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Figure 4.2 Reference system structure. 

 

Figure 4.3  Model of twin-shaft gas turbine engine. 

 

Figure 4.4. Model of single-shaft gas turbine engine. 
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Figure 4.12. Transient response of the frequency of the large generator for Case 7 with 

H=4 s/3.5  

Meanwhile, we performed comparative tests to study whether tuning the PID controller 

in the excitation system has impacts on system stability in Case 6, 7 and 8. In comparison 

groups, the same PID controller was deployed for systems with different frequencies, i.e. 

using the same PID controller for higher frequency system as used in the 60 Hz system. The 

finding shows that if the PID controller is not tuned specifically for each frequency, larger 

frequency oscillations occur as system frequency increases. This was consolidated by larger 

values in history index for generator frequency. An example of this can be illustrated by 

Figure 4.13 and Figure 4.14. Figure 4.13 indicates that with PID controller tuning less 

oscillation is present during the transient. From Figure 4.14 it is apparent that without tuning 

the PID controller, the generator frequency oscillates more as system frequency increases. 

This can be interpreted as system stability deteriorating as system frequency increases. 

Therefore, tests of Case 6, 7, and 8 and its comparison groups indicate that tuning the PID 

controller in an excitation system can help improve system stability in higher frequency 
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systems. A further comprehensive investigation was done for the effect of tuning the PID 

controller for all cases (Case 1 through Case 8), which is documented in [50]. 

 

Figure 4.13. Impact of tuning PID controller on transient response of large generator 

frequency. 

  

Figure 4.14. Transient response of large generator frequency for Case 7 with H=4 s/3.5 s 

and PID controller untuned. 
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Case 7, H=4s/3.5s, 240Hz, PID tuned

Case 7, H=4s/3.5s, 240Hz, PID untuned
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locus of eigenvalues of state matrix. If one of the eigenvalues enters the right-half plane, the 

system is defined as unstable. The root locus for the largest eigenvalue will be observed to 

determine the trend of system stability.  

5.2 REFERENCE SYSTEM MODEL FOR SMALL-SIGNAL STABILITY STUDY 

The reference system for small-signal stability is the two-generator system as shown in 

Figure 4.2 of Chapter 4. The generator model adopted in this analysis is a two-axis model 

[24][27]:    

 

{
 
 

 
 

𝑇𝑞0𝑖
′ 𝐸𝑑𝑖

′̇ = −𝐸𝑑𝑖
′ − (𝑥𝑞𝑖 − 𝑥𝑖

′)𝐼𝑞𝑖

𝑇𝑑0𝑖
′ 𝐸𝑞𝑖′̇ = 𝐸𝐹𝐷𝑖 − 𝐸𝑞𝑖

′ + (𝑥𝑑𝑖 − 𝑥𝑖
′)𝐼𝑑𝑖

𝜏𝑖𝜔𝑖̇ = 𝑇𝑚𝑖 − (𝐼𝑑𝑖𝐸𝑑𝑖
′ + 𝐼𝑞𝑖𝐸𝑞𝑖

′ ) − 𝐾𝐷𝑖𝜔𝑖 − 𝐾𝑆𝑖𝛿𝑖

𝛿𝑖̇ = 𝜔𝑖 − 1

 (5.10) 

 

In this model, Tm is a system input. The governor model was not included under the 

consideration that during the small-disturbance period, the slow governor will not respond 

fast enough to affect the output of the generator. The detailed excitation system model which 

includes Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS) were not 

included in the generator model. Fixed values for KD (damping torque coefficient) and KS 

(synchronizing torque coefficient) were used to represent the effect of the exciter and PSS. 

There are two reasons for doing so. The exciter contributes a certain amount of KS to system 

small-signal stability depending on its parameters, which helps improve transient stability, 

especially for exciters with high ceiling voltage and fast-response AVR [24]. But it also 

brings negative impact on damping torque by applying the high gain in the AVR. The PSS 

was introduced dated back in the 1950s and it was proposed to address this problem: to 

bring more damping to power systems. In real application, PSS’s structure and parameters 
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Figure 5.3 Three cross-sections in Figure 5.1: KS vs. frequency for different KDs 

 

Figure 5.4 Three cross-sections in Figure 5.1: KD vs. frequency for different KSs 

The improvement from KS and KD on system small-signal stability could be explained 

by using the concept of participation factor [24] [33]. Let us pick some points out of Figure 

5.1 to start the discussion. Figure 5.5 plots the root locus of the largest eigenvalues (7th and 

8th in this case) when system frequency increases from 60 Hz to 6000 Hz. For plotting this 

figure, KS and KD are chosen as 2.5 and 0.375 correspondingly and the other parameters are 
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Figure 5.9 Root locus of 7th and 8th Eigenvalues for the case that the KS1 increase by 

200% 

Figure 5.10 shows the result of increasing KD1 by 200%. There is no improvement 

observed. Stability boundary is still the same as the original case, as shown in Figure 5.5.  

In general, increasing KS of either generator helps improve system stability. But 

increasing KD is not an effective method in this case. It should be also noted that even if the 

newly-grown stable HFAC systems are “saved” by the larger KS, as the red dots shown in 

Figure 5.7 and Figure 5.9, they may still not be stable enough to successfully sustain through 

certain disturbances because their eigenvalues are too close to the imaginary axis. 
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Figure 5.10 Root locus of 7th and 8th Eigenvalues for the case that the KD1 increase to 

200% 

5.3.2 SENSITIVITY OF SYSTEM STABILITY TO THE RATIO OF POWER RATINGS OF TWO 

GENERATORS 

In this section we tested the sensitivity of system stability to the ratio of power ratings of 

two generators. 3D figures were drawn for four cases when the ratio drops from 9:1 (the 

base case plotted in Figure 5.1) to 6:1, 3:1, 1.5:1 and 1:1, as shown in Figure 5.11, Figure 

5.12, Figure 5.14, and Figure 5.14 correspondingly. Comparing Figure 5.1, Figure 5.11, and 

Figure 5.12, it can be observed that stable regions do not change too much for the cases of 

9:1 (stable region = 47.80%), 6:1 (44.81%) and 3:1 (46.35%). But when the ratio gets close 

to 1:1, the stable region increases dramatically to 76.45% and more stable region starts to 

appear especially in high frequency area, as shown in Figure 5.14. It can be learned that in  
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of the exciter and the generator. In this study, in order to represent as many cases as possible 

and to make the results more general without limiting to a certain structure and parameters 

of exciter and PSS, we assume that for different generators and system parameters, the 

exciter and PSS pose the same effect on small-signal stability. Therefore, the values of KD 

and KS are incorporated in the generator model, rather than using the models for the exciter 

and PSS.  

The base generator parameters utilized in this small-signal stability assessment are listed 

in Table A.1. The subscripts “1” and “2” denote Generator 1 and Generator 2.  

Table A.1 Base parameters utilized in small-signal stability analysis 

Symbol Definition Value 

𝑇𝑞01
′  /  𝑇𝑞02

′  Transient q-axis open-circuit time constant in second 0.27 / 0.1353 

𝑇𝑑01
′  /  𝑇𝑑02

′  Transient d-axis open-circuit time constant in pu 2.4094 / 2.8529 

𝐻1 / 𝐻2 Inertia constant in second 4 / 3 

𝑥𝑞1 / 𝑥𝑞2 Synchronous reactance in q-axis in pu 1.5 / 1.0 

𝑥𝑑1 / 𝑥𝑑2 Synchronous reactance in d-axis in pu 1.5 / 1.0 

𝑥1
′  / 𝑥2

′  Transient reactance (ignore saliency, 𝑥𝑑
′ = 𝑥𝑞

′ ) in pu 0.1926 / 0.1196 

KS1 / KS2 
Synchronizing torque coefficient in pu torque/pu 

speed deviation 
1 / 1 

KD1 / KD2 
Damping torque coefficient in pu torque/pu speed 

deviation 
1 / 1 

 

After linearizing the generator model in (5.10) we can write the reference two-generator 

system model for the purpose of small-signal stability analysis as following: 
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{
 
 
 
 
 

 
 
 
 
 

𝑇𝑞01
′ ∆𝐸𝑑1

′̇ = −∆𝐸𝑑1
′ − (𝑥𝑞1 − 𝑥1

′)∆𝐼𝑞1

𝑇𝑑01
′ ∆𝐸𝑞1

′̇ = ∆𝐸𝐹𝐷1 − ∆𝐸𝑞1
′ + (𝑥𝑑1 − 𝑥1

′ )∆𝐼𝑑1

𝜏1∆𝜔1̇ = ∆𝑇𝑚1 − (𝐼𝑑10∆𝐸𝑑1
′ + 𝐼𝑞10∆𝐸𝑞1

′ + 𝐸𝑑10
′ ∆𝐼𝑑1 + 𝐸𝑞10

′ ∆𝐼𝑞1) − 𝐾𝐷1∆𝜔1 − 𝐾𝑆1∆𝛿1

𝑇𝑞02
′ ∆𝐸𝑑2

′̇ = −∆𝐸𝑑2
′ − (𝑥𝑞2 − 𝑥2

′ )∆𝐼𝑞2

𝑇𝑑02
′ ∆𝐸𝑞2

′̇ = ∆𝐸𝐹𝐷2 − ∆𝐸𝑞2
′ + (𝑥𝑑2 − 𝑥2

′ )∆𝐼𝑑2

𝜏2∆𝜔2̇ = ∆𝑇𝑚2 − (𝐼𝑑20∆𝐸𝑑2
′ + 𝐼𝑞20∆𝐸𝑞2

′ + 𝐸𝑑20
′ ∆𝐼𝑑2 + 𝐸𝑞20

′ ∆𝐼𝑞2) − 𝐾𝐷2∆𝜔2 − 𝐾𝑆2∆𝛿2

∆𝛿1̇ = ∆𝜔1
∆𝛿2̇ = ∆𝜔2

 

   (A.2) 

Arrange (A.2) into the following succinct form for further manipulation: 

 

{
 
 
 
 
 

 
 
 
 
 

∆𝐸𝑑1
′̇ = 𝑎1∆𝐸𝑑1

′ + 𝑎2∆𝐼𝑞1

∆𝐸𝑞1
′̇ = 𝑏1∆𝐸𝐹𝐷1 + 𝑏2∆𝐸𝑞1

′ + 𝑏3∆𝐼𝑑1

∆𝜔1̇ = 𝑐1∆𝑇𝑚1 + 𝑐2∆𝜔1 + 𝑐3∆𝐸𝑑1
′ + 𝑐4∆𝐸𝑞1

′ + 𝑐5∆𝐼𝑑1 + 𝑐6∆𝐼𝑞1 + 𝑐7∆𝛿1

∆𝐸𝑑2
′̇ = 𝑑1∆𝐸𝑑2

′ + 𝑑2∆𝐼𝑞2

∆𝐸𝑞2
′̇ = 𝑒1∆𝐸𝐹𝐷2 + 𝑒2∆𝐸𝑞2

′ + 𝑒3∆𝐼𝑑2

∆𝜔2̇ = 𝑓1∆𝑇𝑚2 + 𝑓2∆𝜔2 + 𝑓3∆𝐸𝑑2
′ + 𝑓4∆𝐸𝑞2

′ + 𝑓5∆𝐼𝑑2 + 𝑓6∆𝐼𝑞2 + 𝑓7∆𝛿2

∆𝛿1̇ = ∆𝜔1
∆𝛿2̇ = ∆𝜔2

 (A.3) 

 

where intermediate variables of a through f are expressed as following: 

 

 

{
 
 

 
 𝑎1 =

−1

𝑇𝑞01
′

𝑎2 =
−𝑥𝑞1 + 𝑥1

′

𝑇𝑞01
′

 (A.4) 
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{
  
 

  
 𝑏1 =

1

𝑇𝑑01
′

𝑏2 =
−1

𝑇𝑑01
′

𝑏3 =
−𝑥𝑑1 + 𝑥1

′

𝑇𝑑01
′

 (A.5) 

 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑐1 =

1

𝜏1

𝑐2 =
−𝐾𝐷1
𝜏1

𝑐3 =
−𝐼𝑑10
𝜏1

𝑐4 =
−𝐼𝑞10

𝜏1

𝑐5 =
−𝐸𝑑10

′

𝜏1

𝑐6 =
−𝐸𝑞10

′

𝜏1

𝑐7 =
−𝐾𝑆1
𝜏1

 (A.6) 

 

 

{
 
 

 
 𝑑2 =

−1

𝑇𝑞02
′

𝑑2 =
−𝑥𝑞2 + 𝑥2

′

𝑇𝑞02
′

 (A.7) 

 

 

{
  
 

  
 𝑒1 =

1

𝑇𝑑02
′

𝑒2 =
−1

𝑇𝑑02
′

𝑒3 =
−𝑥𝑑2 + 𝑥2

′

𝑇𝑑02
′

 (A.8) 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑓1 =

1

𝜏2

𝑓2 =
−𝐾𝐷2
𝜏2

𝑓3 =
−𝐼𝑑20
𝜏2

𝑓4 =
−𝐼𝑞20

𝜏2

𝑓5 =
−𝐸𝑑20

′

𝜏2

𝑓6 =
−𝐸𝑞20

′

𝜏2

𝑓7 =
−𝐾𝑆2
𝜏2

 (A.9) 

 

    To linearize the equation relating voltages and currents, the following equations can be 

obtained:  

 

{
 
 

 
 
∆𝐼𝑞1 = 𝑔1∆𝐸𝑑1

′ + 𝑔2∆𝐸𝑞1
′ + 𝑔3∆𝛿1 + 𝑔4∆𝐸𝑑2

′ + 𝑔5∆𝐸𝑞2
′ + 𝑔6∆𝛿2

∆𝐼𝑑1 = ℎ1∆𝐸𝑑1
′ + ℎ2∆𝐸𝑞1

′ + ℎ3∆𝛿1 + ℎ4∆𝐸𝑑2
′ + ℎ5∆𝐸𝑞2

′ + ℎ6∆𝛿2
∆𝐼𝑞2 = 𝑗1∆𝐸𝑑1

′ + 𝑗2∆𝐸𝑞1
′ + 𝑗3∆𝛿1 + 𝑗4∆𝐸𝑑2

′ + 𝑗5∆𝐸𝑞2
′ + 𝑗6∆𝛿2

∆𝐼𝑑2 = 𝑘1∆𝐸𝑑1
′ + 𝑘2∆𝐸𝑞1

′ + 𝑘3∆𝛿1 + 𝑘4∆𝐸𝑑2
′ + 𝑘5∆𝐸𝑞2

′ + 𝑘6∆𝛿2

 (A.10) 

 

where 

 

{
  
 

  
 

𝑔1 = −𝐵11
𝑔2 = 𝐺11

𝑔3 = 𝑌12[sin(𝜃12 − 𝛿120) 𝐸𝑞20
′ + cos(𝜃12 − 𝛿120) 𝐸𝑑20

′ ]

𝑔4 = −𝑌12 sin(𝜃12 − 𝛿120)

𝑔5 = 𝑌12 cos(𝜃12 − 𝛿120)
𝑔6 = −𝑔3

 (A.11) 

 

 

{
  
 

  
 

ℎ1 = 𝐺11
ℎ2 = 𝐵11

ℎ3 = 𝑌12[sin(𝜃12 − 𝛿120) 𝐸𝑑20
′ − cos(𝜃12 − 𝛿120) 𝐸𝑞20

′ ]

ℎ4 = 𝑌12 cos(𝜃12 − 𝛿120)

ℎ5 = 𝑌12 sin(𝜃12 − 𝛿120)

ℎ6 = −ℎ3

 (A.12) 
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{
  
 

  
 

𝑗1 = −𝑌12 sin(𝜃12 + 𝛿120)

𝑗2 = 𝑌12 cos(𝜃12 + 𝛿120)

𝑗3 = −𝑌12[sin(𝜃12 + 𝛿120) 𝐸𝑞10
′ + cos(𝜃12 + 𝛿120) 𝐸𝑑10

′ ]

𝑗4 = −𝐵22
𝑗5 = 𝐺22
𝑗6 = −𝑗3

 (A.13) 

 

 

{
  
 

  
 

𝑘1 = 𝑌12 cos(𝜃12 + 𝛿120)

𝑘2 = 𝑌12 sin(𝜃12 + 𝛿120)

𝑘3 = 𝑌12[cos(𝜃12 + 𝛿120)𝐸𝑞10
′ + sin(𝜃12 + 𝛿120) 𝐸𝑑10

′ ]

𝑘4 = 𝐺22
𝑘5 = 𝐵22
𝑘6 = −𝑘3

 (A.14) 

 

where B, G, Y are the elements of the admittance matrix of the two-generator system 

including transmission line impedance, generator synchronous reactance and transient 

reactance. When calculating the admittance matrix, Node 1 and 2 are behind the d/q axis 

steady-state or transient-state voltage. θ12 is the angle of the element of the admittance 

matrix at Column 2, Array 1. δ120 is the initial relative rotor angle between generator 1 and 

2 before perturbation.  

    Finally, the system state-space equations in matrix form can be obtained by substituting 

(A.10) into (A.3) and necessary algebraic manipulation: 

 𝑿̇ = 𝑨𝑿 + 𝑩𝒀 (A.15) 

 

 



 

 

1
0
1 

 

𝑨

=

[
 
 
 
 
 
 
 

𝒂𝟏 + 𝒂𝟐𝒈𝟏 𝒂𝟐𝒈𝟏 𝟎 𝒂𝟐𝒈𝟒 𝒂𝟐𝒈𝟓 𝟎 𝒂𝟐𝒈𝟕 𝒂𝟐𝒈𝟖
𝒃𝟑𝒉𝟏 𝒃𝟐 + 𝒃𝟑𝒉𝟐 𝟎 𝒃𝟑𝒉𝟒 𝒃𝟑𝒉𝟓 𝟎 𝒃𝟑𝒉𝟕 𝒃𝟑𝒉𝟖

𝒄𝟑 + 𝒄𝟓𝒉𝟏 + 𝒄𝟔𝒈𝟏 𝒄𝟒 + 𝒄𝟓𝒉𝟐 + 𝒄𝟔𝒈𝟐 𝒄𝟐 𝒄𝟓𝒉𝟒 + 𝒄𝟔𝒈𝟒 𝒄𝟓𝒉𝟓 + 𝒄𝟔𝒈𝟓 𝟎 𝒄𝟓𝒉𝟕 + 𝒄𝟔𝒈𝟕 + 𝒄𝟕 𝒄𝟓𝒉𝟖 + 𝒄𝟔𝒈𝟖
𝒅𝟐𝒋𝟏 𝒅𝟐𝒋𝟐 𝟎 𝒅𝟏 + 𝒅𝟐𝒋𝟒 𝒅𝟐𝒋𝟓 𝟎 𝒅𝟐𝒋𝟕 𝒅𝟐𝒋𝟖
𝒆𝟑𝒌𝟏 𝒆𝟑𝒌𝟐 𝟎 𝒆𝟑𝒌𝟒 𝒆𝟐 + 𝒆𝟑𝒌𝟓 𝟎 𝒆𝟑𝒌𝟕 𝒆𝟑𝒌𝟖

𝒇𝟓𝒌𝟏 + 𝒇𝟔𝒋𝟏 𝒇𝟓𝒌𝟐 + 𝒇𝟔𝒋𝟐 𝟎 𝒇𝟑 + 𝒇𝟓𝒌𝟒 + 𝒇𝟔𝒋𝟒 𝒇𝟒 + 𝒇𝟓𝒌𝟓 + 𝒇𝟔𝒋𝟓 𝒇𝟐 𝒇𝟓𝒌𝟕 + 𝒇𝟔𝒋𝟕 𝒇𝟕 + 𝒇𝟓𝒌𝟖 + 𝒇𝟔𝒋𝟖
𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 ]

 
 
 
 
 
 
 

 

 

𝑿 =

[
 
 
 
 
 
 
 
 
ΔE𝑑1

′

ΔE𝑞1
′

∆𝜔1
ΔE𝑑2

′

ΔE𝑞2
′

∆𝜔2
∆𝛿1
∆𝛿2 ]

 
 
 
 
 
 
 
 

 𝒀 =

[
 
 
 
 
 
 
 
0

∆𝐸𝐹𝐷1
∆𝑇𝑚1
0

∆𝐸𝐹𝐷2
∆𝑇𝑚2
0
0 ]

 
 
 
 
 
 
 

 𝑩 = 𝑑𝑖𝑎𝑔[0 𝑏1 𝑐1 0 𝑒1 𝑓1 0 0] 

 

 

 


