

Theses and Dissertations

12-15-2014

Modeling Mussel Mortality: Investigating the
Importance of Swash and the Potential
Implications of Changing Wave Environments
Shadow Leigh Gulledge
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Earth Sciences Commons, and the Environmental Sciences Commons

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Recommended Citation
Gulledge, S. L.(2014). Modeling Mussel Mortality: Investigating the Importance of Swash and the Potential Implications of Changing Wave
Environments. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/2921

https://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F2921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=scholarcommons.sc.edu%2Fetd%2F2921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=scholarcommons.sc.edu%2Fetd%2F2921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/2921?utm_source=scholarcommons.sc.edu%2Fetd%2F2921&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


 

 

MODELING MUSSEL MORTALITY: INVESTIGATING THE IMPORTANCE OF 

SWASH AND THE POTENTIAL IMPLICATIONS OF CHANGING WAVE 

ENVIRONMENTS 
 

by 

 

Shadow Leigh Gulledge 

 

Bachelor of Science 

University of South Carolina, 2012 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Master of Earth and Environmental Resources Management in 

 

Earth and Environmental Resources Management 

 

College of Arts and Sciences 

 

University of South Carolina 

 

2014 

 

Accepted by: 

 

Jean Taylor Ellis, Director of Thesis 

 

Brian Helmuth, Reader 

 

John Kupfer, Reader 

 

Joe Quattro, Reader 

 

Lacy Ford, Vice Provost and Dean of Graduate Studies



ii 

 

© Copyright by Shadow Leigh Gulledge, 2014 

All Rights Reserved.



iii 

 

DEDICATION 

 
This thesis is dedicated to my dad, Daniel Fockler, who passed away on June 5, 

2014, while I was preparing this manuscript. Thank you for supporting me and pushing 

me to achieve my goal. You helped in so many different ways which made this process 

much easier to get through. I am now and will always be grateful to you. I am blessed to 

have had such an incredible father. I love you so much and will miss you greatly. May 

you rest in peace.



iv 

 

ACKNOWLEDGEMENTS 

 I am extremely grateful to my advisors, Brian Helmuth and Jean Ellis, for their 

guidance, expertise and support throughout my graduate studies. I am also grateful that I 

had John Kupfer and Joe Quattro on my committee to provide advice and encouragement 

during my time as a graduate student. I would like to thank past and present members of 

the Helmuth lab (Allison Matzelle, Mackenzie Zippay, Cristián Monaco, Nicole Kish, 

Nick Colvard & Josie Iacarella) for their effort, support and friendship. My thanks also 

go out to April South who always had a teaching position for me in Biology 102 Lab. 

 There were also several people outside of USC that were responsible for helping 

me succeed. I would like to thank my best friend, Jesselyn West, for all of her support 

and for helping me during my times of great stress. Your friendship is invaluable and 

greatly appreciated. I would like to thank my mom, Sheila Gross, my stepdad, Kevin 

Gross, my father-in-law, William Gulledge, my dad, Daniel Fockler, and my brother, Joe 

Boyes, for their encouragement and kindness. Also, I would like to thank my family in 

Winnsboro, Ohio, and Florida as well as my husband’s family all over South Carolina for 

their support and understanding. To everyone who played a part in helping me succeed, 

your love was tremendously helpful and I am lucky to have such an amazing family. 

 Finally, I would like to acknowledge my husband, Alex Gulledge. You are my 

guiding light and the reason I have been able to be so successful. I am exceptionally 

fortunate to have someone who supports and loves me as much as you do. Thank you for 

everything you have done for me. I love you. 



v 

 

ABSTRACT 

Rising sea level and increases in temperature are causing biogeographic shifts in 

intertidal zones and can also lead to shifts in the local vertical zonation of organisms due 

to changes in body temperature during aerial exposure during low tide. Swash is an 

important determinant of aerial body temperatures, and vulnerability of intertidal zones to 

changes in climate could potentially depend on how much and how often animals are 

cooled by waves. While wave heights (and thus swash) are generally expected to increase 

with climate change, anthropogenic physical structures, such as breakwaters and wave 

energy converters, can decrease wave height and swash. Here I explore the ability of a 

simple biophysical model of aerial body temperature to predict how changing wave 

climates might affect intertidal zones in California. A key limitation is that biophysical 

models frequently rely on input data from weather stations that are limited in their spatial 

coverage. An attractive alternative is to use larger-scale reanalyzed data with global 

coverage, but the accuracy of the models that use these data has not been evaluated in the 

context of sensitivity to swash.  

This study examines the sensitivity of mussel (Mytilus californianus) aerial body 

temperature to changing atmospheric, oceanographic, and morphological parameters. 

Specifically, it compares model predictions using coarse gridded weather data from 

NOAA NCEP Climate Forecast System Reanalysis (CFSR), versus local weather station 

data as environmental inputs. A sensitivity analysis was conducted to determine whether 
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precise details of mussel morphology and site topography are needed, or whether more 

generic estimates can be used. The model was used to explore the potential impacts of 

changing wave climates on mussel temperatures by considering current and potential 

future wave heights at four locations in California (Bodega Bay, Hopkins, Alegria and 

Coal Oil Point). In all cases model results were ground-truthed against in situ 

measurements of temperature made using biomimetic sensors using both standard 

measures of error (average absolute difference and RMSE) as well as metrics of 

physiological state based on mussel performance curves.  

Model results demonstrated that body temperatures predicted using rough 

estimates of mussel absorptivity, mussel size, cloud cover, absolute shore level (ASL), 

effective shore level (ESL) slope and ASL plus ESL slope were very close to those 

generated using organism- and site-specific parameters. At Bodega Bay, the model 

successfully predicted maximum daily aerial body temperatures to within a few degrees 

using both in situ weather station (average absolute error 3.2°C) and CFSR data (error 

3.3°C). Model error using CFSR data for the other locations was considerably higher 

(error: Hopkins Marine Station, 6.8°C; Alegria, 6.5°C; Coal Oil Point, 8.5°C). 

Physiologically, the model ran cold at Bodega and Hopkins but ran hot at Alegria and 

Coal Oil Point. Sensitivity analyses suggested that mussel temperatures were most 

sensitive to changes in the nearshore wave climate at Bodega Bay and Hopkins and least 

sensitive at Alegria and Coal Oil Point. Due to the overall inaccuracy of this model when 

using CFSR data, the use of this method by decision makers should be approached with 

caution. This study suggests that additional analyses using a tailored site-specific model 

are required.  
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CHAPTER 1 

INTRODUCTION 

1.1. BACKGROUND 

The rocky intertidal zone has been a focus of extensive study, in part due to the 

presence of steep environmental gradients created by the rise and fall of the tide. 

Intertidal organisms are often assumed to live at or near their thermal limits of heat 

tolerance for survival and reproduction (Denny et al. 2011; Foster 1969; Jones et al. 

2009; Jost and Helmuth 2007; Somero 2002; Tomanek and Helmuth 2002), especially at 

the upper, landward edges of their intertidal distributions (Smith 2010). It has also been 

shown that behavioral ecology (Wolcott 1973) and microclimate-influenced phenotypic 

plasticity (Davenport and Davenport 2005) can limit the upper boundaries for some 

invertebrate species. Organisms within this habitat are typically marine in their 

evolutionary history (Harley 2007). However, due to emersion during low tide, they must 

also contend with stressful abiotic factors associated with terrestrial conditions (Jones et 

al. 2009; Mislan et al. 2011; Pincebourde et al. 2012; Smith 2010; Stillman 2002). Aerial 

exposure can cause desiccation and extreme changes in body temperature (Denny 2006). 

Therefore, the timing of extreme (spring) low tides can have major implications for the 

growth, survival and reproduction of intertidal invertebrates and algae (Dayton 1971; 

Harley 2008; Stillman and Somero 1996).  

Vertical zonation in the intertidal – the replacement of one dominant species by 

another along a vertical gradient from the sea to the land – has been attributed to multiple 
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environmental factors, including wave exposure, substrate characteristics, and tidal 

regime (Harley and Helmuth 2003), coupled with characteristics of the organism such as 

mobility and physiological tolerances (McNeill 2010). A central concept that has 

emerged over decades of study is that the upper vertical limit of intertidal species is set 

by physical factors associated with terrestrial conditions, such as solar radiation and 

wave-exposure, and the lower vertical limit is set by biological factors, such as 

competition and predation (Connell 1972; Harley 2007; McNeill 2010; Raimondi 1988; 

Stillman 2002; Wethey 1983; Wolcott 1973).  

Vertical zonation patterns have been described using different approaches. 

Stephenson and Stephenson (1949) introduced a universally applicable zonation system 

based on the distribution of dominant species; i.e. biologically-defined zonation. They 

defined the most terrestrial margin of the intertidal the supralittoral zone; moving 

successively closer to the water they defined the supralittoral fringe, midlittoral zone, 

infralittoral fringe and infralittoral zone. The midlittoral zone is frequently defined as the 

region dominated by mussels (Stephenson and Stephenson 1949). An alternative 

approach is to define zonation based on the physical characteristics as driven by the tidal 

cycle. The concept of critical tide factors was introduced by Doty (1946). He divided the 

intertidal into eight zones based on how tidal cycles drive exposure time: below lowest 

lower low water, LLLW – mean lower low water, MLLW – lowest higher low water, 

LHLW – highest higher low water, HHLW – lowest lower high water, LLHW – lowest 

higher high water, LHHW – highest higher high water, and above HHHW (see Fig. 1.1) 

(Doty 1946; Doty and Archer 1950). The division of these zones, as defined by Doty 

(1946), is based on tidal benchmarks approximating the temporal distribution of emersion 
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and submersion time. Doty and Archer (1950) designated these tidal stages as “critical” 

because with only a slight increase in vertical height an organism may have an abrupt 

two- or three-fold change in its exposure time to terrestrial or marine conditions.  

 

Figure 1.1 Illustration of critical tide factors as defined by Doty 

(1946). Figure shows the tidal elevation levels in feet relative to 

mean lower low water (MLLW) for San Francisco, CA on 

06/19/1945. Figure source: Doty and Archer (1950). 

Perhaps the biggest modifier of the effects of aerial exposure, and one that 

confounds patterns of zonation both within and among shores, is swash, which is also 

referred to as wave run-up (Burrows et al. 1954; Colman 1933; Underwood 1972, 1978, 

1981, 2000; Underwood and Jernakoff 1984; Wolcott 1973). The physical impacts of 

waves on organisms have been extensively examined (e.g. Burrows et al. 2008; Denny 
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1995, 2006; Doty 1946; Gaylord 1999; Harger 1970; Harley 2007; Lawson 1957; Leigh 

et al. 1987; Smith 2010), and comparisons between “wave protected” and “wave 

exposed” shores abounds in the literature (Blanchette 1997; Boulding 1990; Boulding 

and VanAlstyne 1993; Brown and Quinn 1988; Connell 1972; Denny et al. 2006; Etter 

1989; Fitzhenry et al. 2004; Harley and Helmuth 2003; Helmuth et al. 2006a; 

Pincebourde et al. 2012). Although methods for quantifying the effects of swash, and 

potential changes in swash, on intertidal temperatures are rare, such studies do exist (i.e. 

Gilman et al. 2006a; Harley and Helmuth 2003; Smith 2010). 

The Pacific Ocean has a large fetch length that has the potential for large waves to 

be generated that can deliver 300 Watts of power over a 0.01 m portion of intertidal zone, 

producing an estimated 2,100 TWh of energy (Denny 2006; Leigh et al. 1987; MMS 

2006). While high onshore wave heights can be detrimental to intertidal organisms 

(Connell 1972; Dayton 1971; Denny 1995; Leigh et al. 1987; Smith 2010; Sousa 1979), 

the associated swash, which runs up the rocks and cools organisms during aerial exposure 

at low tide (Fitzhenry et al. 2004; Harley and Helmuth 2003; Smith 2010), also benefits 

many organisms (Denny 2006). Any change in wave height is therefore potentially a 

concern because decreased swash could lead to increases in aerial body temperature that 

could potentially alter mortality and physiological performance (Helmuth et al. 2011). 

Conversely, increases in swash can theoretically mitigate increases in stress caused by 

higher air temperatures (Helmuth et al. 2011). 

The Bureau of Ocean Energy Management (BOEM) is working with the Pacific 

Coast states of the U.S. to determine optimal locations for wave energy farms (MMS 

2006; Paasch et al. 2012). These wave energy farms are expected to provide a source of 
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clean renewable energy (MMS 2006). Depending on how and where such farms are 

emplaced, they could cause a reduction in nearshore wave height (Boehlert and Gill 

2010; MMS 2006; Millar et al. 2007; Paasch et al. 2012; Palha et al. 2010; Smith et al. 

2012); however, the extent to which the waves will be reduced as well as the effects on 

intertidal organisms have not yet been determined (MMS 2006).  

The goal of this project is to create a modeling framework that will inform policy 

decisions for wave energy farms by quantitatively examining the role of swash on the 

survival of California mussels. An eventual goal is to combine the model with a 

physiological model, such as a dynamic energy budget (DEB) model (i.e. Sarà et al. 

2013), so that changes in growth and reproduction can be calculated (Kearney et al. 

2010), and to develop similar models for other intertidal species. The objective is to use a 

biophysical heat budget model (adapted from Helmuth et al. 2011) to examine how swash 

affects the survival of Mytilus californianus, and to use these data to determine which 

sites are most sensitive to changing wave climates. These data can influence where wave 

energy farms should be placed to have minimal effect on intertidal organisms. It will also 

inform the likely impacts of climate change as the zonation of rocky intertidal organisms 

is affected by changes in temperature and sea level rise. Determining how the sensitivity 

of rocky intertidal organisms to swash varies along the coastline is important for 

informing decision makers of the implications of installing wave energy farms.  

1.2. ECOLOGY OF THE STUDY ORGANISM 

The model organism for this study is the California ribbed mussel, Mytilus 

californianus. This filter-feeding mussel on the west coast of North America ranges from 

the Aleutian Islands (Alaska) to southern Baja California (Mislan and Wethey 2011; 
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Zippay and Helmuth 2012). This species resides in the low to mid intertidal zone on 

exposed shores and because California mussels tend to outgrow their competitors, they 

are competitive dominants for space (Dayton 1971; Menge 1976; Paine 1966, 1974). 

Individuals typically live in a habitat with heavy wave action and, to protect themselves 

in this environment, they aggregate together and create dense homogeneous beds (Zippay 

and Helmuth 2012) that provide structure and stability to the ecosystem (Jones et al. 

2010). Mussel beds serve as a habitat and refuge for other organisms, such as algae, 

microinvertebrates, and fish (Kanter 1977; Smith et al. 2006; Suchanek 1979). The 

mussels also provide food to sea stars, drilling whelks, crabs and lobsters (Menge et al. 

1994; Sanford 2002; Jubb et al. 1983; Robles et al. 1990). These characteristics make 

them an integral part of the rocky intertidal ecosystem creating a unique community of 

plants and animals.  

California mussels often compete for space in the mid-intertidal zone with 

barnacles, such as Balanus spp., Mitella spp. (Paine 1966) and Chthamalus anisopoma 

(Raimondi 1988). Mussels endure a predator-prey relationship with sea stars, Pisaster 

spp., and the predation by the sea stars sets the lower vertical limit of mussels (Leigh et 

al. 1987; Paine 1966; Sanford et al. 2003). Organismal body temperatures tend to be 

highest during aerial exposure (Jones et al. 2009; Mislan and Wethey 2011) on warm, 

sunny days when low tide occurs in the middle of the day and there is a low amount of 

wave splash (Helmuth 2002; Wolcott 1973). During this time the organism’s body 

temperature can change more than 20°C (Helmuth 1998; Mislan and Wethey 2011). 

Hence, temperature and desiccation are typically assumed to be the two factors that limit 
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most organisms’ upper vertical limits, including the California mussel (Connell 1972; 

McNeill 2010; Wolcott 1973).  

Many intertidal animals regularly experience temperatures close to their lethal 

temperature during summer months (Jones et al. 2010; Smith 2010), although recent 

evidence suggests that near lethality may occur at fewer sites than previously assumed 

(Mislan et al. 2014). Thus, if wave energy farms cause a reduction of wave height and 

swash, the organisms’ maximum aerial body temperature may reach lethal levels. At sites 

where aerial body temperature is closely tied to a decrease in upper zonation limits 

(Harley and Helmuth 2003; Mislan et al. 2014), a decrease in potential swash could cause 

a reduction in the upper zonation limit and, consequently, the abundance of Mytilus 

californianus.  

Mussels are intricately intertwined with the organisms of the intertidal habitat, 

playing a key role in the stability of this ecosystem (Berlow 1999; Bernhardt and Leslie 

2013; Connell 1972; Lively et al. 1993; Menge 1976; Paine 1966, 1974; Pincebourde et 

al. 2008). Dense mussel beds enhance the overall biodiversity of the intertidal zone by 

creating a microhabitat for a variety of organisms (Cimberg 1975; Kanter 1977, 1980; 

Menge et al. 1994; Suchanek 1979). However, researchers have found that this 

community of squatters is rapidly declining in abundance and diversity (Smith et al. 

2006). For example, there are approximately 4,000 individual porcelain crabs per square 

meter living within mussel beds (Stillman 2002). Therefore, if mussel density is 

decreased, there is a consequent effect of a decrease in porcelain crab density. The overall 

outcome is a loss of biodiversity (Jones et al. 2010), which will inevitably change 

population dynamics (Wootton 2010). 
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A reduction in California mussels may cause cascading impacts on the entire 

rocky intertidal ecosystem (Berlow 1999; Wootton 2010). If a prominent (engineering) 

intertidal species such as mussels disappear, there is a higher risk of other species 

invading the area causing a change in the ecosystem structure, and subsequently, 

ecosystem function (Jones et al. 2010). Overexpansion of an existing species in the 

intertidal zone is another possible outcome (Tsuchiya 1983). Wootton (2010) found that 

with the removal of Mytilus californianus there was a change in mid intertidal space 

dominance, with the new champion being the algae, Corallina vancouveriensis. Reduced 

wave height could result in a decrease in mussel density due to mussels surpassing their 

lethal temperatures. From this it can be surmised that temperature may indirectly impact 

community structure and function (Tomanek and Helmuth 2002). 

1.3. METHODS OF CALCULATING SWASH  

Swash is related to effective shore level (ESL) (Fitzhenry et al. 2004; Gilman et 

al. 2006a) and absolute shore level (ASL) (Gilman et al. 2006a; Harley and Helmuth 

2003; Helmuth et al. 2011; Mislan et al. 2011; Wolcott 1973). The ESL is the still-water 

tidal elevation at which the organism is first wetted by water, usually detected by a 

decrease in body temperature (Harley and Helmuth 2003). The ASL is the height of an 

organism above the still-water chart datum (i.e. MLLW), which is always static in 

reference to the organism (Gilman et al. 2006a), and is a measure independent of swash. 

Subtraction of the ESL from the ASL provides an estimate of swash (Harley and Helmuth 

2003), i.e. the vertical distance that waves effectively “move” the still tide level (Fig. 

1.2). 
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Figure 1.2 Relationship between ASL, ESL and a point on the shore 

(circle). “Wave run-up” represents the swash. Figure source: Gilman et al. 

(2006a). 

Several studies have used ESL to understand the effects of swash on mussel body 

temperatures (Gilman et al. 2006a; Mislan et al. 2011; Smith 2010). Harley and Helmuth 

(2003) presented a method to estimate ESL through temperature drops and used ESL as a 

measure of examining the vertical zonation limit of the California mussel and the 

barnacle species Balanus glandula. They found that ESL is an indicator of swash (termed 

“wave splash” in their publication) and is a reliable predictor of where these organisms 

will be vertically located on the shore. Gilman et al. (2006a) related ESL and swash 

through an ESL regression calculation technique and plotted the difference between ASL 

and ESL as a function of significant wave height. The slope of the regression equation, 

which is unique to a site and depends on factors such as steepness of the substratum, 

allows one to directly compare swash among different sites (Gilman et al. 2006a) using 

significant wave heights. 

1.4. RESEARCH QUESTIONS 

In this study, a simple biophysical heat budget model (Porter and Gates 1969; 

Helmuth 1999) was used to understand the likely effects of changing wave climates on 

intertidal mussel body temperatures. The model was adapted from Helmuth et al. (2011), 

and verified against in situ biomimetic sensors called “robomussels” or “robologgers” 
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(hereafter loggers; more detail provided in Section 2.5) (Fitzhenry et al. 2004; Helmuth et 

al. 2006a). While more complicated models exist (Wethey et al. 2011a), this model is 

relatively simple in input requirements and therefore is quite user-friendly for researchers 

without a modeling background. The original model was designed to use local weather 

station data as inputs; its effectiveness using more widely-available but more coarsely 

gridded data remains untested.  

Because the availability of local weather station data in coastal zones is limited 

(Mislan and Wethey 2011), the ability to accurately predict intertidal mussel body 

temperatures using a data source with continuous spatial coverage, the NOAA National 

Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis 

(CFSR), was tested (Saha et al. 2010). Only one extensive study has been completed to 

compare model accuracy using different sources of input data (Mislan and Wethey 2011). 

This study found that CFSR data, with a grid size of 32km, was a better predictor of 

mussel daily maximum body temperature than the four global data sets with larger grid 

sizes that were tested (Mislan and Wethey 2011). However, Mislan and Wethey (2011) 

determined CFSR was not as effective as using local weather station data.  

The research presented here addresses the following questions: (1) will a model 

tailored to a specific site produce more accurate results than a general model using 

estimated parameters that can be used for multiple locations; (2) can CFSR data be used 

to predict aerial mussel body temperatures in place of local weather station data; and (3) 

how will changes in wave climate due to wave energy farms coupled with local-scale 

climate change affect survival and zonation of mussels, and how does sensitivity vary 

with wave exposure and site topography?
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CHAPTER 2 

METHODS 

2.1. STUDY LOCATIONS 

Four locations on the coast of California were selected based on local weather 

station (LWS) data availability and differences in nearshore oceanographic features: 

Bodega Bay (38.3185°N, 123.0739°W), Hopkins (36.6219°N, 121.9053°W), Alegria 

(34.4672°N, 120.2770°W) and Coal Oil Point (34.4067°N, 119.8783°W) (Fig. 2.1). Point 

Conception (34.4481°N, 120.4714°W) marks the transition from strong upwelling, high 

wave exposure and colder water on the northern coast to weak seasonal upwelling, low 

wave exposure, and warmer water on the southern coast. These varying oceanographic 

conditions affect the recruitment and survival of Mytilus californianus from site to site 

(Blanchette et al. 2007). Bodega Bay and Hopkins are north of Point Conception and are 

wave-exposed whereas Alegria and Coal Oil Point are to the south and are wave-

protected. 

2.2. GENERAL MODEL STRUCTURE 

The model was adapted from the biophysical heat budget model presented in 

Helmuth et al. (2011), which is based on a model that was originally presented by 

Helmuth in 1999. This is a steady-state model of heat flux that assumes the study 

organism (M. californianus) will reach equilibrium within one hour of becoming either 

submerged in water or exposed to air. It uses physiological, 
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meteorological and oceanographic data to predict hourly body temperatures by 

calculating the surface temperature of uniformly sized mussels within a horizontal bed 

(Helmuth et al. 2011). The model uses significant wave heights and tidal stage 

predictions to estimate species emersion and swash (Harley and Helmuth 2003; Gilman et 

al. 2006a). 

 

Figure 2.1 Location of study sites on the California coast. Each study site 

is marked with a black circle and Point Conception is marked with a 

square for reference. Basemap is from Google Earth (obtained June 14, 

2014). 
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2.3. DATA COLLECTION 

Six weather variables were obtained: water temperature, significant wave height, 

tidal stage, air temperature, solar radiation and wind speed. Historical water temperature 

and significant wave height data were obtained from NOAA National Data Buoy Center 

(Table 2.1; NDBC 2013). Tidal stage data were obtained from XTide (Table 2.1; WWW 

Tide and Current Predictor 2013). XTide has been used by many researchers (Gilman et 

al. 2006b; Harley and Helmuth 2003; Helmuth et al. 2011; Mislan et al 2011; Smith 

2010; Wethey et al. 2011a) and was selected here because it is easy to use and it 

estimates tidal heights at fixed time intervals (Flater 2013). Other weather data (air 

temperature, solar radiation and wind speed) were obtained either from a local weather 

station or from NOAA NCEP CFSR (NOMADS Data Access 2013). The model was run 

using local weather station data (Table 2.1) or CFSR data for Bodega Bay and Hopkins 

Marine Station in Pacific Grove. Predictions for Alegria and Coal Oil Point only used 

CFSR weather data. For all study sites the minimum wind speed was set to 0.25 m/s to 

account for free convection, i.e., the assumption that coastal air is never truly still. Any 

negative solar radiation values were removed from the analysis. All cloud cover values 

were set to 0.60, which equates to an intermediate amount of cloud cover. 

When the model was run using CFSR data air temperature, solar radiation and 

wind speed were obtained from NOAA NCEP CFSR. The ‘high resolution’ option was 

chosen when gathering the data for each variable using a bounding box of 32°S, 42°N, -

129°W and -118°E. Additional processing of these data narrowed the geographic range to 

each study site. The temporal duration for this study was determined to ensure continuous 

study periods across all sites, which is required for accuracy assessment (Table 2.1). 

http://tbone.biol.sc.edu/tide/
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Table 2.1 Location of weather data sources for all study sites. Local weather station data 

were not obtained for Alegria or Coal Oil Point.  

 

 
Bodega 

Bay 
Hopkins Alegria 

Coal Oil 

Point 

Time 

Frame 

7/9/04 – 

12/31/08 

7/1/00 – 

6/30/05 

10/1/00 – 

9/30/09 

11/1/03 – 

10/31/09 

NOAA 

Buoy 

Number 

46013 46042 46054 46053 

NOAA 

Buoy 

Coordinates 

38.24°N, 

123.30°W 

36.79°N, 

122.47°W 

34.27°N, 

120.48°W 

34.26°N, 

119.88°W 

Distance of 

NOAA Buoy 

from Study 

Site (km) 

22.02 54.11 29.15 16.67 

X-Tide 

Location 

Bodega 

Harbor 

Entrance 

Monterey Gaviota 
Santa 

Barbara 

X-Tide 

Coordinates 

38.30°N, 

-123.05°W 

36.61°N, 

-121.89°W 

34.47°N, 

-120.22°W 

34.41°N, 

-119.69°W 

Distance of 

X-Tide Location 

from Study 

Site (km) 

2.82 2.09 5.49 17.48 

Local 

Weather 

Station 

BOON1 HMS2   

1Bodega Ocean Observing Node maintained by the University of California – Davis 

(http://bml.ucdavis.edu/boon/data_access.html) 
2Hopkins Marine Station (Stanford) maintained by Dr. Mark Denny 

(http://mlo.stanford.edu/wdataarchive.htm) 

2.4. SENSITIVITY ANALYSES 

Sensitivity analyses were conducted for the Bodega Bay site to examine the 

separate influences of changes in mussel size, mussel absorptivity, absolute shore level 

(ASL), effective shore level (ESL) slope and cloud cover, and the interactive influences 

http://bml.ucdavis.edu/boon/data_access.html
http://mlo.stanford.edu/wdataarchive.htm
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of changes in ASL and ESL slope on M. californianus body temperature. Local weather 

station data were used for the sensitivity analyses (Table 2.2).  

Logger ASLs, regression ASLs and regression ESLs (Table 2.2) were calculated 

using the method described in Gilman et al. (2006a). In brief, rapid temperature drops are 

used as indicators of when a logger is first splashed by waves. The estimated still tidal 

level at the first temperature drop is the “ESL” on that day. By plotting these ESLs versus 

significant wave height, the ESL of any logger is estimated as a function of significant 

wave heights. Higher slope values of this regression indicate that for each meter of wave 

height, the swash is greater. This approach can also be used to estimate the ASL by 

recording the y-intercept of the regression, i.e. when wave heights are zero. This latter 

approach is not as accurate as direct measurements using surveying equipment, but 

provides a means of estimating ASL and ESL from temperature data (Gilman et al. 

2006a).  

To complete the regression the logger recorded temperatures and the significant 

wave height in 10 minute intervals were run through SiteParser (described in Gilman et 

al. 2006a). This program provides the daily tide heights at which the logger’s temperature 

drops by 2.5°C (indicating the logger being splashed by waves). Regression analysis was 

completed to compare the daily tide heights provided by SiteParser (y-axis) versus the 

daily maximum significant wave height (x-axis). The y-intercept value of this regression 

equation provides the ASL and values of ESL are determined as a function of significant 

wave height, with steeper slopes indicating a greater sensitivity of swash to wave height 

(Gilman et al. 2006a). The term “ESL slope” used here refers to the slope values that 
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were either estimated to be 0.25 m or calculated using the regression technique, rather 

than the ESL, per se. 

The Logger ASLs are different from the regression ASLs because of the different 

time frames used. The logger ASL was obtained using several different years of data (not 

reported here) and the regression ASL was obtained using data from 7/9/2004 – 7/9/2005, 

one year that was included in the time frame used for all Bodega Bay analyses. This also 

explains why the predicted high intertidal zone ASL values are similar to, or in some 

cases, lower than the mid intertidal zone loggers (Table A.4). Both values were 

determined using the regression technique however different time frames were used. 

Although the logger temperatures led to rather low ASL estimates it should be noted that 

the logger ASL does increase from the mid intertidal zone to the high intertidal zone 

(1.36 m to 1.56 m) as does the regression ASL (1.13 m to 1.27 m).  

Table 2.2 Values used in the model for the sensitivity analyses for Bodega Bay. All 

models use local weather station data instead of CFSR data. The *general* model is the 

model that is used in the accuracy assessments (with CFSR and LWS data) as well as in 

the models with changing wave climates (with CFSR data). The low intertidal zone is 

MLLW + 0.5 m, the mid intertidal zone is MLLW + 1.5 m, and the high intertidal zone is 

MLLW + 2.5 m. The total number of days (N) used for the model simulations with each 

change in variable are indicated in the first column. This applies to all sensitivity analyses 

unless otherwise stated within the table or figure caption. In the ASL and ESL Slope 

columns, G is for the ASL and ESL slope of the general model, L is for the logger ASL, 

and R is for the regression ASL and ESL slope. 

 

Variable Being 

Changed 

Mussel 

Absorptivity 
ASL (m) 

ESL slope 

(m) 

Mussel 

Size 

(m) 

Cloud 

Cover 

*General* 

Model 
0.85 

0.5, 

1.5, 

or 2.5 

LWS or 

CFSR 

0.25 0.075 0.6 

Mussel 

Absorptivity 

N = 1,450 

0.8 1.5 0.25 0.075 0.6 

0.825 1.5 0.25 0.075 0.6 

0.85 1.5 0.25 0.075 0.6 
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Variable Being 

Changed 

Mussel 

Absorptivity 
ASL (m) 

ESL slope 

(m) 

Mussel 

Size 

(m) 

Cloud 

Cover 

0.875 1.5 0.25 0.075 0.6 

0.9 1.5 0.25 0.075 0.6 

Mussel Size (m) 

N = 1,450 

0.85 1.5 0.25 0.05 0.6 

0.85 1.5 0.25 0.06 0.6 

0.85 1.5 0.25 0.07 0.6 

0.85 1.5 0.25 0.075 0.6 

0.85 1.5 0.25 0.08 0.6 

0.85 1.5 0.25 0.09 0.6 

0.85 1.5 0.25 0.10 0.6 

0.85 1.5 0.25 0.11 0.6 

0.85 1.5 0.25 0.12 0.6 

0.85 1.5 0.25 0.13 0.6 

0.85 1.5 0.25 0.14 0.6 

0.85 1.5 0.25 0.15 0.6 

0.85 1.5 0.25 0.175 0.6 

0.85 1.5 0.25 0.20 0.6 

0.85 1.5 0.25 0.225 0.6 

0.85 1.5 0.25 0.25 0.6 

Cloud Cover 

N = 1,447 

0.85 1.5 0.25 0.075 0.6 

0.85 1.5 0.25 0.075 Norm. 

ASL (m) 

Low N = 524 

Mid N = 1,386 

High N = 1,345 

0.85 0.5 0.25 0.075 0.6 

0.85 1.5 0.25 0.075 0.6 

0.85 2.5 0.25 0.075 0.6 

0.85 
0.69 

L. Low 
0.25 0.075 0.6 

0.85 
1.36 

L. Mid 
0.25 0.075 0.6 

0.85 
1.56 

L. High 
0.25 0.075 0.6 

0.85 
0.43 

R. Low 
0.25 0.075 0.6 

0.85 
1.13 

R. Mid 
0.25 0.075 0.6 

0.85 
1.27 

R. High 
0.25 0.075 0.6 

ESL slope (m) 

Low N = 637 

Mid N = 1,450 

High N = 1,375 

0.85 0.5 0.25 0.075 0.6 

0.85 1.5 0.25 0.075 0.6 

0.85 2.5 0.25 0.075 0.6 

0.85 0.5 
0.06 

R. Low 
0.075 0.6 

0.85 1.5 
0.16 

R. Mid 
0.075 0.6 
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Variable Being 

Changed 

Mussel 

Absorptivity 
ASL (m) 

ESL slope 

(m) 

Mussel 

Size 

(m) 

Cloud 

Cover 

0.85 2.5 
0.12 

R. High 
0.075 0.6 

ASL (m) & ESL 

slope (m) 

Low N = 637 

Mid N = 1,446 

High N = 1,371 

0.85 
0.5 

G. Low 

0.25 

G. Low 
0.075 0.6 

0.85 
1.5 

G. Mid 

0.25 

G. Mid 
0.075 0.6 

0.85 
2.5 

G. High 

0.25 

G. High 
0.075 0.6 

0.85 
0.69 

L. Low 

0.06 

R. Low 
0.075 0.6 

0.85 
1.36 

L. Mid 

0.16 

R. Mid 
0.075 0.6 

0.85 
1.56 

L. High 

0.12 

R. High 
0.075 0.6 

0.85 
0.43 

R. Low 

0.06 

R. Low 
0.075 0.6 

0.85 
1.13 

R. Mid 

0.16 

R. Mid 
0.075 0.6 

0.85 
1.27 

R. High 

0.12 

R. High 
0.075 0.6 

Table 2.3 Number of loggers (N) used for the sensitivity analyses and accuracy 

assessments for each intertidal zone within each study site. The low intertidal zone is 

MLLW + 0.5 m, the mid intertidal zone is MLLW + 1.5 m, and the high intertidal zone is 

MLLW + 2.5 m. 

 

Intertidal 

Zone 

Bodega Bay 

Loggers 

Hopkins 

Loggers 

Alegria 

Loggers 

Coal Oil Point 

Loggers 

Low 1 1 1 2 

Mid 3 3 3 2 

High 1 1 1 2 

2.5. ACCURACY ASSESSMENT 

 Tests were performed for the four study sites to determine how accurate the 

models were at predicting mussel body temperatures during aerial exposure. These 

accuracy assessments were performed using LWS and CFSR data for Bodega Bay and 

Hopkins, and only CFSR data for Alegria and Coal Oil Point. For these analyses the tide 

heights used were MLLW + 0.5 m, MLLW + 1.5 m, and MLLW + 2.5 m for the low, mid 
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and high intertidal zones, respectively. The daily maximum values predicted by the 

models were compared to in situ measurements taken by biomimetic sensors that were 

designed to replicate the thermal characteristics of living M. californianus. These loggers 

are TidBit (Onset Computer Corporation) temperature sensors that were embedded in a 

polyester resin that mimics the size, shape and color of a 0.075 m mussel (see Fitzhenry 

et al. 2004; Helmuth et al. 2006a, 2006b for more details). These loggers were deployed 

in natural growth positions in mussel beds and data were collected at 10 min intervals. 

Additionally, loggers were placed on horizontal, unshaded microsites to provide 

standardization for the effects of topography since very large differences in temperature 

can occur between microsites due to the highly variable rocky intertidal topography 

(Helmuth and Hofmann 2001). Previous findings suggest that these loggers record 

temperatures to within ~2°C of living mussels (Fitzhenry et al. 2004). The number of 

loggers used for the accuracy assessment depended on the study site and the ASL (Table 

2.3). 

Logger data were downloaded from a research database maintained by the 

Helmuth lab at Northeastern University (Boston, MA). This searchable database, with 

data accessed via a map-based interface, separates aerial temperatures from submerged 

temperatures based on tidal stage (Research Database 2013). Logger data from this site 

were downloaded in one hour intervals that were then used to calculate the daily aerial 

average maximum temperatures. Each parameter was calculated daily as the spatial 

average of all loggers (i.e. average of the daily maximum for all loggers). Due to this 

method of calculation, the daily maximum temperatures are not identified by the spatial 

average and tend to underestimate the extreme temperatures experienced by the loggers.  

http://www.northeastern.edu/helmuthlab/database/
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For each day in the time series, the average difference between the model output 

and loggers, the absolute value of the difference between the model output and the 

loggers, and the root mean square error (RMSE) were calculated for the daily maximum 

temperatures. To assess the accuracy of the model, the average across all study days was 

taken. To visually compare the overall accuracy of the model, daily maximum logger 

temperatures were plotted as a function of daily maximum model temperatures for each 

intertidal zone for each site. Included on each graph is a 1:1 line which are used to 

illustrate how closely a model is able to predict actual body temperatures. The closer the 

points are to the 1:1 line, the more accurate are the model predictions. Frequency 

distributions of the daily maximum temperatures were used to visually display the ability 

of the model to predict temperatures within different thermal physiological categories 

defined in Section 2.7 (Section 3.2).  

Comparisons of the temperatures predicted by the model(s) versus those recorded 

by the loggers for the hottest months were conducted to determine if the model is able to 

accurately predict extreme temperatures during the most extreme months of the year. The 

months with the highest recorded daily maximum temperatures were considered to be the 

hottest months (Helmuth et al. 2011). Only days where all data were available for each 

model were graphed (i.e. Bodega Bay: Logger, LWS and CFSR all had to have a 

temperature present for the day in order for it to be used) (Table 2.4).  

2.6. CHANGING WAVE CLIMATES 

 The effects of changing wave climates were examined by changing the significant 

wave height, an oceanographic input obtained from NOAA NDBC (2013; Table 2.1), 

within the general model (Table 2.2). The significant wave heights were changed at 5% 
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increments to a maximum increase (climate change scenario) and decrease (wave energy 

farm scenario) of ±50%. These changes were made for each intertidal zone at all sites 

using CFSR data as inputs instead of LWS weather data.  

These data were not being compared to the logger observational data; therefore, 

the amount of missing data was different from the amount of data missing for the 

accuracy assessments (Table 2.5). For this analysis, the daily aerial maximum values 

predicted by the model were examined to determine the relationship between changing 

wave climates and mussel body temperature. 

Table 2.4 Data available for accuracy assessments. The total number of days within the 

time frame, total number of days available for the accuracy assessments and the 

percentage of days in the time span where the data are available to use for the accuracy 

assessments is shown. The available days column provides the total sample count (N) for 

all accuracy assessments unless otherwise noted. Each site has these data separated by 

intertidal zone. The bolded intertidal zones have more missing data than data available in 

the time frame. 

 

Study Site Intertidal Zone Total Days Available Days Percent Available 

Bodega Bay 

Low 1,637 512 31% 

Mid 1,637 1,324 81% 

High 1,637 1,182 72% 

Hopkins 

Low 1,826 640 35% 

Mid 1,826 1,555 85% 

High 1,826 1,443 79% 

Alegria 

Low 3,287 588 18% 

Mid 3,287 1,986 60% 

High 3,287 1,670 51% 

Coal Oil 

Point 

Low 2,192 500 23% 

Mid 2,192 766 35% 

High 2,192 608 28% 

Table 2.5 Data available for wave climate simulations. The total number of days within 

the time frame, total number of days available for the wave climate simulations and the 

percentage of days in the time span where the data are available to use for the wave 

climate simulations is shown. The available days column provides the total sample count 

(N) for all changing wave climate simulations unless otherwise noted. Each site has this 
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data separated by intertidal zone. The bolded intertidal zones have more missing data 

than data available in the time frame. 

 

Study Site Intertidal Zone Total Days Available Days Percent Available 

Bodega Bay 

Low 1,637 572 35% 

Mid 1,637 1,364 83% 

High 1,637 1,435 88% 

Hopkins 

Low 1,826 602 33% 

Mid 1,826 1,732 95% 

High 1,826 1,813 99% 

Alegria 

Low 3,287 2,598 79% 

Mid 3,287 3,208 98% 

High 3,287 3,225 98% 

Coal Oil 

Point 

Low 2,192 1,422 65% 

Mid 2,192 2,099 96% 

High 2,192 2,099 96% 

2.7. TYPES OF ERROR 

A variety of measures can be used to understand the degree of error (skill) of a 

model. To understand the sensitivity of the model to changing physiological and 

environmental parameters, six types of errors were calculated: average difference, 

absolute average difference, RMSE, the number of stressful days, the number of false 

positives and the number of false negatives. Each of these measures of error provides 

insight into a different aspect of accuracy for the model predictions. The type of error 

relied upon depends on the use of the model. 

The daily logger temperatures were subtracted from the daily model temperature 

predictions to obtain the daily difference. These difference values were averaged over the 

entire time series to calculate the average difference between model temperatures and 

logger temperatures. If the model generally overestimated mussel body temperatures, the 

average difference was positive, while if it generally underestimated temperatures, the 

average difference was negative. The absolute average difference provided an average 

value used to describe how close the model predictions are to the actual temperatures 



23 

 

reported by the loggers in the field. A lower absolute average difference indicated that the 

model was more accurate at predicting mussel body temperatures compared to a higher 

absolute average difference. By measuring the average error between the model 

predictions and logger temperatures, the RMSE can be used to evaluate the performance 

of ecological models. A lower RMSE indicated a more accurate model. For all analyses, 

unless otherwise indicated “error” or “accuracy” refers to the absolute average difference 

value of daily maximum temperatures. 

For several of these analyses mussel body temperatures were categorized into the 

following physiological framework: cold suboptimal/sublethal (<17°C), optimal (17 – 

22°C) (Bayne et al. 1976), high suboptimal (22 – 30°C), high sublethal (30 – 38°C), and 

high lethal (≥38°C) (Denny et al. 2011; Kish 2013). When mussel body temperatures 

reach and/or exceed 30°C cellular damage occurs and heat shock proteins are produced 

(Halpin et al. 2004), which is how the category of high suboptimal and high sublethal 

were separated. For the sensitivity analyses, accuracy assessments and changing wave 

climate analyses, “cold temperatures” were those within the cold suboptimal/sublethal 

category (<17°C) and “stressful temperatures” are those within the high sublethal and 

high lethal categories (≥30°C). Days when the daily maximum body temperature reached 

or exceeded 30°C were considered to be stressful, and this threshold was also used for the 

calculation of false positives and false negatives. False positives occurred when a 

logger’s temperature was less than 30°C but the model predicted a temperature greater 

than 30°C, while false negatives occurred when the logger temperature was greater than 

30°C but the model predicted a temperature less than 30°C. These values provide insight 

into how well the model can accurately predict extreme high temperatures.
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CHAPTER 3 

RESULTS 

3.1. SENSITIVITY ANALYSES (BODEGA BAY ONLY) 

 For all intertidal zones, the sensitivity of the model using local weather station 

(LWS) data to changes in absolute shore level (ASL; Table A.4 & Fig. 3.4), effective 

shore level (ESL) slope (Table A.5 & Fig. 3.5), and a combination of changes in ASL and 

ESL slope (Table A.6 & Fig 3.1.6) were evaluated. In addition to these parameter 

changes, the model for the mid intertidal zone was evaluated for sensitivity to changes in 

mussel absorptivity (Table A.1 & Fig. 3.1), mussel size (Table A.2 & Fig. 3.2) and 

Bodega Bay cloud cover (Table A.3 & Fig. 3.3). Bodega Bay was chosen because that is 

the location for which the original model was developed and the accuracy of the model 

using LWS data had already been verified (Helmuth et al. 2011). This section is divided 

by each of these parameters where the primary results for changes within that parameter 

are presented. Additional, more detailed, results for each parameter can be found in 

Appendix A. 

3.1.1. Mussel Absorptivity 

Overall, model accuracy was fairly insensitive to changes in mussel absorptivity 

between 0.80 (3.11°C) and 0.90 (2.99°C). The number of predicted stressful days, and 

number of false positives and false negatives did not change with mussel absorptivity 

(Table A.1). For all mussel absorptivity values, the model predicted colder temperatures 

than what were actually experienced by the loggers in the field (Fig. 3.1). The model 
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overestimated the number of cold temperatures from 101 to 169 days as mussel 

absorptivity values were decreased. The model underestimated the number of stressful 

temperatures by 19 days for all absorptivity values (Fig. 3.1B). 

 
 

Figure 3.1 Distributions of daily maximum mussel body temperatures predicted by the 

general model with changing mussel absorptivity values (y-axes). (A) The box is the 

IQR, the line within the box is the median, the left side of the box is the 25th percentile, 

the right side of the box is the 75th percentile, the left line ends at the minimum value and 

the right line ends at the maximum value. (B) The histogram shows the frequency of the 

daily maximum temperatures within the four categories cold suboptimal/sublethal (< 

17°C), optimal (17-22°C), high suboptimal (22-30°C) and high sublethal (30-38°C). 

 

3.1.2. Mussel Size 

The temperature predictions made by the model became more accurate as mussel 

size decreased, and in particular, overestimations of the number of cold temperature days 

were fewer at smaller mussel sizes. Using a mussel size of 0.05 m the model predicted 

daily maximum temperatures to within 2.88°C of the temperatures recorded by the  
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Figure 3.2 Distributions of daily maximum mussel body temperatures predicted by the 

general model with changing mussel size values (y-axes: meters). (A) The box is the 

IQR, the line within the box is the median, the left side of the box is the 25th percentile, 

the right side of the box is the 75th percentile, the left line ends at the minimum value and 
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the right line ends at the maximum value. (B) The histogram shows the frequency of the 

daily maximum temperatures within the four categories cold suboptimal/sublethal (< 

17°C), optimal (17-22°C), high suboptimal (22-30°C) and high sublethal (30-38°C). 

 

loggers (Table A.2). At the largest mussel size tested (0.25m), error increased to 3.68°C. 

At a mussel size matching those of the loggers (~0.075m), the error was 3.05°C (Fig. 

3.2). The model overestimated the number of cold temperatures from 10 to 373 days as 

the mussel size increased from 0.05m to 0.25m. The model underestimated the number of 

stressful days from 13 to 21 days as the mussel size increased (Fig. 3.2B). 

3.1.3. Cloud Cover 

Using a generic cloud cover value of 0.60 led to more accurate body temperature 

predictions than using the normalized cloud cover data (3.98°C vs 4.30°C; Table A.3 & 

Fig. 3.3). Although both types of cloud cover caused the model to overestimate the 

number of cold temperature days, the use of a generic value of 0.60 led to the fewest 

overestimations. The model overestimated the number of cold temperatures by 137 and  

 

 

Figure 3.3 Distributions of daily maximum mussel body temperatures predicted by the 

general model with changing cloud cover values (y-axes). (A) The box is the IQR, the 
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line within the box is the median, the left side of the box is the 25th percentile, the right 

side of the box is the 75th percentile, the left line ends at the minimum value and the right 

line ends at the maximum value. (B) The histogram shows the frequency of the daily 

maximum temperatures within the four categories cold suboptimal/sublethal (< 17°C), 

optimal (17-22°C), high suboptimal (22-30°C) and high sublethal (30-38°C). 

230 days and underestimated the number of stressful temperatures by 19 and 20 days 

using the generic cloud cover value and the normalized cloud cover data, respectively 

(Fig. 3.3B). 

3.1.4. Absolute Shore Level (ASL) 

Overall, the model temperature predictions were most accurate for the low 

intertidal zone and least accurate for the high intertidal zone. Generally, for each 

intertidal zone (low, mid, high), as the estimate of ASL increased (i.e. the logger was 

assumed to be higher in the zone), the accuracy of the model increased as did the number 

of optimal, high suboptimal and high sublethal temperatures predicted (Fig. 3.4). This 

result is consistent with the general tendency of the model to “run cold” as described in 

previous sections. The model predicted daily maximum temperatures to within 2.29°C 

using the “logger” ASL for the low intertidal zone, 3.07°C using the “general” ASL for 

the mid intertidal zone, and 5.65°C using the “general” ASL for the high intertidal zone 

(Table A.4). 

The number of over- and underestimations in the mid and high intertidal zones 

increased with decreasing ASL. In contrast, over- and underestimations increased with 

increasing ASL in the low intertidal zone (Fig. 3.4B). For the low intertidal zone the 

model underestimated the number of cold temperatures by 4, 17 and 28 days using an 

ASL value of MLLW + 0.43m, MLLW + 0.5m and MLLW + 0.69m, respectively, and 

all ASLs caused the model to underestimate the number of stressful temperatures by 1  
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Figure 3.4 Distributions of daily maximum mussel body temperatures predicted by the 

general model with changing ASL values (y-axes: meters). The second “Logger” in each 

group is the data collected by the loggers in the field (not model estimations). (A) The 

box is the IQR, the line within the box is the median, the left side of the box is the 25th 

percentile, the right side of the box is the 75th percentile, the left line ends at the 

minimum value and the right line ends at the maximum value. (B) The histogram shows 

the frequency of the daily maximum temperatures within the four categories cold 

suboptimal/sublethal (< 17°C), optimal (17-22°C), high suboptimal (22-30°C) and high 

sublethal (30-38°C). 

0 10 20 30

General

(0.5)

Logger

(0.69)

Regres.

(0.43)

Logger

General

(1.5)

Logger

(1.36)

Regres.

(1.13)

Logger

General

(2.5)

Logger

(1.56)

Regres.

(1.27)

Logger

Temperature (°C)

020040060080010001200

General

(0.5)

Logger

(0.69)

Regres.

(0.43)

Logger

General

(1.5)

Logger

(1.36)

Regres.

(1.13)

Logger

General

(2.5)

Logger

(1.56)

Regres.

(1.27)

Logger

Frequency (No. of Days)

< 17°C 17-22°C 22-30°C 30-38°C

A B 
Low 

Intertidal 

Zone 

Mid 

Intertidal 

Zone 

High 

Intertidal 

Zone 



30 

 

day. The model overestimated the number of cold temperatures by 134, 216 and 371 days 

using ASL values of MLLW + 1.5m, MLLW + 1.36m and MLLW + 1.13m, respectively, 

for the mid intertidal zone, and 319, 478 and 641 days for the high intertidal zone using 

ASL values of MLLW + 2.5m, MLLW + 1.56m and MLLW + 1.27m, respectively. The 

model underestimated the number of stressful temperatures by 19, 20 and 21 days and 

147, 148 and 149 days as the ASL decreased for the mid and high intertidal zones, 

respectively (Fig. 3.4B). 

3.1.5. Effective Shore Level (ESL slope) 

Model predictions were generally most accurate for the low intertidal zone 

(2.4°C) and least accurate for the high intertidal zone (5.6°C). “Tailored” ESL slopes 

calculated using only temperatures recorded during the period of observation in this study 

were considerably lower than the generic prediction of 0.25m (Table A.5), but had very 

little effect on model error (Fig. 3.5B). For all three intertidal zones, the model tended to 

predict colder temperatures than the actual recorded logger temperatures using both of the 

ESL slope values (Fig. 3.5A). For the low intertidal zone the model underestimated the 

number of cold temperatures by 24 and 50 days using an ESL value of 0.25m and 0.06m, 

respectively, and ESLs caused the model to underestimate the number of stressful 

temperatures by 1 day. The model overestimated the number of cold temperatures by 56 

and 138 days using ESL values of 0.16m and 0.25m, respectively, for the mid intertidal 

zone, and by 321 and 325 days for the high intertidal zone using ESL values of 0.12m 

and 0.25m, respectively. The model underestimated the number of stressful temperatures 

by 19 days using either ESL value for the mid intertidal zone and by 152 days using 

either ESL value for the high intertidal zone (Fig. 3.5B). 
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3.1.6. Absolute and Effective Shore Level (ASL & ESL slope) 

As above, model temperature predictions were most accurate for the low intertidal 

zone and least accurate for the high intertidal zone. Generally, the model for all intertidal 

zones predicted colder temperatures than those experienced by the loggers in the field 

with the mid intertidal zone predicting the highest number of cold temperatures, followed 

 

 

Figure 3.5 Distributions of daily maximum mussel body temperatures predicted by the 

general model with changing ESL slope values (y-axes: meters). (A) The box is the IQR, 
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the line within the box is the median, the left side of the box is the 25th percentile, the 

right side of the box is the 75th percentile, the left line ends at the minimum value and the 

right line ends at the maximum value. (B) The histogram shows the frequency of the 

daily maximum temperatures within the four categories cold suboptimal/sublethal (< 

17°C), optimal (17-22°C), high suboptimal (22-30°C) and high sublethal (30-38°C). 

by the high then the low intertidal zone. The number of optimal, high suboptimal and 

stressful temperatures predicted by the model increased from the low to high intertidal 

zone (Fig. 3.6B). Similar to the ESL slope analysis, there was not one ASL & ESL slope 

combination that was the most accurate however, considering all measures of error for all 

intertidal zones, the model using the generic ASL & ESL slope tended to provide more 

accurate temperature predictions than either of the other two ASL & ESL slope 

combinations and using the regression ASL & ESL slope provided the least accurate 

predictions most often (Fig. 3.6A). The model predicted daily maximum temperatures to 

within 2.35°C using the regression ASL & ESL slope for the low intertidal zone, 3.02°C 

using the logger ASL & regression ESL slope for the mid intertidal zone, and 5.62°C 

using the general ASL & ESL slope for the high intertidal zone (Table A.6).  

The model was better at not under- or overestimating temperatures using the 

general ASL & ESL slope combination for all three intertidal zones (Fig. 3.6B). For the 

low intertidal zone the model underestimated the number of cold temperatures by 24, 43 

and 73 days using the general ASL and ESL slope, regression ASL and ESL slope, and 

the logger ASL and regression ESL slope, respectively. The model underestimated the 

number of stressful temperatures by 1 day using any of the ASL and ESL slope 

combinations. The model overestimated the number of cold temperatures by 113, 136, 

and 267 days using the logger ASL and regression ESL slope, general ASL and ESL 

slope, and regression ASL and ESL slope, respectively, and underestimated the number 

of stressful temperatures by 19 days using the general ASL and ESL slope, and the logger  
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Figure 3.6 Distributions of daily maximum mussel body temperatures predicted by the 

general model with the ASL and ESL slope values changing (y-axes: meters). In each 

graph: G = general; L = logger; R = regression. The second “Logger” in each group is the 

data collected by the loggers in the field (not model estimations). (A) The box is the IQR, 

the line within the box is the median, the left side of the box is the 25th percentile, the 

right side of the box is the 75th percentile, the left line ends at the minimum value and the 
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the monthly average daily maximum temperatures as a measure of error (Mislan and 

Wethey, 2011) versus the use of average daily maximum used here.  

The range of error associated with different models is complex, as are differences 

among some of the heat budget models themselves, but comparisons are difficult given 

the different error measures used. Gilman et al. (2006b) reported errors that were similar 

to those of the loggers, but this was comparing monthly average daily maxima, rather 

than all daily maxima as reported here. The original model that was adapted for this 

research predicted mussel daily maximum body temperatures within 2.8°C at Bodega 

Bay (Helmuth et al. 2011). The model used for this research, at its most accurate point 

(for the mid intertidal zone), was able to predict temperatures to within a very 

comparable 3.1°C using LWS data at Hopkins.  

Much of the variation in temperatures within sites has been attributed to 

differences in wave exposure (Gilman et al. 2006b; Helmuth et al. 2002). For example, 

Helmuth et al. (2006a) and this study found that the mussels located at wave protected 

sites experienced warmer temperatures than those at wave exposed locations. Also, the 

model used in this study and the model used by Finke et al. (2009) ran hot. Finke et al. 

(2009) explained their model’s overestimation of temperature as a result of the difference 

in the actual tide height and the predicted tide height (i.e. difference in wave exposure). 

Their model did not account for the swash that was cooling the organism during aerial 

exposure. Advances have been made in an attempt to quantify and incorporate wave 

exposure into models (Gilman et al. 2006a; Helmuth et al. 2006a; Mislan et al. 2011), but 

it is an ongoing complication within model predictions that will require additional 

research (Helmuth et al. 2011). 
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There is more than one measure of error or uncertainty. The selection of the 

specific measure of error/uncertainty depends on the model’s functionality. Here, several 

measures of error have been provided for determining whether or not this model was able 

to accurately predict mussel body temperatures, specifically, the calculated difference 

between the loggers observations and model predictions, and uncertainty, the range of 

temperatures in which the loggers’ measurements may actually be located. I provided 

more measurements of error (average difference, absolute average difference, RMSE, 

number of stressful days, false positives/negatives) than uncertainty (ability to accurately 

distribute temperatures in a physiological framework that matches the distribution of 

logger temperatures). Providing all these measures of error and uncertainty is a way of 

ensuring that the end-user has a useful measure of error to examine in order to determine 

if the model is ‘good enough’ to be used for their needs.  

A model’s usefulness to one person could depend on a metric of error, such as the 

absolute average difference as I have focused on here, while to another person the 

uncertainty of the model is important, and they may be focused on statistical p-values, 

which I have not discussed. A model that is right for one application may not be right for 

another. Therefore, the successful application of a model depends on the questions that it 

is being used to address, and the end-users tolerance for false positives and false 

negatives. For example, an end user who errs on the side of precaution and needs a model 

that overestimates the number of stressful temperatures experienced by mussels could use 

this model for Bodega Bay or Hopkins. On the other hand, someone who needs this 

model to underestimate the number of stressful temperatures could use this model for 

Alegria or Coal Oil Point. In the end, some measures of error/uncertainty associated with 
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this model are better for some sites and worse for others and it all depends on which type 

of error is most important to the person that uses the model. For the purposes of 

understanding the effects of changing wave climates on intertidal organisms, I used a 

measure of uncertainty (the physiological framework) to determine what study locations 

are most and least impacted. 

Despite wave exposure difficulties with the model predictions, which potentially 

led to a higher number of false stressful and lethal temperature predictions, the final goal 

of this project was to determine how body temperatures would be impacted by changes in 

significant wave heights. For all four locations, the predicted body temperatures 

increased with decreasing wave heights, which also led to an increased number of 

stressful and lethal temperature predictions (Table 4.4). As wave height increased, body 

temperatures and the number of stressful and lethal temperature days decreased (Table 

4.5). As wave heights decrease or increase, the amount of surge and splash also decreases 

or increases, thereby reducing or increasing the amount of time organisms are cooled 

during aerial exposure, respectively (Mislan et al. 2011).  

Table 4.4 Effect of decreasing significant wave height on model predicted body 

temperatures. Data are shown for the five divisions of the physiological framework: cold 

suboptimal/sublethal (<17°C), optimal (17-22°C), high suboptimal (22-30°C), high 

sublethal (30-38°C) and high lethal (≥38°C). Values shown are the percent change from 

the number of temperatures within each category predicted by the model with the actual 

wave height (no change) to the number of temperatures predicted by the model using the 

maximum decrease (-50%) in wave height. A positive value is an increase in the number 

of temperatures and a negative value is a decrease in the number of temperatures. 

  Temperature (%) 

Intertidal 

Zone 

Study 

Location 
<17°C 17-22°C 22-30°C 30-38°C ≥38°C 

Low 

Bodega Bay -5.7 13.6 37.5 0.0 0.0 

Hopkins -13.1 4.0 14.5 14.4 200.0 

Alegria -28.7 6.3 9.1 9.9 13.0 

Coal Oil Point -17.3 4.3 6.4 8.3 5.4 
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Mid 

Bodega Bay -28.5 10.5 23.0 31.6 0.0 

Hopkins -23.8 -4.0 6.6 11.6 25.5 

Alegria -21.1 -5.5 -0.9 7.2 11.1 

Coal Oil Point 87.6 13.0 -40.4 -85.4 -104.2 

High 

Bodega Bay -0.3 -0.3 0.9 0.0 0.0 

Hopkins -0.9 1.0 0.0 0.0 0.0 

Alegria -1.7 0.5 0.0 0.1 0.0 

Coal Oil Point 0.0 0.0 0.0 0.0 0.0 

 

Table 4.5 Effect of increasing significant wave height on model predicted body 

temperatures. Data are shown for the five divisions of the physiological framework: cold 

suboptimal/sublethal (<17°C), optimal (17-22°C), high suboptimal (22-30°C), high 

sublethal (30-38°C) and high lethal (≥38°C). Values shown are the percent change from 

the number of temperatures within each category predicted by the model with the actual 

wave height (no change) to the number of temperatures predicted by the model using the 

maximum increase (+50%) in wave height. A positive value is an increase in the number 

of temperatures and a negative value is a decrease in the number of temperatures. 

  Temperature (%) 

Intertidal 

Zone 

Study 

Location 
<17°C 17-22°C 22-30°C 30-38°C ≥38°C 

Low 

Bodega Bay 4.5 -15.8 -16.7 0.0 0.0 

Hopkins 14.6 -22.4 -8.1 -25.0 0.0 

Alegria 13.6 -6.3 -3.8 -7.9 -2.4 

Coal Oil Point 15.0 -6.2 -7.1 -9.1 -1.9 

Mid 

Bodega Bay 28.0 -18.2 -33.1 -13.3 0.0 

Hopkins 32.0 0.0 -10.2 -24.9 -40.0 

Alegria 37.5 7.0 -1.5 -11.8 -15.9 

Coal Oil Point 16.2 2.6 1.6 -1.5 -7.7 

High 

Bodega Bay 4.3 -1.8 -1.0 0.0 0.0 

Hopkins 3.9 -0.7 -0.9 -1.0 0.0 

Alegria 6.1 1.1 -0.8 -0.3 -1.2 

Coal Oil Point 0.8 0.0 -0.2 0.0 0.0 

 

The two wave exposed locations, Bodega Bay and Hopkins, were more sensitive 

to changing wave heights compared to the two wave protected locations, Alegria and 

Coal Oil Point. This could be due to the timing of the low tide being different in northern 

locations versus southern locations. At northern locations, low tide tends to occur midday 

during the hottest months of the year, while in southern locations low tides seldom occur 

midday during these thermally stressful months (Helmuth et al. 2006a). Decreasing or 
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increasing wave heights would impact the height of low tides and therefore the amount of 

swash available to cool organisms during low tide. If low tide occurs during the hottest 

time of the day during the hottest time of the year, and wave heights are decreased, there 

may be a higher occurrence of stressful and lethal temperatures among mussels in the 

high intertidal zone. This could lead to a decrease in the upper zonation limit of these 

organisms. Likewise, if the low tide height is increased, then mussels would be able to 

live higher on the shore and still be within their physiological limits.  

Due to the oceanographic conditions that characterize the southern coast of 

California (low waves and weak seasonal upwelling), installing wave energy devices off 

of the coast of Coal Oil Point of Alegria would be fruitless. Therefore, Hopkins or 

Bodega Bay would be the most likely locations of wave energy development where there 

are high waves and strong upwelling, therefore leading to a greater renewable energy 

resource. Wave energy farms off the coast of Hopkins would lead to more stressful 

temperatures in the low and mid intertidal zones and potentially more lethal temperatures 

within the mid and high intertidal zones. For Bodega Bay, although the installation of 

wave energy farms would lead to temperatures rising above the optimal threshold, they 

would not reach into the stressful category above 30°C, even in the high intertidal zone. 

Conclusively, although one of the more wave energy sensitive locations, wave energy 

installments off the coast of Bodega Bay would provide the greatest amount of energy, as 

the northernmost study location, with the lowest impact on the intertidal community, with 

the lowest overall temperatures. 

Researchers have documented that rising sea level and increases in temperature 

due to climate change will have effects on biogeographic shifts of organisms (Berke et al. 
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2010; Jones et al. 2009; Jones et al. 2010; Wethey et al. 2011b). These changes can also 

lead to shifts in vertical zonation (Thompson et al. 2002). While wave heights are 

expected to increase with climate change, wave energy conversion devices can decrease 

wave height and swash. Understanding the impacts that these changes will have on aerial 

and submerged body temperatures of organisms in the intertidal zone are important 

considerations for predicting the likely impacts of climate change and wave energy farms 

on intertidal communities.  

In conclusion, although the model was able to accurately predict mussel daily 

maximum temperatures at Bodega Bay using both LWS (3.16°C) and CFSR (3.34°C) 

data for the mid intertidal zone, its ability to accurately predict temperatures of mussels 

for other locations was not reliable. Due to the inaccuracy of this model, its use by 

decision-makers to inform policy decisions should be approached with caution. My work 

provides a general foundation for understanding the impacts that changing wave climates 

will have on mussels in the rocky intertidal zone along the coast of California; however, 

more analyses need to be completed using a model that is more site specific in order to 

determine which sites along the west coast will be least impacted by changing significant 

wave heights.  

 



65 

 

REFERENCES 

 
Bayne BL, Bayne CJ, Carefoot TC, Thompson RJ. 1976. The physiological ecology of 

Mytilus californianus Conrad. 1. Metabolism and Energy Balance. Oecologia. 

22(3):211-228.  

 

Berke SK, Mahon AR, Lima FP, Halanych KM, Wethey DS, Woodin SA. 2010. Range 

shifts and species diversity in marine ecosystem engineers: patterns and 

predictions for European sedimentary habitats. Global Ecol Biogeogr. 19:223-

232. 

 

Berlow EL. 1999. Strong effects of weak interactions in ecological communities. Nature. 

398:330-334. 

 

Bernhardt JR, Leslie HM. 2013. Resilience to climate change in coastal marine 

ecosystems. Ann Rev Mar Sci. 5:371-392. 

 

Blanchette CA. 1997. Size and survival of intertidal plants in response to wave action: A 

case study with Fucus gardneri. Ecology. 78(5):1563-1578. 

 

Blanchette CA, Helmuth B, Gaines SD. 2007. Spatial patterns of growth in the mussel, 

Mytilus californianus, across a major oceanographic and biogeographic boundary 

at Point Conception, California, USA. J Exp Mar Biol Ecol. 340(2):126-148. 

 

Boehlert GW, Gill AB. 2010. Environmental and ecological effects of ocean renewable 

energy development: A current synthesis. Oceanography. 23(2):68-81. 

 

Boulding EG. 1990. Are the opposing selection pressures on exposed and protected 

shores sufficient to maintain genetic differentiation between gastropod 

populations with high intermigration rates? Hydrobiologia. 193(1):41-52. 

 

Boulding EG, VanAlstyne KL. 1993. Mechanisms of differential survival and growth of 

two species of Littorina on wave-exposed and on protected shores. J Exp Mar 

Biol Ecol. 169(2):139-166. 

 



66 

 

Brown KM, Quinn JF. 1988. The effect of wave action on growth in three species of 

intertidal gastropods. Oecologia. 75(3):420-425. 

 

Broitman BR, Szathmary PL, Mislan KAS, Blanchette CA, Helmuth B. 2009. Predator-

prey interactions under climate change: The importance of habitat vs body 

temperature. Oikos. 118:219-224. 

 

Burrows EM, Conway E, Lodge SM, Powell HT. 1954. The raising of intertidal algal 

zones on Fair Isle. J Ecol. 42(2):283-288. 

 

Burrows MT, Harvey R, Robb L. 2008. Wave exposure indices from digital coastlines 

and the prediction of rocky shore community structure. Mar Ecol Prog Ser. 353:1-

12. 

 

Cimberg RL. 1975. Zonation, species diversity, and redevelopment in the rocky intertidal 

near Trinidad, northern California [dissertation]. [Arcata, (CA)]: Humboldt State 

University. 236 p. 

 

Colman J. 1933. The nature of the intertidal zonation of plants and animals. J Mar Biol 

Assoc UK (New Series). 18(2):435-476. 

 

Connell JH. 1972. Community interactions on marine rocky intertidal shores. Annu Rev 

Ecol Syst. 3:169-192. 

 

Davenport J, Davenport JL. 2005. Effects of shore height, wave exposure and 

geographical distance on thermal niche width of intertidal fauna. Mar Ecol Prog 

Ser. 292:41-50. 

 

Dayton PK. 1971. Competition, disturbance and community organization: The provision 

and subsequent utilization of space in a rocky intertidal community. Ecol Monogr. 

41(4):351-389. 

 

Denny M. 1995. Predicting physical disturbance: Mechanistic approaches to the study of 

survivorship on wave-swept shores. Ecol Monogr. 65(4):371-418. 

 

Denny MW. 2006. Ocean waves, nearshore ecology, and natural selection. Aquat Ecol. 

40(4):439-461. 

 

Denny MW, Miller LP, Harley CDG. 2006. Thermal stress on intertidal limpets: Long-

term hindcasts and lethal limits. J Exp Biol. 209(13):2420-2431. 



67 

 

 

Denny MW, Dowd WW, Bilir L, Mach KJ. 2011. Spreading the risk: Small-scale body 

temperature variation among intertidal organisms and its implications for species 

persistence. J Exp Mar Biol Ecol. 400(1-2):175-190. 

 

Doty MS. 1946. Critical tide factors that are correlated with the vertical distribution of 

marine algae and other organisms along the Pacific Coast. Ecology. 27(4):315-

328. 

 

Doty MS, Archer JG. 1950. An experimental test of the tide factor hypothesis. Am J Bot. 

37(6):458-464. 

 

Etter RJ. 1989. Life history variation in the intertidal snail Nucella lapillus across a wave-

exposure gradient. Ecology. 70(6):1857-1876. 

 

Finke GR, Bozinovic F, Navarrete SA. 2009. A mechanistic model to study the thermal 

ecology of a Southeastern Pacific dominant intertidal mussel and implications for 

climate change. Physiol Biochem Zool. 82(4):303-313. 

 

Fitzhenry T, Halpin PM, Helmuth B. 2004. Testing the effects of wave exposure, site, 

and behavior on intertidal mussel body temperatures: Applications and limits of 

temperature logger design. Mar Biol. 145(2):339-349. 

 

Flater D. XTide: Harmonic tide clock and tide predictor [Internet]. [cited 2013 May 8]. 

Available from: http://www.flaterco.com/xtide/. 

 

Foster BA. 1969. Tolerance of high temperatures by some intertidal barnacles. Mar Biol. 

4:326-332. 

 

Fuller A, Dawson T, Helmuth B, Hetem RS, Mitchell D, Maloney SK. 2010. 

Physiological mechanisms in coping with climate change. Physiol Biochem Zool. 

83(5):713-720. 

 

Gaylord B. 1999. Detailing agents of physical disturbance: wave-induced velocities and 

accelerations on a rocky shore. J Exp Mar Biol Ecol. 239(1):85-124. 

 

Gilman SE, Harley CDG, Strickland DC, Vanderstraeten O, O’Donnell MJ, Helmuth B. 

2006a. Evaluation of effective shore level as a method of characterizing intertidal 

wave exposure regimes. Limnol Oceanogr Methods. 4:448-457. 

 

http://www.flaterco.com/xtide/


68 

 

Gilman SE, Wethey DS, Helmuth B. 2006b. Variation in the sensitivity of organismal 

body temperature to climate change over local and geographic scales. Proc Natl 

Acad Sci USA. 103(25):9560-9565. 

 

Halpin PM, Menge BA, Hofmann GE. 2004. Experimental demonstration of plasticity in 

the heat shock response of the intertidal mussel Mytilus californianus. Mar Ecol 

Prog Ser. 276:137-145. 

 

Harger JRE. 1970. The effect of wave impact on some aspects of the biology of sea 

mussels. Veliger. 12(4):401-414. 

 

Harley C. 2007. Zonation. In: Encyclopedia of the Natural World: Encyclopedia of 

Tidepools & Rocky Shores. 1st Ed. Berkeley and Los Angeles, CA: University of 

California Press. p. 641-647. 

 

Harley CDG. 2008. Tidal dynamics, topographic orientation, and temperature-mediated 

mass mortalities on rocky shores. Mar Ecol Prog Ser. 371:37-46. 

 

Harley CDG, Helmuth BST. 2003. Local- and regional-scale effects of wave exposure, 

thermal stress, and absolute vs. effective shore level on patterns of intertidal 

zonation. Limnol Oceanogr. 48(4):1498-1508. 

 

Harley CDG, Denny MW, Mach KJ, Miller LP. 2009. Thermal stress and morphological 

adaptations in limpets. Funct Ecol. 23(2):292-301. 

 

Helmuth BST. 1998. Intertidal mussel microclimates: Predicting the body temperature of 

a sessile invertebrate. Ecol Monogr. 68(1):29-52. 

 

Helmuth B. 1999. Thermal biology of rocky intertidal mussels: Quantifying body 

temperatures using climatological data. Ecology. 80(1):15-34. 

 

Helmuth B. 2002. How do we measure the environment? Linking intertidal thermal 

physiology and ecology through biophysics. Integr Comp Biol. 42(4):837-845. 

 

Helmuth BST, Hofmann GE. 2001. Microhabitats, thermal heterogeneity, and patterns of 

physiological stress in the rocky intertidal zone. Biol Bull. 201(3):374-384. 

 

Helmuth B, Harley CD, Halpin P, O’Donnell M, Hofmann GE, Blanchette C. 2002. 

Climate change and latitudinal patterns of intertidal thermal stress. Science. 

298:1015-1017. 

http://www.northeastern.edu/helmuthlab/Publications/PDFs/HelmuthEcoMonogr98.pdf
http://www.northeastern.edu/helmuthlab/Publications/PDFs/HelmuthEcoMonogr98.pdf
http://www.northeastern.edu/helmuthlab/Publications/PDFs/HelmuthEcology99.pdf
http://www.northeastern.edu/helmuthlab/Publications/PDFs/HelmuthEcology99.pdf


69 

 

 

Helmuth B, Broitman BR, Blanchette CA, Gilman S, Halpin P, Harley CDG, O’Donnell 

MJ, Hofmann GE, Menge B, Strickland D. 2006a. Mosaic patterns of thermal 

stress in the rocky intertidal zone: Implications for climate change. Ecol Monogr. 

76(4):461-479. 

 

Helmuth B, Mieszkowska N, Moore P, Hawkins SJ. 2006b. Living on the edge of two 

changing worlds: Forecasting the responses of rocky intertidal ecosystems to 

climate change. Annu Rev Ecol Evol Syst. 37:373-404. 

 

Helmuth B, Yamane L, Lalwani S, Matzelle A, Tockstein A, Gao N. 2011. Hidden 

signals of climate change in intertidal ecosystems: What (not) to expect when you 

are expecting. J Exp Mar Biol Ecol. 400(1-2):191-199. 

 

Huey RB, Stevenson RD. 1979. Integrating thermal physiology and ecology of 

ectotherms: A discussion of approaches. Am Zool. 19(1):357-366. 

 

Jones SJ, Mieszkowska N, Wethey DS. 2009. Linking thermal tolerances and 

biogeography: Mytilus edulis (L.) at its southern limit on the east coast of the 

United States. Biol Bull. 217(1):73-85. 

 

Jones SJ, Lima FP, Wethey DS. 2010. Rising environmental temperatures and 

biogeography: Poleward range contraction of the blue mussel, Mytilus edulis L., 

in the western Atlantic. J Biogeogr. 37(12):2243-2259. 

 

Jost J, Helmuth B. 2007. Morphological and ecological determinants of body temperature 

of Geukensia demissa, the Atlantic Ribbed Mussel, and their effects on mussel 

mortality. Biol Bull. 213(2):141-151. 

 

Jubb CA, Hughes RN, Rheinallt T. 1983. Behavioral mechanisms of size-selection by 

crabs, Carcinus maenas (L.) feeding on mussels, Mytilus edulis L. J Exp Mar Biol 

Ecol. 66(1):81-87. 

 

Kanter RG. 1977. Structure and diversity in Mytilus californianus (Mollusca: Bivalvia) 

communities [dissertation]. [Los Angeles, (CA)]: University of Southern 

California. 114 p. 

 

Kanter RG. 1980. Biogeographic patterns in mussel community distribution from the 

Southern California Bight. In: The California Islands: Proceedings of a 

http://www.northeastern.edu/helmuthlab/Publications/PDFs/HelmuthetalEcoMongr06.pdf
http://www.northeastern.edu/helmuthlab/Publications/PDFs/HelmuthetalEcoMongr06.pdf


70 

 

Multidisciplinary Symposium. Santa Barbara, CA: Santa Barbara Museum of 

Natural History. p. 341-355 

 

Kearney M. 2006. Habitat, environment and niche: What are we modelling? Oikos. 

115:186-191. 

 

Kearney M, Simpson SJ, Raubenheimer D, Helmuth B. 2010. Modelling the ecological 

niche from functional traits. Philos T Roy Soc B. 365(1557):3469-3483. 

 

Kish N. 2013. Modeling approaches, physiological responses, and climate change: How 

good is ‘good enough?’ [Thesis]. [Columbia, (SC)]: University of South Carolina. 

47 p. 

 

Lawson GW. 1957. Seasonal variation of intertidal zonation on the coast of Ghana in 

relation to tidal factors. J Ecol. 45(3):831-860. 

 

Leigh EG, Paine RT, Quinn JF, Suchanek TH. 1987. Wave energy and intertidal 

productivity. Proc Natl Acad Sci USA. 84(5):1314-1318. 

 

Lively CM, Raimondi PT, Delph LF. 1993. Intertidal zommunity structure: Space-time 

interactions in the northern Gulf of California. Ecology. 74(1):162-173. 

 

McNeill, M. 2010. Vertical zonation: Studying ecological patterns in the rocky intertidal 

zone. Sci Act: Classroom Projects and Curriculum Ideas. 47(1):8-14. 

 

Menge BA. 1976. Organization of the New England Rocky intertidal community: Role of 

predation, competition, and environmental heterogeneity. Ecol Monogr. 

46(4):355-393. 

 

Menge BA, Berlow EL, Blanchette CA, Navarrete SA, Yamada SB. 1994. The keystone 

species concept: Variation in interaction strength in a rocky intertidal habitat. Ecol 

Monogr. 64(3):249-286. 

 

Millar DL, Smith HCM, Reeve DE. 2007. Modelling analysis of the sensitivity of 

shoreline change to a wave farm. Ocean Eng. 34(5-6):884-901. 

 

Minerals Management Service [MMS] (US). Technology White Paper on Wave Energy 

Potential on the U.S. Outer Continental Shelf [Internet]. Renewable Energy and 

Alternate Use Program. U.S. Department of the Interior; 2006 May [cited 2011 

Sept 11]. Available from: http://www.boem.gov/Renewable-Energy-

Program/Renewable-Energy-Guide/Ocean-Current-Energy.aspx. 



71 

 

 

Mislan KAS, Wethey DS. 2011. Gridded meteorological data as resource for mechanistic 

ecology in coastal environments. Ecol Appl. 21(7):2678-2690. 

 

Mislan KAS, Blanchette CA, Broitman BR, Washburn L. 2011. Spatial variability of 

emergence, splash, surge, and submergence in wave-exposed rocky-shore 

ecosystems. Limnol Oceanogr. 56(3):857-866. 

 

Mislan KAS, Helmuth B, Wethey DS. 2014. Geographical variation in climatic 

sensitivity of intertidal mussel zonation. Glob Ecol Biogeogr. 23(7):744-756. 

 

National Data Buoy Center [NDBC] [Internet]. Standard Meteorological Historical Data. 

Hancock County (MS): Stennis Space Center. [updated 2013 Dec 11; cited 2013 

May 8]. Available from: http://www.ndbc.noaa.gov/. 

NOMADS Data Access [Internet]. Dataset: CFSR – Hi-Priority Time Series. Asheville 

(NC): National Climatic Data Center. [updated 2013 Dec 12; cited 2013 May 9]. 

Available from: 

http://nomads.ncdc.noaa.gov/thredds/catalog/cfsr1hr/catalog.html.  

 

Paasch R, Ruehl K, Hovland J, Meicke S. 2012. Wave energy: A Pacific perspective. 

Philos T Roy Soc A. 370(1959):481-501. 

 

Paine RT. 1966. Food web complexity and species diversity. Am Nat. 100(910):65-75. 

 

Paine RT. 1974. Intertidal community structure: Experimental studies on the relationship 

between a dominant competitor and its principal predator. Oecologia. 15(2):93-

120. 

 

Palha A, Mendes L, Fortes CJ, Brito-Melo A, Sarmento A. 2010. The impact of wave 

energy farms in the shoreline wave climate: Portuguese pilot zone case study 

using Pelamis energy wave devices. Renew Energy. 35(1):62-77. 

 

Pincebourde S, Sanford E, Helmuth B. 2008. Interaction between underwater and aerial 

body temperatures in influencing a top predator feeding rate in the intertidal. 

Comp Biochem Physiol A Mol Integr Physiol. 150(3)Supplement:S95. 

 

Pincebourde S, Sanford E, Casas J, Helmuth B. 2012. Temporal coincidence of 

environmental stress events modulates predation rates. Ecol Lett. 15(7):680-688. 

 

http://www.ndbc.noaa.gov/
http://nomads.ncdc.noaa.gov/thredds/catalog/cfsr1hr/catalog.html


72 

 

Porter WP, Gates DM. 1969. Thermodynamic equilibria of animals with environment. 

Ecol Monogr. 39(3):227-244. 

 

Raimondi PT. 1988. Settlement cues and determination of the vertical limit of an 

intertidal barnacle. Ecology. 69(2):400-407. 

 

Research Database [Internet]. Boston (MA): Northeastern University Helmuth Lab. 

[updated 2013; cited 2013 April 25]. Available from: 

http://www.northeastern.edu/helmuthlab/database/.  

 

Robles C, Sweetnam D, Eminike J. 1990. Lobster predation on mussels: Shore-level 

differences in prey vulnerability and predator preference. Ecology. 71(4):1564-

1577. 

 

Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, et al. 2010. The NCEP Climate 

Forecast System Reanalysis. B Am Meteorol Soc. 91:1015-1057. 

 

Sanford E. 2002. The feeding, growth, and energetics of two rocky intertidal predators 

(Pisaster ochraceus and Nucella canaliculata) under water temperatures 

simulating episodic upwelling. J Exp Mar Biol Ecol. 273(2):199-218. 

 

Sanford E, Roth MS, Johns GC, Wares JP, Somero GN. 2003. Local selection and 

latitudinal variation in a marine predator-prey interaction. Science. 

300(5622):1135-1137. 

 

Sarà G, Kearney M, Helmuth B. 2011. Combining heat-transfer and energy budget 

models to predict thermal stress in Mediterranean intertidal mussels. Chem Ecol. 

27(2):135-145. 

 

Sarà G, Palmeri V, Rinaldi A, Montalto V, Helmuth B. 2013. Predicting biological 

invasions in marine habitats through eco-physiological mechanistic models: A 

case study with the bivalve Brachidontes pharaonis. Divers Distrib. 19(10):1235-

1247. 

 

Smith HCM, Pearce C, Millar DL. 2012. Further analysis of change in nearshore wave 

climate due to an offshore wave farm: An enhanced case study for the Wave Hub 

site. Renew Energy. 40(1):51-64. 

 

Smith JR, Fong P, Ambrose RF. 2006. Dramatic declines in mussel bed community 

diversity: Response to climate change? Ecology. 87(5):1153-1161. 

http://www.northeastern.edu/helmuthlab/database/


73 

 

 

Smith KA. 2010. Measuring and forecasting environmental conditions from the 

perspective of rocky intertidal organisms [dissertation]. [Columbia, (SC)]: 

University of South Carolina. 135 p.  

 

Somero GN. 2002. Thermal physiology and vertical zonation of intertidal animals: 

Optima, limits, and costs of living. Integr Comp Biol. 42(4):780-789. 

 

Sousa WP. 1979. Disturbance in marine intertidal boulder fields: The nonequilibrium 

maintenance of species diversity. Ecology. 60(6):1225-1239. 

 

Stephenson TA, Stephenson A. 1949. The universal features of zonation between tide-

marks on rocky coasts. J Ecol. 37(2):289-305. 

 

Stillman JH. 2002. Causes and consequences of thermal tolerance limits in rocky 

intertidal porcelain crabs, genus Petrolisthes. Integr Comp Biol. 42(4):790-796. 

 

Stillman JH, Somero GN. 1996. Adaptation to temperature stress and aerial exposure in 

congeneric species of intertidal porcelain crabs (genus Petrolisthes): Correlation 

of physiology, biochemistry and morphology with vertical distribution. J Exp 

Biol. 199(8):1845-1855. 

 

Suchanek TH. 1979. The Mytilus californianus community: Studies on the composition, 

structure, organization and dynamics of a mussel bed [dissertation]. [Seattle, 

(WA)]: University of Washington. 572 p. 

 

Thompson RC, Crowe TP, Hawkins SJ. 2002. Rocky intertidal communities: Past, 

environmental changes, present status and predictions for the next 25 years. 

Environmental Conservation. 29(2):168-191. 

 

Tomanek L, Helmuth B. 2002. Physiological ecology of rocky intertidal organisms: A 

synergy of concepts. Integr Comp Biol. 42(4):771-775. 

 

Tsuchiya M. 1983. Mass mortality in a population of the mussel Mytilus edulis L. caused 

by high temperature on rocky shores. J Exp Mar Biol Ecol. 66(2):101-111. 

 

Underwood AJ. 1972. Tide-model analysis of the zonation of intertidal prosobranchs, I. 

Four species of Littorina (L.). J Exp Mar Biol Ecol. 9(3):239-255. 

 



74 

 

Underwood AJ. 1978. A refutation of critical tidal levels as determinants of the structure 

of intertidal communities on British shores. J Exp Mar Biol Ecol. 33(3):261-276. 

 

Underwood AJ. 1981. Structure of a rocky intertidal community in New South Wales: 

Patterns of vertical distribution and seasonal changes. J Exp Mar Biol Ecol. 

51(1):57-85. 

 

Underwood AJ. 2000. Experimental ecology of rocky intertidal habitats: What are we 

learning? J Exp Mar Biol Ecol. 250(1-2):51-76. 

 

Underwood AJ, Jernakoff P. 1984. The effects of tidal height, wave-exposure, seasonality 

and rock-pools on grazing and the distribution of intertidal macroalgae in New 

South Wales. J Exp Mar Biol Ecol. 75(1):71-96. 

 

Wethey DS. 1983. Geographic limits and local zonation: The barnacles Semibalanus 

(Balanus) and Chthamalus in New England. Biol Bull. 165(1):330-341. 

 

Wethey DS. 2002. Microclimate, competition, and biogeography: The barnacle 

Chthamalus fragilis in New England. Integr Comp Biol. 42:872-880. 

 

Wethey DS, Woodin SA. 2008. Ecological hindcasting of biogeographic responses to 

climate change in the European intertidal zone. Hydrobiologia. 606:139-151. 

 

Wethey DS, Brin LD, Helmuth B, Mislan KAS. 2011a. Predicting intertidal organism 

temperatures with modified land surface models. Ecol Modell. 222(19):3568-

3576. 

 

Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP, Brannock PM. 2011b. Response 

of intertidal populations to climate: Effects of extreme events versus long term 

change. J Exp Mar Biol Ecol. 400:132-144. 

 

Wolcott TG. 1973. Physiological ecology and intertidal zonation in limpets (Acmaea): A 

critical look at “limiting factors.” Biol Bull. 145(2):389-422. 

 

Wootton JT. 2010. Experimental species removal alters ecological dynamics in a natural 

ecosystem. Ecology. 91(1):42-48.  

 

WWW Tide and Current Predictor [Internet]. Tidal Height and Current Site Selection. 

Columbia (SC): University of South Carolina. [cited 2013 May 8]. Available 

from: http://tbone.biol.sc.edu/tide/. 

http://tbone.biol.sc.edu/tide/


75 

 

 

Zippay ML, Helmuth B. 2012. Effects of temperature change on mussel, Mytilus. Integr 

Zool. 7(3):312-327.



76 

 

APPENDIX A: DETAILED RESULTS FOR THE SENSITIVITY ANALYSES 

On average, all of the mussel absorptivity values considered in this study caused 

the model to underestimate the logger temperatures (negative average difference). The 

model was able to predict daily maximum mussel body temperatures from within 3.09°C 

to 2.97°C of the logger temperatures using an absorptivity value of 0.80 and 0.90, 

respectively, thus model accuracy increased with increasing values of mussel 

absorptivity. Changing the mussel absorptivity values in the model did not have an 

impact on the number of predicted stressful days nor the number of false positives or 

false negatives (Table A.1). The difference in the minimum value between the predicted 

and actual temperature was the same for all of the mussel absorptivity values 

(4.84°C).The temperatures predicted using an absorptivity value of 0.90 had the highest 

mean, highest max, largest range (Fig. 3.1A) and lowest error (Table A.1).  

Table A.1 Errors between the mussel body temperatures predicted by the general model 

with varying values of mussel absorptivity and the logger field measurements in the mid 

intertidal zone. The errors were determined for each change in parameter using the daily 

maximum temperature. The value that is used in the general model is 0.85, in bold. The 

total number of stressful days recorded by the loggers in the field is 20 for the mid 

intertidal zone. 

Mussel 

Absorptivity 

Avg. 

Diff. (°C) 

Abs. Avg. 

Diff. (°C) 
RMSE (°C) 

Stressful 

Days 

False 

Pos. 

False 

Neg. 

0.8 -2.07 3.11 4.07 2 2 20 

0.825 -1.97 3.08 4.02 2 2 20 

0.85 -1.86 3.05 3.98 2 2 20 

0.875 -1.76 3.02 3.94 2 2 20 

0.9 -1.66 2.99 3.90 2 2 20 
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As mussel absorptivity decreased the model overestimated more cold 

temperatures but fewer optimal temperatures and underestimated more high suboptimal 

temperatures. All mussel absorptivity values caused the model to overestimate the 

number of temperatures within the cold suboptimal/sublethal category by 92 (absorp. = 

0.90) to 160 (absorp. = 0.80) days and the optimal category by 21 (absorp. = 0.80) to 55 

(absorp. = 0.90) days. All of the mussel absorptivity values also caused the model to 

underestimate the number of temperatures within the high suboptimal category by 128 

(absorp. = 0.90) to 162 (absorp. = 0.80) days and the high sublethal category by 19 days 

(all absorp. values) (Fig. 3.1B). 

The model underestimated logger temperatures for all mussel sizes (negative 

average difference). The model predicted daily maximum mussel body temperatures from 

within 3.63°C to 2.88°C of the logger temperatures using a mussel size of 0.25 m and 

0.05 m, respectively, thus model accuracy increased with decreasing mussel size. The 

model using a mussel size of 0.05 m predicted the most accurate number of stressful days 

and was the most accurate when considering false negatives; however this mussel size 

caused the model to be least accurate when considering false positives (Table A.2). 

Table A.2 Errors between the mussel body temperatures predicted by the general model 

with varying values of mussel size and the logger field measurements in the mid intertidal 

zone. The errors were determined for each change in parameter using the daily maximum 

temperature. The value that is used in the general model is 0.075 m, in bold. The loggers 

in the mid intertidal zone recorded a total number of 20 stressful days. 

Mussel Size 

(m) 

Avg. 

Diff. (°C) 

Abs. Avg. 

Diff. (°C) 
RMSE (°C) 

Stressful 

Days 

False 

Pos. 

False 

Neg. 

0.05 -0.89 2.88 3.73 8 6 18 

0.06 -1.38 2.93 3.81 3 3 20 

0.07 -1.72 3.01 3.92 2 2 20 

0.075 -1.86 3.05 3.98 2 2 20 

0.08 -1.98 3.08 4.03 2 2 20 
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Mussel Size 

(m) 

Avg. 

Diff. (°C) 

Abs. Avg. 

Diff. (°C) 
RMSE (°C) 

Stressful 

Days 

False 

Pos. 

False 

Neg. 

0.09 -2.19 3.15 4.13 1 1 20 

0.1 -2.35 3.22 4.22 1 1 20 

0.11 -2.48 3.28 4.30 1 1 20 

0.12 -2.59 3.33 4.37 0 0 20 

0.13 -2.69 3.37 4.43 0 0 20 

0.14 -2.76 3.41 4.49 0 0 20 

0.15 -2.83 3.45 4.54 0 0 20 

0.175 -2.97 3.53 4.64 0 0 20 

0.2 -3.07 3.59 4.71 0 0 20 

0.225 -3.15 3.64 4.77 0 0 20 

0.25 -3.22 3.68 4.82 0 0 20 

As the mussel size increased to 0.25 m, the model predictions had a lower 

minimum, lower mean, lower maximum, smaller range (Fig. 3.2A) and higher error 

(Table A.2). As mussel size was increased the model overestimated more cold 

temperatures (up to 363 days) and underestimated more optimal (up to 135 days), high 

suboptimal (up to 207 days) and high sublethal temperatures (up to 21 days). The only 

time the model underestimated the number of cold temperatures was when using a mussel 

size of 0.05 m. The model overestimated the number of optimal temperatures using 

mussel sizes less than and equal to 0.09 m and underestimated optimal temperatures 

using sizes greater than 0.09 m. The model using all mussel sizes underestimated the 

number of high suboptimal and high sublethal temperatures (Fig. 3.2B). 

Both values of cloud cover data caused the model to underestimate the logger 

temperatures (negative average difference). The model was able to predict daily 

maximum mussel body temperatures to within 3.24°C using the normalized cloud cover 

data but was more accurate using the general cloud cover value. The model using the 

general cloud cover value was able to better successfully predict the number of stressful 

days but was less accurate when considering false positives (Table A.3). 
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Table A.3 Errors between the mussel body temperatures predicted by the general model 

with varying values of cloud cover and the logger field measurements in the mid 

intertidal zone. The errors were determined for each change in parameter using the daily 

maximum temperature. The value that is used in the general model is 0.6, in bold. 

Twenty stressful days were recorded by the loggers in the mid intertidal zone. 

Cloud 

Cover 

Avg. 

Diff. (°C) 

Abs. Avg. 

Diff. (°C) 
RMSE (°C) 

Stressful 

Days 

False 

Pos. 

False 

Neg. 

0.6 -1.86 3.05 3.98 2 2 20 

Norm. -2.41 3.28 4.30 1 1 20 

The temperatures predicted by the model using the normalized cloud cover data 

had a lower mean, minimum, and maximum, larger range (Fig. 3.3A) and higher error 

(Table A.3). Both cloud cover types caused the model to overestimate cold temperatures 

(129 days using 0.60 and 219 days using normalized data) and underestimate the number 

of temperatures within the high suboptimal (0.60 = 146 days; normalized = 175 days) and 

high sublethal (0.60 = 19 days; normalized = 20 days) categories. The model using 0.60 

overestimated the number of optimal temperatures by 36 days and the model using the 

normalized cloud cover data underestimated the number of optimal temperatures by 26 

days (Fig. 3.3B). 

For the different changes in ASL, the model predictions of daily maximum 

temperature were less accurate for the high intertidal zone. The high intertidal zone also 

had the greatest number of false negatives but was able to more accurately predict the 

number of stressful days. The model predictions for the low intertidal zone were most 

accurate and while it was the best when considering false positives and false negatives, it 

was least successful at predicting the number of stressful days. All of the ASLs for all 

intertidal zones caused the model to underestimate the mussel body temperatures 

(negative average difference) (Table A.4).   
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For all three intertidal zones, changing the ASL did not have an effect on the 

maximum predicted temperature and the model predictions using the regression ASLs 

had the lowest mean, lowest minimum, largest range (Fig. 3.4A), and highest error (Table 

A.4). The mid and high intertidal zones’ general ASLs provided the highest mean, 

highest minimum, smallest range (Fig. 3.4A), and lowest error (Table A.4). The logger 

ASL for the low intertidal zone caused the predictions to have the highest mean, highest 

minimum, smallest range (Fig. 3.4A) and lowest error (Table A.4). 

Table A.4 Errors between the mussel body temperatures predicted by the general model 

with varying values of ASL and the logger field measurements in the low, mid and high 

intertidal zones. The errors were determined for each change in parameter using the daily 

maximum temperature. The values that are used in the general model for each intertidal 

zone are bolded. The second ASL value for each intertidal zone is the logger ASL value 

and the third value is the regression ASL value. The total number of stressful days 

recorded by the loggers in the field is 1, 20 and 158 for the low, mid and high intertidal 

zones, respectively. 

Intertidal 

Zone 
ASL (m) 

Avg. 

Diff. (°C) 

Abs. Avg. 

Diff. (°C) 

RMSE 

(°C) 

Stressful 

Days 

False 

Pos. 

False 

Neg. 

Low 0.5 -1.28 2.36 2.98 0 0 1 

0.69 -0.71 2.29 2.95 0 0 1 

0.43 -1.58 2.41 3.04 0 0 1 

Mid 1.5 -1.88 3.07 4.00 2 2 20 

1.36 -2.56 3.27 4.22 1 1 20 

1.13 -3.76 4.08 5.21 0 0 20 

High 2.5 -4.80 5.65 6.88 4 2 156 

1.56 -6.03 6.26 7.42 3 1 156 

1.27 -7.47 7.54 8.93 2 1 157 

For the low intertidal zone the three ASLs used caused the model to 

underestimate the number of cold, high suboptimal and high sublethal temperatures and 

overestimate the number of optimal temperatures. As the ASL increased the model 

underestimated more cold temperatures (60 days) and overestimated more optimal 

temperatures (62 days) (Fig. 3.4B). For the mid intertidal zone, as the ASL decreased the 

model overestimated more cold (356 days) temperatures and underestimated more high 
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suboptimal (197 days) and high sublethal (21 days) temperatures. The model using the 

logger and regression ASLs, the two lower ASLs, caused the model to underestimate the 

number of optimal temperatures by 14 and 138 days, respectively, while the model using 

the general ASL caused the model to overestimate the number of optimal temperatures by 

35 days (Fig. 3.4B). There is a similar pattern for the high intertidal zone. As the ASL 

decreased the model overestimated more cold (629 days) temperatures and 

underestimated more high suboptimal (464 days) and high sublethal (152 days) 

temperatures. The regression ASL, which is the lowest ASL, underestimated the number 

of optimal temperatures (6 days) while the logger and general ASLs overestimated the 

number of optimal temperatures by 109 and 217 days, respectively (Fig. 3.4B). 

The change in ESL slope for the low, mid and high intertidal zones did not affect 

the number of stressful days, false positives or false negatives. The high intertidal zone 

had the greatest number of false negatives and the low intertidal zone had the least. Based 

on the absolute average difference, the model predictions of daily maximum temperature 

were less accurate for the high intertidal zone. The model underestimated temperatures 

for all of the ESL slopes for all of the zones (negative average difference) except the 

regression low ESL slope (positive average difference). The regression ESL slope 

produced more accurate results for the low intertidal zone and less accurate results for the 

mid intertidal zone. The change in ESL slope did not affect the accuracy of the model for 

the high intertidal zone as indicated by the absolute average difference (Table A.5).  

Changes in ESL slope did not have an effect on the predicted maximum 

temperature for all intertidal zones. The model predictions with the regression ESL slope 

had the highest mean for all of the intertidal zones. For the low and mid intertidal zone, 
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the general ESL slope caused the model predictions to have the largest range and the 

regression ESL slope caused the model predictions to have the highest minimum 

temperatures (Fig. 3.5A). The regression ESL slope for the low intertidal zone and the 

general ESL for the mid intertidal zone produced model results with the lowest error 

(Table A.5). The ESL slope did not affect the minimum, range (Fig. 3.5A), or error 

(Table A.5) of the model predictions for the high intertidal zone.  

Table A.5 Errors between the mussel body temperatures predicted by the general model 

with varying values of ESL slope and the logger field measurements in the low, mid and 

high intertidal zones. The errors were determined for each change in parameter using the 

daily maximum temperature. The values that are used in the general model for each 

intertidal zone are bolded and the second value for each intertidal zone is the regression 

ESL slope. The total number of stressful days recorded by the loggers in the field is 1, 20 

and 163 for the low, mid and high intertidal zones, respectively. 

Intertidal 

Zone 

ESL 

slope (m) 

Avg. 

Diff. (°C) 

Abs. Avg. 

Diff. (°C) 

RMSE 

(°C) 

Stressful 

Days 

False 

Pos. 

False 

Neg. 

Low 0.25 -1.39 2.44 3.04 0 0 1 

0.06 -0.43 2.32 2.99 0 0 1 

Mid 0.25 -1.86 3.05 3.98 2 2 20 

0.16 -1.21 3.07 4.03 2 2 20 

High 0.25 -4.77 5.63 6.89 4 2 161 

0.12 -4.74 5.63 6.89 4 2 161 

The model for the low intertidal zone underestimated the number of cold and high 

sublethal temperatures and overestimated the number of optimal temperatures using both 

ESL slopes. However, the model using the regression ESL slope underestimated more 

cold days (90) and overestimated more optimal days (89) than the model using the 

general ESL slope. The regression ESL slope caused the model for the low zone to 

overestimate high suboptimal temperatures while the general ESL slope caused the model 

to underestimate high suboptimal temperatures. The model using both ESL slopes caused 

the model to underestimate the number of high sublethal temperatures by one day (Fig. 

3.5B).  
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Both ESL slopes used in the model for the mid intertidal zone overestimated the 

number of temperatures within the cold and optimal categories and underestimated the 

number of temperatures within the high suboptimal and high sublethal categories. The 

model using the general ESL slope overestimated more cold days (129) and 

underestimated more high suboptimal days (146) than the model using the regression 

ESL slope, while the model using the regression ESL slope overestimated more optimal 

days (98) than the model using the general ESL slope. Both ESL slopes caused the model 

to underestimate the number of high sublethal temperatures by 19 days (Fig. 3.5B).  

Similarly, for the high intertidal zone, the model using both ESL slopes 

overestimated the number of cold and optimal temperatures and underestimated the 

number of high suboptimal and high sublethal temperatures. The general ESL slope 

caused the model to overestimate more cold days (321) and more high suboptimal days 

(380), while the regression ESL slope caused the model to overestimate more optimal 

days (220). Both ESL slopes caused the model to underestimate the number of high 

sublethal temperatures by 152 days (Fig. 3.5B). 

Model predictions were less accurate for the high intertidal zone and all of the 

ASL & ESL slope combinations caused the model to underestimate temperatures 

(negative average difference), except for the low logger ASL & regression ESL slope 

(positive average difference). The change in ASL & ESL slope combination for the low 

intertidal zone did not affect the number of stressful days, false positives or false 

negatives. The high intertidal zone had the greatest number of false negatives and the low 

intertidal zone had the least. For the low intertidal zone, the general ASL (MLLW + 0.5 

m) & ESL slope (0.25 m) produced the least accurate temperatures. For the mid intertidal 
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zone the regression ASL (MLLW + 1.13 m) & ESL slope (0.16 m) was the least accurate. 

The regression ASL (MLLW + 1.27 m) & ESL slope (0.12 m) for the high intertidal zone 

provided the least accurate model predictions (Table A.6). 

Table A.6 Errors between the mussel body temperatures predicted by the general model 

with varying values of ASL and ESL slope in combination and the logger field 

measurements in the low, mid and high intertidal zones. The errors were determined for 

each change in parameter using the daily maximum temperature. The ASL and ESL slope 

values that are used in the general model for each intertidal zone are bolded. For each 

intertidal zone the second set of values is the logger ASL and regression ESL slope and 

the third set of values is the regression ASL and regression ESL slope. The total number 

of stressful days recorded by the loggers in the field is 1, 20 and 163 for the low, mid and 

high intertidal zones, respectively. 

Intertidal 

Zone 

ASL (m) 

ESL 

slope (m) 

Avg. 

Diff. (°C) 

Abs. Avg. 

Diff. (°C) 

RMSE 

(°C) 

Stressful 

Days 

False 

Pos. 

False 

Neg. 

Low 0.5 

0.25 
-1.39 2.44 3.04 0 0 1 

0.69 

0.06 
0.13 2.37 3.08 0 0 1 

0.43 

0.06 
-0.62 2.35 3.01 0 0 1 

Mid 1.5 

0.25 
-1.85 3.04 3.97 1 1 20 

1.36 

0.16 
-1.67 3.02 3.96 2 2 20 

1.13 

0.16 
-2.83 3.42 4.42 1 1 20 

High 2.5 

0.25 
-4.77 5.62 6.88 4 2 161 

1.56 

0.12 
-5.23 5.79 7.02 4 2 161 

1.27 

0.12 
-6.12 6.37 7.62 3 1 161 

The maximum temperature predicted was not altered by changes in the ASL & 

ESL slope combinations for the mid or high intertidal zones but for the low intertidal 

zone the model using the logger ASL & regression ESL slope combination produced the 

highest maximum temperature. For the low intertidal zone, the model using the general 
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ASL & ESL slope combination had the lowest mean, lowest minimum, largest range 

(Fig. 3.6A), and highest error (Table A.6), while the model using the logger ASL & 

regression ESL slope combination had the highest mean (Fig. 3.6A) and smallest error 

(Table A.6). For the mid intertidal zone the logger ASL & regression ESL slope model 

predictions had the highest mean and smallest range (Fig. 3.6A). The model predictions 

using the regression ASL & ESL slope had the lowest mean and minimum, largest range 

(Fig. 3.6A) and highest error (Table A.6). The model predictions using the general ASL 

& ESL slope had the highest mean and minimum, smallest range (Fig. 3.6A) and lowest 

error (Table A.6). The model predictions using regression ASL & ESL slope had the 

lowest mean and minimum, largest range (Figure 3.6A) and the largest error (Table A.6).  

For the low intertidal zone, all three ASL and ESL slope combinations caused the 

model to underestimate the number of cold and high sublethal temperatures and 

overestimate the number of optimal temperatures. The model using the general ASL & 

ESL slope caused the model to underestimate the number of high suboptimal 

temperatures while the other two combinations caused the model to overestimate 

temperatures in this category. All combinations led to the model underestimating the 

number of high sublethal temperatures by one day. The model using the logger ASL and 

regression ESL slope caused the model to underestimate the highest number of days in 

the cold suboptimal/sublethal category (117) and overestimate the greatest number of 

optimal (114) and high suboptimal (4) days (Fig. 3.6B).  

The model using all three combinations for the mid intertidal zone overestimated 

the number of cold temperatures and underestimated the number of high suboptimal and 

high sublethal temperatures. Using the regression ASL and ESL slope, the model 
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overestimated the greatest number of days in the cold category (255) and underestimated 

the greatest number of days in the high suboptimal (184) and high sublethal (20) 

categories. This combination also led to the model underestimating the number of 

optimal temperatures whereas the other two combinations led to the model 

overestimating temperatures in this category (Fig. 3.6B). 

All three combinations for the high intertidal zone caused the model to 

overestimate the number of cold temperatures by more than 300 days and the number of 

optimal temperatures by more than 100 days. The number of high suboptimal 

temperatures were underestimated by more than 300 days using all three combinations as 

were the number of high sublethal temperatures, but these were only underestimated by a 

little more than 150 days. Similar to the mid intertidal zone, the model using the 

regression ASL and ESL slope overestimated the highest number of cold temperatures 

(488) and underestimated the highest number of high suboptimal (438) and high sublethal 

(153) temperatures. The model using the general ASL and ESL slope caused the model to 

overestimate the highest number of optimal temperatures (216 days) (Fig. 3.6B). 
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APPENDIX B: DETAILED RESULTS FOR THE ACCURACY ASSESSMENT 

At Bodega Bay, for all three intertidal zones, the model using CFSR data predicts 

temperatures that are closer to the temperatures recorded by the loggers in the field. The 

model using CFSR data generally predicts temperatures higher than those predicted by 

the model using LWS data. The model using both types of weather data predicted 

temperatures lower than those recorded by the loggers in the field and the logger monthly 

maximum average daily maximum temperature was greater than that predicted by both of 

the models (Fig. B.1-B.3). The maximum temperature recorded by the logger was 

31.09°C, 35.28°C, and 42.83°C for the low, mid and high intertidal zone, respectively. 

The maximum temperature predicted by the model using LWS data was 28.14°C, 

30.78°C, and 32.38°C for the low, mid and high intertidal zone respectively. Finally, the 

model using CFSR data predicted a maximum temperature of 30.19°C, 32.77°C, and 

33.12°C for the low, mid and high intertidal zone, respectively. 

The model using LWS data was more accurate when predicting the number of 

daily maximum temperatures within the optimal range for all three intertidal zones. The 

model using CFSR data had better accuracy when predicting the number of daily 

maximum temperatures within the high sublethal ranges for all three intertidal zones. The 

accuracy of the model using LWS data was better for predicting the number of daily 

maximum temperatures within the cold suboptimal/sublethal range for the low intertidal 

zone but the model using CFSR data was more accurate at predicting temperatures within 

this range for the mid and high intertidal zones. The model using CFSR data was able to 
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more accurately predict temperatures within the high suboptimal range for the mid and 

high intertidal zones (Table B.1). 

 

Figure B.1 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the low intertidal zone at Bodega Bay. 

The time frame can be found in Table 2.1 (N = 45 months). The solid line represents the 

logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 

 

Figure B.2: Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the mid intertidal zone at Bodega Bay. 

The time frame can be found in Table 2.1 (N = 48 months). The solid line represents the 
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logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 

 

Figure B.3 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the high intertidal zone at Bodega 

Bay. The time frame can be found in Table 2.1 (N = 46 months). The solid line represents 

the logger temperatures, dotted line are the temperatures predicted by the model using 

LWS data and the dashed line represents the model using CFSR data. 

Table B.1 Distribution of daily maximum temperatures predicted by the general LWS 

model, general CFSR model and the measured logger temperatures for the low, mid and 

high intertidal zones at Bodega Bay. The false positives and false negatives were 

obtained by comparing the model predictions to the logger measurements. The threshold 

for false positives and false negatives was set to 30°C. The percentage of each was 

obtained by dividing the number of false positives/negatives by the total number of days 

in the time series (N) for that intertidal zone.  

 

  Number of temperatures (°C): Percentage of: 

Intertidal 

Zone 

Data 

Used 
< 17 17 – 22 22 – 30 30 – 38 ≥ 38 

False 

Pos. 

False 

Neg. 

Low Logger 465 35 11 1 0   

LWS 445 63 4 0 0 0% 0.20% 

CFSR 429 73 9 1 0 0.20% 0.20% 

Mid Logger 600 387 226 21 0   

LWS 726 424 82 2 0 0.15% 1.51% 

CFSR 515 538 177 4 0 0.15% 1.36% 

High Logger 245 268 506 156 7   

LWS 543 506 129 4 0 0.17% 13.6% 

CFSR 323 603 245 11 0 0.59% 13.5% 
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 At Hopkins, the model using CFSR data predicted temperatures that are closer to 

the temperatures recorded by the loggers for the low and mid intertidal zones and for the 

mid intertidal zone the model using LWS data predicted temperatures closer to those 

recorded by the loggers in the field. Like Bodega Bay, the model using CFSR data 

generally predicted temperatures higher than those predicted by the model using LWS 

data. Overall, the model using CFSR data predicted the highest temperatures, followed by 

the logger measurements then the temperatures predicted by the model using LWS data 

(Fig. B.4-B.6).  

 

Figure B.4 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the low intertidal zone at Hopkins. 

The time frame can be found in Table 2.1 (N = 51 months). The solid line represents the 

logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 

The maximum temperature recorded by the logger was 38.87°C, 40.79°C, and 

43.83°C for the low, mid and high intertidal zone, respectively. The maximum 

temperature predicted by the model using LWS data was 32.73°C, 42.08°C, and 42.08°C 

for the low, mid and high intertidal zone respectively. Finally, the model using CFSR 
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data predicted a maximum temperature of 41.39°C, 44.31°C, and 44.31°C for the low, 

mid and high intertidal zone, respectively. 

 

Figure B.5 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the mid intertidal zone at Hopkins. 

The time frame can be found in Table 2.1 (N = 53 months). The solid line represents the 

logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 

 

 

Figure B.6 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the high intertidal zone at Hopkins. 

The time frame can be found in Table 2.1 (N = 49 months). The solid line represents the 
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logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 

 

The model using LWS data was able to more accurately predict the number of 

daily maximum temperatures within cold suboptimal/sublethal, optimal and high 

sublethal and high lethal range for the mid intertidal zone and the high suboptimal range 

for the mid and high intertidal zones. The model using CFSR data more accurately 

predicted daily maximum temperatures for the cold suboptimal/sublethal, optimal, and 

high sublethal ranges for the low and mid intertidal zones, the number of high suboptimal 

temperatures for the low zone and the number of high lethal temperatures for the high 

intertidal zone (Table B.2).  

Table B.2 Distribution of daily maximum temperatures predicted by the general LWS 

model, general CFSR model and the measured logger temperatures for the low, mid and 

high intertidal zones at Hopkins. The false positives and false negatives were obtained by 

comparing the model predictions to the logger measurements. The threshold for false 

positives and false negatives was set to 30°C. The percentage of each was obtained by 

dividing the number of false positives/negatives by the total number of days in the time 

series (N) for that intertidal zone.  

 

  Number of temperatures (°C): Percentage of: 

Intertidal 

Zone 

Data 

Used 
< 17 17 – 22 22 – 30 30 – 38 ≥ 38 

False 

Pos. 

False 

Neg. 

Low Logger 220 170 193 56 1   

LWS 479 98 60 3 0 0% 8.44% 

CFSR 377 117 104 40 2 4.84% 7.34% 

Mid Logger 735 464 328 26 2   

LWS 486 599 451 17 2 1.03% 1.61% 

CFSR 436 285 563 253 18 16.7% 1.35% 

High Logger 392 354 414 247 36   

LWS 210 674 533 24 2 0.83% 18.6% 

CFSR 285 229 585 318 26 16.6% 12.6% 

At Alegria, the model predicted temperatures that are closer to the temperatures 

recorded by the loggers for the low intertidal zone. The model predicted temperatures 

higher than those recorded by the loggers in the field for the mid and high intertidal zones 
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but recorded lower temperatures for the low intertidal zone (Fig. B.7-B.9). The maximum 

temperature recorded by the logger was 46.97°C, 44.38°C, and 44.14°C for the low, mid 

and high intertidal zone, respectively. The maximum temperature predicted by the model 

was 46.85°C, 53.90°C, and 53.90°C for the low, mid and high intertidal zone 

respectively. 

The model for the low intertidal zone predicted a more accurate number of 

temperatures within the optimal, high suboptimal, high sublethal and high lethal 

categories. The model for the mid intertidal zone predicted a more accurate number of 

temperatures within the cold suboptimal/sublethal category. The model for the low 

intertidal zone was poor at predicting the correct number of cold temperatures, the model 

for the mid intertidal zone was poor at predicting the correct number of high sublethal 

and high lethal temperatures and the model for the high intertidal zone was least able to 

predict the correct number of optimal and high suboptimal temperatures (Table B.4).  

 

Figure B.7 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the low intertidal zone at Alegria. The 

time frame can be found in Table 2.1 (N = 41 months). The solid line represents the 
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logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 

 

Figure B.8 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the mid intertidal zone at Alegria. The 

time frame can be found in Table 2.1 (N = 73 months). The solid line represents the 

logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 

 

Figure B.9 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the high intertidal zone at Alegria. The 

time frame can be found in Table 2.1 (N = 58 months). The solid line represents the 

logger temperatures, dotted line are the temperatures predicted by the model using LWS 

data and the dashed line represents the model using CFSR data. 
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Table B.3 Distribution of daily maximum temperatures predicted by the general CFSR 

model and the measured logger temperatures for the low, mid and high intertidal zones at 

Alegria. The false positives and false negatives were obtained by comparing the model 

predictions to the logger measurements. The threshold for false positives and false 

negatives was set to 30°C. The percentage of each was obtained by dividing the number 

of false positives/negatives by the total number of days in the time series (N) for that 

intertidal zone. 

 

  Number of temperatures (°C): Percentage of: 

Intertidal 

Zone 

Data 

Used 
< 17 17–22 22–30 30–38 ≥ 38 

False 

Pos. 

False 

Neg. 

Low Logger 83 307 140 40 18   

CFSR 245 143 121 72 7 11.7% 8.16% 

Mid Logger 294 627 793 252 20   

CFSR 224 338 888 461 75 21.8% 8.56% 

High Logger 200 576 583 282 29   

CFSR 127 243 763 465 72 23.8% 10.3% 

At Coal Oil Point, the model for the low intertidal zone predicted temperatures 

that are closer to the temperatures recorded by the loggers. The model predicted 

temperatures higher than those recorded by the loggers in the field for all three intertidal 

zones (Fig. B.7-B.9). The maximum temperature recorded by the logger was 33.22°C, 

36.62°C, and 41.40°C for the low, mid and high intertidal zone, respectively. The 

maximum temperature predicted by the model was 43.74°C, 47.23°C, and 47.23°C for 

the low, mid and high intertidal zone respectively. 

The model for the low intertidal zone predicted a more accurate number of 

temperatures within the high suboptimal, high sublethal and high lethal and categories. 

The model for the high intertidal zone predicted a more accurate number of temperatures 

within the cold suboptimal/sublethal and optimal categories. The model for the low 

intertidal zone was poor at predicting the correct number of cold temperatures, the model 

for the mid intertidal zone was poor at predicting the correct number of optimal, high 
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suboptimal, and high sublethal temperatures and the model for the high intertidal zone 

was least able to predict the correct number of high lethal temperatures (Table B.4).  

 

Figure B.10 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the low intertidal zone at Coal Oil 

Point. The time frame can be found in Table 2.1 (N = 32 months). The solid line 

represents the logger temperatures, dotted line are the temperatures predicted by the 

model using LWS data and the dashed line represents the model using CFSR data. 

 

Figure B.11 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the mid intertidal zone at Coal Oil 

Point. The time frame can be found in Table 2.1 (N = 35 months). The solid line 
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represents the logger temperatures, dotted line are the temperatures predicted by the 

model using LWS data and the dashed line represents the model using CFSR data. 

 

Figure B.12 Monthly maximum temperatures for the model using LWS data, the model 

using CFSR data and the logger measurements for the high intertidal zone at Coal Oil 

Point. The time frame can be found in Table 2.1 (N = 27 months). The solid line 

represents the logger temperatures, dotted line are the temperatures predicted by the 

model using LWS data and the dashed line represents the model using CFSR data. 

Table B.4 Distribution of daily maximum temperatures predicted by the general CFSR 

model and the measured logger temperatures for the low, mid and high intertidal zones at 

Coal Oil Point. The false positives and false negatives were obtained by comparing the 

model predictions to the logger measurements. The threshold for false positives and false 

negatives was set to 30°C. The percentage of each was obtained by dividing the number 

of false positives/negatives by the total number of days in the time series (N) for that 

intertidal zone. 

 

  Number of temperatures (°C): Percentage of: 

Intertidal 

Zone 

Data 

Used 
< 17 17–22 22–30 30–38 ≥ 38 

False 

Pos. 

False 

Neg. 

Low Logger 150 281 67 2 0   

CFSR 204 118 115 51 12 12.4% 0.20% 

Mid Logger 208 362 172 24 0   

CFSR 89 140 247 206 84 35.6% 0.91% 

High Logger 90 339 145 32 2   

CFSR 40 85 194 193 96 43.3% 1.32% 
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APPENDIX C: DETAILED RESULTS FOR CHANGING WAVE CLIMATES 

 In Bodega Bay, as wave height decreased, for the low and mid intertidal zones 

the number of cold temperatures decreased and the number of optimal and high 

suboptimal temperatures increased. For the high intertidal zone the number of cold and 

temperatures decreased and the number of temperatures within the high suboptimal range 

increased. The only change that occurred for stressful temperatures was for the mid 

intertidal zone where the number of these temperatures increased as wave height was 

decreased (Table C.1 & Fig. C.1).  

As wave height increased, the number of cold temperatures increased and the 

number of optimal and high suboptimal temperatures decreased. The only change in the 

number of stressful temperatures occurred again for the mid intertidal zone where there 

were fewer temperatures as wave height increased. Decreasing or increasing the 

significant wave height did not have an impact on the number of temperatures within the 

high lethal range (Table C.1 & Fig. C.1). 

For the low intertidal zone, as the significant wave height was increased in the 

model, the temperature remained within the optimal range and only decreased 0.41°C. 

The temperature for the mid intertidal zone remained within the high suboptimal range, 

decreasing 1.03°C when the wave height was increased and increasing 0.09°C when the 

wave height was decreased. The temperature for the high intertidal zone remained within 

the high suboptimal range and did not change at all with any change in significant wave 

height in the model (Fig. 3.15). 
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Table C.1 Temperatures predicted by the general model with increasing and decreasing 

significant wave heights for the low, mid and high intertidal zones at Bodega Bay. Daily 

maximum body temperatures are thermally categorized. 

Intertidal Sig. Wave Number of Temperatures in Thermal Category: 

Zone Height Δ (%) < 17°C 17 – 22°C 22 – 30°C 30 – 38°C ≥ 38°C 

Low –50 411 141 19 1 0 

 –40 416 137 18 1 0 

 –30 421 133 17 1 0 

 –20 424 130 17 1 0 

 –10 430 125 16 1 0 

 0 435 123 13 1 0 

 +10 438 120 13 1 0 

 +20 442 116 13 1 0 

 +30 449 109 13 1 0 

 +40 453 106 12 1 0 

 +50 455 105 11 1 0 

Mid –50 382 714 257 11 0 

 –40 400 704 250 10 0 

 –30 417 696 242 9 0 

 –20 444 682 229 9 0 

 –10 472 665 218 9 0 

 0 509 643 204 8 0 

 +10 546 619 191 8 0 

 +20 587 591 179 7 0 

 +30 618 572 167 7 0 

 +40 647 552 158 7 0 

 +50 675 536 146 7 0 

High –50 359 745 318 13 0 

 –40 359 745 318 13 0 

 –30 359 745 318 13 0 

 –20 359 745 318 13 0 

 –10 359 747 316 13 0 

 0 360 747 315 13 0 

 +10 365 742 315 13 0 

 +20 365 742 315 13 0 

 +30 368 741 313 13 0 

 +40 373 737 312 13 0 

 +50 376 734 312 13 0 
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Figure C.1 Average daily maximum temperatures predicted by the general model with 

increasing and decreasing significant wave heights for Bodega Bay. The results are 

shown for the (A) low, (B) mid and (C) high intertidal zones. 

For Hopkins, as wave height decreased, for the low intertidal zone the number of 

cold temperatures decreased and the number of optimal, high suboptimal, and stressful 

temperatures increased. For the mid intertidal zone the number of cold and optimal 

temperatures decreased and the number of high suboptimal and stressful temperatures 

increased. For the high intertidal zone the number of cold temperatures decreased while 

the number of optimal temperatures increased. The high suboptimal and stressful 

temperatures were not affected by decreasing the significant wave height in the model for 

the high intertidal zone. For all three intertidal zones increasing the significant wave 
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height caused the number of cold temperatures to increase and the number of optimal, 

high suboptimal and stressful temperatures to decrease (Table C.2 & Fig. C.2).  

Table C.2 Temperatures predicted by the general model with increasing and decreasing 

significant wave heights for the low, mid and high intertidal zone at Hopkins. Daily 

maximum body temperatures are thermally categorized. 

Intertidal Sig. Wave Number of Temperatures in Thermal Category: 

Zone Height Δ (%) < 17°C 17 – 22°C 22 – 30°C 30 – 38°C ≥ 38°C 

Low –50 256 129 163 52 2 

 –40 267 125 157 51 2 

 –30 280 119 154 48 1 

 –20 281 123 151 46 1 

 –10 282 127 147 46 0 

 0 292 124 141 45 0 

 +10 302 119 137 44 0 

 +20 312 115 135 40 0 

 +30 321 110 133 38 0 

 +40 325 107 134 36 0 

 +50 338 99 130 35 0 

Mid –50 304 294 738 365 31 

 –40 308 301 735 357 31 

 –30 322 301 727 351 31 

 –20 337 303 718 347 27 

 –10 360 300 712 334 26 

 0 386 306 691 325 24 

 +10 408 306 687 308 23 

 +20 442 299 672 298 21 

 +30 464 304 655 289 20 

 +40 505 297 641 269 20 

 +50 533 306 624 253 16 

High –50 324 304 747 401 37 

 –40 324 304 747 401 37 

 –30 324 304 747 401 37 

 –20 326 302 747 401 37 

 –10 327 301 747 401 37 

 0 327 301 747 401 37 

 +10 329 301 745 401 37 

 +20 331 301 743 401 37 

 +30 332 303 741 400 37 

 +40 336 301 741 398 37 

 +50 340 299 740 397 37 
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Figure C.2 Average daily maximum temperatures predicted by the general model with 

increasing and decreasing significant wave heights for Hopkins. The results are shown 

for the (A) low, (B) mid and (C) high intertidal zones. 

For the low intertidal zone, as the significant wave height was increased in the 

model, the temperature decreased 1.5°C but remained within the sublethal range. When 

the wave height was decreased the temperature increased 1.36°C but remained within the 

high sublethal range. For the mid intertidal zone, as the wave height was decreased the 

temperature increased 0.44°C but remained with the high lethal range. The temperature 

for the high intertidal zone remained within the high lethal range. It decreased when the 

significant wave height was decreased in the model and the predicted temperature also 

decreased when the wave height was increased in the model. It should be noted that the 
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decrease was extremely small (< 0.0001°C) for decreasing and increasing significant 

wave height in the model) (Fig. 3.16). 

For Alegria, as the significant wave height was decreased, for the low intertidal 

zone the number of cold temperatures decreased and the number of optimal, high 

suboptimal and stressful temperatures increased. For the mid intertidal zone the number 

of cold, optimal and high suboptimal temperatures decreased and the number of stressful 

temperatures increased. For the high intertidal zone the number of cold temperatures 

decreased and the number of optimal, high suboptimal and stressful temperatures 

increased (Table C.3 & Fig. C.3). 

Table C.3 Temperatures predicted by the general model with increasing and decreasing 

significant wave heights for the low, mid and high intertidal zone at Alegria. Daily 

maximum body temperatures are thermally categorized. 

Intertidal Sig. Wave Number of Temperatures in Thermal Category: 

Zone Height Δ (%) < 17°C 17 – 22°C 22 – 30°C 30 – 38°C ≥ 38°C 

Low –50 514 558 1000 477 49 

 –40 549 546 986 470 47 

 –30 584 545 965 459 45 

 –20 613 539 952 450 44 

 –10 647 530 935 443 43 

 0 686 524 913 432 43 

 +10 709 514 908 424 43 

 +20 725 513 902 415 43 

 +30 747 505 893 410 43 

 +40 767 496 888 404 43 

 +50 786 492 879 399 42 

Mid –50 191 457 1424 984 152 

 –40 198 463 1425 972 150 

 –30 208 466 1430 958 146 

 –20 213 472 1437 943 143 

 –10 226 473 1441 926 142 

 0 236 483 1437 916 136 

 +10 253 487 1438 896 134 

 +20 271 491 1439 877 130 

 +30 293 501 1442 847 125 

 +40 323 505 1429 832 119 
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Intertidal Sig. Wave Number of Temperatures in Thermal Category: 

Zone Height Δ (%) < 17°C 17 – 22°C 22 – 30°C 30 – 38°C ≥ 38°C 

 +50 345 518 1415 814 116 

High –50 173 444 1410 1028 170 

 –40 174 443 1410 1028 170 

 –30 175 442 1411 1027 170 

 –20 176 441 1411 1027 170 

 –10 176 441 1411 1027 170 

 0 176 442 1410 1027 170 

 +10 177 444 1407 1027 170 

 +20 178 446 1405 1026 170 

 +30 181 443 1407 1025 169 

 +40 181 448 1403 1024 169 

 +50 187 447 1399 1024 168 

 

  

 

Figure C.3 Average daily maximum temperatures predicted by the general model with 

increasing and decreasing significant wave heights for Alegria. The results are shown for 

the (A) low, (B) mid and (C) high intertidal zones. 
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Increasing the significant wave height for the low intertidal zone caused the 

number of cold temperatures to increase and the number of optimal, high suboptimal, and 

stressful temperatures to decrease. For the mid and high intertidal zones the number of 

cold and optimal temperatures increased and the number of high suboptimal and stressful 

temperatures decreased (Table C.3 & Fig. C.3). 

For the low intertidal zone, as the significant wave height was increased in the 

model, the temperature decreased 0.63°C but remained within the high sublethal range. 

When the wave height was decreased the temperature increased 1.12°C but remained 

within the high sublethal range. As the wave height was increased for the mid intertidal 

zone, the temperature decreased 0.32°C but remained within the high lethal range. As the 

wave height was decreased in the model the temperature increased 0.34°C but remained 

within the high lethal range. The temperature for the high intertidal zone remained within 

the high lethal range. It increased with decreasing and increasing significant wave heights 

in the model; however, the increase is extremely small (< 0.0001°C) for decreasing and 

increasing wave height) (Fig. 3.17). 

At Coal Oil Point, as the wave height was decreased in the model, for the low 

intertidal zone the number of cold temperatures decreased and the number of optimal, 

high suboptimal and stressful temperatures increased. For the mid intertidal zone the 

number of cold, optimal and high suboptimal temperatures increased and the number of 

stressful temperatures decreased. For the high intertidal zone the thermal categorization 

was not affected by decreasing the significant wave height in the model.  

Increasing the significant wave height for the low intertidal zone increased the 

number of cold temperatures predicted and decreased the number of optimal, high 
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suboptimal and stressful temperatures predicted. For the mid intertidal zone the number 

of cold, optimal and high suboptimal temperatures increased and the number of stressful 

temperatures decreased. For the high intertidal zone the number of cold temperatures 

increased, the number of optimal and high suboptimal temperatures decreased and the 

number of stressful temperatures were unchanged (Table C.4 & Fig. C.4).  

Table C.4 Temperatures predicted by the general model with increasing and decreasing 

significant wave heights for the low, mid and high intertidal zone at Coal Oil Point. Daily 

maximum body temperatures are thermally categorized. 

Intertidal Sig. Wave Number of Temperatures in Thermal Category: 

Zone Height Δ (%) < 17°C 17 – 22°C 22 – 30°C 30 – 38°C ≥ 38°C 

Low –50 348 262 373 325 114 

 –40 357 260 369 324 112 

 –30 368 261 361 321 111 

 –20 383 260 357 314 108 

 –10 396 259 351 308 108 

 0 414 251 350 299 108 

 +10 428 246 349 292 107 

 +20 435 250 344 287 106 

 +30 454 243 335 284 106 

 +40 467 237 336 276 106 

 +50 481 236 326 273 106 

Mid –50 348 262 373 325 114 

 –40 125 218 557 818 381 

 –30 126 220 557 817 379 

 –20 127 230 556 811 375 

 –10 133 231 559 807 369 

 0 136 230 562 809 362 

 +10 138 231 568 806 356 

 +20 140 231 571 806 351 

 +30 144 235 572 798 350 

 +40 153 234 571 795 346 

 +50 160 236 571 797 335 

High –50 122 210 534 828 405 

 –40 122 210 534 828 405 

 –30 122 210 534 828 405 

 –20 122 210 534 828 405 

 –10 122 210 534 828 405 

 0 122 210 534 828 405 

 +10 123 209 534 828 405 



107 

 

Intertidal Sig. Wave Number of Temperatures in Thermal Category: 

Zone Height Δ (%) < 17°C 17 – 22°C 22 – 30°C 30 – 38°C ≥ 38°C 

 +20 123 209 534 828 405 

 +30 123 209 534 828 405 

 +40 123 210 533 828 405 

 +50 123 210 533 828 405 

 

  

 

Figure C.4 Average daily maximum temperatures predicted by the general model with 

increasing and decreasing significant wave heights for Coal Oil Point. The results are 

shown for the (A) low, (B) mid and (C) high intertidal zones. 

For the low intertidal zone, as the significant wave height was increased in the 

model the temperature decreased 0.56°C but remained within the high lethal range. When 

the wave height was decreased the temperature increased 1.26°C but remained within the 

high lethal range. As the wave height was increased for the mid intertidal zone the 

temperature decreased less than 0.0001°C and remained within the high lethal range. As 
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the wave height was decreased the temperature increased 0.19°C but remained within the 

high lethal range. The temperature for the high intertidal zone remained within the high 

lethal range. It increased with decreasing and increasing significant wave height in the 

model; however, the increase is extremely small (< 0.0001°C) for decreasing and 

increasing wave height) (Fig. 3.18). 


