
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

2014 

High Frequency AC Power Systems High Frequency AC Power Systems 

Huaxi Zheng 
University of South Carolina - Columbia 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Zheng, H.(2014). High Frequency AC Power Systems. (Doctoral dissertation). Retrieved from 
https://scholarcommons.sc.edu/etd/2684 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.sc.edu%2Fetd%2F2684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/2684?utm_source=scholarcommons.sc.edu%2Fetd%2F2684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


 
 

HIGH FREQUENCY AC POWER SYSTEMS 
 

by 

 

Huaxi Zheng 

 

Bachelor of Science 

Beijing Jiaotong University, 2007 

 

Master of Science 

Beijing Jiaotong University, 2009 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Doctor of Philosophy in 

 

Electrical Engineering 

 

College of Engineering and Computing 

 

University of South Carolina 

 

2014 

 

Accepted by: 

 

Roger A. Dougal, Major Professor 

 

Herbert L. Ginn III, Committee Member 

 

Charles W. Brice, Committee Member 

 

Jamil A. Khan, Committee Member 

 

Lacy Ford, Vice Provost and Dean of Graduate Studies



ii 
 

© Copyright by Huaxi Zheng, 2014 

All Rights Reserved.



iii 
 

DEDICATION 

 

This dissertation is dedicated to all of the people who have supported me through this 

process.  

I am especially grateful to my wife Yang Yue, whose unconditional love, unstoppable 

support, and hard work made this possible. You are the most encouraging, wonderful, 

creative, and thoughtful person I know and I am still amazed that I have the privilege of 

being your husband. I could not have accomplished any of these without you. Thank you. 

I wish you could receive an honorary degree with me; you have definitely put in enough 

work and learned alongside me. I love you. 

To my parents, Chongsu Zheng and Yang Zhuang: Thank you for your love, 

encouragement and pride in my accomplishments. It means more than you know. 

To my in-laws, Fuqiang Yue and Xun Zhang: In the end, you were working as hard as I 

was. I could not have done it without your help.  

 



iv 
 

ACKNOWLEDGEMENTS 

I would like to express my most sincere appreciations to my advisor, Dr. Roger A. 

Dougal, for his professional and patient guidance over the course of my Ph.D. studies. Every 

time after having a discussion with him, I feel fully inspired by his talents. Thanks for his 

encouragements and helps in both academic and personal issues. I could not become the 

person who I am today without his supports.  

Many thanks to my Ph.D. committee members: Dr. Charles W. Brice, Dr. Herbert L. 

Ginn, and Dr. Jamil A. Khan for those invaluable discussions and timely feedback. To Dr. 

Yucheng Zhang, Dr. Hasan Ali, and Dr. Enrico Santi: thanks for the guidance in the ship 

baseline modeling work from which I have learned a lot.  

Thanks to the faculty and staff of the Electrical Engineering department for their 

continuous support: Rich, Hope, Blake, Nat, and Lauren. Also, many thanks to my 

colleagues Pietro, Dan, Antonio, Reza, Tianlei, Blanca, Asif, Rostan, Yuanyuan, Qiu, Phllip 

and Haroula who were always ready to share and help.  

I would like to acknowledge the support of the US Office of Naval Research under the 

grant N00014-08-1-0080 and the Electric Ship Research and Development Consortium 

(ESRDC) which funded my research and allowed me to demonstrate the values and 

importance of my work. 



v 
 

ABSTRACT 

High Frequency AC (HFAC) power systems – systems having frequencies higher than 

the usual 60 Hz – may have advantages in some applications, especially where small size 

and weight are important (aircraft, ships, etc), or where variable operating speed increases 

efficiency. While 400 Hz systems are widely used in aircraft, these generally do not include 

parallel-connected generators that operate at megawatt power levels, which is our domain 

of interest in this research. In particular, we are interested in micro-grid power systems in 

the 10-100 MW range, consisting of several generators operating in parallel at system 

frequencies above 60 Hz. This type of system is of interest for many industrial and 

commercial applications, especially ship and marine systems.  

There is little historic precedent for HFAC power systems, and the operating frequency 

limits of these systems are not well defined, especially in regard to how intrinsic stability 

depends on physical factors such as the inertias of rotating machines, the impedances of 

power buswork, and the operating speeds of circuit protection devices. 

In this research, we first explored the benefits of high frequency systems, including 

how weight and volume of equipment such as synchronous generators are reduced, and 

found that generator power density scales proportionally with frequency. We also found 

that as the power density increases, the inertia constant of a rotating machine decreases, 

and can easily become smaller than two seconds, which threatens stability since stability 

often depends on a large inertia constant.  
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Increasing frequency was found to deteriorate rotor angle stability under both large-

signal and small-signal conditions. For large perturbations caused by short circuits, the 

Critical Clearing Time (CCT) was found to scale proportionally to the inverse square-root 

of system frequency. Thus, successful use of HFAC systems requires development of faster-

acting circuit protection devices. The upper limit of operating frequency occurs where the 

operating time of available short-circuit protection devices equals the CCT. Existing circuit 

breaker technologies appear to support system frequencies as high as 800 Hz. Large-signal 

stability, studied via extensive simulation tests, confirmed conclusions drawn from the 

fundamental analysis - the low inertias in typical micro-grids aggravate the stability problem 

in higher frequency systems. At the higher angular speeds associated with higher system 

frequencies, rotor angles can diverge and then quickly exceed the critical value, resulting in 

the faster loss of synchronism in HFAC systems. This emphasizes the necessity for 

developing fast-acting circuit protection devices. On the other hand, small-signal stability, 

studied by eigen-analysis, showed the sensitivity and dependency of stability on some key 

parameters such as generator damping coefficients or inertia constants. For example, larger 

inertia constants tend to benefit transient stability but deteriorate the small-signal stability, 

especially at system frequencies above 1000 Hz. The higher the frequency, the greater the 

sensitivity; the range of system parameters that permits stable operation of a 3000 Hz system 

is much narrower than the range of parameters acceptable in a 60 Hz system. 

 



vii 
 

TABLE OF CONTENTS 

DEDICATION..... .................................................................................................................. iii 

ACKNOWLEDGEMENTS ........................................................................................................ iv 

ABSTRACT........ ................................................................................................................... v 

LIST OF TABLES .................................................................................................................. ix 

LIST OF FIGURES .................................................................................................................. x 

LIST OF ABBREVIATIONS ................................................................................................... xiv 

 INTRODUCTION .................................................................................................. 1 

1.1 RESEARCH OBJECTIVE .......................................................................................... 1 

1.2 CONTRIBUTIONS OF THIS RESEARCH .................................................................... 2 

1.3 PROJECT SIGNIFICANCE ........................................................................................ 3 

1.4 SUMMARY ............................................................................................................ 7 

 LITERATURE REVIEW AND BACKGROUND ......................................................... 8 

2.1 HFAC POWER SYSTEMS ....................................................................................... 8 

2.2 POWER SYSTEM STABILITY ................................................................................ 12 

2.3 REVIEW OF POWER SYSTEM STABILITY RESEARCH ............................................ 18 

2.4 SUMMARY .......................................................................................................... 20 

 SYNCHRONOUS GENERATORS IN HFAC SYSTEMS .......................................... 21 

3.1 SCALING LAW OF GENERATOR POWER DENSITY VERSUS FREQUENCY............... 21 

3.2 INERTIA CONSTANTS OF HIGH FREQUENCY GENERATORS................................... 30 

3.3 SUMMARY .......................................................................................................... 33 

 TRANSIENT STABILITY OF HFAC POWER SYSTEMS ........................................ 34



viii 
 

4.1 FUNDAMENTAL ANALYSIS OF TRANSIENT STABILITY ........................................ 34 

4.2 SIMULATION STUDIES BASED ON A TWO-MACHINE SYSTEM ............................. 38 

4.3 SIMULATION STUDIES BASED ON A LARGER SYSTEM - ELECTRIC SHIP POWER 

SYSTEM .............................................................................................................. 52 

4.4 ANALYSIS ........................................................................................................... 62 

4.5 SUMMARY .......................................................................................................... 64 

 SMALL SIGNAL STABILITY OF HFAC POWER SYSTEMS .................................. 65 

5.1 METHODOLOGY .................................................................................................. 65 

5.2 REFERENCE SYSTEM MODEL FOR SMALL-SIGNAL STABILITY STUDY ................ 67 

5.3 SENSITIVITY TESTS ............................................................................................. 68 

5.4 SUMMARY .......................................................................................................... 86 

 CONCLUSION AND FUTURE WORK................................................................... 87 

6.1 CONCLUSION ...................................................................................................... 87 

6.2 FUTURE WORK ................................................................................................... 89 

REFERENCES .......................................................................................................................90 

APPENDIX A MODELS FOR SMALL-SIGNAL STABILITY ANALYSIS  .................................... 95 

 



ix 
 

LIST OF TABLES 

Table 3.1 Current densities for copper-winding electrical machines with different cooling 

systems ........................................................................................................... 24 

Table 3.2 Parameters for well-designed generators .......................................................... 26 

Table 3.3 Estimated inertia constants of synchronous generators in HFAC systems ....... 32 

Table 4.1 Generator parameters ........................................................................................ 41 

Table 4.2 Critical Clearing Time (CCT) for different frequencies ................................... 43 

Table 4.3 Three Scenarios of Inertia Constants ................................................................ 54 

Table A.1 Base parameters utilized in small-signal stability analysis .............................. 96 

 



x 
 

LIST OF FIGURES 

Figure 1.1 NGIPS master plan ............................................................................................ 6 

Figure 1.2 Notional ship power system diagram ................................................................ 7 

Figure 2.1 HFAC micro-grid studied by Chakraborty ...................................................... 10 

Figure 2.2 Classification of power system stability .......................................................... 13 

Figure 2.3 One-machine-infinite-bus system .................................................................... 15 

Figure 3.1 Trend lines for output power limit vs. generator speed ................................... 27 

Figure 3.2 Trend lines for output power limit vs. generator frequency ............................ 28 

Figure 3.3 Trend lines for scaling weight and volumetric power density vs. generator 

speed .............................................................................................................. 29 

Figure 3.4 Trend lines for scaling weight and volumetric power density vs. generator 

frequency ....................................................................................................... 29 

Figure 4.1 CCT decreases with system frequency increases, manifesting system inherent 

stability decreases. ......................................................................................... 38 

Figure 4.2 Reference system structure. ............................................................................. 40 

Figure 4.3  Model of twin-shaft gas turbine engine. ......................................................... 40 

Figure 4.4. Model of single-shaft gas turbine engine. ...................................................... 40 

Figure 4.5  IEEE type AC8B exciter model. .................................................................... 41 

Figure 4.6 Case definitions for Constant-Cycle-Circuit-Breaker test ............................... 46 

Figure 4.7 History index and TRASI for Case 3 (Fault Duration=0.15 s)........................ 47 

Figure 4.8. Transient response of rotor angle difference for Case 3 with H=4 s/3.5 s. .... 47 

Figure 4.9. Transient response of the frequency of the large generator for Case 3 with 

H=4 s/3.5 s. .................................................................................................... 48



xi 
 

Figure 4.10. History index for rotor angle difference and TRASI for Case 7 (Fault 

Duration=0.5 s). ............................................................................................. 49 

Figure 4.11. Transient response of rotor angle difference for Case 7 with H=4 s/3.5 s. .. 49 

Figure 4.12. Transient response of the frequency of the large generator for Case 7 with 

H=4 s/3.5........................................................................................................ 50 

Figure 4.13. Impact of tuning PID controller on transient response of large generator 

frequency. ...................................................................................................... 51 

Figure 4.14. Transient response of large generator frequency for Case 7 with H=4 s/3.5 s 

and PID controller untuned. ........................................................................... 51 

Figure 4.15 Reference system structure ............................................................................ 53 

Figure 4.16 Results of CCT Tests ..................................................................................... 55 

Figure 4.17 Explaining the frequency impact on CCT, fault occurs at 1 s ....................... 56 

Figure 4.18 TRASI for rotor angle between Generator 1 and 3, under the scenario of 

Normal Self-Clearing ..................................................................................... 58 

Figure 4.19 History index for rotor angle between Generator 1 and 3, under the scenario 

of Normal Self-Clearing ................................................................................ 58 

Figure 4.20 History index for frequency of Generator 1, under the scenario of Normal 

Self-Clearing .................................................................................................. 58 

Figure 4.21 Frequency of Generator 1 under the scenarios of Base-Case inertia constants 

and Normal Self-Clearing .............................................................................. 59 

Figure 4.22 Rotor angle between Generator 1 and 3 under the scenarios of Base-Case 

inertia constants and Normal Self-Clearing ................................................... 59 

Figure 4.23 TRASI for rotor angle between Generator 1 and 3, under the scenario of 

Normal Self-Clearing ..................................................................................... 60 

Figure 4.24 History index for rotor angle between Generator 1 and 3, under the scenario 

of Normal Self-Clearing ................................................................................ 61 

Figure 4.25 History index for frequency of Generator 1, under the scenario of Normal 

Self-Clearing .................................................................................................. 61 

Figure 4.26 Frequency of Generator 1 under the scenarios of Base-Case inertia constants 

and Normal Self-Clearing .............................................................................. 61 

Figure 4.27 Rotor angle between Generator 1 and 3 under the scenarios of Base-Case 

inertia constants and Normal Self-Clearing ................................................... 62 



xii 
 

Figure 4.28 Rotor angle between Generator 1 and 4 under the scenarios of Large-Ratio 

inertia constants and Normal Self-Clearing, the 800 Hz system loses stability 

after the fault .................................................................................................. 62 

Figure 5.1 Stable and unstable regions with frequency, KD, and KS varying for the 

reference system with base parameters .......................................................... 70 

Figure 5.2 Three cross-sections in Figure 5.1: KS vs KD for different frequencies ........... 70 

Figure 5.3 Three cross-sections in Figure 5.1: KS vs. frequency for different KDs .......... 71 

Figure 5.4 Three cross-sections in Figure 5.1: KD vs. frequency for different KSs........... 71 

Figure 5.5 Rootlocus for largest eigenvalue (7th and 8th in this case) ............................... 73 

Figure 5.6 Participation factors associated with largest eigenvalues (7th and 8th) ............ 73 

Figure 5.7 Root locus of 7th and 8th Eigenvalues for the case that the KS2 increase by 

200% .............................................................................................................. 74 

Figure 5.8 Root locus of 7th and 8th Eigenvalues for the case that the KD2 increase by 

200% .............................................................................................................. 75 

Figure 5.9 Root locus of 7th and 8th Eigenvalues for the case that the KS1 increase by 

200% .............................................................................................................. 76 

Figure 5.10 Root locus of 7th and 8th Eigenvalues for the case that the KD1 increase to 

200% .............................................................................................................. 77 

Figure 5.11 Ratio of power ratings of two generators is 6:1 ............................................ 78 

Figure 5.12 Ratio of power ratings of two generators is 3:1 ............................................ 78 

Figure 5.13 Ratio of power ratings of two generators is 1.5:1 ......................................... 79 

Figure 5.14 Ratio of power ratings of two generators is 1:1, stable region increases 

dramatically ................................................................................................... 79 

Figure 5.15 scaleH vs. KS vs. f with base parameter ......................................................... 81 

Figure 5.16 scaleH vs. KD vs. f, with base parameters and KS = 2.5 ................................ 81 

Figure 5.17 Three cross-sections in Figure 5.15: KS vs. f for different values of scaleH . 82 

Figure 5.18 Three cross-sections in Figure 5.16: KD vs. f for different values of scaleH 82 

Figure 5.19 KS vs. KD vs. f with scaleH=50% .................................................................. 83 

Figure 5.20 KS vs. KD vs. f with scaleH=200% ................................................................ 83 



xiii 
 

Figure 5.21 Cable lengths between generators and Point-of-Common-Coupling are 40 m 

and 30 m ........................................................................................................ 84 

Figure 5.22 Cable length between generators and Point-of-Common-Coupling are 4000 

m and 3000 m ................................................................................................ 85 



xiv 
 

LIST OF ABBREVIATIONS 

AC .......................................................................................................... Alternating Current 

CCA ................................................................................................. Critical Clearing Angle 

CCT ................................................................................................... Critical Clearing Time 

DC .................................................................................................................. Direct Current 

ESPS ......................................................................................... Electric Ship Power System 

ESRDC ............................................. Electric Ship Research and Development Consortium 

HFAC .................................................................................................... High Frequency AC 

HTS .............................................................................. High Temperature Superconducting 

PD .................................................................................................................. Power Density 

  



 

1 

 

 

INTRODUCTION 

1.1 RESEARCH OBJECTIVE 

This dissertation focuses on High Frequency AC (HFAC) power systems. It aims at 

finding the frequency limit of HFAC systems and the roots of this limitation, exploring the 

influence of operating frequency on system stability, and providing reference for building a 

HFAC power system. Micro-grids in the 10-100 MW range, consisting of multiple directly-

coupled synchronous generators with operating frequencies above 60 Hz is our interest. 

Some significant issues associated with implementing HFAC systems are: 

- Increasing speed of electric machines is associated with smaller rotor diameters and 

smaller moment of inertias, which potentially results in decreased rotor angle stability.  

- Increasing system frequency reduces the weight, size and footprint of system 

equipment, but may trigger system stability problem.  

- Choosing a system frequency to best explore the benefits of HFAC systems without 

sacrificing safe and stable operation.  

The research objectives of this study are: 

- Determine the over-riding factors that impose practical limits on system frequency. 
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- Discover the mass and volume improvement of critical components such as 

synchronous generators by increasing operating frequency; explore the scaling law of inertia 

constants (one of the most significant generator parameters for system stability) versus 

frequency.  

- Study the fundamental impact of system frequency, generator’s inertia constants, 

and other significant system parameters on rotor angle stability.  

1.2 CONTRIBUTIONS OF THIS RESEARCH 

The contribution of this research involves two aspects. The first one is related to 

synchronous generators in HFAC systems. This contribution can be summarized as: 

- Developed the trend line for the feasibility area of generators to reflect the maximum 

power one generator can achieve at different speeds. 

- Derived the trend lines for the scaling law of power density of high frequency 

generators versus system frequency. 

- Established the equation for quick estimation of generator’s inertia constants which 

facilitates power system stability analysis without having detailed machine data and 

extensive knowledge for machine design. 

The second aspect is stability characteristics of HFAC systems. This contribution covers 

the following aspects:  

- Showed for the first time that the mathematical relation between Critical Clearing 

Time and system frequency is inverse square-root.  
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- Discovered that the capability of system protection devices is the major cause 

limiting the operating frequency in HFAC systems. 

- Showed that fast-acting circuit breakers and wide-bandwidth PID controllers in 

excitation systems can permit HFAC systems to exhibit large signal rotor angle stability 

comparable to 60 Hz systems. 

- Determined the fact that low inertias, which is a typical problem for stability of many 

micro-grids, can cause more severe problem in HFAC systems 

- Explored the strong sensitivity of small-signal stability of HFAC systems on 

operating frequency and other system key parameters 

- Revealed the range of parameters to ensure the stable operation of HFAC systems 

is much narrower than normal 60 Hz systems.  

1.3 PROJECT SIGNIFICANCE 

Terrestrial power systems have been running at 50/60 Hz for over a century. All system 

components have been designed for this frequency. It is unlikely that grid frequency will 

change in the near future because it will bring enormous changes to the current grid network 

that cannot be solved immediately. However, the idea of running a micro-grid at a frequency 

higher than 50/60 Hz has been raised for over 30 years and has been planned to deploy in 

some applications currently. Many benefits from the implementation of HFAC systems 

have been proven and many efforts have been made to develop equipment that runs under 

high frequency. However, the frequency limit for HFAC systems is unknown as well as the 

major factors for this potential limitation. The stability characteristics of HFAC systems can 

be significantly different from that of the 50/60 Hz system. The question of whether the 
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stability is enhanced or degraded as one increases the nominal operating frequency is an 

interesting and increasingly important one.  

1.3.1 BENEFITS OF HFAC SYSTEMS 

HFAC power systems deliver electrical power at frequencies greater than 60 Hz. Some 

advantages of implementing HFAC power over conventional 50/60 Hz counterpart are 

listed below [1][2][3][4]. 

• Electric equipment can be much lighter and smaller, therefore cheaper because of 

fewer materials. For example, doubling the frequency generally permits electric machines 

to be 75% smaller. This appears to be the greatest benefit of HFAC systems.  

• High frequency generators can be directly coupled with prime movers, such as gas 

turbines, instead of using gearboxes on the shaft to reduce the speed of prime movers. This 

greatly reduced the maintenance burden especially if the micro-grid is in a remote and 

distant area. Drivetrain length could be reduced and power loss due to the gearbox will be 

saved by approximately 2% [5].  

• High speed induction motors can be directly used for compressors, high pressure 

pumps, and turbines.  

• Acoustic noise could be reduced dramatically due to higher frequency mechanical 

vibration. 

• Harmonics in HFAC systems will be at higher frequency and can be easily removed 

through proper filters.  
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1.3.2 APPLICATIONS OF HFAC SYSTEMS 

One of the earliest attempts to adopt the concept of HFAC power systems was by 

NASA’s Lewis Research Center in 1983, for the Space Station Freedom program [5] [6]. 

The motivation was to meet the trend for bigger spacecraft and stations like the space shuttle 

and the international space station project. Existing dc-based power system at that time were 

facing limitations in the form of excessive copper cable weight to compensate for the ohmic 

losses. The proposed HFAC distribution system employed inverters to generate HFAC 

electric power from a dc source, such as solar panels, instead of directly using HFAC electric 

machines. But higher crosstalk and higher EMI were challenges to proposed high frequency 

schemes because it required novel power cables with low inductive reactance, low radiated 

magnetic field, and the capability of carrying single-phase, 440 V, 20 kHz HFAC current 

without incurring significant losses due to skin and proximity effects.  

Another application involving the content of HFAC electric power is telecommunication 

[3]. Considering the demand of increasing load levels, compactness, higher complexity, and 

higher reliability, HFAC scheme is an excellent alternative for current dc solutions. But 

similar to space station power systems, this HFAC system is only for the purpose of 

distributing electric power, different from our focus in this study – direct HFAC electric 

power generation from rotating machines. The power supply is still 50/60 Hz from the grid 

and HFAC power only exists during the stages of transmission and power conversion.  

The oil and gas industry may embrace the advantages of HFAC systems. The power 

rating of a medium-size oil and gas production platform can easily exceed 10 MW. If the 

platform is designed for deep water drilling, dynamic positioning systems with power 

ratings up to 40 MW are required. The compactness of HFAC systems makes it a great fit 
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for offshore platforms, where space is a valuable commodity. In terms of oil and gas refinery 

facilities, pumps, compressors, and blowers [5] [8], driven by synchronous or induction 

motors, require large and heavy speed-up gearboxes. Increasing generator frequency to 

remove the gearboxes will be very beneficial. This is especially meaningful to reduce the 

maintenance workload for the cases in which oil and gas processing facilities are in remote 

areas.  

The HFAC power system was proposed as one of the three candidates for the Next 

Generation Integrated Power System (NGIPS) for electric ships [4] [9]. The other two 

competing candidates are Medium Voltage AC (MVAC) and Medium Voltage DC 

(MVDC). Figure 1.1 is NGIPS master plan showing the three candidates [4].  

 

Figure 1.1 NGIPS master plan 

As the implementation of MVDC on all-electric ship requires the industry and the Navy 

to address a number of technical challenges, a HFAC system serves as a risk-reduction 

alternative for near term. Figure 1.2 depicts the diagram for notional electric power system 
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proposed by the ESRDC [10]. The proposed HFAC power system deploys high frequency 

synchronous generators to produce electric power at a fixed frequency between 60 Hz and 

400 Hz. The voltage at distribution ring bus is either 4.16 or 13.8 kV.  

 

Figure 1.2 Notional ship power system diagram 

1.4 SUMMARY 

The objective of this study is to find frequency limit in HFAC systems and to discover 

the potential impact of increasing system frequency on system stability. The focus of our 

study is micro-grids in the MW-range with multiple synchronous generators operating in 

parallel. Such HFAC systems are especially beneficial for applications where size and 

weight are the priorities for system designers. Significant applications of HFAC systems 

include offshore oil and gas platforms and electric ship power systems.  
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LITERATURE REVIEW AND BACKGROUND 

In this section the literature concerning HFAC power systems and power system stability 

will be reviewed. The concept of using HFAC as the link or a way of transmission in the 

micro-grid will be presented. The issues of power system stability for both utility systems 

and the promising application of HFAC systems – an electric ship power system will be 

summarized.  

2.1 HFAC POWER SYSTEMS 

2.1.1 HFAC DISTRIBUTION SYSTEMS 

HFAC distribution systems deliver electric power at frequencies up to multi-kHz via 

cables. The earliest HFAC distribution system was proposed in 1980s for the power system 

of the International Space Station [11] [12] [13] with a power rating of 120 kW. The HFAC 

distribution architecture utilized a resonant converter to convert the 160 V dc power from 

solar panels to single-phase 440 V/20 kHz ac power. The choice for the frequency of 20 

kHz was due to the good balance among power rating per module, audio noise 

considerations, and component sizing, considering the available technology at that time. 

Japanese scholars performed research on the concept of HFAC distribution system 

during that time as well. Takahashi [1] proposed a 500 Hz power system for applications of 

industrial zones, intelligent buildings, commercial areas, etc. An experimental model system 

was built to test system performance under certain faults. Takahashi’s experiment revealed
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many benefits of HFAC power systems, such as dramatic reduction in the size and weight 

of transformers, filters, circuit breakers and other system components, reduced power 

distortion due to the filtering effect of 500 Hz power converters, etc. In [2], Takahashi 

continued to investigate the applications and needs for HFAC distribution system. 

Experiment demonstration showed that energy saving, space reduction, and high 

performance can be achieved by the implementation of higher frequency in fluorescent 

lightings, amorphous metal core transformers, dc power supplies, and naturally commutated 

cycloconverters. But similar to the International Space Station, Takahashi‘s HFAC 

distribution system did not include HFAC electric generators. Instead, power converters 

were used to convert 50/60 Hz grid power to 500 Hz one.  

In the last two decades, micro-grids have been emerging as a new form of terrestrial grid 

system as deregulation policies encourage distributed power generation to be close to the 

end-users. It consists of multiple power sources, such as solar panels, fuel cells, and micro 

wind turbines. Its operation capability, either interconnected with the grid or independently, 

renders it an ideal application for HFAC transmission architecture. In [14][15][16], 

Chakraborty studied single-phase 1 kHz HFAC micro-grids which integrated several 

renewable energy sources. Figure 2.1 shows the diagram for the studied HFAC micro-grid 

distribution system. A HFAC link was used to integrate loads and all sources, such as 

photovoltaic, wind, fuel cells, etc. To compensate for reactive power, load current 

harmonics, and voltage distortions, p-q theory-based active filters, i.e. Universal active 

Power Line Conditioner (UPLC) and Unified Power Quality Conditioner (UPQC), were 

implemented to address the issues of power flow and power quality. In [16], a Distributed 

Intelligent Energy Management System (DIEMS) acted as an optimizer of operating costs. 
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Results from [14][15][16] demonstrated the successful implementation of HFAC micro-

grids with expected power flow and power quality control, as well as the optimization of 

operation cost by the proposed DIEMS.  

 

Figure 2.1 HFAC micro-grid studied by Chakraborty 

2.1.2 HFAC POWER SYSTEMS WITH DIRECT POWER GENERATION FROM HIGH FREQUENCY 

ELECTRIC GENERATORS 

A more “complete” HFAC power system consisting of line-connected high frequency 

generators operating in parallel was adopted by electric ship power systems (ESPSs). Under 

the supervision of the ESRDC (Electric Ship Research and Development Consortium), 

some work has been done for the baseline model of HFAC power systems for next 

generation electric ships. In [17], a model of an 80 MW electric ship HFAC power system 

that generates and distributes electric power at 240 Hz was developed. This detailed system 

model includes several gas-turbine-generator units, two propulsion power trains, several 

power distribution and conversion units, a super-capacitor energy storage module, a high-

power pulse load, and multiple service loads. Four scenarios were tested to understand the 
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performance of this HFAC system: partial loss of generation, the application of a large step 

load, power restoration to a vital load, and the operation of energy storage module. Some 

benefits of the HFAC architecture were highlighted. But the authors did not discuss the 

impact of HFAC generation on system stability and other stability issues related to this 

HFAC power system.  

As the key component of HFAC systems, high frequency generators with power ratings 

in the MW-range were studied by R. M. Calfo since 2002. In [18], Calfo proposed a ship 

propulsion system having high frequency generators with close-coupled rectifiers. 

Significant improvements in system weight, volume, and efficiency with frequency increase 

were presented. Following [18], Calfo proposed concepts to improve power density of a 

gas-turbine-generator set in [19]. Sixty-one generator designs over four generator types (air-

cooled wound field, water-cooled wound field, permanent magnet and high-temperature 

superconducting) were assessed for different distribution architectures of electric ship. In 

this paper, power density was given priority. Efficiency, acoustics, and total system cost 

were evaluated. Calfo concluded that a water-cooled generator can achieve close to the same 

level of performance and power density as permanent magnet and high-temperature 

superconducting designs, but it showed more strengths in other aspects such as 

compatibility with shipboard application, requiring significantly less development, cost, etc. 

In [20], considering available prime movers such as MT30 and LM2500+, Calfo explored 

the combinations of prime movers and advanced generators to satisfy the requirement of 

HFAC power systems defined in NGIPS’s master plan. Calfo again substantiated that high 

frequency generators offered up to 75% savings on size and weight as compared with 50/60 

Hz generators. In [21], Calfo compared the cost of high power density and high frequency 
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generators with that of conventional ones, and showed that the major advantages of power 

dense electric generators, the size and weight reduction, benefit the affordability of the 

machine as well. But no discussion on frequency limits of HFAC systems and the feasibility 

area of high frequency generators was given in Calfo’s publications.  

2.2 POWER SYSTEM STABILITY 

Power system stability is understood as the ability to remain in an equilibrium operating 

state under normal operating conditions, and to regain an equilibrium state after being 

subjected to a physical disturbance [22] [23]. Traditionally, a satisfactory system’s operating 

condition is that all synchronous generators operate in synchronism, but instability may also 

occur while synchronism is maintained. The definition and classification of power system 

stability could be different based on specific considerations. In terms of the physical nature 

of the resulting instability, rotor angle and voltage are the two categories of power system 

stability. Based on the size of the disturbance considered, rotor angle can be sorted into two 

categories: small-signal and large-signal stabilities. An example for small-signal 

disturbance would be a small load change while system faults are the typical incidents for 

large-signal stability study. Similarly, voltage stability can be categorized into large-

disturbance and small-disturbance stabilities. If the time span of the system’s dynamic 

operation is considered, mid-term and long-term stabilities can be defined for study period 

of several minutes and tens of minutes correspondingly. Figure 2.2 shows the classification 

of power system stability [22].  
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Figure 2.2 Classification of power system stability 

2.2.1 ROTOR ANGLE STABILITY [22][24] 

When multiple synchronous generators operate in parallel to supply electric power to 

loads, the system’s ability to maintain synchronism is defined as rotor angle stability. 
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Physically, the requirement for being stable from rotor angle aspect is that all connected 

synchronous generators are rotating at the same speed, which is termed synchronous speed. 

Since electrical frequency is proportional to mechanical speed for synchronous generators, 

in real utility systems this common synchronous speed determines the system electrical 

frequency to be at 50/60 Hz. When these interconnected synchronous generators reach 

steady-state, equilibrium occurs between input mechanical power and output electrical 

power for each generator. Once subjected to a disturbance, the rotors will accelerate or 

decelerate according to the laws of motion. Rotor angular position between different 

generators will change accordingly, resulting in the load transferring from slow generators 

to fast generators based on the power-angle curve. Once the angular position increases over 

a certain limit, further increase in angular position will result in the fact that at least one 

generator is unable to go back to stable operation state.  

Rotor angle stability is commonly defined as two categories: small-signal stability and 

large-signal stability (also termed “transient stability”). The following sections will address 

them from the aspects of phenomena and methods to investigate them.  

2.2.1.1 SMALL-SIGNAL STABILITY 

Small-signal stability focuses on the ability for maintaining synchronism during small 

disturbance such as a small load step change. The time span of interest is about 10~20 

seconds after the disturbance. In this category, the disturbance is regarded as small enough 

that the nonlinear system can be adequately represented by a model that is linearized about 

the operating point. Instability which may occur in this category may result from two 

aspects: lack of sufficient damping torque, or lack of sufficient synchronizing torque. In 

modern power system networks, small-signal stability problems are usually raised by 
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insufficient damping torque. This can be explained by the equations of damping power and 

synchronizing power. Consider the one-machine-infinite-bus system in Figure 2.3. Ignoring 

rotor saliency, the damping power PD and synchronizing power PS of the generator can be 

expressed as the following [24]: 

Generator Infinite bus

 

Figure 2.3 One-machine-infinite-bus system 

 
𝑃𝐷 = 𝑉𝑆

2
𝑋𝑑
′ − 𝑋𝑑

′′

(𝑋 + 𝑋𝑑
′′)2

𝑋𝑑
′

𝑋𝑑
′′

𝑇𝑑
′′∆𝜔

(1 + 𝑇𝑑
′′∆𝜔)2

 (2.1) 

 

 
𝑃𝑆 =

𝐸′′𝑉𝑆
𝑋 + 𝑋𝑑

′′ 𝑠𝑖𝑛𝛿
′′ (2.2) 

 

where 𝑋𝑑
′
 is the generator’s transient reactance, 𝑋𝑑

′′
 is the generator’s subtransient reactance, 

X is the reactance of transmission line and transformer, 𝑇𝑑
′′

 is the subtransient short-circuit 

time constant of the generator, ∆𝜔 is the rotor speed deviation, VS is the voltage of infinite 

bus, 𝐸′′is the subtransient voltage behind 𝑋𝑑
′′
, and  𝛿

′′
 is the angle between 𝐸′′ and VS under 

a subtransient state. It can be seen that the squared value of network reactance X occurs in 

the denominator of PD, while it has much less influence in PS. Considering the size of current 

power grid, it is common that transmission line impedance X is a large value. In a HFAC 

micro-grid with relatively short transmission cables, X may still be large if the frequency is 

very high, so insufficient damping torque can be an important issue.  
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The popular method for studying small-signal stability is eigen-analysis by which the 

eigenvalue and eigenvalue sensitivity of system state matrices are evaluated to learn the 

system characteristics. In Chapter 4, this method will be introduced and applied to study 

the small-signal stability of HFAC systems 

2.2.1.2 TRANSIENT STABILITY [22][24] 

The ability of a power system to recover from large disturbances is termed as transient 

stability. Such large disturbances involve different types of system contingencies at widely 

varying degrees of severity. Large disturbances commonly encountered in power systems 

involve loss of large portion of a transmission system, loss of major power 

generations/loads, and system faults. Three-phase-to-ground faults are the most severe 

faults in a power system network. The time span of interest for 60 Hz grid system is usually 

3~5 s after the disturbance, while in some very large power systems it will be extended to 

20 s. The large disturbance will trigger a system response such as large excursion of 

generator’s rotor angles and frequencies. The ability for a power system to sustain 

synchronism through a contingency is determined by its initial operating status, the level of 

severity of the contingency, fault clearing time, post-contingency system structure, the aids 

from system equipment, etc.  

Transient stability problems are highly nonlinear and highly dimensional. Two methods 

for evaluating transient stability involve indirect and direct methods. Time-domain 

simulation, which is the most popular and widely used in modern power system analysis, is 

in the category of indirect method. It utilizes mathematical models for power system devices 

to establish a power system model. Then the time domain solutions for non-linear and 

algebraic equations can be computed step by step. The accuracy of the solutions and the 
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speed of simulation depend on the choice of solver and the level of detail of the 

mathematical representation for each system component. Eventually the stability could be 

learned by observing the simulation results. The indirect method is reliable but cannot be 

used for finding the stability margin. 

The direct method utilizes Lyapunov Energy functions to assess stability. The results of 

stability regions given by various direct methods are usually too conservative and smaller 

than the real boundary. Moreover, constructing a Lyapunov Energy function is not easy, 

especially when the target power system includes some models in great detail. Each direct 

method applies different characteristics of the stability boundary to locate the stability 

region. [25] and [26] present comprehensive discussions on direct methods.  

2.2.2 VOLTAGE STABILITY  

Voltage stability is the ability of a power system to maintain desired voltage at all buses 

during small or large disturbances [22][27]. The capability of a power system to meet the 

requirements of reactive power will determine the voltage stability. The basic criterion for 

assessing voltage stability is that under a specific operating point, the magnitude of the bus 

voltage (V) in every bus of a power system will increase as the reactive power (Q) injection 

increases. This so-called V-Q sensitivity needs to be positive for each bus of the investigated 

power system. Voltage stability is classified into two categories: large-disturbance voltage 

stability and small-disturbance voltage stability. The “large-disturbance” refers to large load 

step changes, power system faults, loss of generation, etc., while the “small-disturbance” 

refers to small perturbations such as incremental load changes. Both large-disturbance and 

small-disturbance stabilities depend on system characteristics, system controls, and 
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protections. Voltage stability and rotor angle stability often occur together so that it is 

difficult to make the distinction.  

2.3 REVIEW OF POWER SYSTEM STABILITY RESEARCH 

The research on power system stability dates back to the year 1920 [28][29][30][31]. The 

instability at that time was mainly due to insufficient synchronizing torque which resulted 

from long transmission lines. After that, the equal-area criterion and other methods were 

developed to tackle simple power system analysis, such as a system containing two 

generators. In 1930, the development of a network analyzer made it possible for power flow 

analysis, which served as an extremely useful tool for emerging large interconnected power 

systems in this early age. 1956 saw the first computer software for power system stability 

analysis which facilitated detailed modeling of power system equipment such as 

synchronous machines, excitation systems, and governors. In 1965, the famous northeast 

blackout emphasized the significance of power system stability to power system engineers 

and researchers [32]. About the same time, power system stabilizers were introduced 

[22][24] to mitigate the adverse impact on small-signal stability brought by high-response 

excitations that greatly improved transient stability.  

Modern power system networks and operation have resulted in new types of stability 

problems. For example, as renewable energy becomes popular in power systems, a lot of 

studies for power system stability have been focused on the impact of renewable energy 

penetration on large interconnected power systems[33][34][35][36]. The main concern is 

that power electronics converters, serving as interfaces between the power grid and different 

energy sources, decouple the connection and therefore lower the system inertia, which is 
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very important for system rotor angle stability. Some mitigation methods such as controller 

improvements have been proposed to address potential stability problems [35][36].  

In the meantime, voltage instability and low-frequency inter-area oscillations in modern 

power systems become more common than in the past. Long-term stability, system controls, 

and protections are attracting more attentions as well [22][24][37][38]. 

2.3.1 SHIPBOARD POWER SYSTEM STABILITY 

As stated in Chapter I, ESPSs are a significant application for HFAC systems. With 

strong support from US Office of Naval Research, the stability of ESPSs has been widely 

researched.  

One of the main issues that draws attentions is the stability problem caused by power 

electronics converters. Converters are widely used in dc and ac ESPSs and they present a 

behavior of Constant Power Load (CPL) which will cause negative-impedance voltage 

instability. [39] reviewed and discussed the methods for analyzing this stability issue and it 

focused on the design of load-side power converters. [40] implemented a dedicated control 

algorithm to prevent the MVDC ESPS from negative-impedance instability. Power 

converters were disconnected when they started to cause MVDC systems running into 

unstable regions. Arcidiacono in [41] presented an innovative control system which was 

designed to control generators, gas turbines, and power converters in an integrated way so 

that stabilization of a dc bus in MVDC systems can be achieved.  

Other important literatures covering the stability of ESPSs include [37], [51], [42], and 

[43]. In [42], the Lyapunov linearization method was adopted to identify the stable region 

for a simplified version of an ESPS which included a generator-motor set. In [51], Li 
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proposed an automated detection method based on RTDS simulation and Prony analysis (a 

curve-fitting method) to study ESPS stability. The stability boundary was determined by the 

maximum allowable magnitude of the pulsed load. The obtained boundary was found as 

conservative as from the Lyapunov method. In [43], Amy used a composite system method 

which was based on the Lyapunov direct method to assess the stability of an MVAC ESPS. 

The proposed method could be applied to study HFAC system stability but exhibits some 

limitations and inaccuracies, such as the close proximity of shipboard system components 

requiring higher order models for capturing dynamics. The implementation of the co-energy 

concept needs more research work as well. In [37], Qi presented two new indices for voltage 

stability assessment for the ship power system application: Static Voltage Stability Index 

(SVSI) and Dynamic Voltage Stability Index (DVSI). Qi also discussed rotor angle stability 

for the case when an ESPS has multiple generators with the same power rating. The main 

conclusion was that rotor angle stability were not an issue in shipboard systems because the 

generators have the same inertia and rating. But as ESPSs start to use generators with 

significantly different ratings, such as the current baseline system proposed in [10] having 

two main and two auxiliary generators, such conclusion may not be valid.  

2.4 SUMMARY 

This chapter addresses the literature work concerning HFAC systems, critical equipment 

for HFAC systems, and power system stability issues. No report has been found to discover 

the stability characteristics of HFAC systems.  

.  
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SYNCHRONOUS GENERATORS IN HFAC SYSTEMS 

This chapter discusses the impact of system frequency on the size and weight of 

synchronous generators. Trend lines will be derived for illustrating the scaling laws of 

generator’s output power and power density versus frequency. The Inertia Constant is one 

of the most important parameters for power system stability. An equation which facilitates 

quick estimation of inertia constants of high frequency generators will be established.  

3.1 SCALING LAW OF GENERATOR POWER DENSITY VERSUS FREQUENCY 

High frequency synchronous generators are the power sources of HFAC systems. In 

general, increasing generator frequency tends to make the generator more compact. 

3.1.1 POWER DENSITY IMPROVEMENT OF SYNCHRONOUS GENERATORS IN HFAC SYSTEMS 

The basic relation among the number of output electrical frequency (f in Hz), the number 

of magnetic poles (p), and mechanical rotational speed of generators (N in RPM) can be 

expressed as:  

 
𝑓 =

𝑁𝑝

120
 (3.1) 

 

It is apparent that there are two ways to increase generator output frequency: to rotate the 

rotor faster (higher N), or to add more magnetic poles to the rotor (higher p). Another 
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important equation relating the nominal output power of a synchronous generator to its 

weight and volume is:  

 𝑃 = 𝐾(𝑝𝑓)𝐴𝐵𝐷2𝐿𝑁 (3.2) 
 

where K is the unit conversion factor, pf is the power factor, A is the stator surface current 

density in A/m, B is the peak air gap flux density in T, D is the rotor diameter in m, L is the 

stator core length in m, and N is the mechanical rotational speed in RPM.  

In this study, Power Density (PD) is defined as the electrical output power divided by 

the generator weight (weight power density) or volume (volumetric power density) and used 

as the metric to evaluate the impact of higher frequency on a generator’s weight and size: 

 
𝑃𝐷 =

𝑃

𝑚𝑔𝑒𝑛 𝑜𝑟 𝑉𝑔𝑒𝑛
 (𝑘𝑊/𝑘𝑔 𝑜𝑟 𝑘𝑊/𝑚3)  (3.3) 

 

Based on (3.2) and (3.3), three ways can be discovered to achieve more compact design 

and higher PD [18][21][52]: 

-  As the rotational speed (N) increases, output power increases proportionally which 

leads to PD increase. 

-  If the size of the generator shrinks, generator mass can be reduced resulting in PD 

increase. Increasing pole count will result in a smaller and shorter stator.  

- If the stator surface current density (A) and the air gap flux density (B) are increased, 

higher output power and PD can be achieved. The three ways will be explained in detail in 

the following sections.  

3.1.1.1 OBTAINING HIGHER PD BY INCREASING MECHANICAL SPEED 
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    If we define the surface speed of the rotor as:  

 
𝑣𝑟 =

𝜋𝐷𝑁

60
 (3.4) 

 

(3.2) can be re-written as:  

 
𝑃 =

𝐾

𝜋
(𝑝𝑓)𝐴𝐵𝐷𝐿𝑣𝑟  (3.5) 

 

If rotational speed can be increased by increasing the speed of the prime mover, surface 

speed will be increased to achieve higher output power. The maximum surface speed is 

determined by the rotor structure and materials. For solid-rotor and laminated-rotor 

synchronous generators, the maximum surface speeds limited by the mechanical strength of 

electrical steels are 400 m/s and 250 m/s correspondingly [44][45]. If the yield strength of 

rotor material improves, the output power limit can be increased. As long as the surface 

speed does not exceed the maximum speed, higher PD could be achieved.  

3.1.1.2 OBTAINING HIGHER PD BY INCREASING GENERATOR POLE COUNT 

Compact generators could be acquired by increasing the number of magnetic poles. 

Assuming the rotor diameter remains constant, as the pole number increases, the pole pitch 

decreases proportionally. Since the backiron of the stator core and the overall length of the 

stator winding end turns change proportionally with the pole pitch length, increase in pole 

number will result in a shorter generator. Preliminary design study in [18] showed that if 

the pole number of a 20 MVA, 3600 RPM generator increases from two to four, the weight 

and length reductions are 32% and 13% respectively. The extent of the reduction will be 

determined by practical limit in the minimum size of the stator core thickness, end turn 

length, and magnetic air gap.  
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3.1.1.3 OBTAINING HIGHER PD BY BETTER COOLING SCHEME AND HIGH SATURATION 

MAGNETIC MATERIALS  

According to (3.2), stator surface current density and peak air gap flux density are 

significant factors in determining how much power could be drawn from a synchronous 

generator. Maximum current density is determined by the cooling method of the generator 

system. Currently the popular cooling schemes involve air-cooling and liquid-cooling. Air-

cooling methods are commonly used in a wide range of applications in modern industry. Its 

high reliability and low reliance on complex auxiliary systems have been proven by decades 

of design work and operation. Liquid-cooling method adopts direct liquid cooling of stator 

and rotor windings. It dramatically reduces the space that must be allocated for air passage 

inside the generator. It provides an opportunity for significantly increasing the current 

density and thus achieving higher power density. Although liquid-cooled generators were 

tested by some companies in the 1970s and there are many industrial applications in the 

market, challenges for implementation still exist, such as the insulation of tube connectors 

to withstand significant centrifugal force and the supply of deionized water to the rotor 

through a rotary union. Table 3.1 lists some typical values for current densities of electrical 

machines with different cooling schemes [45].   

Table 3.1 Current densities for copper-winding electrical machines with different 

cooling systems 

Cooling system Current density, A/m 

Total enclosed machine, natural ventilation 4.5 to 5.5 

Total enclosed machine, external blower 7.5 to 11.0 

Through-cooling machine, external blower 14.0 to 15.5 

Liquid-cooled machine 23.0 to 30.0 
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Peak air gap flux density is another important parameter which is closely related to the 

magnetic lamination materials a generator uses. Traditional synchronous generators utilize 

silicon iron steel lamination. To increase the air gap flux density in high speed generators, 

high saturation magnetic materials such as the cobalt steel alloy lamination is required. 

Hiperco 50 [46] is such a material that is widely used in aircraft generators. Its saturation 

point is as high as 2.4 T. This type of materials also makes it possible for smaller stator teeth 

and larger stator slots, which eventually lead to more conductors in the windings and higher 

current loading.  

The discussions in the previous sections illustrate that higher rotational speed and higher 

pole count will result in higher output power and higher power density. After reaching the 

maximum speed and maximum pole count, if high efficiency cooling methods and high-

saturation lamination materials could be adopted, output power and power density can be 

further increased.  

3.1.2 TREND LINES FOR SCALING OF POWER, MASS AND VOLUME VS. FREQUENCY  

The previous section describes how the power density of generators can be improved by 

several design factors. This section will derive the trend lines for the relation of generator’s 

output power and power density versus generator frequency.  

Manipulating (3.2) and (3.4), and defining kDL as the ratio of rotor diameter (D) and 

length (L) yields the following expression for scaling generator’s output power: 

 
𝑃 =

603𝐾

𝜋3𝑘𝐷𝐿
(𝑝𝑓)𝐴𝐵𝑣𝑟

3
1

𝑁2
= 𝐾𝑃𝑁1

1

𝑁2
 (3.6) 

 



 

26 

Output power is inversely proportional to the squared rotor speed (N), assuming that the 

other parameters remain the same. KPN1 is the coefficient relating generator speed and 

power. If KPN1 can be obtained, the trend line for the boundary of generator’s output power 

versus frequency could be drawn. Table 3.2 lists the major parameters of some well-

designed MW-range round-rotor-type synchronous generators from machine designers 

([18][19][20]).  

Table 3.2 Parameters for well-designed generators  

No. 
Speed 

(RPM) 

Power 

(kW) 

Pole 

count 

Frequency 

(Hz) 

PD 

(kW/kg) 

Weight 

(kg) 

PD 

(kW/m3) 

Volume 

(m3) 
Cooling 

1 3600 18000 2 60 0.33 54430 n/a n/a air 

2 3600 18000 4 120 0.48 37194 n/a n/a air 

3 3600 18000 8 240 0.61 29483 n/a n/a air 

4 3600 18000 4 120 0.42 42637 n/a n/a air 

5 4800 18000 4 160 0.53 34246 n/a n/a air 

6 7000 18000 4 233.3 0.68 26308 n/a n/a air 

7 7200 18000 4 240 0.68 26308 n/a n/a air 

8 4800 18000 6 240 0.72 24948 n/a n/a air 

9 3600 18000 8 240 0.61 29484 n/a n/a air 

10 7000 14000 4 233 0.77 18182 962.90 15 air 

11 7000 14000 4 233 0.64 21875 859.73 16 air 

12 7000 14000 4 233 1.25 11200 2101.03 7 water 

13 7000 14000 4 233 1.07 13084 1929.13 7 water 

14 3600 36000 8 240 0.64 56160 534.89 67 air 

15 3600 36000 8 240 1.41 25492 2958.96 12 water 

16 3600 36000 2 60 0.43 83536 442.01 81 air 

17 6200 25000 4 206.7 0.53 47488 415.44 60 air 

18 6200 25000 4 206.7 1.47 17025 2900.35 9 water 

19 3600 26000 2 60 0.35 74097 371.64 70 air 

20 3600 25000 8 240 0.54 46160 424.94 59 air 

21 3600 25000 8 240 1.23 20248 2361.66 11 water 

22 3600 26000 2 60 0.35 74097 371.64 70 air 

23 7000 10000 4 233.3 0.43 23029 255.64 39 air 

24 7000 10000 4 233.3 1.02 9761 1771.27 6 water 

25 3600 8000 2 60 0.14 57204 191.30 42 air 
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After examining the original data, it is found that the rotor surface speeds of these 

machines are all close to the maximum value with enough redundancy so they are on the 

edge of boundary curve for output power vs. speed. Substituting the generator data of No. 

18 (four-pole) and No. 15 (eight-pole) into (3.6) will find that the KPN1 for four-pole and 

eight-pole generators are 9.61*1011 and 4.67*1011 respectively. Using the two values, the 

curve can be drawn for the output power limit vs. generator speed, as shown in Figure 3.1. 

The cross marks in the figure represent the other four-pole or eight-pole generators in Table 

3.2. The vertical axes for the output power and weight are logarithmic.   

 

Figure 3.1 Trend lines for output power limit vs. generator speed 

Considering increasing the frequency only by increasing rotor speed and keeping the 

same pole count, the output power limit vs. frequency can be obtained by replacing the axis 

of speed in Figure 3.1 with generator frequency, as shown in Figure 3.2.  



 

28 

 

Figure 3.2 Trend lines for output power limit vs. generator frequency 

If we define kSR as the ratio of stator diameter to rotor diameter and rearranging (3.2), 

(3.3) and (3.6), the relation between power density and generator speed can be derived: 

 
𝑃𝐷 =

4𝐾(𝑝𝑓)𝐴𝐵

𝜋𝜌𝑘𝑆𝑅
2 𝑁 = 𝐾𝑃𝑁2𝑁 (3.7) 

   

where 𝜌 is the mass density of the generator, and KPN2 shows the proportional relation 

between generator speed and power density. Similar to the method used for obtaining output 

power limit vs. speed (and frequency) in Figure 3.1 (and Figure 3.2), the data for Generator 

No. 18 and No. 15 in Table 3.2 are used to plot the trend lines for power density vs. generator 

speed (and frequency).  

    Figure 3.3 and Figure 3.4 indicate that as generator speed and frequency increase, both 

weight and volumetric power density of the generators will increase. However, in practice, 

this power density improvement will have a threshold limit, which is due to the challenges 
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of miniaturizing various components and extracting thermal losses from a small area [47]. 

The black lines (solid and dotted) in Figure 3.3 and Figure 3.4 represent this effect.  

 

Figure 3.3 Trend lines for scaling weight and volumetric power density vs. generator 

speed 

 

Figure 3.4 Trend lines for scaling weight and volumetric power density vs. generator 

frequency 
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    It should be noted that all the scaling trend lines in this section are based on existing, or 

well-designed generators in the literature. As the design technique keeps moving forward, 

the cooling scheme becomes more efficient, and the material technology advances, the trend 

lines will move upward, introducing more feasible areas for generators with higher power 

rating and speed.  

3.2 INERTIA CONSTANTS OF HIGH FREQUENCY GENERATORS  

Inertia constants of synchronous generators are extremely critical to power system 

stability [22]. However, since there are few existing or well-designed high frequency 

generators available, the lack of data for inertia constants constrains HFAC system planners 

from conducting system stability studies. A useful method for estimating the inertia 

constants is highly desired. In this section, an equation that relies on parameters that can be 

easily obtained and facilitates quick estimation of generator inertia constants is developed.  

The inertia constant is defined as kinetic energy at rated generator speed divided by the 

rated output power. The mathematic expression for inertia constant is [22]: 

 
𝐻 =

1

2

𝐽𝑤𝑚
2

𝑆
∗ 10−6 (3.8) 

 

where J is the rotor’s moment of inertia in kg∙m2, wm is the rotor mechanical speed in rad/s, 

S is the power rating of the generator in MVA. Considering the generator rotor as a solid 

cylinder with radius of r, its moment of inertia can be calculated as: 

 
𝐽 =

1

2
𝑚𝑟𝑟

2 (3.9) 

 

where r is in meters and mr is the mass of rotor in kg. Substituting (3.9) into (3.8) yields:   
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𝐻 =

1

4

𝑚𝑟𝑣𝑟
2

𝑆
∗ 10−6 (3.10) 

 

where vr is the surface speed of rotor in m/s. It is mainly limited by the centrifugal stress the 

rotor can withstand for its material and structure. High frequency generators will have the 

same limit from surface speed as normal 60 Hz generators (same vr). But since they are 

usually lighter (smaller mr) as discussed in Section 3.1, the inertia constants will be smaller, 

according to (3.10).  

If we further define the mass ratio (kr) as the rotor mass divided by that of overall 

generator:  

 𝑘𝑟 =
𝑚𝑟

𝑚
 (3.11) 

 

and relate the mass of overall generator to power factor (pf), rated output power (S in MVA), 

and power density (PD in kW/kg),  

 
𝑚 =

𝑝𝑓 ∗ 𝑆 ∗ 103

𝑃𝐷
 (3.12) 

 

The equation for inertia constants (3.8) can be arranged into the following format:  

 

𝐻 =
1

4

(𝑚𝑘𝑟)𝑣𝑟
2

𝑆
∗ 10−6 =

1

4

𝑝𝑓 ∗ 𝑆 ∗ 103

𝑃𝐷 𝑘𝑟𝑣𝑟
2

𝑆
∗ 10−6 =

1

4

𝑝𝑓 ∗ 𝑘𝑟𝑣𝑟
2

𝑃𝐷
∗ 10−3 

(3.13) 

 

Both (3.8) and (3.13) can be used to calculate H. (3.8) requires the knowledge of three 

parameters, among which the moment of inertia is very difficult to obtain for most power 

system engineers. It requires people to go through the design process or to have extensive 

knowledge of machine design. (3.13) needs four variables to calculate H. But the four 

variables in (3.13) can be found or estimated more easily. Pf is a design parameter that 
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commonly locates between 0.8 and 1 for most of the generators. Kr depends on the structure 

and it can be estimated by some well-designed machines in the same type. Vr is limited by 

the type of machine, and its critical values were presented earlier in this section. PD can be 

known by collecting the data of similar machines. Statistics [18][19][20] indicate that most 

of traditional 60 Hz synchronous generators have PDs less than 0.6 kW/kg while high 

frequency generators usually have PDs higher than 1 kW/kg. Thus, we can use (3.13) to 

quickly estimate Hs of high frequency generators. Table 3.3 lists the estimated values for 

four MW-range generators in two types: traditional round-rotor and advanced high-

temperature superconducting (HTS) generators. Generators 1 and 2 are based on the data of 

high frequency generators designed by machine engineers in Westinghouse [20], while 

Generator 3 and 4 are for HTS generators developed by researchers at GE Global Research 

Center [47]. The numbers in bold are our estimations for learning the possible range of 

inertia constants. All of the estimated inertia constants are smaller than 2 s. Statistics [22] 

show that normal 60 Hz synchronous generators in MW-range operating in current power 

systems usually have Hs higher than 4 s. Therefore, high frequency generators in HFAC 

power systems can easily have much lower Hs which may potentially threaten system 

stability.  

Table 3.3 Estimated inertia constants of synchronous generators in HFAC systems 

Generator 

No. 
pf kr 

vr 

(m/s) 

PD 

(kW/kg) 

Estimated 

Inertia 

Constants (s) 

Type 

1 0.9 0.10 200 1.1 0.8 
Round-rotor 

type 

2 0.9 0.25 200 1.1 2.0 
Round-rotor 

type 

3 0.9 0.05 652 8.7 0.55 HTS 

4 0.9 0.10 652 8.7 1.1 HTS 
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3.3 SUMMARY  

This chapter analyzed the power density improvement of high frequency generators by 

increasing system frequency. Trend lines were developed for scaling the generator output 

power and power density versus generator frequency. Due to the lack of data for high 

frequency generators, and in order to facilitate stability analysis for HFAC systems, an 

equation that can quickly estimate inertia constants was established. High frequency 

generators were found to have much smaller inertia constants than normal 60 Hz generators.  
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TRANSIENT STABILITY OF HFAC POWER SYSTEMS 

Power system stability is often characterized in terms of rotor angle divergence in 

response to either large or small disturbances. Transient stability is tested when the power 

system is subjected to a large disturbance while small signal stability describes the response 

to incremental changes to the operating point. Power system stability has been heavily 

researched for several decades. However, there is no description of the fundamental 

dependence of stability on system frequency, considering that characteristic properties of 

the system components will also vary with the design frequency. This chapter will define 

the frequency limit of HFAC systems to system faults and current circuit breaker 

technologies, based on the critical clearing time. The impact of higher system frequencies 

on transient stability will be discussed.  

4.1 FUNDAMENTAL ANALYSIS OF TRANSIENT STABILITY  

Consider a simple micro-grid composed of two synchronous generators having different 

inertia constants (HLG and HSG) and a load equal to the total power rating of the two 

generators. At steady state, a three phase bolted fault occurs on the buswork between the 

generators and the load. Then the subsequent rotor angle [22] is governed by: 
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{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

𝑇𝑚𝐿𝐺 − 𝑇𝑒𝐿𝐺 = 𝐽𝐿𝐺 ∗ 𝛼𝑚𝐿𝐺
𝑇𝑚𝑆𝐺 − 𝑇𝑒𝑆𝐺 = 𝐽𝑆𝐺 ∗ 𝛼𝑚𝑆𝐺

𝐽𝐿𝐺 =
2 ∗ 𝐻𝐿𝐺 ∗ 𝑆𝐿𝐺

𝜔𝑚𝐿𝐺
2

𝐽𝑆𝐺 =
2 ∗ 𝐻𝑆𝐺 ∗ 𝑆𝑆𝐺

𝜔𝑚𝑆𝐺
2

𝑝𝑓 =
𝑃𝐿𝐺
𝑆𝐿𝐺

=
𝑃𝑆𝐺
𝑆𝑆𝐺

𝑇𝑚𝐿𝐺 =
𝑃𝐿𝐺
𝜔𝑚𝐿𝐺

𝑇𝑚𝑆𝐺 =
𝑃𝑆𝐺
𝜔𝑚𝑆𝐺

𝜃𝑚𝐿𝐺 = 𝜔𝑚𝐿𝐺 ∗ 𝑡 +
1

2
∗ 𝛼𝑚𝐿𝐺 ∗ 𝑡

2 + 𝜃𝑚0

𝜃𝑚𝑆𝐺 = 𝜔𝑚𝑆𝐺 ∗ 𝑡 +
1

2
∗ 𝛼𝑚𝑆𝐺 ∗ 𝑡

2

|𝜃𝑚𝐿𝐺 − 𝜃𝑚𝑆𝐺 − 𝜃𝑚0| = 𝜃𝑚𝑟 =
𝜃𝑒𝑟
𝑝/2

𝜔𝑚𝐿𝐺 = 𝜔𝑚𝑆𝐺 =
2 ∗ 𝜋 ∗ 𝑓

𝑝/2

𝑘𝐻 =
𝐻𝐿𝐺
𝐻𝑆𝐺

 (4.1) 

 

where the subscripts “LG” and “SG” denote Large Generator and Small Generator, 

respectively. For each generator, Tm is the mechanical torque, Te is the electrical torque 

which is assumed to be zero during the fault transient, J is the rotor’s moment of inertia, αm 

is the rotor angular acceleration, H is the inertia constant, S is the rated apparent power, ωm 

is the nominal rotor angular speed, pf is the power factor of generators, P is the rated active 

power, θm is the absolute mechanical rotor angle from the onset of a disturbance that 

produces constant accelerating torque, θmr and θer are the mechanical and electrical rotor 

angle differences between the two generators, f is the generator rated frequency, p is the 

pole number of the generators, t is the time to reach the rotor angle difference θer, θm0 is the 

initial rotor angle difference, and kH is the ratio of Hs of two generators. After the fault, the 
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rotor angle will begin to diverge from its initial value (θm0) due to any difference of the 

angular accelerations of the two generators. Algebraic manipulation of (4.1) yields the 

equation for the time to reach a given rotor angle difference:  

 
𝑡 = √

2 ∗ 𝜃𝑚𝑟
|𝛼𝑚𝐿𝐺 − 𝛼𝑚𝑆𝐺|

= √
2 ∗ 𝜃𝑒𝑟

𝑝𝑓 ∗ 𝜋 ∗ 𝑓 ∗ |
1
𝐻𝐿𝐺

−
1
𝐻𝑆𝐺

|
= √

2 ∗ 𝜃𝑒𝑟 ∗ 𝐻𝑆𝐺

𝑝𝑓 ∗ 𝜋 ∗ 𝑓 ∗ |1 −
1
𝑘𝐻
|
 (4.2) 

 

If we substitute the critical clearing angle (CCA) for θer into (4.2), the calculated time 

becomes the critical clearing time (CCT).  

 
𝐶𝐶𝑇 = √

2 ∗ 𝐶𝐶𝐴 ∗ 𝐻𝑆𝐺

𝑝𝑓 ∗ 𝜋 ∗ 𝑓 ∗ |1 −
1
𝑘𝐻
|
 (4.3) 

 

The CCT is a popular and important measure for power system stability, which is defined 

as the latest time to isolate the fault without losing transient stability. The longer the CCT, 

the longer time the protection systems and devices have to respond to system faults, and 

therefore the better the system stability. In practice, for a fixed power system, the power 

angle curve will not change a lot so that the CCA will not vary in a wide range. Therefore, 

observations on (4.2) indicate that smaller inertia constant (HSG), higher frequency (f), and 

larger ratio of inertia constants (kH) lead to smaller CCT. In Chapter 3, it is explained that 

the inertia constants for generators in HFAC systems tends to be much smaller than normal 

60 Hz power systems due to their compactness. They can normally locate in the range less 

than two second. With that conclusion in mind and considering the increasing frequency in 

(4.3), the CCT in HFAC systems will be much less than normal 60 Hz systems under the 

same system fault, which means HFAC systems are potentially and inherently more 

unstable than normal 60 Hz systems. In other words, HFAC systems approach the stability 
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boundary faster than 60 Hz systems and thus require faster protection devices to deal with 

the contingencies.  

In order to better illustrate the findings above, a 3D figure based on (4.2) is drawn in 

Figure 4.1, illustrating the dependence of CCT on two of three variables: the system 

frequency and the ratio of Hs of two generators. To draw this figure, HSG, pf, and CCA in 

(4.3) are chosen as 1 s, 0.8, and 60 degree, respectively. The vertical axis represents the 

CCT. An assumption made here is that HLG is always larger than HSG since usually the H 

will increase when the generator size increases. Observing each plane of system-frequency-

versus-CCT, it is learned that for a fixed ratio of Hs, the CCT decreases as frequency 

increases, which means a higher frequency system is inherently less stable than a lower 

frequency system. A similar conclusion can be obtained by observing the planes of ratio-

of-inertia-constants-of-two-generators-versus-CCT: if the system frequency is fixed, higher 

ratio of Hs shortens the CCT, requiring the protection devices to react faster. This finding 

is further augmented through extensive simulation experiments as described in the 

following sections.  

It should be also noted that excitation systems will help to increase the CCA [24][27] so 

that power systems with well-tuned excitation systems can have more time to react to the 

contingency. But this benefits brought by excitation systems vary case by case and the 

tuning of PID controllers in excitation systems affects the ultimate improvement as well. 

For the purpose of fair comparison, the positive effect of excitation systems is ignored in 

this analytical study.  
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Figure 4.1 CCT decreases with system frequency increases, manifesting system inherent 

stability decreases. 

4.2 SIMULATION STUDIES BASED ON A TWO-MACHINE SYSTEM 

The most practical method for studying transient stability is time-domain simulation 

[22], similar to that used in the rest of this chapter. In this section, simulation tests are based 

on a two-generator system. A three-phase-to-ground fault is set to incite potential instability. 

Three sets of generator inertia constants are designed to gain a thorough understanding of 

system characteristics. For judging system stability, the responses of rotor angle difference 

and generator frequency are observed and quantified by two stability indices. The effect of 

tuning the PID controller in an excitation system is evaluated by a sensitivity index.  

4.2.1 POWER SYSTEM MODEL 

Our reference system, a simplified HFAC notional system [10][48] with parallel-

connected generators, is shown in Figure 4.2. It consists of one large generator (LG) having 

rated power of 36 MW, one small generator (SG) with rated power of 4 MW, and a 33.5 

MVA linear load with power factor of 0.95 representing system loads. The LG is driven by 
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a twin-shaft gas turbine engine, as shown in Figure 4.3 [48]. The SG is powered by a single-

shaft gas turbine engine, as shown in Figure 4.4 [10]. The excitation system uses a simplified 

IEEE Type AC8B exciter as shown in Figure 4.5 [49]. The details of the notional system 

and its component models can be found in [10][48]. In the reference system, LG and SG 

each connect to a 10-m cable, then to a common bus. The cable between the common bus 

and the load bus is 20-m long. The impedance of each cable for the 60 Hz system is 37+j0.6 

μ Ω/m (Caledon Type). The same cable is used in a higher frequency system, meaning that 

the cable impedance increases proportionally with frequency. Stable operation of the system 

is perturbed by a three phase bolted fault at location A. We have considered four different 

frequencies (60 Hz/120 Hz/180 Hz/240 Hz) of the generators. All simulation cases 

considering the same fault will be described in the next section. Assuming the number of 

poles of generator is fixed at two, the generator speeds corresponding to 60 Hz, 120 Hz, 180 

Hz and 240 Hz are 3600 RPM, 7200 RPM, 10800 RPM and 14400 RPM, respectively. The 

same structures of governor control and excitation system were used for different system 

frequencies. In order to eliminate the effect of the controller, the parameters of the PID 

controller in excitation system were tuned for different system frequencies so that the 

bandwidth of voltage control loop is proportional to system frequency. But the parameters 

of the engine governor controller remain the same considering that the engine and its speed 

control are limited by physics that do not change with system frequency and that evolve at 

speeds much slower than the excitation system. Table 4.1 lists generator parameters.  
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Figure 4.2 Reference system structure. 

 

Figure 4.3  Model of twin-shaft gas turbine engine. 

 

Figure 4.4. Model of single-shaft gas turbine engine. 
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Figure 4.5  IEEE type AC8B exciter model. 

 

Table 4.1 Generator parameters  

Specifications 
Large Generator (LG) – 

round-rotor type 

Small Generator (SG) – 

round-rotor type 

Power  (MVA) 47 5 

Speed  (RPM) 3600/7200/9600/14400 3600/7200/9600/14400 

Number of poles 2 2 

Frequency  (Hz) 60/120/180/240 60/120/180/240 

Voltage  (kV) 4.16 4.16 

Power factor 0.8 0.8 

Stator winding resistance (p.u.) 0.002 0.005 

Stator winding leakage inductance 

(p.u.) 
0.135 0.09 

Stator d-axis mutual inductance 

(p.u.) 
1.35 0.9 

Stator q-axis mutual inductance 

(p.u.) 
1.35 0.9 

Field-winding resistance (p.u.) 0.001 0.001 

Field-winding leakage inductance 

(p.u.) 
0.081 0.045 

d-axis damper resistance (p.u.) 0.045 0.04 

d-axis damper leakage inductance 

(p.u.) 
0.0225 0.018 

q-axis damper1 resistance (p.u.) 0.01 0.04 

q-axis damper1 leakage inductance 

(p.u.) 
0.0405 0.018 

q-axis damper2 resistance (p.u.) 0.01 0.04 

q-axis damper2 leakage inductance 

(p.u.) 
0.0405 0.018 

Friction factor (N.m.s) 0.04 0.04 
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4.2.2 THREE TESTS AND DISCUSSIONS 

4.2.2.1 TEST CONFIGURATIONS 

Three tests were conducted to study the influence of system frequencies upon system 

transient stability, namely a) sensitivity of critical clearing time (CCT) to scaling of inertia 

constants (H) with system frequency (generator speed), b) sensitivity of system stability to 

system frequency assuming that circuit breakers operate at speeds proportional to system 

frequency, and c) sensitivity of system stability to system frequency assuming that circuit 

breakers operate at speeds independent of system frequency. 

4.2.2.2 SENSITIVITY OF CRITICAL CLEARING TIME (CCT) TO SCALING OF INERTIA 

CONSTANTS 

CCT is the latest time at which a circuit breaker can open to clear a fault and the system 

will remain stable. If the circuit breaker opens after the CCT, the rotor angle difference will 

continue to increase and the system will become unstable. The larger the CCT, the more 

time a circuit breaker has to respond to a fault.   

Although in the previous chapter we found that the Hs of high frequency generators may 

become very small, it is still not clear that whether H should naturally tend to increase or 

decrease with increasing system frequency. As CCT depends strongly on H as stated in the 

section of 4.1, we have considered three cases in this test: one in which Hs are presumed to 

increase with increasing frequency, one in which they are presumed to decrease with 

increasing frequency, and one in which they are presumed independent of system frequency. 

On the other hand, observational data does suggest that the inertia constant of a high-power 

generator is generally larger than that of a lower-power generator. We therefore designed a 
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matrix of test cases for comparison to the baseline case in which Hs were assigned typical 

values of 3 s for the large generator and 2.5 s for the small generator (at 60 Hz). Then we 

explored the scenarios in which H variously increased or decreased with frequency by 

incrementing or decrementing H (somewhat arbitrarily) by 0.3 s for every 60 Hz increment 

of frequency. In this way, we were able to test the trend of CCT with frequency and with H. 

It should be noted that the Hs used in the simulation studies in this chapter are larger than 

the values that were estimated from Section 3.2. The reason is that the total Hs in power 

system simulations should include the inertias of prime movers (gas turbines in this case). 

Our estimations were based on some statistics from literature, and the baseline modeling 

work for next-generation ESPSs [10][48], which is funded by Office of Naval Research.  

Table 4.2 shows the results of these tests. The first column shows the test frequencies 

ranging from 60 Hz to 240 Hz. The second, third, and fourth columns indicate the values of 

CCT found for each of the test cases. From Table 4.2 it is evident that, regardless of how H 

scales, as frequency increases CCT decreases. Circuit breakers must therefore respond more 

quickly at higher system frequencies in order to maintain system stability. This might be 

interpreted to mean that higher frequency systems are inherently more unstable, about which 

we will explain more after defining quantitative stability indices in the next section. 

Table 4.2 Critical Clearing Time (CCT) for different frequencies 

Frequency 

(Hz) 

Case 1: 

H decreases with 

increasing frequency 

Case 2: 

H independent of 

frequency 

Case 3: 

H increases with 

increasing frequency 

Hs of 

MG/AG 
CCT 

Hs of 

MG/AG 
CCT 

Hs of 

MG/AG 
CCT 

60 3/2.5 1.713 3/2.5 1.713 3 /2.5 1.713 

120 2.7/2.2 1.014 3/2.5 1.150 3.3/2.8 1.297 

180 2.4/1.9 0.678 3/2.5 0.897 3.6/3.1 1.125 

240 2.1/1.6 0.332 3/2.5 0.752 3.9/3.4 1.043 
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4.2.2.3 SENSITIVITY OF SYSTEM STABILITY TO SYSTEM FREQUENCY WITH RESPECT TO 

CIRCUIT-BREAKER-SPEED USING CONSTANT-CYCLE CIRCUIT BREAKER 

We tested the sensitivity of system stability to circuit breaker operating speed in two 

ways: constant-cycle and constant-time. Two measures for quantifying transient stability 

are a history index and the Transient Rotor Angle Severity Index (TRASI) [36]. The history 

index shown in (4.4) is based on the 10-second integration of waveforms of rotor angle 

difference and generator frequency after the fault:  

 
𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑖𝑛𝑑𝑒𝑥 = ∫ |𝑥 − 𝑋0|

2
10

0

𝑑𝑡 (4.4) 

 

where x and X0 are the transient value and steady state value, respectively, for both the rotor 

angle difference and generator frequency. From (4.4) it is apparent that the smaller the 

index, the better the system stability. TRASI is based on the maximum deviation of rotor 

angle difference after the fault:  

 
𝑇𝑅𝐴𝑆𝐼 = (

360° − 𝑚𝑎𝑥(𝛿𝑚𝑎𝑥_𝑑
𝑝𝑜𝑠 )

360° − 𝛿𝑝𝑟𝑒
) (4.5) 

 

where 𝛿𝑚𝑎𝑥_𝑑
𝑝𝑜𝑠

 and 𝛿𝑝𝑟𝑒 denote the post-fault maximum rotor angle difference and pre-fault 

rotor angle difference. From (4.5), it is apparent that TRASI varies from 0 to 1, with values 

closer to one considered to be more stable because angular separations between the 

generators are less compared to the pre-fault values. The fundamental difference between 

the history index and TRASI is that the former one is based on the system transient 

performance over a period but the latter one is based on one point (maximum deviation) 

during that period.  
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Another sensitivity index [36] evaluating the effect of tuning the PID controller in 

excitation system on system stability is:  

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (

𝑚𝑎𝑥(𝛿𝑚𝑎𝑥_𝑑
𝑛𝑜_𝑃𝐼𝐷𝑡𝑢𝑛𝑖𝑛𝑔

) − 𝑚𝑎𝑥(𝛿𝑚𝑎𝑥_𝑑
𝑃𝐼𝐷𝑡𝑢𝑛𝑖𝑛𝑔

)

𝛿𝑝𝑟𝑒
) (4.6) 

 

where 𝛿𝑚𝑎𝑥_𝑑
𝑛𝑜_𝑃𝐼𝐷𝑡𝑢𝑛𝑖𝑛𝑔

 and 𝛿𝑚𝑎𝑥_𝑑
𝑃𝐼𝐷𝑡𝑢𝑛𝑖𝑛𝑔

 represent the maximum rotor angle difference for the 

cases without PID controller tuning and with PID controller tuning. A positive sensitivity 

corresponds to an improvement on stability. 

In this test, we assumed that it is possible to build a circuit breaker having an operating 

speed that is commensurate with system frequency; i.e. if a circuit breaker can be designed 

to open in five cycles at 60 Hz, then one can also be designed to open in five cycles at 240 

Hz even though the second case corresponds to a much shorter time. Our test was conducted 

according to the following protocol: the circuit breaker opens five cycles after the fault 

occurs, it recloses forty-five cycles after opening; if the fault persists, it reopens in another 

five cycles. Although according to current technology a typical circuit breaker might not be 

able to respond as fast as our assumption, this consideration is still very useful for the 

purpose of this study. In practice, the fault duration should be relatively independent of 

system frequency and depends instead on the physical nature of the fault and/or on whether 

or when enough electric energy is deposited into the fault to clear it by explosive force. 

Since any particular fault could be cleared at any time (if it is cleared at all), we configured 

this test to measure how the system performance depends on system frequency, scaling of 

generators’ Hs, and fault duration. Experiments were done for five different values of fault 

duration ranging from “short” (faster than the circuit breaker’s opening time) to “long” (well 

after the circuit breaker has reclosed). Figure 4.6 illustrates how these five fault duration 
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times (0.0167 s, 0.0667 s, 0.15 s, 0.5 s and 0.95 s corresponding to Case 1, 2, 3, 4 and 5, 

respectively) relate to the circuit breaker actuation times at the various system frequencies. 

The twelve bold points in the three dotted curves represent the circuit breaker opening, 

reclosing, and re-opening times at the four system frequencies. Three sets of Hs 

corresponding to three sub-cases were tested under each case, i.e. H=3 s/2.5 s, 4 s/3.5 s, and 

5 s/4.5 s (H of the large generator/H of the small generator).  

 

Figure 4.6 Case definitions for Constant-Cycle-Circuit-Breaker test 

Figure 4.7 corresponds to Case 3 where the fault duration time is 0.15 s. The history 

index for rotor angle difference and TRASI both indicate that system stability improves as 

system frequency increases. It can also be learned that if the system frequency is fixed, as 

the inertia constants of generators increase, the system stability improves. Figure 4.8 and 

Figure 4.9 show the responses of the rotor angle difference and large generator’s frequency, 

respectively, corresponding to the sub-case of H=4 s/3.5 s in Case 3. In this case, the fault 

occurs at t=1 s. It is apparent that since the 240 Hz system has the shortest circuit breaker 

opening time, it has the smallest transient oscillation resulting in the smallest history index 

and the largest TRASI. The same trend was observed in the results from other cases under 
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Constant-Cycle-Circuit-Breaker test. The history index for rotor angle difference, the 

history index for generator frequency and the TRASI all agree on this trend. From these 

results it is clear that the system transient stability depends strongly on the circuit breaker 

opening time; if it is possible to design circuit breakers that have opening speed in direct 

proportion to system frequency, then higher frequency systems have better transient stability 

than lower frequency systems.  

   

Figure 4.7 History index and TRASI for Case 3 (Fault Duration=0.15 s).  

 

Figure 4.8. Transient response of rotor angle difference for Case 3 with H=4 s/3.5 s. 
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Figure 4.9. Transient response of the frequency of the large generator for Case 3 with 

H=4 s/3.5 s.  

4.2.2.4 SENSITIVITY OF SYSTEM STABILITY TO SYSTEM FREQUENCY WITH RESPECT TO 

CIRCUIT-BREAKER-SPEED USING CONSTANT-SPEED CIRCUIT BREAKER  

It might not be possible to build circuit breakers for 240 Hz systems that open four times 

faster than existing 60 Hz circuit breakers, and therefore the final interpretation of the 

previous section would be wrong. So we examined how the stability indices depend on 

frequency when the circuit breaker opening time is independent of system frequency. In this 

test, the circuit breaker opening time was assumed to always be 0.0833 s (corresponding to 

five cycles at 60 Hz) at every system frequency, reclosing at 0.833 s (fifty cycles at 60 Hz), 

and reopening at 0.916 s (fifty five cycles at 60 Hz) if the fault persists. Similar to the 

Constant-Cycle-Circuit-Breaker test, experiments were done for three different values of 

fault duration (0.0167 s, 0.5 s, and 0.95 s corresponding to Case 6, 7, and 8, respectively). 

Three sets of H corresponding to three sub-cases have again been considered, as in the 

Constant-Cycle-Circuit-Breaker test. 
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Figure 4.10 shows the history index for rotor angle difference and TRASI calculated for 

Case 7.  Figure 4.11 and Figure 4.12 show the responses of the rotor angle difference and 

large generator’s frequency, corresponding to the case of H=4 s/3.5 s in Case 7 where the 

fault occurs at t=1 s. It is difficult to infer a significant general trend from these results, and 

the other cases in this test were similarly ambiguous – there is no strong dependence of 

stability on system frequency. This conclusion was consolidated by all calculated TRASI 

and history index.  

 

Figure 4.10. History index for rotor angle difference and TRASI for Case 7 (Fault 

Duration=0.5 s). 

 

Figure 4.11. Transient response of rotor angle difference for Case 7 with H=4 s/3.5 s.  
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Figure 4.12. Transient response of the frequency of the large generator for Case 7 with 

H=4 s/3.5  

Meanwhile, we performed comparative tests to study whether tuning the PID controller 

in the excitation system has impacts on system stability in Case 6, 7 and 8. In comparison 

groups, the same PID controller was deployed for systems with different frequencies, i.e. 

using the same PID controller for higher frequency system as used in the 60 Hz system. The 

finding shows that if the PID controller is not tuned specifically for each frequency, larger 

frequency oscillations occur as system frequency increases. This was consolidated by larger 

values in history index for generator frequency. An example of this can be illustrated by 

Figure 4.13 and Figure 4.14. Figure 4.13 indicates that with PID controller tuning less 

oscillation is present during the transient. From Figure 4.14 it is apparent that without tuning 

the PID controller, the generator frequency oscillates more as system frequency increases. 

This can be interpreted as system stability deteriorating as system frequency increases. 

Therefore, tests of Case 6, 7, and 8 and its comparison groups indicate that tuning the PID 

controller in an excitation system can help improve system stability in higher frequency 
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systems. A further comprehensive investigation was done for the effect of tuning the PID 

controller for all cases (Case 1 through Case 8), which is documented in [50]. 

 

Figure 4.13. Impact of tuning PID controller on transient response of large generator 

frequency. 

  

Figure 4.14. Transient response of large generator frequency for Case 7 with H=4 s/3.5 s 

and PID controller untuned. 
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4.3 SIMULATION STUDIES BASED ON A LARGER SYSTEM - ELECTRIC SHIP 

POWER SYSTEM 

In this section, the transient stability of HFAC systems will be studied based on a large 

system – a four-generator electric ship power system [48]. The purpose is to verify the 

findings from the previous section in a larger-scale and more complex micro-grid.  

4.3.1 POWER SYSTEM MODEL 

The reference system structure is shown in Figure 4.15. It is based on an electric ship 

power system [48]. The generation module model, including the gas turbine, exciter, and 

the synchronous generator, is the same as in 4.2.1. The large generators (Gen1 and Gen2 in 

yellow) are powered by a twin-shaft gas turbine each (Figure 4.3). The small generators 

(Gen3 and Gen4 in blue) are connected to a single-shaft gas turbine each (Figure 4.4). The 

parameters of generators are listed in Table 4.1. The total system generation capacity is 80 

MW and the total consumption is 68 MVA with power factor of 0.95. The four load zones 

and propulsion loads are represented by lumped RL loads. Each of four load zones 

consumes 5% of the total system consumption while each propulsion load consumes 40%. 

In Figure 4.15, the blocks in magenta represent circuit breakers. The cables are in green, 

with the numbers beside them showing the length of each cable. The incident that may 

trigger the potential system instability is the same three-phase-bolted fault as used in the 

tests earlier in this chapter, which is occurring on the top branch of the ring bus system (in 

red).  
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Figure 4.15 Reference system structure 

4.3.2 THREE TESTS AND DISCUSSIONS 

4.3.2.1 TEST CONFIGURATIONS 

Similar to 4.2.2, three tests were conducted to study the influence of system frequencies 

upon system transient stability, a) sensitivity of critical clearing time (CCT) to scaling of 

inertia constants with system frequency, b) sensitivity of system stability to system 

frequency assuming that circuit breakers operate at speeds proportional to system frequency, 

and c) sensitivity of system stability to system frequency assuming that circuit breakers 

operate at speeds independent of system frequency.  

In this section, the frequency range is extended to 800 Hz. The four system frequencies 

under tests were chosen as 60 Hz/240 Hz/400 Hz/800 Hz. Three scenarios of inertia 

constants are slightly different from the tests in 4.2.2, which is defined in Table 4.3. The 

scenario of Base-Case represents the system having synchronous generators with normal 

values, which is the same as one of the settings in 4.2.2. The scenario of Large-Ratio 

represents the case that the generators have much different inertia constants, which is 10:1. 

The scenario of Both-Small has the same ratio of inertia constants as Base-Case but the 
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absolute values are smaller. The total number of cases for each sensitivity test is twelve 

(four frequencies and three scenarios of inertia constants).  

Table 4.3 Three Scenarios of Inertia Constants 

Scenario  Hs of large generator / small generator 

Base-Case 5 s/4.5 s 

Large- Ratio 5 s/0.5 s 

Both-Small 3 s/2.75 s 

 

4.3.2.2 SENSITIVITY OF CRITICAL CLEARING TIME (CCT) TO SCALING OF INERTIA 

CONSTANTS 

Figure 4.16 shows the test results. The similar trend as in 4.2.2.2 can be observed: 

regardless of the scenarios of inertia constants, CCT decreases as system frequency 

increases; the systems with the scenario of Large-Ratio inertia constants have the smallest 

CCT. The CCT for 800 Hz of the scenario of Both-Small inertia constants is 0.06 s. Current 

MW-range circuit breaker technology allows a three-phase-bolted fault to be isolated within 

four cycles of 60 Hz, which includes one cycle (0.017 s) for fault detection and three cycles 

(0.050 s) for opening the contact physically and extinguishing the arc. The one cycle for 

fault detection is related to system frequency because it requires the fault current to cross 

“zero”. But the contact opening time is relatively independent of system frequency. If we 

consider the same contact-opening capability of 60 Hz circuit breakers to be applied to 800 

Hz system, its opening time will be 0.0543 s, which is the sum of one cycle for fault 

detection in 800 Hz (0.0013 s) and 0.050 s for contact opening. According to Figure 4.16 

that the smallest CCTs for 800 Hz is 0.06 s, this type of circuit breaker can ensure the fault 

in 800 Hz system to be cleared timely and survive the 800 Hz system through the fault. 
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Further increase in frequency will result in CCT decreasing to a value smaller than circuit 

breaker opening time, which means that the system cannot maintain synchronism in the end.  

 

Figure 4.16 Results of CCT Tests 

The reason for the fact that higher frequency systems have lower CCTs can be explained 

by Figure 4.17. Figure 4.17 (a) shows the frequency difference between Generator 1 and 2 

after the fault occurs at t=1 s, while Figure 4.17 (b) shows the rotor angle between them. It 

can be learned that although the per unit frequency difference in low-frequency system is 

equal to or larger than higher frequency system, the rotor angle between the two generators 

in higher frequency system such as 800 Hz system are accumulating much faster than low-

frequency system, such as 60 Hz, due to the increasing operating frequency, resulting in the 

rotor angle reaching the Critical Clearing Angle (CCA) faster. The CCA does not change a 

lot once the system structure and system parameters are relatively fixed. Therefore, the 

CCTs in higher frequency systems are shorter than lower frequency systems.  
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(a) Frequency difference between Generator 1 and 2 

 

(b) Rotor angle between Generator 1 and 2 

Figure 4.17 Explaining the frequency impact on CCT, fault occurs at 1 s 

4.3.2.3 SENSITIVITY OF SYSTEM STABILITY TO SYSTEM FREQUENCY WITH RESPECT TO 

CIRCUIT-BREAKER-SPEED USING CONSTANT-CYCLE CIRCUIT BREAKER 

Similar to 4.2.2, two different types of circuit breakers were tested in the following two 

sections: the constant-cycle-circuit-breaker in this section and the constant-speed-circuit-

breaker in the next section. In this section, the circuit breakers were configured to open in 

five cycles, reclose in fifty cycles, and reopen in fifty-five cycles if the fault persists. Three 

scenarios corresponding to three fault-self-clearing times were configured in all four 

frequency systems. They are: Fast Self-Clearing in which the fault is self-cleared before the 

opening of the circuit breaker, Normal Self-Clearing in which the fault is cleared between 

10 15 20 25 30
0.94

0.96

0.98

1
Generator 1 frequency

10 15 20 25 30
0.94

0.96

0.98

1
Generator 2 frequency

10 15 20 25 30
0.94

0.96

0.98

1
Generator 3 frequency

10 15 20 25 30
0.94

0.96

0.98

1
Generator 4 frequency

1 1.05 1.1 1.15 1.2
-200

-150

-100

-50

0

50

Time(s)

ro
to

r 
a
n

g
le

 2
1

(d
e
g

re
e
)

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 31

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 41

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 32

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 42

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 43

1 1.05 1.1 1.15 1.2
-0.01

-0.005

0

0.005

0.01

Time(s)

fr
e
q

u
e
n

c
y
 d

if
fe

re
n

c
e
 

b
e
tw

e
e
n

 G
e
n

 1
 a

n
d

 2

(p
u

)
10 10.2 10.4 10.6 10.8 11

-0.01

-0.005

0

0.005

0.01
31 frequency difference

10 10.2 10.4 10.6 10.8 11
-0.01

-0.005

0

0.005

0.01
41 frequency difference

 

 
60Hz H=3s/2.75s

- 240Hz -

- 400Hz -

- 800Hz -

10 15 20 25 30
0.94

0.96

0.98

1
Generator 1 frequency

10 15 20 25 30
0.94

0.96

0.98

1
Generator 2 frequency

10 15 20 25 30
0.94

0.96

0.98

1
Generator 3 frequency

10 15 20 25 30
0.94

0.96

0.98

1
Generator 4 frequency

1 1.05 1.1 1.15 1.2
-200

-150

-100

-50

0

50

Time(s)

ro
to

r 
a
n

g
le

 2
1

(d
e
g

re
e
)

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 31

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 41

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 32

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 42

10 10.2 10.4 10.6 10.8 11
-100

-50

0

50

100

Time(s)

d
e
g

re
e

rotor angle 43

1 1.05 1.1 1.15 1.2
-10

-5

0

5
x 10

-3

Time(s)

fr
e
q

u
e
n

c
y
 d

if
fe

re
n

c
e
 

b
e
tw

e
e
n

 G
e
n

 1
 a

n
d

 2

(p
u

)

10 10.2 10.4 10.6 10.8 11
-0.01

-0.005

0

0.005

0.01
31 frequency difference

10 10.2 10.4 10.6 10.8 11
-0.01

-0.005

0

0.005

0.01
41 frequency difference

 

 

60Hz H=3s/2.75s

- 240Hz -

- 400Hz -

- 800Hz -



 

57 

the circuit breaker’s opening and reclosing, and Permanent Fault in which the fault will not 

be cleared by itself and the circuit breaker is required to reopen after reclosing. Two stability 

indices, history index and TRASI as shown in (4.4) and (4.5), were used to quantify the 

waveforms of rotor angle and generator frequency which are the measures of transient 

stability.  

    Figure 4.18 and Figure 4.19 show the TRASI and history index calculated for rotor angle 

between Generator 1 and 3 under the scenario of Normal Self-Clearing. Figure 4.20 presents 

the history index for the frequency of Generator 1. Recall that 4.2.2.2 described that larger 

TRASI and smaller history index represent the better stability. These figures prove that as 

frequency increases, regardless of the values for inertia constants, if the circuit breaker can 

respond to the fault at the speed proportional to system frequency, the system stability can 

be improved. This is the same trend as what was discovered in 4.2.2.2 and this conclusion 

is consolidated by other calculated TRASI and history index in this test. Transient responses 

of Generator 1 frequency and rotor angle between Generator 1 and 3 are shown in Figure 

4.21 and Figure 4.22. All systems in this test are capable of maintaining stability after the 

fault with the help of constant-cycle circuit breakers. 
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Figure 4.18 TRASI for rotor angle between Generator 1 and 3, under the scenario of 

Normal Self-Clearing 

 

Figure 4.19 History index for rotor angle between Generator 1 and 3, under the scenario 

of Normal Self-Clearing 

 

Figure 4.20 History index for frequency of Generator 1, under the scenario of Normal 

Self-Clearing 
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Figure 4.21 Frequency of Generator 1 under the scenarios of Base-Case inertia constants 

and Normal Self-Clearing 

 

Figure 4.22 Rotor angle between Generator 1 and 3 under the scenarios of Base-Case 

inertia constants and Normal Self-Clearing 

4.3.2.4 SENSITIVITY OF SYSTEM STABILITY TO SYSTEM FREQUENCY WITH RESPECT TO 

CIRCUIT-BREAKER-SPEED USING CONSTANT-SPEED CIRCUIT BREAKER 

Unlike the last section, the circuit breaker for 60 Hz system was applied to other 

frequency systems (240 Hz/ 400 Hz/800 Hz) in this sensitivity test. Three scenarios of fault-

self-clearing times, similar to last section, were applied. Figure 4.23 and Figure 4.24 show 

the TRASI and history index for rotor angle between Generator 1 and 3 under the scenario 

of Normal Self-Clearing. Figure 4.25 shows the history index for the frequency of Generator 

1. There is no fixed trend that can be observed, similar to the conclusions from 4.2.2.4. This 

can be interpreted as if the speed of circuit breaker cannot be increased proportionally to 



 

60 

system frequency, the stability of higher frequency system may be worse. Figure 4.26 and 

Figure 4.27 show some transients during the fault. It can be seen that even if the frequency 

oscillation at higher frequency is a little less (Figure 4.26), the rotor angle accumulates much 

faster (Figure 4.27) which requires the circuit protection devices to intervene earlier. Figure 

4.28 shows the rotor angle between Generator 1 and 4 under the scenario of Large-Ratio 

inertia constants. It can be seen that the generators in 800 Hz system cannot maintain 

synchronism after the fault, due to the slow circuit breaker.   

 

Figure 4.23 TRASI for rotor angle between Generator 1 and 3, under the scenario of 

Normal Self-Clearing 
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Figure 4.24 History index for rotor angle between Generator 1 and 3, under the scenario 

of Normal Self-Clearing 

 

Figure 4.25 History index for frequency of Generator 1, under the scenario of Normal 

Self-Clearing 

 

Figure 4.26 Frequency of Generator 1 under the scenarios of Base-Case inertia constants 

and Normal Self-Clearing 
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Figure 4.27 Rotor angle between Generator 1 and 3 under the scenarios of Base-Case 

inertia constants and Normal Self-Clearing 

 

Figure 4.28 Rotor angle between Generator 1 and 4 under the scenarios of Large-Ratio 

inertia constants and Normal Self-Clearing, the 800 Hz system loses stability after the 

fault 

4.4 ANALYSIS 

In this chapter, the transient stability of HFAC power systems was investigated and 

compared to that of conventional 60 Hz systems. A fundamental analysis was made based 

on rotor swing equation. Our analytical and simulation studies conclude the following 

points:  

a) Fundamental analysis paints such a picture that it takes less time for rotor angle 

difference to reach critical rotor degree. From the CCT test it is found that in higher 
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frequency systems CCT becomes shorter. These indicate that system overcurrent protection 

in higher frequency systems has less time to isolate the fault.   

b) From Constant-Cycle-Circuit-Breaker test, if a fault current can be detected and 

interrupted within certain number of cycles instead of certain time, the history index and 

TRASI show that as system frequency increases, the maximum rotor angle difference 

becomes less and system stability becomes better.  

c)  From Constant-Time-Circuit-Breaker test, it is found that if it is not possible to 

interrupt fault currents within certain number of cycles, but instead we rely on circuit 

breakers with fixed activation times that are independent of system frequency, then 

frequency oscillations in higher frequency systems are greater than those in lower frequency 

systems. With the help of fast response voltage regulator, the stability of higher frequency 

system could be improved, but might still be worse than that of lower frequency system. 

Considering systems at the same frequency, increasing inertia constants would bring better 

transient stability performance.  

d)  The advantages of high frequency generators are compactness and light weight, thus 

some designs may result in small inertia constants. Generally, low values of inertia constant 

correspond to large values of maximum rotor swing angle during contingency events and 

more oscillations on frequency profile after events, so that more rapid corrective action is 

necessary to keep the swing angle within some defined limits. If the equipment (such as 

high speed circuit breaker and fast response voltage regulator) fulfilling such corrective 

action are unavailable, increasing machine inertia would be necessary to maintain a desired 

level of system stability.  
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e)  Safe and effective use of high frequency generators demands fast-acting overcurrent 

protection and ideally, comparably-fast generator excitation controls.  

4.5 SUMMARY  

This chapter analyzed the large-signal stability of HFAC systems. The impacts of system 

frequency and inertia constants were explored by a fundamental analysis based on swing 

equation and many simulation tests based on a three-phase-bolted fault. The significance of 

faster circuit breakers for stable operation of HFAC systems was revealed.  
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SMALL SIGNAL STABILITY OF HFAC POWER SYSTEMS 

This chapter will discuss the small-signal stability characteristics of HFAC power system 

and study the impact from several key parameters. First, the method for assessing small-

signal stability of HFAC power system will be introduced. Then the reference system will 

be described. Thirdly, tests for sensitivity of system small-signal stability to some system 

parameters will be performed. Stability regions will be discovered and trends with changes 

in dominating parameters will be presented.  

5.1 METHODOLOGY  

Small-signal stability studies if a power system could maintain synchronism after a small 

disturbance. This disturbance is small enough so that mathematical equations describing 

system responses can be linearized around a specific operating point. The dynamic of a 

power system can be described by a set of nonlinear differential equations in the following 

form [22]: 

 �̇� = 𝒇(𝒙, 𝒖, 𝑡) (5.1) 
 

 𝒚 = 𝒈(𝒙, 𝒖) (5.2) 

 

where x is the state vector composed of n entries (termed state variables, x1, x2, …, xn), u is 

the system input vector, y is the output vectors, g is the vector of nonlinear functions relating 

state and input variables to output variables. 
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If we linearize the system nonlinear equations around the equilibrium point x0, following 

equations can be obtained for describing system dynamics around this equilibrium point:  

 ∆�̇� = 𝑨∆𝒙 + 𝑩∆𝒖  
(5.3) 

 

 ∆𝒚 = 𝑪∆𝒙 + 𝑫∆𝒖 (5.4) 
 

 

𝑨 = [

𝝏𝒇𝟏

𝝏𝒙𝟏
…

𝝏𝒇𝟏

𝝏𝒙𝒏
… … …
𝝏𝒇𝒏

𝝏𝒙𝟏
…

𝝏𝒇𝒏

𝝏𝒙𝒏

]  𝑩 = [

𝝏𝒇𝟏

𝝏𝒖𝟏
…

𝝏𝒇𝟏

𝝏𝒖𝒓
… … …
𝝏𝒇𝒏

𝝏𝒖𝟏
…

𝝏𝒇𝒏

𝝏𝒖𝒓

]   

 𝑪 = [

𝝏𝒈𝟏

𝝏𝒙𝟏
…

𝝏𝒈𝟏

𝝏𝒙𝒏
… … …
𝝏𝒈𝒎

𝝏𝒙𝟏
…

𝝏𝒈𝒎

𝝏𝒙𝒏

] 𝑫 = [

𝝏𝒈𝟏

𝝏𝒖𝟏
…

𝝏𝒈𝟏

𝝏𝒖𝒓
… … …
𝝏𝒈𝒎

𝝏𝒖𝟏
…

𝝏𝒈𝒎

𝝏𝒖𝒓

] 

 

(5.5) 

where A is the state matrix, B is the input matrix, C is the output matrix, and D is the feed 

forward matrix. Treated by Laplace Transform, (5.3) and (5.4) become: 

 𝑠∆𝒙(𝑠) − ∆𝒙(𝟎) = 𝑨∆𝒙(𝑠) + 𝑩∆𝒖(𝑠) (5.6) 
 

 ∆𝒚(𝑠) = 𝑪∆𝒙(𝑠) + 𝑫∆𝒖(𝑠) (5.7) 

 

Rearranging (5.6), the following equation is obtained:  

 (𝑠𝑰 − 𝑨)∆𝒙(𝑠) = ∆𝒙(0) + 𝑩∆𝒖(𝑠) (5.8) 

 

Therefore, the characteristic equation of matrix A is:  

 𝑑𝑒𝑡(𝑠𝑰 − 𝑨) = 0 (5.9) 

 

The values of s satisfying characteristic equation are termed eigenvalues of system 

matrix A. Information for system stability characteristics can be obtained from the analysis 

of eigenproperties of state matrix. The small-signal stability study is to analyze the root 
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locus of eigenvalues of state matrix. If one of the eigenvalues enters the right-half plane, the 

system is defined as unstable. The root locus for the largest eigenvalue will be observed to 

determine the trend of system stability.  

5.2 REFERENCE SYSTEM MODEL FOR SMALL-SIGNAL STABILITY STUDY 

The reference system for small-signal stability is the two-generator system as shown in 

Figure 4.2 of Chapter 4. The generator model adopted in this analysis is a two-axis model 

[24][27]:    

 

{
 
 

 
 

𝑇𝑞0𝑖
′ 𝐸𝑑𝑖

′̇ = −𝐸𝑑𝑖
′ − (𝑥𝑞𝑖 − 𝑥𝑖

′)𝐼𝑞𝑖

𝑇𝑑0𝑖
′ 𝐸𝑞𝑖′̇ = 𝐸𝐹𝐷𝑖 − 𝐸𝑞𝑖

′ + (𝑥𝑑𝑖 − 𝑥𝑖
′)𝐼𝑑𝑖

𝜏𝑖𝜔𝑖̇ = 𝑇𝑚𝑖 − (𝐼𝑑𝑖𝐸𝑑𝑖
′ + 𝐼𝑞𝑖𝐸𝑞𝑖

′ ) − 𝐾𝐷𝑖𝜔𝑖 − 𝐾𝑆𝑖𝛿𝑖

𝛿�̇� = 𝜔𝑖 − 1

 (5.10) 

 

In this model, Tm is a system input. The governor model was not included under the 

consideration that during the small-disturbance period, the slow governor will not respond 

fast enough to affect the output of the generator. The detailed excitation system model which 

includes Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS) were not 

included in the generator model. Fixed values for KD (damping torque coefficient) and KS 

(synchronizing torque coefficient) were used to represent the effect of the exciter and PSS. 

There are two reasons for doing so. The exciter contributes a certain amount of KS to system 

small-signal stability depending on its parameters, which helps improve transient stability, 

especially for exciters with high ceiling voltage and fast-response AVR [24]. But it also 

brings negative impact on damping torque by applying the high gain in the AVR. The PSS 

was introduced dated back in the 1950s and it was proposed to address this problem: to 

bring more damping to power systems. In real application, PSS’s structure and parameters 
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are tuned according to the specific parameters of the exciter and the generator. In this study, 

in order to represent as many cases as possible and to make the results more general without 

limiting to a certain structure and parameters of exciter and PSS, we assume that for 

different generators and system parameters, the exciter and PSS pose the same effect on 

small-signal stability. Therefore, the values of KD and KS were incorporated in the generator 

model, rather than using the models for the exciter and PSS. The process for deriving state-

space equation and the system base parameters are documented in Appendix A. The final 

system state-space equations, the state variables, and system inputs are shown in below.   

 �̇� = 𝑨𝑿 + 𝑩𝒀 (5.11) 
 

 

𝑿 =

[
 
 
 
 
 
 
 
 
ΔE𝑑1

′

ΔE𝑞1
′
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′

ΔE𝑞2
′

∆𝜔2
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∆𝛿2 ]

 
 
 
 
 
 
 
 

 (5.12) 
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∆𝐸𝐹𝐷1
∆𝑇𝑚1
0

∆𝐸𝐹𝐷2
∆𝑇𝑚2
0
0 ]

 
 
 
 
 
 
 

         (5.13) 

5.3 SENSITIVITY TESTS 

Before assessing the small-signal stability, initial operating points were obtained by 

power flow analysis. Then system stability was evaluated by analyzing eigenvalues of 

system state matrix. Numerous tests have been carried out for investigating the sensitivity 
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of system stability to each system parameter. Some of the parameters show little to no 

influence on system stability. Some of the parameters appear to affect the system stability 

in similar patterns. Thus, this section will only cover some significant results instead of 

introducing every single test. Among all parameters, it is found that the synchronizing 

torque and damping torque coefficients exert the most significant effect on system small-

signal stability. Twenty percent change in those coefficients may trigger fifty percent change 

in stability region while one hundred percent change in other parameters such as generator 

reactance may only bring changes of less than three percent. In this section, the sensitivity 

of other important system parameters will also be discussed, including generator inertia 

constant, the ratio of power ratings of two generators, and cable length. The test range of 

frequency is from 60 Hz to 6000 Hz. 3D figures will be used to demonstrate stability region.  

5.3.1 SENSITIVITY OF SYSTEM STABILITY TO SYNCHRONIZING TORQUE COEFFICIENT (KS) 

AND DAMPING TORQUE COEFFICIENT (KD) 

Figure 5.1 shows the stability boundary for the systems with frequency in the range of 

60 Hz to 6000 Hz, and both KS and KD in the range of 0 to 5. Both generators have the same 

KS and KD in their rotor angle equations. The color on the stability boundary indicates the 

frequency where the system becomes unstable. It could be learned that only if KS is larger 

than a certain value (it is in the vicinity of 1 in this figure), the reference system starts to 

become stable. Figure 5.2 to Figure 5.4 shows the details of different cross-sections in 

Figure 5.1 to help better understand the impact of frequency, KD, and KS. Figure 5.2 indicates 

that the boundary between unstable and stable regions moves to the right and the stable 

region shrinks from 68.8% to 45.6% as frequency increases from 60 Hz to 3000 Hz. Figure 

5.3 discusses the impact of KD. It could be seen that larger KD results in larger stable region. 
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For systems at higher frequencies, they could only maintain stability while KD reaches a 

certain value. Figure 5.4 shows a similar picture for the impact of KS: larger KS allows higher 

frequency systems to be stable and generates more stable regions.  

 

Figure 5.1 Stable and unstable regions with frequency, KD, and KS varying for the 

reference system with base parameters 

 

Figure 5.2 Three cross-sections in Figure 5.1: KS vs KD for different frequencies 
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Figure 5.3 Three cross-sections in Figure 5.1: KS vs. frequency for different KDs 

 

Figure 5.4 Three cross-sections in Figure 5.1: KD vs. frequency for different KSs 

The improvement from KS and KD on system small-signal stability could be explained 

by using the concept of participation factor [24] [33]. Let us pick some points out of Figure 

5.1 to start the discussion. Figure 5.5 plots the root locus of the largest eigenvalues (7th and 

8th in this case) when system frequency increases from 60 Hz to 6000 Hz. For plotting this 

figure, KS and KD are chosen as 2.5 and 0.375 correspondingly and the other parameters are 
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the base ones listed in Appendix A. It can be learned that these two complex eigenvalues 

pass through imaginary axis at the frequency of 1920 Hz and the system starts to become 

unstable after that. Figure 5.6 shows the participation factors associated with the two 

eigenvalues mentioned above. Each subplot presents the information about the contribution 

from eight state variables to this mode. Each column in the subplot stands for the change of 

the participation factor of a state variable in this mode. The higher value of the participation 

factor, the larger the contribution from the corresponding state variable. The color represents 

the movement of the participation factor when frequency moves from 60 Hz to 6000 Hz – 

starts from black, travels at blue, and ends at red. For example, the 6th column in the first 

subplot represents the participation factor of the 6th state variable (the speed of Generator 2) 

in the 7th mode (the top eigenvalue in Figure 5.5). At the beginning, its contribution from 

the 6th state variable is very little (close to 0). But as frequency increases, it starts to 

contribute to majority of that oscillatory mode (ends at 0.8), especially at the frequency 

where the system becomes unstable. The same trend could be obtained from the 8th column 

(the rotor angle of Generator 2) in the first subplot. Therefore, this oscillatory mode can be 

called as “Generator 2 rotor angle” mode. The stability can be improved by adding more 

damping and synchronizing torque to Generator 2. The stability of the reference system at 

frequency higher than 1920 Hz will be restored if this oscillatory mode can be damped out 

effectively.  
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Figure 5.5 Rootlocus for largest eigenvalue (7th and 8th in this case) 

 

(a) Participation factors of eight state variables corresponding to the 7th Eigenvalue 

 

(b) Participation factors of eight state variables corresponding to the 8th Eigenvalue 

Figure 5.6 Participation factors associated with largest eigenvalues (7th and 8th) 



 

74 

Four measures have been tried to improve the small-signal stability for systems at high 

frequencies: increasing KD2, KS2, KD1, and KS1. Note that, in Figure 5.6, although the 3rd (the 

speed of Generator 1) and 7th (the rotor angle of Generator 1) state variables participate 

significantly less than in this oscillatory mode, increasing KS1 and KD1 may also be effective 

solutions because they will help damp out system oscillation to some extent.  

Figure 5.7 shows the root locus of the oscillatory complex eigenvalues which cause 

instability (shown in Figure 5.5) after we increase the KS2 by 200%. The trend is the same 

as before – as frequency increases, eigenvalues move towards the imaginary axis. But at 

this time the system maintains stable within the investigated frequency range (60~6000 Hz) 

due to the larger synchronizing torque coefficient.   

 

Figure 5.7 Root locus of 7th and 8th Eigenvalues for the case that the KS2 increase by 

200% 
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The second test was to increase KD2 by 200% to see whether it will help improve stability. 

As shown in Figure 5.8, the root locus of the largest eigenvalues associated with the 

“Generator 2 rotor angle” mode does not change too much from Figure 5.5, except the fact 

that the stability boundary is pushed a little further from 1920 Hz to 2040 Hz. Increasing 

KD2 in this case does not improve stability significantly.  

 

Figure 5.8 Root locus of 7th and 8th Eigenvalues for the case that the KD2 increase by 

200% 

The effect of increasing KS1 is shown in Figure 5.9. This measure is more helpful than 

KD2 but not as effective as increasing KS2. It successfully defers the stability boundary from 

1920 Hz to 4620 Hz.  
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Figure 5.9 Root locus of 7th and 8th Eigenvalues for the case that the KS1 increase by 

200% 

Figure 5.10 shows the result of increasing KD1 by 200%. There is no improvement 

observed. Stability boundary is still the same as the original case, as shown in Figure 5.5.  

In general, increasing KS of either generator helps improve system stability. But 

increasing KD is not an effective method in this case. It should be also noted that even if the 

newly-grown stable HFAC systems are “saved” by the larger KS, as the red dots shown in 

Figure 5.7 and Figure 5.9, they may still not be stable enough to successfully sustain through 

certain disturbances because their eigenvalues are too close to the imaginary axis. 
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Figure 5.10 Root locus of 7th and 8th Eigenvalues for the case that the KD1 increase to 

200% 

5.3.2 SENSITIVITY OF SYSTEM STABILITY TO THE RATIO OF POWER RATINGS OF TWO 

GENERATORS 

In this section we tested the sensitivity of system stability to the ratio of power ratings of 

two generators. 3D figures were drawn for four cases when the ratio drops from 9:1 (the 

base case plotted in Figure 5.1) to 6:1, 3:1, 1.5:1 and 1:1, as shown in Figure 5.11, Figure 

5.12, Figure 5.14, and Figure 5.14 correspondingly. Comparing Figure 5.1, Figure 5.11, and 

Figure 5.12, it can be observed that stable regions do not change too much for the cases of 

9:1 (stable region = 47.80%), 6:1 (44.81%) and 3:1 (46.35%). But when the ratio gets close 

to 1:1, the stable region increases dramatically to 76.45% and more stable region starts to 

appear especially in high frequency area, as shown in Figure 5.14. It can be learned that in  
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Figure 5.11 Ratio of power ratings of two generators is 6:1 

 

Figure 5.12 Ratio of power ratings of two generators is 3:1 
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Figure 5.13 Ratio of power ratings of two generators is 1.5:1 

 

Figure 5.14 Ratio of power ratings of two generators is 1:1, stable region increases 

dramatically 
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terms of small-signal stability, HFAC systems are in favor of generators with similar power 

ratings.  

5.3.3 SENSITIVITY OF SYSTEM STABILITY TO INERTIA CONSTANT  

This section studies the sensitivity of system stability to generator inertia constant (H). 

The previous section has concluded that KD and KS are very important parameters affecting 

system small-signal stability. In this section, one axis of Figure 5.1 (KD or KS) will be 

replaced by “scaleH” to study the impact of Hs. “scaleH” means to scale Hs of both 

generators by the same percentage simultaneously. The test results are shown in Figure 5.15 

and Figure 5.16. In both figures, the axis of scaleH ranges from 10% to 200% with the base 

values of Hs of two generators listed in Appendix A. In order to better understand the 3D 

figures, Figure 5.17 and Figure 5.18 are plotted to expand the cross-sections in Figure 5.15 

and Figure 5.16 correspondingly. One apparent observation based on the two figures is that 

the stable region shrinks as the values of Hs of both generators (scaleH) increase. Higher 

frequency systems, such as those above 4000 Hz, tend to become unstable as the value of 

Hs double. This founding matches with the small-signal stability characteristics of one-

machine-infinite-bus system where the eigenvalue analysis shows that the oscillatory roots 

of the swing equation move toward the imaginary axis as the H increases [22]. The other 

conclusion that can be drawn from these two figures is that the stability of higher frequency 

systems is subject to change more easily while lower frequency systems can maintain 

stability with a wider range of parameters.  
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Figure 5.15 scaleH vs. KS vs. f with base parameter 

 

Figure 5.16 scaleH vs. KD vs. f, with base parameters and KS = 2.5 
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Figure 5.17 Three cross-sections in Figure 5.15: KS vs. f for different values of scaleH  

 

Figure 5.18 Three cross-sections in Figure 5.16: KD vs. f for different values of scaleH 

Two more 3D figures, Figure 5.19 and Figure 5.20, are plotted to prove this trend. They 

compare the stable regions when scaleHs are 50% and 200%. It can be concluded that larger 

Hs of both generators push the stability boundary to the right resulting in a smaller stable 

region. 
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Figure 5.19 KS vs. KD vs. f with scaleH=50% 

 

Figure 5.20 KS vs. KD vs. f with scaleH=200% 
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5.3.4 SENSITIVITY OF SYSTEM STABILITY TO CABLE LENGTH 

Sensitivity of system stability to cable length will be discussed in this section. The test 

results are shown in Figure 5.21 and Figure 5.22. Figure 5.21 shows the stable region when 

cable lengths between two generators and the Point-of-Common-Coupling (PCC) are 40 m 

and 30 m while in Figure 5.22 those lengths are 100 times longer – 4000 m and 3000 m. 

The reason that we do not extend the cable length any longer is the following. In our 

reference system, reactive impedance of cable dominates the overall cable impedance at 

high frequency since it is proportional to system frequency. Therefore, the voltage drop over 

the cable becomes very significant at high frequency. According to our tests when frequency 

reaches 6000 Hz and the cable lengths between generators and PCC are longer than 4000 m 

and 3000 m, the generator excitation system will no longer be able to maintain rated voltage  

 

Figure 5.21 Cable lengths between generators and Point-of-Common-Coupling are 40 m 

and 30 m 
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at PCC, assuming the help of other voltage supporting equipment is unavailable. Comparing 

Figure 5.21 and Figure 5.22, the stable region drops from 55.02% to 47.8%. Most of the 

areas that change from “stable” to “unstable” are at high frequency. 

 

Figure 5.22 Cable length between generators and Point-of-Common-Coupling are 4000 

m and 3000 m 

5.3.5 ANALYSIS 

Based on the previous tests, for the reference system with base parameters, KD and KS 

are proved to be significant to determine whether the system can maintain small-signal 

stability. The stability boundary is drawn in Figure 5.1.  

With system parameters changing, the shape of stability boundary may change. Most 

changes occur in systems with higher frequencies which means higher frequency systems 

are more sensitive and dependent on system parameters. Meanwhile, HFAC systems in 
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those newly-grown stable areas may not be stable enough to successfully sustain through 

small disturbances because their eigenvalues are still too close to the imaginary axis.  

5.4 SUMMARY  

Following the previous chapter, this chapter analyzed the other important aspect of rotor 

angle stability: small-signal stability. Eigenanalysis was the method deployed to study the 

small-signal stability of HFAC systems. The two-axis model of generators were utilized to 

establish system state equation. Four sensitivity analyses discussing the impact of system 

key parameters were presented. Lots of 3D figures were drawn to aid the analysis.  
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CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

This work discovered the frequency limit in HFAC systems and examined the impact of 

increasing system frequency on the rotor angle stability of HFAC systems.  

First, we derived the trend lines for defining the feasibility area of high frequency 

generators, and for scaling power density against frequency. An equation for quick 

estimating inertia constants of high frequency generators was derived which allows the 

system engineers to study system stability without having extensive knowledge of generator 

design. The inertia constants of high frequency generators were found to be less than two-

second easily which may potentially threaten system stability.  

Rotor angle stability concerning that if multiple generators with different sizes can 

operate in synchronism is critical to HFAC systems. In this research the analysis for rotor 

angle stability of HFAC systems covered both large-signal (transient) stability and small-

signal stability. Discovered trends from both categories of power system stability showed 

that increasing frequency deteriorates stability of HFAC systems.  

Fundamental analysis found the mathematical relation between Critical Clearing Time 

(CCT) and system parameters, such as system frequency, inertia constants, and the ratio of 

inertia constants of different generators. It was found that higher frequency, lower inertia 

constants, and generators with much different inertia constants tend to shorten CCT, which 
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leave less time for circuit protection devices to identify the fault and intervene. The 

frequency limit can be calculated based on the CCT and the speed of protection devices. 

The findings from fundamental analysis were proved by transient stability analysis.  

Transient stability analysis, studied via extensive simulation tests that covered many 

scenarios, revealed that micro-grids with low inertia constants are potentially more unstable 

than normal 60 Hz systems, and the problem worsens as frequency increases. Rotor angle 

exceeds the critical value faster in HFAC systems. The simulation results also suggested 

that when building HFAC systems, it is desirable to avoid selecting generators with 

significantly different inertia constants. Quantified stability indices illustrated that faster 

circuit breaker whose speed is proportional to system frequency, and faster excitation 

control systems are powerful tools for improving transient stability of HFAC systems.  

As another critical aspect of stability of HFAC systems, small signal stability was 

investigated by analyzing the eigen-properties of system state-space equation. Compared to 

normal 60 Hz power systems, HFAC systems appear to have much stronger dependency on 

system key parameters including synchronizing torque coefficient, damping torque 

coefficient, inertia constants, and cable length. The higher the frequency, the stronger the 

dependency. The systems within a few hundred Hz are much less sensitive than those at a 

few thousand Hz. Increasing inertia constants which benefits transient stability tends to 

worsen small-signal stability, especially at higher frequency. The range of system 

parameters to ensure stable operation of HFAC systems is much narrower than normal 60 

Hz system. The requirement for accurate tuning of system controllers such as AVR and PSS 

is much more critical.  
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In order to successfully implement HFAC systems, the following issues are suggested to 

address beforehand:  

- Development of fast circuit breakers that can operate at speeds proportional to 

system frequency 

- Extremely careful tuning of AVR and PSS to ensure adequate synchronizing torque 

and damping torque over the complete system operation range 

- Avoid using generators with much different inertia constants 

- Protection coordination systems need to be designed carefully to ensure timely 

intervene to faults in every location of the system 

6.2 FUTURE WORK 

This work discovered that the frequency limit of HFAC systems comes from the opening 

times of protection devices. Future work may take into account certain types of popular 

circuit breakers, such as SF6 and vacuum circuit breakers. Discussion based on the principle 

of these circuit breakers to derive the potential relation between the circuit breaker 

characteristics and frequency limit of HFAC systems may be valuable.  

In this work, the small-signal stability of HFAC systems was studied based on a two-

machine system. Future work may consider to study a larger scale HFAC system. More 

useful trends may be revealed by such a study.
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Appendix A  MODELS FOR SMALL-SIGNAL STABILITY ANALYSIS 

The reference system for small-signal stability is the two-generator system as shown in 

Figure 4.2 of Chapter 4. The generator model adopted in this analysis is a two-axis model 

[24][27]:    

 

{
 
 

 
 

𝑇𝑞0𝑖
′ 𝐸𝑑𝑖

′̇ = −𝐸𝑑𝑖
′ − (𝑥𝑞𝑖 − 𝑥𝑖

′)𝐼𝑞𝑖

𝑇𝑑0𝑖
′ 𝐸𝑞𝑖′̇ = 𝐸𝐹𝐷𝑖 − 𝐸𝑞𝑖

′ + (𝑥𝑑𝑖 − 𝑥𝑖
′)𝐼𝑑𝑖

𝜏𝑖𝜔𝑖̇ = 𝑇𝑚𝑖 − (𝐼𝑑𝑖𝐸𝑑𝑖
′ + 𝐼𝑞𝑖𝐸𝑞𝑖

′ ) − 𝐾𝐷𝑖𝜔𝑖 − 𝐾𝑆𝑖𝛿𝑖

𝛿�̇� = 𝜔𝑖 − 1

 (A.1) 

 

In this model, Tm is a system input. The governor model was not included under the 

consideration that during the small-disturbance period, the slow governor will not respond 

fast enough to affect the output of the generator. The detailed excitation system model which 

includes Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS) were not 

included in the generator model. Fixed values for KD and KS are used to represent the effect 

of the exciter and PSS. There are two reasons for doing so. The exciter contributes a certain 

amount of synchronizing torque (KS) to system small-signal stability depending on its 

parameters which helps improve transient stability, especially for exciters with high ceiling 

voltage and fast-response AVR [22]. But it also brings negative impact on damping torque 

by applying the high gain in the AVR. The PSS was introduced back in the 1950s and it was 

proposed to address this problem: to bring more damping to power systems. In a real 

application, PSS’s structure and parameters are tuned according to the specific parameters
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of the exciter and the generator. In this study, in order to represent as many cases as possible 

and to make the results more general without limiting to a certain structure and parameters 

of exciter and PSS, we assume that for different generators and system parameters, the 

exciter and PSS pose the same effect on small-signal stability. Therefore, the values of KD 

and KS are incorporated in the generator model, rather than using the models for the exciter 

and PSS.  

The base generator parameters utilized in this small-signal stability assessment are listed 

in Table A.1. The subscripts “1” and “2” denote Generator 1 and Generator 2.  

Table A.1 Base parameters utilized in small-signal stability analysis 

Symbol Definition Value 

𝑇𝑞01
′  /  𝑇𝑞02

′  Transient q-axis open-circuit time constant in second 0.27 / 0.1353 

𝑇𝑑01
′  /  𝑇𝑑02

′  Transient d-axis open-circuit time constant in pu 2.4094 / 2.8529 

𝐻1 / 𝐻2 Inertia constant in second 4 / 3 

𝑥𝑞1 / 𝑥𝑞2 Synchronous reactance in q-axis in pu 1.5 / 1.0 

𝑥𝑑1 / 𝑥𝑑2 Synchronous reactance in d-axis in pu 1.5 / 1.0 

𝑥1
′  / 𝑥2

′  Transient reactance (ignore saliency, 𝑥𝑑
′ = 𝑥𝑞

′ ) in pu 0.1926 / 0.1196 

KS1 / KS2 
Synchronizing torque coefficient in pu torque/pu 

speed deviation 
1 / 1 

KD1 / KD2 
Damping torque coefficient in pu torque/pu speed 

deviation 
1 / 1 

 

After linearizing the generator model in (5.10) we can write the reference two-generator 

system model for the purpose of small-signal stability analysis as following: 
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{
 
 
 
 
 

 
 
 
 
 

𝑇𝑞01
′ ∆𝐸𝑑1

′̇ = −∆𝐸𝑑1
′ − (𝑥𝑞1 − 𝑥1

′)∆𝐼𝑞1

𝑇𝑑01
′ ∆𝐸𝑞1

′̇ = ∆𝐸𝐹𝐷1 − ∆𝐸𝑞1
′ + (𝑥𝑑1 − 𝑥1

′ )∆𝐼𝑑1

𝜏1∆𝜔1̇ = ∆𝑇𝑚1 − (𝐼𝑑10∆𝐸𝑑1
′ + 𝐼𝑞10∆𝐸𝑞1

′ + 𝐸𝑑10
′ ∆𝐼𝑑1 + 𝐸𝑞10

′ ∆𝐼𝑞1) − 𝐾𝐷1∆𝜔1 − 𝐾𝑆1∆𝛿1

𝑇𝑞02
′ ∆𝐸𝑑2

′̇ = −∆𝐸𝑑2
′ − (𝑥𝑞2 − 𝑥2

′ )∆𝐼𝑞2

𝑇𝑑02
′ ∆𝐸𝑞2

′̇ = ∆𝐸𝐹𝐷2 − ∆𝐸𝑞2
′ + (𝑥𝑑2 − 𝑥2

′ )∆𝐼𝑑2

𝜏2∆𝜔2̇ = ∆𝑇𝑚2 − (𝐼𝑑20∆𝐸𝑑2
′ + 𝐼𝑞20∆𝐸𝑞2

′ + 𝐸𝑑20
′ ∆𝐼𝑑2 + 𝐸𝑞20

′ ∆𝐼𝑞2) − 𝐾𝐷2∆𝜔2 − 𝐾𝑆2∆𝛿2

∆𝛿1̇ = ∆𝜔1
∆𝛿2̇ = ∆𝜔2

 

   (A.2) 

Arrange (A.2) into the following succinct form for further manipulation: 

 

{
 
 
 
 
 

 
 
 
 
 

∆𝐸𝑑1
′̇ = 𝑎1∆𝐸𝑑1

′ + 𝑎2∆𝐼𝑞1

∆𝐸𝑞1
′̇ = 𝑏1∆𝐸𝐹𝐷1 + 𝑏2∆𝐸𝑞1

′ + 𝑏3∆𝐼𝑑1

∆𝜔1̇ = 𝑐1∆𝑇𝑚1 + 𝑐2∆𝜔1 + 𝑐3∆𝐸𝑑1
′ + 𝑐4∆𝐸𝑞1

′ + 𝑐5∆𝐼𝑑1 + 𝑐6∆𝐼𝑞1 + 𝑐7∆𝛿1

∆𝐸𝑑2
′̇ = 𝑑1∆𝐸𝑑2

′ + 𝑑2∆𝐼𝑞2

∆𝐸𝑞2
′̇ = 𝑒1∆𝐸𝐹𝐷2 + 𝑒2∆𝐸𝑞2

′ + 𝑒3∆𝐼𝑑2

∆𝜔2̇ = 𝑓1∆𝑇𝑚2 + 𝑓2∆𝜔2 + 𝑓3∆𝐸𝑑2
′ + 𝑓4∆𝐸𝑞2

′ + 𝑓5∆𝐼𝑑2 + 𝑓6∆𝐼𝑞2 + 𝑓7∆𝛿2

∆𝛿1̇ = ∆𝜔1
∆𝛿2̇ = ∆𝜔2

 (A.3) 

 

where intermediate variables of a through f are expressed as following: 

 

 

{
 
 

 
 𝑎1 =

−1

𝑇𝑞01
′

𝑎2 =
−𝑥𝑞1 + 𝑥1

′

𝑇𝑞01
′

 (A.4) 
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{
  
 

  
 𝑏1 =

1

𝑇𝑑01
′

𝑏2 =
−1

𝑇𝑑01
′

𝑏3 =
−𝑥𝑑1 + 𝑥1

′

𝑇𝑑01
′

 (A.5) 

 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑐1 =

1

𝜏1

𝑐2 =
−𝐾𝐷1
𝜏1

𝑐3 =
−𝐼𝑑10
𝜏1

𝑐4 =
−𝐼𝑞10

𝜏1

𝑐5 =
−𝐸𝑑10

′

𝜏1

𝑐6 =
−𝐸𝑞10

′

𝜏1

𝑐7 =
−𝐾𝑆1
𝜏1

 (A.6) 

 

 

{
 
 

 
 𝑑2 =

−1

𝑇𝑞02
′

𝑑2 =
−𝑥𝑞2 + 𝑥2

′

𝑇𝑞02
′

 (A.7) 

 

 

{
  
 

  
 𝑒1 =

1

𝑇𝑑02
′

𝑒2 =
−1

𝑇𝑑02
′

𝑒3 =
−𝑥𝑑2 + 𝑥2

′

𝑇𝑑02
′

 (A.8) 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑓1 =

1

𝜏2

𝑓2 =
−𝐾𝐷2
𝜏2

𝑓3 =
−𝐼𝑑20
𝜏2

𝑓4 =
−𝐼𝑞20

𝜏2

𝑓5 =
−𝐸𝑑20

′

𝜏2

𝑓6 =
−𝐸𝑞20

′

𝜏2

𝑓7 =
−𝐾𝑆2
𝜏2

 (A.9) 

 

    To linearize the equation relating voltages and currents, the following equations can be 

obtained:  

 

{
 
 

 
 
∆𝐼𝑞1 = 𝑔1∆𝐸𝑑1

′ + 𝑔2∆𝐸𝑞1
′ + 𝑔3∆𝛿1 + 𝑔4∆𝐸𝑑2

′ + 𝑔5∆𝐸𝑞2
′ + 𝑔6∆𝛿2

∆𝐼𝑑1 = ℎ1∆𝐸𝑑1
′ + ℎ2∆𝐸𝑞1

′ + ℎ3∆𝛿1 + ℎ4∆𝐸𝑑2
′ + ℎ5∆𝐸𝑞2

′ + ℎ6∆𝛿2
∆𝐼𝑞2 = 𝑗1∆𝐸𝑑1

′ + 𝑗2∆𝐸𝑞1
′ + 𝑗3∆𝛿1 + 𝑗4∆𝐸𝑑2

′ + 𝑗5∆𝐸𝑞2
′ + 𝑗6∆𝛿2

∆𝐼𝑑2 = 𝑘1∆𝐸𝑑1
′ + 𝑘2∆𝐸𝑞1

′ + 𝑘3∆𝛿1 + 𝑘4∆𝐸𝑑2
′ + 𝑘5∆𝐸𝑞2

′ + 𝑘6∆𝛿2

 (A.10) 

 

where 

 

{
  
 

  
 

𝑔1 = −𝐵11
𝑔2 = 𝐺11

𝑔3 = 𝑌12[sin(𝜃12 − 𝛿120) 𝐸𝑞20
′ + cos(𝜃12 − 𝛿120) 𝐸𝑑20

′ ]

𝑔4 = −𝑌12 sin(𝜃12 − 𝛿120)

𝑔5 = 𝑌12 cos(𝜃12 − 𝛿120)
𝑔6 = −𝑔3

 (A.11) 

 

 

{
  
 

  
 

ℎ1 = 𝐺11
ℎ2 = 𝐵11

ℎ3 = 𝑌12[sin(𝜃12 − 𝛿120) 𝐸𝑑20
′ − cos(𝜃12 − 𝛿120) 𝐸𝑞20

′ ]

ℎ4 = 𝑌12 cos(𝜃12 − 𝛿120)

ℎ5 = 𝑌12 sin(𝜃12 − 𝛿120)

ℎ6 = −ℎ3

 (A.12) 
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{
  
 

  
 

𝑗1 = −𝑌12 sin(𝜃12 + 𝛿120)

𝑗2 = 𝑌12 cos(𝜃12 + 𝛿120)

𝑗3 = −𝑌12[sin(𝜃12 + 𝛿120) 𝐸𝑞10
′ + cos(𝜃12 + 𝛿120) 𝐸𝑑10

′ ]

𝑗4 = −𝐵22
𝑗5 = 𝐺22
𝑗6 = −𝑗3

 (A.13) 

 

 

{
  
 

  
 

𝑘1 = 𝑌12 cos(𝜃12 + 𝛿120)

𝑘2 = 𝑌12 sin(𝜃12 + 𝛿120)

𝑘3 = 𝑌12[cos(𝜃12 + 𝛿120)𝐸𝑞10
′ + sin(𝜃12 + 𝛿120) 𝐸𝑑10

′ ]

𝑘4 = 𝐺22
𝑘5 = 𝐵22
𝑘6 = −𝑘3

 (A.14) 

 

where B, G, Y are the elements of the admittance matrix of the two-generator system 

including transmission line impedance, generator synchronous reactance and transient 

reactance. When calculating the admittance matrix, Node 1 and 2 are behind the d/q axis 

steady-state or transient-state voltage. θ12 is the angle of the element of the admittance 

matrix at Column 2, Array 1. δ120 is the initial relative rotor angle between generator 1 and 

2 before perturbation.  

    Finally, the system state-space equations in matrix form can be obtained by substituting 

(A.10) into (A.3) and necessary algebraic manipulation: 

 �̇� = 𝑨𝑿 + 𝑩𝒀 (A.15) 

 

 



 

 

1
0
1 

 

𝑨

=

[
 
 
 
 
 
 
 

𝒂𝟏 + 𝒂𝟐𝒈𝟏 𝒂𝟐𝒈𝟏 𝟎 𝒂𝟐𝒈𝟒 𝒂𝟐𝒈𝟓 𝟎 𝒂𝟐𝒈𝟕 𝒂𝟐𝒈𝟖
𝒃𝟑𝒉𝟏 𝒃𝟐 + 𝒃𝟑𝒉𝟐 𝟎 𝒃𝟑𝒉𝟒 𝒃𝟑𝒉𝟓 𝟎 𝒃𝟑𝒉𝟕 𝒃𝟑𝒉𝟖

𝒄𝟑 + 𝒄𝟓𝒉𝟏 + 𝒄𝟔𝒈𝟏 𝒄𝟒 + 𝒄𝟓𝒉𝟐 + 𝒄𝟔𝒈𝟐 𝒄𝟐 𝒄𝟓𝒉𝟒 + 𝒄𝟔𝒈𝟒 𝒄𝟓𝒉𝟓 + 𝒄𝟔𝒈𝟓 𝟎 𝒄𝟓𝒉𝟕 + 𝒄𝟔𝒈𝟕 + 𝒄𝟕 𝒄𝟓𝒉𝟖 + 𝒄𝟔𝒈𝟖
𝒅𝟐𝒋𝟏 𝒅𝟐𝒋𝟐 𝟎 𝒅𝟏 + 𝒅𝟐𝒋𝟒 𝒅𝟐𝒋𝟓 𝟎 𝒅𝟐𝒋𝟕 𝒅𝟐𝒋𝟖
𝒆𝟑𝒌𝟏 𝒆𝟑𝒌𝟐 𝟎 𝒆𝟑𝒌𝟒 𝒆𝟐 + 𝒆𝟑𝒌𝟓 𝟎 𝒆𝟑𝒌𝟕 𝒆𝟑𝒌𝟖

𝒇𝟓𝒌𝟏 + 𝒇𝟔𝒋𝟏 𝒇𝟓𝒌𝟐 + 𝒇𝟔𝒋𝟐 𝟎 𝒇𝟑 + 𝒇𝟓𝒌𝟒 + 𝒇𝟔𝒋𝟒 𝒇𝟒 + 𝒇𝟓𝒌𝟓 + 𝒇𝟔𝒋𝟓 𝒇𝟐 𝒇𝟓𝒌𝟕 + 𝒇𝟔𝒋𝟕 𝒇𝟕 + 𝒇𝟓𝒌𝟖 + 𝒇𝟔𝒋𝟖
𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 ]

 
 
 
 
 
 
 

 

 

𝑿 =

[
 
 
 
 
 
 
 
 
ΔE𝑑1

′

ΔE𝑞1
′

∆𝜔1
ΔE𝑑2

′

ΔE𝑞2
′

∆𝜔2
∆𝛿1
∆𝛿2 ]

 
 
 
 
 
 
 
 

 𝒀 =

[
 
 
 
 
 
 
 
0

∆𝐸𝐹𝐷1
∆𝑇𝑚1
0

∆𝐸𝐹𝐷2
∆𝑇𝑚2
0
0 ]

 
 
 
 
 
 
 

 𝑩 = 𝑑𝑖𝑎𝑔[0 𝑏1 𝑐1 0 𝑒1 𝑓1 0 0] 
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