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Abstract

In 1973, Shimura introduced a family of maps between modular forms of half-

integral weight and modular forms of even integral weight. We will give explicit

formulas for the images of two different classes of modular forms under these maps.

In contrast to Shimura’s difficult analytic construction, our formulas will fall out of

relatively simple combinatorial derivations. Using the Shimura correspondence, we

will prove congruences for the eigenvalues of a family of eigenforms introduced by

Garvan. Using deep results of Eichler and Shimura, we state these congruences in

terms of the number of points on associated elliptic curves, and we provide a table of

these congruences for reference. Finally, we find a family of integral weight modular

forms analogous to Garvan’s half-integral weight family.
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Chapter 1

Background

In this chapter, we will review some background material on modular forms that

will be relevant to the later chapters. The curious reader is encouraged to look at

(Iwaniec, 1997), (Koblitz, 1993), (Diamond and Shurman, 2005), and (Diamond and

Im, 1995) for more detailed information.

1.1 Modular Forms

Define the modular group SL2(Z) to be

SL2(Z) :=
{(

a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

This group acts on the complex numbers C with the action

γz = az + b

cz + d
(1.1.1)

for γ =
(
a b

c d

)
∈ SL2(Z). We extend this to the Riemann sphere Ĉ := C ∪ {∞}

by defining γ(∞) = a/c and γ(−d/c) = ∞. Let H denote the upper half-plane

H := {z ∈ C : Im(z) > 0}. Note that any γ ∈ SL2(Z) preserves H, so SL2(Z) acts on

H by the transformation (1.1.1).

For a positive integer N , we define the congruence subgroups Γ0(N),Γ1(N), and
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Γ(N) by

Γ0(N) :=
{(

a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) :=
{(

a b

c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
,

Γ(N) :=
{(

a b

c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
.

We have Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z), and these subgroups all have finite

index in SL2(Z). For a congruence subgroup Γ, we say that Γ has level N if N is the

smallest positive integer with Γ(N) ⊆ Γ. Note that Γ(1) = Γ1(1) = Γ0(1) = SL2(Z).

Let k be an integer. A holomorphic function f : H → C is a modular form of

level 1 and weight k if

• f(γz) = (cz + d)kf(z) for γ =
(
a b

c d

)
∈ SL2(Z) and z ∈ H,

• f is holomorphic at ∞ in a sense explained below.

Since
(

1 1
0 1

)
∈ SL2(Z), we see that f(z + 1) = f(z). Thus we can write the Fourier

expansion of f as

f(z) =
∑

n�−∞
a(n)qn,

where q := e2πiz. This is called the Fourier expansion of f at ∞, or the q-expansion

at ∞. Written this way, holomorphy at ∞ is equivalent to a(n) = 0 for n < 0.

If in addition we have a(0) = 0, then we call f a cusp form. We also note that

the map z 7→ q = e2πiz maps H conformally to the open punctured unit disk, {q ∈

C : 0 < |q| < 1}. In this sense, holomorphy of f at z = i∞ is equivalent to the

removability of the singularity of f at q = 0. Hence, when lim f as q → ∞ exists

and is finite, we assign the value of this limit to f at z = i∞. In particular, we

see that a cusp form on SL2(Z) is a holomorphic modular form which vanishes at

z = i∞. The C-vector space of modular forms of level 1 and weight k is written as

Mk(SL2(Z)), and the corresponding subspace of cusp forms is written as Sk(SL2(Z)).

2



Since
(
−1 0
0 −1

)
∈ SL2(Z), there are no nonzero modular forms of level 1 with odd

weight.

The holomorphy condition at ∞ ensures, via the Riemann-Roch Theorem, that

Mk(SL2(Z)) has finite C-dimension. More generally, in order that spaces of modular

forms for congruence subgroups of SL2(Z) be finite-dimensional, we require holomor-

phy on H and at all points in Q ∪ {∞}, the SL2(Z) orbit of infinity. Hence, for

a congruence subgroup Γ, we adjoin Q ∪ {∞} to H. We identify these adjoined

points under Γ-equivalence, and call these equivalence classes the cusps of Γ. Since

SL2(Z) · ∞ = Q ∪ {∞}, it follows that SL2(Z) has only one cusp, represented by ∞.

When Γ is a proper congruence subgroup of SL2(Z), its action on Q ∪ {∞} is not

transitive, so Γ will have cusps inequivalent to {∞}. The number of cusps is finite,

bounded by the finite index of the subgroup.

Let N be a positive integer, and let χ be a Dirichlet character modulo N . A

modular form of level N , weight k, and character χ is a holomorphic function f :

H → C satisfying

• f(γz) = χ(d)(cz + d)kf(z) for γ =
(
a b

c d

)
∈ Γ0(N) and z ∈ H,

• f(γz) is holomorphic at ∞ for all γ ∈ SL2(Z).

The vector space of modular forms of level N , weight k, and character χ is denoted

by Mk(Γ0(N), χ). The subspace of cusp forms is denoted by Sk(Γ0(N), χ). If χ is the

trivial character modulo N , we write Mk(Γ0(N)) or Sk(Γ0(N)) instead.

A few modifications allow us to define modular forms of half-integral weight. For

details, see (Shimura, 1973) and Chapter 4 of (Koblitz, 1993). For odd primes d, we let(
c
d

)
be the usual Legendre symbol, and we extend to all odd d > 0 by multiplicativity.

3



For odd d < 0, we define

(
c

d

)
:=


(
c
|d|

)
if c > 0,

−
(
c
|d|

)
if c < 0,

and we let
(

0
±1

)
= 1.

Next, we define for odd integers d,

εd :=


1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

We let
√
z denote the branch of the square root having argument in (−π/2, π/2].

For integers λ ≥ 0 and N > 0, and for χ a Dirichlet character modulo 4N , a

holomorphic function f : H → C is a modular form of level 4N , weight λ + 1
2 , and

character χ if

• f(γz) = χ(d)
(
c
d

)2λ+1
ε−1−2λ
d (cz + d)λ+ 1

2f(z) for
(
a b

c d

)
∈ Γ0(4N),

• f is holomorphic at the cusps of Γ0(4N) (in a sense analogous to that for integer

weights).

A few remarks:

1. For γ =
(
a b

c d

)
∈ Γ0(4N), the expression j(γ, z) = χ(d)

(
c
d

)
ε−1
d is an example

of a multiplier system for half-integral weights. It is called the theta multiplier

system since the theta series θ(z) = ∑
n∈Z q

n2 satisfies θ(γz)/θ(z) = j(γ, z) for

all γ ∈ Γ0(4). Hence, half-integral weight modular forms with theta-multiplier

and weight k/2 transform like kth powers of θ. Shimura’s 1973 paper laid the

foundations for the theory of half-integral weights with theta-multiplier.

2. Other non-trivial multiplier systems exist for half-integral weights. For example,

one can study half-integral weight modular forms on SL2(Z) with eta-multiplier

εa,b,c,d, a 24th root of unity, where η(z) = q1/24∏∞
m=1(1 − qm) is Dedekind’s

4



eta-function (see below). For all γ =
(
a b

c d

)
∈ SL2(Z), we have η(γz)/η(z) =

εa,b,c,d.

3. When the multiplier system for a family of weights consists only of χ(·), we

say that it is trivial. The classical integer weight modular forms, which we

study here, have trivial multiplier system. The comparative complexity of the

half-integral weight multiplier systems arises from the need to explicitly and

compatibly choose a branch of the complex square root. It is primarily for

this reason that the study of half-integral weights is more computationally and

theoretically technical than the study of integral weights.

The C-vector space of these half-integral weight forms is denoted byMλ+ 1
2
(Γ0(4N), χ).

As in the integral weight setting, this is a finite-dimensional space. Moreover, half-

integral weight modular forms have Fourier expansions at ∞, and the definition of a

cusp form is the same. The subspace of half-integral weight cusp forms is denoted by

Sλ+ 1
2
(Γ0(4N), χ).

1.2 Examples of Modular Forms

Let k ≥ 2 be even. We define the weight k Eisenstein series Ek(z) by

Ek(z) := 1− 2k
Bk

∞∑
n=1

σk−1(n)qn, (1.2.1)

where Bk is the kth Bernoulli number, defined by

t

et − 1 =
∞∑
m=0

Bm
tm

m! = 1− 1
2t+ 1

12t
2 + · · · ,

and σk−1(n) is the divisor function

σk−1(n) :=
∑
d|n
dk−1.

For k ≥ 4, we have Ek(z) ∈ Mk(SL2(Z)), and we have Mk(SL2(Z)) = CEk for

k ∈ {4, 6, 8, 10, 14}.

5



Let O be the ring of integers of a number field, and let p be a prime ideal in O.

Suppose that f(z) = ∑
a(n)qn and g(z) = ∑

b(n)qn lie in Mk(Γ) ∩ O[[q]] for some

k ∈ Z and for some congruence subgroup Γ. Then we have f(z) ≡ g(z) (mod p) if and

only if we have a(n) ≡ b(n) (mod p) for all n. We now give standard explicit examples

of modular form congruences which are foundational to the theory of modular forms

modulo prime ideals.

Proposition 1.1. Suppose that k ≥ 2 is even.

(1) If ` is prime and (`− 1) | k, then Ek(z) ≡ 1 (mod `).

(2) If ` ≥ 3 is prime, then E`+1(z) ≡ E2(z) (mod `).

The proofs of these follow from the definition of the Eisenstein series (1.2.1) and

well-known congruences of Von Staudt and Clausen (for (1)) and Kummer (for (2))

for Bernoulli numbers (see Chapter 15 of (Ireland and Rosen, 1990)).

The series E2(z) is holomorphic, but does not satisfy the transformation properties

necessary to be a modular form; in fact, we have the transformation

z−2E2(−1/z) = E2(z) + 12
2πiz .

On the other hand, it can be shown that the non-holomorphic function defined by

E∗2(z) := E2(z)− 3
π Im(z)

transforms like a weight 2 modular form on SL2(Z). Using these two functions E2(z)

and E∗2(z), we can construct weight 2 modular forms on Γ0(N) (see, for example

(Diamond and Im, 1995)). We have

Proposition 1.2. Let N ≥ 2 be an integer, and suppose that for each d | N there

are cd ∈ C with ∑d|N
cd
d

= 0. Then

∑
d|N

cdE
∗
2(dz) =

∑
d|N

cdE2(dz) ∈M2(Γ0(N)).

6



Define the Dedekind eta function η(z) by

η(z) := q1/24
∞∏
n=1

(1− qn). (1.2.2)

This is a holomorphic function from H to C that is nonzero on H and vanishes at∞,

and satisfies the transformation properties

η(z + 1) = e
2πi
24 η(z) and η

(
−1
z

)
= (−iz)1/2η(z).

Many of the functions we will investigate will be constructed using η(z). For

N ≥ 1 and integers rδ, we call functions of the form

f(z) =
∏
δ|N

η(δz)rδ

eta-quotients. The following theorems on eta-quotients will be useful. See (Ono,

2004) for more information.

Theorem 1.3. Suppose that f(z) = ∏
δ|N η(δz)rδ is an eta-quotient with k = 1

2
∑
δ|N rδ ∈

Z and such that
∑
δ|N

δrδ ≡ 0 (mod 24) and
∑
δ|N

N

δ
rδ ≡ 0 (mod 24).

Then for every γ =
(
a b

c d

)
∈ Γ0(N), f(z) satisfies

f(γz) = χ(d)(cz + d)kf(z).

Here, the character χ is defined by χ(d) :=
(

(−1)ks
d

)
, where s = ∏

δ|N δ
rδ .

To verify that an eta-quotient satisfying the above conditions is a modular form,

we need to check the behavior at the cusps of Γ0(N). We may use the following

theorem for this.

Theorem 1.4. Let c, d, and N be positive integers with d | N and gcd(c, d) = 1. If

f(z) is an eta-quotient satisfying the conditions of Theorem 1.3 for N , then the order

of vanishing of f(z) at the cusp c
d
is

N

24
∑
δ|N

gcd(d, δ)2rδ
gcd(d, N

d
)dδ

.

7



Using these two theorems, it is straightforward to verify that certain eta-quotients

are indeed modular forms.

Suppose that f(z) = ∑
a(n)qn and g(z) = ∑

b(n)qn lie in Mk(Γ) for some con-

gruence subgroup Γ. Then we have f(z) = g(z) if and only if a(n) = b(n) for all

n ≤ dimC(Mk(Γ)) + 1. Hence, finite-dimensionality allows us to computationally ver-

ify whether two modular forms are equal. A theorem of Sturm extends this criterion

for equality to congruence in the setting of modular forms in the ring of integers O

of a number field, with coefficients reduced modulo a prime ideal p.

Theorem 1.5 (Sturm). Let p be a prime ideal in the ring of integers O of a number

field. Suppose that f(z) = ∑
a(n)qn ∈Mk(Γ0(N), χ) ∩ O[[q]] is a modular form, and

assume that

a(n) ≡ 0 (mod p) for all n ≤ km

12 ,

where

m = [SL2(Z) : Γ0(N)] = N ·
∏
p|N

(
1 + 1

p

)
.

Then we have f ≡ 0 (mod p).

To see an example of a half-integral weight modular form, consider the function

η(24z) given by

η(24z) = q
∞∏
n=1

(1− q24n) ∈ S1/2(Γ0(576), χ3), (1.2.3)

where χ3(n) is the Dirichlet character modulo 12 given by

χ3(n) :=



1 if n ≡ ±1 (mod 12),

−1 if n ≡ ±5 (mod 12),

0 otherwise.

(1.2.4)

This form has the convenient Fourier expansion

η(24z) =
∞∑
n=1

χ3(n)qn2 = 1
2
∑
n∈Z

χ3(n)qn2
. (1.2.5)

8



Another half-integral weight form we will see is η(8z)3. We have

η(8z)3 = q
∞∏
n=1

(1− q8n)3 ∈ S3/2(Γ0(64)). (1.2.6)

We can write the Fourier expansion of this form as

η(8z)3 =
∞∑
m=0

(−1)m(2m+ 1)q(2m+1)2 = 1
2
∑
m∈Z

(−1)m(2m+ 1)q(2m+1)2
. (1.2.7)

These modular forms are examples of Shimura theta-series. Their series expansions

follow from classical identities of Euler, Gauss, and Jacobi.

1.3 Operators on Modular Forms

There are several important operators acting on spaces of modular forms. For positive

integers d, we define the operators Ud and Vd on formal power series in q by

∞∑
n=0

a(n)qn | Ud :=
∞∑
n=0

a(dn)qn (1.3.1)

∞∑
n=0

a(n)qn | Vd :=
∞∑
n=0

a(n)qdn (1.3.2)

The following propositions describe the behavior of these operators when acting on

spaces of modular forms.

Proposition 1.6. Suppose that f(z) ∈Mk(Γ0(N), χ).

(1) If d is a positive integer, then f(z) | Vd ∈Mk(Γ0(Nd), χ). Moreover, if f(z) is a

cusp form, then so is f(z) | Vd.

(2) If d | N , then f(z) | Ud ∈ Mk(Γ0(N), χ). Moreover, if f(z) is a cusp form, then

so is f(z) | Ud.

Proposition 1.7. Suppose that f(z) ∈Mλ+1/2(Γ0(4N), χ).

(1) If d is a positive integer, then f(z) | Vd ∈Mλ+1/2(Γ0(4Nd),
(

4d
•

)
χ). Moreover, if

f(z) is a cusp form, then so is f(z) | Vd.

9



(2) If d | N , then f(z) | Ud ∈ Mλ+1/2(Γ0(4N),
(

4d
•

)
χ). Moreover, if f(z) is a cusp

form, then so is f(z) | Ud.

We can also define a family of operators called Hecke operators that are indexed

by positive integers. For an integer weight modular form f(z) = ∑∞
n=0 a(n)qn ∈

Mk(Γ0(N), χ) and a prime p, the action of the Hecke operator Tp,k,χ on f(z) is defined

by

f(z) | Tp,k,χ :=
∞∑
n=0

(
a(pn) + χ(p)pk−1a(n/p)

)
qn, (1.3.3)

where we agree that a(n/p) = 0 if p - n. More generally, for positive integers m, we

define the action of Tm,k,χ by

f(z) | Tm,k,χ :=
∞∑
n=0

 ∑
d|(m,n)

χ(d)dk−1a(mn/d2)
 qn. (1.3.4)

The Hecke operators are endomorphisms on spaces of modular forms, and they pre-

serve cusp forms. When the weight and character are clear from context, we will

denote the operator Tm,k,χ by Tm. Since χ(n) = 0 if gcd(n,N) 6= 1, we have Tp = Up

for p | N .

We can also define Hecke operators in the half-integral weight setting. For a half-

integer weight modular form f(z) = ∑∞
n=0 a(n)qn ∈ Mλ+1/2(Γ0(4N), χ) and a prime

p, the Hecke operator Tp2,λ,χ is defined by

f(z) | Tp2,λ,χ :=
∞∑
n=0

(
a(p2n) + χ∗(p)

(
n

p

)
pλ−1a(n) + χ∗(p2)p2λ−1a(n/p2)

)
qn,

(1.3.5)

where χ∗ is the Dirichlet character given by χ∗(n) :=
(

(−1)λ
n

)
χ(n). Just as in the

integer weight setting, the Hecke operators are endomorphisms on spaces of modular

forms that preserve cusp forms.

When k is an integer, a modular form f(z) ∈Mk(Γ0(N), χ) is called an eigenform

for Tn if there is a complex number λ(n) with

f(z) | Tn = λ(n)f(z). (1.3.6)

10



If f(z) is an eigenform for Tn for all n ∈ N with gcd(n,N) = 1, then we call f(z) a

Hecke eigenform. A cusp form which is a Hecke eigenform is said to be normalized

if a(1) = 1, in which case λ(n) = a(n) for all n with gcd(n,N) = 1. The following

multiplicative relation involving the coefficients of normalized Hecke eigenforms will

be useful.

Proposition 1.8. Let f(z) = ∑∞
n=0 a(n)qn ∈ Mk(Γ0(N), χ) be a normalized Hecke

eigenform. Then for all m,n ≥ 0, we have

a(m)a(n) =
∑

d|(m,n)
χ(d)dk−1a

(
mn

d2

)
.

The Hecke operators on Sk(Γ0(N), χ) form a commuting family, and they are

normal with respect to the Petersson inner product on this space. Therefore, the

Hecke operators are simultaneously diagonalizable on Sk(Γ0(N), χ), which implies

that Sk(Γ0(N), χ) has a basis all of whose elements are Hecke eigenforms. It turns

out, however, that the corresponding eigenspaces do not have to be one-dimensional.

For the purpose of analogy, we recall that a Dirichlet character χ is imprimitive with

modulus n if and only if there exists m | n with m < n such that χ is a Dirichlet

character modulo m, in which case, we say that m is the conductor of χ. Similarly,

modular forms of level N can arise from forms of level dividing N . For example, if

M is a divisor of N and f ∈ Sk(Γ0(M)), then it turns out that f(dz) ∈ Sk(Γ0(N))

for any divisor d of N/M . We let Sold
k (Γ0(N), χ) denote the subspace of Sk(Γ0(N), χ)

spanned by all forms f(dz) arising from forms of lower level, and we let Snew
k (Γ0(N), χ)

denote the orthogonal complement of Sold
k (Γ0(N), χ) with respect to the Petersson

inner product. A normalized Hecke eigenform in this space is called a newform. A

key fact is that the eigenspaces of these newforms are one-dimensional. We say that

“Multiplicity One” holds in Snew
k (Γ0(N), χ), but note that this property does not hold

in half-integral weight settings: one has a similar notion of eigenform, but there is no

distinguished subspace of multiplicity one.
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We define the Fricke involution WN on Mk(Γ0(N), χ) by

f | WN = N s/2(Nz)−sf
(
− 1
Nz

)
= N−s/2z−sf

(
− 1
Nz

)
.

We have the following commutation relation.

Proposition 1.9. Let f(z) ∈Mk(Γ0(N), χ). For primes p - N , we have

f | Tp | WN = χ(p)f | WN | Tp.

Let f(z) = ∑∞
n=0 a(n)qn and let ε be a Dirichlet character. We define the twist of

f by ε as

f(z)⊗ ε :=
∞∑
n=0

ε(n)a(n)qn.

The following is proved in (Atkin and Li, 1978):

Proposition 1.10. Suppose that f(z) = ∑∞
n=0 a(n)qn ∈ Mk(Γ0(N), χ), where χ is a

character of conductor N ′. Let ε be a character of modulus M . Then we have the

twisted series

f(z)⊗ ε :=
∞∑
n=0

ε(n)a(n)qn ∈Mk(Γ0(T ), ε2χ),

where T := lcm(N,N ′M,M2).

Moreover, it can be shown that if f(z) is a cusp form, then so is f(z)⊗ ε.

We now recall the action of Ramanujan’s differential operator. The Ramanujan

Θ-operator is defined by

Θ
( ∞∑
n=h

a(n)qn
)

:=
∞∑
n=h

na(n)qn. (1.3.7)

We will denote by Θn(f) the application of the Θ-operator n times. It is well known

that if f is a non-constant modular form of weight k for a congruence subgroup Γ,

then Θ(f) is not a modular form. In fact, we have the following:

12



Proposition 1.11. If f(z) is a weight k modular form on a congruence subgroup Γ

of SL2(Z), then

Θ(f(z)) = f̃(z) + kf(z)E2(z)
12 ,

where f̃ is a weight k + 2 modular form on Γ.

However, in the modulo ` setting, the theta-operator behaves nicely. In (Swinnerton-

Dyer, 1973), it was proved that if ` ≥ 5 is prime and ∑∞
n=0 a(n)qn is a weight k

modular form with integer coefficients, then there is a weight k+ `+ 1 modular form∑∞
n=0 α(n)qn on SL2(Z) with integer coefficients whose Fourier expansion satisfies

∞∑
n=0

α(n)qn ≡
∞∑
n=0

na(n)qn (mod `). (1.3.8)

1.4 Elliptic Curves

This section gives a brief overview of elliptic curves and the definitions necessary to

understand the later results. The reader curious for more information is encouraged

to look at (Knapp, 1992), (Koblitz, 1993), and (Silverman, 2009).

An elliptic curve over a field K is a nonsingular cubic projective curve E defined

over K, together with a point O with coordinates in K. The set of projective points

on E with coordinates in K is called the set of K-rational points of E and is denoted

by E(K). With the appropriate change of variables, such a curve can always be given

by the (affine) equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.4.1)

the point O being the point at infinity. We call this the generalized Weierstrass form

of the curve. When the characteristic of K is not equal to 2 or 3, we can use the

simpler Weierstrass form

y2 = x3 + Ax+B. (1.4.2)
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One aspect that makes the theory of elliptic curves so rich is that the set E(K) of

K-rational points on E can be equipped with a group structure, which is geometric

in nature. There is a “chord-tangent” addition law for points which can be made

explicit in terms of rational functions in the coordinates. A fundamental property of

elliptic curves is that this set E(K) forms an abelian group. The following theorem,

originally due to Mordell, was generalized to number fields by Weil.

Theorem 1.12 (Mordell-Weil). Let K be a number field, and let E be an elliptic

curve defined over K. Then the group E(K) is finitely generated. In particular,

E(K) ≡ ZrK(E) ⊕ E(K)tors,

where rK(E) is the rank and E(K)tors is the torsion subgroup of points of finite order.

The Mordell-Weil Theorem implies that the group E(K)tors is always finite. One

might wonder which finite abelian groups can arise in this context. Alternatively,

given a prime p, one might wish to know if there exists an elliptic curve E/Q such

that E(Q) contains a point of order p. The following deep theorem, first conjectured

by Ogg, addresses these questions.

Theorem 1.13 (Mazur). Let E/Q be an elliptic curve. Then the torsion subgroup

E(Q)tors of E(Q) is isomorphic to one of the following fifteen groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these groups occurs as E(Q)tors for some elliptic curve E/Q.

For an elliptic curve E given by y2 = x3+Ax+B, we define ∆(E), the discriminant

of E by

∆(E) := −16(4A3 + 27B2).
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Note that this agrees with the discriminant of the cubic polynomial up to the factor

−16. If the discriminant ∆(E) is not divisible by a prime p, we say that E has good

reduction at p. For primes p where there is bad reduction, the cubic f(x) = x3+Ax+B

has multiple roots modulo p. If f(x) has a triple root, we say that E has additive

reduction at p. If f(x) has a double root, we say that E has multplicative reduction at

p. More precisely, if E has a node at which the two tangent lines are defined over Fp,

the finite field with p elements, then E is said to have split multiplicative reduction at

p. If these two tangent lines are not defined over Fp, then E is said to have nonsplit

multiplicative reduction at p.

We can associate a positive integer N = N(E) to E, called the conductor of E.

The conductor is similar to the discriminant in the sense that E has bad reduction

at p if p | N . For primes p ≥ 5, the power of p dividing N is 0, 1, or 2, according to

whether the reduction at p is good, multiplicative, or additive. For p = 2 and p = 3,

the exponent is more subtle, and can be computed by an algorithm due to Tate (see

Algorithm 7.5.1 in (Cohen, 1993)).

Suppose E is given by the equation (1.4.2) with A,B ∈ Z. For primes p, let

|E(Fp)| denote the number of points on E/Fp; i.e. the number of solutions to the

congruence y2 ≡ x3 +Ax+B (mod p), not counting the point at infinity. We define

the quantity

λ(p) :=



p+ 1− |E(Fp)| if E has good reduction at p,

1 if E has split multiplicative reduction at p,

−1 if E has nonsplit multiplicative reduction at p,

0 if E has additive reduction at p,

and define an L-function for the elliptic curve E by the following Euler product:

L(E, s) :=
∞∑
n=1

λ(n)
ns

. =
∏
p|N

(1− λ(p)p−s)−1 ·
∏
p-N

(1− λ(p)p−s + p1−2s)−1. (1.4.3)
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The product that defines L(E, s) converges absolutely and gives an analytic function

for all Re(s) > 3/2. This follows from the Hasse Bound, which is |λ(p)| ≤ 2√p for all

primes p. The L-function attached to a cusp form f(z) = ∑
a(n)qn ∈ Sk(Γ0(N), χ)

is defined by

L(f, s) :=
∞∑
n=1

a(n)
ns

. (1.4.4)

In his work on the Weil Conjectures, Deligne proved that for such cusp forms, we

have |a(p)| ≤ 2p k−1
2 . As a result of this, the sum above converges for Re(s) > k+1

2 . If

f is a Hecke eigenform, then we can expand the sum (1.4.4) as an Euler product

L(f, s) =
∏
p

(
1− a(p)p−s + χ(p)pk−1−2s

)−1
,

where the product is taken over all primes p. Additionally, in the case that f is a

newform, the completed L-function defined by

Λ(s, f) = N s/2(2π)−sΓ(s)L(f, s)

satisfies a functional equation

Λ(s, f) = ωΛ(k − s, f),

where ω is a complex number of absolute value 1 that can be specified precisely, and

L(f, s) has analytic continuation to C.

Work of Eichler and Shimura establishes a link between λ(n), the coefficients

of L(E, s) when E is an elliptic curve over Q, and Fourier coefficients of weight 2

newforms.

Theorem 1.14 (Eichler-Shimura). Let f(z) be a newform in Snew
2 (Γ0(N)) such that

a(n) ∈ Z for all n. Then there exists an elliptic curve E over Q with conductor N

such that L(E, s) = L(f, s).

In the other direction we have the famous Shimura-Taniyama conjecture, which was

proved by Breuil, Conrad, Diamond, Taylor, and Wiles.
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Theorem 1.15 (Modularity Theorem). If E is an elliptic curve over Q of conductor

N , then there is a newform f(z) ∈ Snew
2 (Γ0(N)) for which L(E, s) = L(f, s).

For elliptic curves E/Q, Theorem 1.15 implies that L(E, s) has analytic continua-

tion to C, and so the behavior of L(E, s) at s = 1 is well-defined. The Birch and

Swinnerton-Dyer Conjecture, one of the remaining Clay Millenium Problems, pre-

dicts that the order of vanish of the Taylor series for L(E, s) at s = 1 (called the

analytic rank of E) is equal to the geometric (or algebraic) rank of K, which is rE(Q),

the rank of E(Q), the Mordell-Weil group of rational points.
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Chapter 2

Formulas for Shimura Images

2.1 Background and Statement of Results

In a 1973 paper in Annals of Mathematics, Shimura began a systematic study of

modular forms of half-integral weight with θ-multiplier system, as described in the

introduction. A crucial aspect of this theory entailed a linear map, called the Shimura

Correspondence, or Shimura Lift, from spaces of modular forms with half-integral

weight to spaces of modular forms with even integral weight. Shortly after Shimura’s

work, Shintani studied the dual map from integer weight forms to half-integral weight

forms. While the Shimura Lift is interesting in its own right on theoretical grounds,

it has also proved to be very useful in applications to number theory and arithmetic

geometry, for example. In particular, it allows for interplay between spaces that have

different features and whose functions encode objects of different types as generating

functions.

On one hand, integral weight modular forms enjoy a nice spectral theory char-

acterized by the “Multiplicity One” property from the introduction. Furthermore,

modular forms whose coefficients contain information on solution counts to Diophan-

tine equations modulo p for all primes p lie in spaces of integer weight, the prototype

being newforms of weight 2 with integer coefficients, which correspond to elliptic

curves over Q via the work of Wiles et al and Eichler-Shimura. Integer weight new-

forms have similarly deep connections to the arithmetic of number fields through the

theory of “modularity of Galois representations” pioneered by Deligne and Serre.
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On the other hand, the spectral theory of Hecke operators in half-integral weight is

more complicated. Multiplicity one does not hold, nor is there a direct connection to

number fields via Galois representations. However, deep work of Waldspurger shows

that the Fourier coefficients of half-integral weight modular forms often interpolate

square roots of central critical values of L-functions in arithmetic geometry.

For example, one may recast important results of Bump, Friedberg, and Hoff-

stein, of Iwaniec, of Murty and Murty, and of Waldspurger, on non-vanishing of

central critical L-values of quadratic twists of elliptic curves and their derivatives

as statements about the non-vanishing of coefficients of half-integral weight modular

forms. It turns out that through the Shimura Lift, these non-vanishing theorems

together with work of Kolyvagin and Gross and Zagier imply the known cases of the

Birch and Swinnerton-Dyer Conjecture.

In a different direction, spaces of half-integral weight modular forms provide a

setting for generating functions of interest in additive combinatorics such as the gen-

erating function for the ordinary partition function p(n), studied by Euler, Gauss,

and Ramanujan. It turns out the generating function for p(n) is a modular form of

weight −1/2 on the group Γ0(576) which is holomorphic on the upper half-plane, but

has a simple pole at every cusp. Work of Ono et al shows how to use the Shimura

Lift to transfer the study of p(n) to the integer weight setting. Facts about Galois

representations coming from the Chebotarev Density Theorem then allowed Ahlgren

and Ono to prove that for everyM ≥ 1 coprime to 6, there exist infinitely many arith-

metic progressions An + B, none contained in any other, such that p(An + B) ≡ 0

(mod M) for all n.

We now define the Shimura Lift. Let f(z) := ∑∞
n=1 a(n)qn. Let χ be a Dirichlet

character modulo 4N , let t be a squarefree positive integer, and let λ ≥ 1 be an

integer. Define

St(f(z)) :=
∞∑
n=1

At(n)qn
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by
∞∑
n=1

At(n)
ns

:= L(s− λ+ 1, ψt) ·
∞∑
n=1

a(tn2)
ns

,

where ψt(m) := χ(m)
(
−1
m

)t (
t
m

)
.

Multiplying out the series on the right side and equating coefficients, we find that

the values At(n) are given by

At(n) :=
∑
d|n
ψχλ−1χt(d)dλ−1a

(
tn2

d2

)
. (2.1.1)

In (Shimura, 1973), the following was proved:

Theorem 2.1 (Shimura). Suppose that f(z) ∈ Sλ+1/2(Γ0(4N), χ). Then

St(f) ∈


M2λ(Γ0(2N), χ2) if λ = 1,

S2λ(Γ0(2N), χ2) if λ > 1.

Moreover, St commutes with the Hecke operators:

St(f | Tp2,λ+1/2,χ) = St(f) | Tp,2λ,χ2).

A version of the Shimura lift was discovered earlier by Selberg, but never pub-

lished. Selberg’s version deals with the special case that the half-integral weight form

is a theta function times an eigenform. In this case, Selberg explicitly identifies the

image. Note that not every cusp form can be written in this way, so this version of

the lift is not as general as Shimura’s. Selberg’s version is also weaker in that it only

treats the lift for t = 1.

Theorem 2.2 (Selberg). Suppose f(z) = ∑∞
n=1 a(n)qn ∈ Sλ(SL2(Z)) is a normalized

Hecke eigenform. Define

g(z) := θ(z)f(4z) ∈ Sλ+1/2(Γ0(4))

where

θ(z) :=
∞∑

n=−∞
qn

2 ∈M1/2(Γ0(4)).
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Then

S1(g(z)) = f(z)2 − 2k−1f(2z)2 ∈ S2λ(Γ0(2)).

Cipra generalized Selberg’s work in (Cipra, 1989). Here we present a special case.

Theorem 2.3 (Cipra). Suppose f(z) = ∑∞
n=1 a(n)qn ∈ Snew

λ (Γ0(N), χ) be a newform.

Define

g(z) := θ(z)f(4z) ∈ Sλ+1/2(Γ0(4N))

where

θ(z) :=
∞∑

n=−∞
qn

2 ∈M1/2(Γ0(4)).

Then

S1(g(z)) = f(z)2 − 2k−1χ(2)f(2z)2 ∈ S2λ(Γ0(2N), χ2).

We prove the following theorem:

Theorem 2.4. Suppose that g(z) := ∑∞
n=0 a(n)qn ∈ Mk(Γ0(N), χ) is a normalized

Hecke eigenform of integer weight.

(1) We have

S1(η(24z)g(24z)) = (g(z)g(6z)− g(2z)g(3z))⊗ χ3,

and, S1(η(24z)g(24z)) ∈ S2k(Γ0(144N), χ2).

(2) We have

S1(η(8z)3g(8z)) = (g(2z) Θ(g(z))− g(z) Θ(g(2z)))⊗ χ−1,

and S1(η(8z)2g(8z)) ∈ S2k+2(Γ0(16N), χ2).

Before we give an example of the utility of Theorem 2.4, we prove the following

result which seems to not appear in the literature. This useful fact establishes a

relationship between the different Shimura maps.
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Proposition 2.5. Let f(z) = ∑∞
n=1 a(n)qn ∈ Sλ+1/2(Γ0(4N), χ), and let r > 0 be a

square-free odd integer. Then we have

Sr(f) = S1(f | Ur).

Proof. From the definition, we have Sr(f) = ∑∞
n=1 Ar(n)qn, where

Ar(n) :=
∑
d|n
χ(d)

(−1
d

)r (r
d

)
dλ−1a

(
rn2

d2

)
.

On the other hand, we have

f | Ur =
∞∑
n=1

a(rn)qn ∈ Sλ+1/2

(
Γ0(4rN), χ

(
r

·

))
,

and S1(f | Ur) = ∑∞
n=1 A1(n)qn, where

A1(n) :=
∑
d|n
χ(d)

(−1
d

)r (r
d

)
dλ−1a

(
rn2

d2

)
,

which is what we wanted.

2.2 Examples

We now give an example of Theorem 2.4.

Example 2.6. Let f5(z) := η(24z)5 ∈ S2+1/2(Γ0(576), χ3). Using the definition

(2.1.1), we can compute the image of f5 under the Shimura map S5,

F5(z) := S5(f5(z)) ∈ S4(Γ0(144))

= q − 6q5 + 16q7 + 12q11 + · · · .

Using Proposition 1.7, we have

h(z) := f5(z) | U5 ∈ S2+1/2

(
Γ0(5 · 576), χ3

(5
·

))
= q − 6q25 + 9q49 + 10q73 + · · · .

If we can write h(z) = η(24z)g(24z) for some normalized Hecke eigenform g(z) ∈

M2
(
Γ0(5),

(
5
·

))
, then we can use Theorem 2.4. It is easy to verify that the form
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g(z) := η(z)5

η(5z) = 1 − 5q + 5q2 + 10q3 + · · · is a Hecke eigenform (not normalized) in

this space, and that we have the relation

η(24z)5 | U5 = η(24z) · η(24z)5

η(5 · 24z) .

Using Theorem 2.4, we have

S1(h) = −1
5 (g(z)g(6z)− g(2z)g(3z))⊗ χ3.

Strictly speaking, we have

−1
5 (g(z)g(6z)− g(2z)g(3z)) ∈ S4(Γ0(30)),

however, we can identify this form as the newform (η(z)η(2z)η(3z)η(6z))2 ∈ S4(Γ0(6))

using Sturm’s Theorem. Twisting by χ3 gives

S5(η(24z)5) = (η(z)η(2z)η(3z)η(6z))2 ⊗ χ3 ∈ S4(Γ0(144)).

2.3 Proofs of Results

Proof of Theorem 2.4. By Proposition 1.6, we have g(24z) ∈Mk(Γ0(24N), χ). Think-

ing of g(24z) as a half-integral weight form, we have g(24z) ∈ Mk(Γ0(24N), χχk−1).

See Prop. 3 in Chapter 4 of (Koblitz, 1993) for details. Multiplying out the series

gives

η(24z)g(24z) = 1
2 ·

∞∑
t=1

∑
m∈Z

χ3(m)a
(
t−m2

24

)
qt ∈ Sk+1/2(Γ0(576N), χχ3χ

k
−1).

For the sake of simplicity, write

b(t) := 1
2 ·

∑
m∈Z

χ3(m)a
(
t−m2

24

)
,

so that η(24z)g(24z) = ∑∞
t=1 b(t)qt. Now, by the definition of the Shimura correspon-

dence, we have

S1(η(24z)g(24z)) =
∞∑
n=1

A(n)qn ∈ S2k(Γ0(288N), χ2),
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where (2.1.1) gives

A(n) =
∑
d|n
χχ3(d)dk−1b

(
n2

d2

)

= 1
2 ·
∑
d|n
χχ3(d)dk−1 ∑

m∈Z
χ3(m)a

 n2

d2 −m2

24


= 1

2 ·
∑
d|n
χχ3(d)dk−1 ∑

m∈Z
χ3(m)a(n, d,m), (2.3.1)

where we have written a(n, d,m) := a

(
n2
d2 −m2

24

)
for brevity. At this point, we need

the following lemma:

Lemma 2.7. With notations and definitions as above, we have

∑
m∈Z

χ3(m)a(n, d,m) = 2χ3(n)χ3(d)


∑
s∈Z
d|s

a

(
s(n− 6s)

d2

)
−
∑
t∈Z
d|t
t odd

a

t
(
n−3t

2

)
d2




Proof. Because of the χ3(m) factor in each term, the sum on the left is supported on

integers m coprime to 12. For such m, we have m2 ≡ 1 (mod 24). Furthermore, we

have
n2

d2 −m
2 ≡ n2

d2 − 1 ≡ 0 (mod 24).

It follows that n/d ≡ 1, 5, 7, 11 (mod 12). The sum of interest is indexed by integers

m, so we will split the sum into residue classes. By the previous observation, we have

that

m ≡ ±n
d
, ±n

d
+ 6 (mod 12).

When m ≡ ±n/d (mod 12), we see that χ3(m) = χ3(±n/d) = χ3(±1)χ3(n/d) =

χ3(n/d) since χ3(1) = χ3(−1) = 1. When m ≡ ±n/d + 6 (mod 12), we see that

χ3(m) = χ3(±n/d+ 6) = −χ3(±n/d) = −χ3(n/d). Thus, our sum becomes

∑
m∈Z

χ3(m)a(n, d,m) = χ3(n/d)
∑

m≡±n/d (mod 12)
a(n, d,m)− χ3(n/d)

∑
m≡±n/d+6 (mod 12)

a(n, d,m) (2.3.2)

We analyze each of these two sums individually.
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First, consider the case that m ≡ n/d (mod 12). For each such m, we have

m = n/d− 12j for some j ∈ Z. So we obtain

n

d
−m = 12j, n

d
+m = 2

(
n

d
− 6j

)
.

Thus, we conclude that

1
24

(
n2

d2 −m
2
)

= 1
24

(
n

d
−m

)(
n

d
+m

)
= j

(
n

d
− 6j

)
.

Summing over all such m is equivalent to summing over all j, so we get

∑
m≡n/d (mod 12)

a(n, d,m) =
∑
j∈Z

a
(
j
(
n

d
− 6j

))
. (2.3.3)

Next, consider the case m ≡ −n/d (mod 12). For each m of this form, we have

m = −n/d+ 12i for some i ∈ Z, so

n

d
+m = 12i, n

d
−m = 2

(
n

d
− 6i

)
.

By a similar manipulation as before, we get

∑
m≡−n/d (mod 12)

a(n, d,m) =
∑
i∈Z

a
(
i
(
n

d
− 6i

))
. (2.3.4)

Now, we look at the case where m ≡ n/d + 6 (mod 12). For these m, we have

m = n/d+ 6− 12` for some ` ∈ Z. This gives us

n

d
−m = 6(2`− 1), n

d
+m = 2

(
n

d
− 3(2`− 1)

)
so that

1
24

(
n2

d2 −m
2
)

=
(2`− 1)

(
n
d
− 3(2`− 1)

)
2 .

This gives

∑
m≡n/d+6 (mod 12)

a(n, d,m) =
∑
`∈Z

a

(2`− 1)
(
n
d
− 3(2`− 1)

)
2

 . (2.3.5)

Finally, in the case that m ≡ −n/d + 6 (mod 12), we get m = −n/d + 6 + 12u

for some u ∈ Z. Rewriting, we get

n

d
+m = 6(2u+ 1), n

d
−m = 2

(
n

d
− 3(2u+ 1)

)
.
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Similar manipulation as the last case and reindexing by replacing u with `− 1 gives

∑
m≡−n/d+6 (mod 12)

a(n, d,m) =
∑
`∈Z

a

(2`− 1)
(
n
d
− 3(2`− 1)

)
2

 . (2.3.6)

Using these sums (2.3.3), (2.3.4), (2.3.5), and (2.3.6) in (2.3.2), we arrive at

∑
m∈Z

χ3(m)a(n, d,m)

= 2χ3(n/d)
∑
j∈Z

a

(
jd(n− 6jd)

d2

)
−
∑
`∈Z

a

(2`− 1)d
(
n−3(2`−1)d

2

)
d2

 . (2.3.7)

Because of the constant factor of χ3(d) in the sum (2.3.1) defining A(n), we can split

up this character as χ3(n/d) = χ3(n)χ3(d), as all terms in the sum are zero when d

is odd. Moreover, since n is odd, we must have t odd, otherwise n−3t
2 /∈ Z. Thus,

(2.3.7) becomes

∑
m∈Z

χ3(m)a(n, d,m) = 2χ3(n)χ3(d)


∑
s∈Z
d|s

a

(
s(n− 6s)

d2

)
−
∑
t∈Z
d|t
t odd

a

t
(
n−3t

2

)
d2


 ,

which is what we wanted.

Using Lemma 2.7 in our expression (2.3.1), we get

A(n) = χ3(n)
∑
d|n
χ(d)dk−1


∑
s∈Z
d|s

a

(
s(n− 6s)

d2

)
−
∑
t∈Z
d|t
t odd

a

t
(
n−3t

2

)
d2




= χ3(n)

∑
s∈Z

∑
d|(s,n)

χ(d)dk−1a

(
s(n− 6s)

d2

)
−
∑
t∈Z
t odd

∑
d|(t,n)

χ(d)dk−1a

t
(
n−3t

2

)
d2




= χ3(n)

∑
s∈Z

∑
d|(s,n−6s)

χ(d)dk−1a

(
s(n− 6s)

d2

)
−
∑
t∈Z
t odd

∑
d|(t,n−3t

2 )

χ(d)dk−1a

t
(
n−3t

2

)
d2


 ,

were we used the fact that gcd(s, n) = gcd(s, n− 6s) and gcd(t, n) = gcd(t, n− 3t) =

gcd(t, n−3t
2 ), since t, n both odd give us that n− 3t is even.
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Now, using Proposition 1.8 we get

A(n) = χ3(n)

∑
s∈Z

a(s)a(n− 6s)−
∑
t∈Z
t odd

a(t)a
(
n− 3t

2

)
= χ3(n)

∑
s∈Z

a(s)a(n− 6s)−
∑
t∈Z

a(t)a
(
n− 3t

2

) ,
where we removed the stipulation that t be odd since n−3t

2 /∈ Z unless t is odd. We

conclude with

S1(η(24z)g(24z)) =
∞∑
n=1

A(n)qn

=
∞∑
n=1

χ3(n)
∑
s∈Z

a(s)a(n− 6s)−
∑
t∈Z

a(t)a
(
n− 3t

2

)
=
 ∞∑
n=1

∑
s∈Z

a(s)a(n− 6s)
 qn − ∞∑

n=1

∑
t∈Z

a(t)a
(
n− 3t

2

) qn
⊗ χ3

= (g(z)g(6z)− g(2z)g(3z))⊗ χ3,

which gives us what we wanted. After this, a straightforward application of Proposi-

tion 1.10 shows that the level of the image divides 144N .

Now, we prove the second part of the theorem. Recall that

η(8z)3 = 1
2
∑
m∈Z

(−1)m(2m+ 1)q(2m+1)2 ∈ S3/2(Γ0(64)). (2.3.8)

As g(z) ∈Mk(Γ0(N), χ), we have g(8z) ∈Mk(Γ0(8N), χχk−1) for the same reasons as

in the first part of the proof. Multiplying out the series gives

η(8z)3g(8z) =
∞∑
t=1

b(t)qt ∈ Sk+1+1/2(Γ0(64N), χχk−1),

where

b(t) = 1
2
∑
m∈Z

(−1)m(2m+ 1)a
(
t− (2m+ 1)2

8

)
.

Now, by definition of the Shimura map S1, we have

S1(η(8z)3g(8z)) =
∞∑
n=1

A(n)qn ∈ S2k+2(Γ0(32N), χ2),
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where by (2.1.1) we get

A(n) =
∑
d|n
χχ−1(d)dkb

(
n2

d2

)

= 1
2
∑
d|n
χχ−1(d)dk

∑
m∈Z

(−1)m(2m+ 1)a
 n2

d2 − (2m+ 1)2

8

 . (2.3.9)

We now prove a lemma.

Lemma 2.8. With notations and definitions as above, we have

A(n) = χ−1(n)
∑
d|n
χ(d)dk

∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))
.

Proof. Observe that (2m+ 1)2 ≡ 1 (mod 8) for all integers m. So n2

d2 − (2m+ 1)2 ≡
n2

d2 −1 ≡ 0 (mod 8), and this is true for n/d ≡ 1, 3 (mod 4). We split the sum (2.3.9)

defining A(n) into residue classes accordingly. We have

2A(n) =
∑
d|n

n
d
≡1 (mod 4)

χχ−1(d)dk
∑
m∈Z

(−1)m(2m+ 1)a
 n2

d2 − (2m+ 1)2

8

 (2.3.10)

+
∑
d|n

n
d
≡3 (mod 4)

χχ−1(d)dk
∑
m∈Z

(−1)m(2m+ 1)a
 n2

d2 − (2m+ 1)2

8

 . (2.3.11)

First, consider (2.3.10). We will look at the even- and odd-indexed terms separately.

When m is even, the inner sum in (2.3.10) becomes

∑
i∈Z

(4i+ 1)a
 n2

d2 − (4i+ 1)2

8

 . (2.3.12)

Since n/d ≡ 1 (mod 4), we have n/d = 4j + 4i+ 1 for some j ∈ Z. So

n

d
+ (4i+ 1) = n

d

(
n

d
− 4j

)
= 2

(
n

d
− 2j

)
,

n

d
− (4i+ 1) = 4j,

so that

n2

d2 − (4i+ 1)2 =
(
n

d
− (4i+ 1)

)(
n

d
+ (4i+ 1)

)
= 8j

(
n

d
− 2j

)
.

Thus, (2.3.12) becomes

∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))
. (2.3.13)
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Similarly, for m odd, the inner sum in (2.3.10) becomes

−
∑
i∈Z

(4i+ 3)a
 n2

d2 − (4i+ 3)2

8

 . (2.3.14)

Since n/d ≡ 1 (mod 4), we have n/d = 4j − (4i+ 3) for some j ∈ Z, so

n

d
+ (4i+ 3) = 4j, n

d
− (4i+ 3) = 2

(
n

d
− 2j

)

Thus, (2.3.12) becomes

∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))
(2.3.15)

Now, χ−1(d) = χ−1(d)χ−1(n/d) = χ−1(n) since n/d ≡ 1 (mod 4), so that using

(2.3.13) and (2.3.15), (2.3.10) becomes

2χ−1(n)
∑
d|n

n
d
≡1 (mod 4)

χ(d)dk
∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))
(2.3.16)

Next, we look at (2.3.11). As before, we will split the inner sum over m into even-

and odd-indexed terms. For m even, this sum becomes

∑
i∈Z

(4i+ 1) a


(
n
d

)2
− (4i+ 1)2

8

 (2.3.17)

Here, n/d ≡ 3 (mod 4), so we have n/d = 4j − (4i+ 1) for some j ∈ Z. We get

n

d
+ (4i+ 1) = 4j

n

d
− (4i+ 1) = n

d
−
(

4j − n

d

)
= 2

(
n

d
− 2j

)

so that (
n

d

)2
− (4i+ 1)2 = 8j

(
n

d
− 2j

)
.

Thus, (2.3.17) becomes

∑
j∈Z

(
4j − n

d

)
a
(
j
(
n

d
− 2j

))
(2.3.18)
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Similarly, for odd m, the inner sum in (2.3.11) becomes

∑
i∈Z

(4i+ 1) a


(
n
d

)2
− (4i+ 3)2

8

 . (2.3.19)

Since n/d ≡ 3 (mod 4), we have n/d = 4j + 4i+ 3 for some j ∈ Z. We get

n

d
− (4i+ 3) = 4j

n

d
+ (4i+ 3) = n

d
+
(
n

d
− 4j

)
= 2

(
n

d
− 2j

)

so that (
n

d

)2
− (4i+ 3)2 = 8j

(
n

d
− 2j

)
.

Thus, (2.3.19) becomes

∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))
. (2.3.20)

For n/d ≡ 3 (mod 4), we have that −χ−1(d) = χ−1(d)χ−1(n/d) = χ−1(n), so that by

combining (2.3.18) and (2.3.20), (2.3.11) becomes

2χ−1(n)
∑
d|n

n
d
≡3 (mod 4)

χ(d) dk
∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))
. (2.3.21)

Now from (2.3.16) and (2.3.21), it follows that

A(n) = χ−1(n)
∑
d|n
χ(d)dk

∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))
,

which is what we wanted to show.
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Using our Lemma 2.8 in (2.3.9), we obtain

A(n) = χ−1(n)
∑
d|n
χ(d)dk

∑
j∈Z

(
n

d
− 4j

)
a
(
j
(
n

d
− 2j

))

= χ−1(n)
∑
d|n
χ(d)dk

∑
s∈Z
d|s

1
d

(n− 4s)a
(
s(n− 2s)

d2

)
replacing s = jd

= χ−1(n)
∑
s∈Z

(n− 4s)
∑
d|(s,n)

χ(d)dk−1a

(
s(n− 2s)

d2

)

= χ−1(n)
∑
s∈Z

(n− 4s)
∑

d|(s,n−2s)
χ(d)dk−1a

(
s(n− 2s)

d2

)

= χ−1(n)
∑
s∈Z

(n− 4s)a(s)a(n− 2s), (2.3.22)

where the last equality comes from the fact that g is a Hecke eigenform and Propo-

sition 1.8.

We need another lemma.

Lemma 2.9. We have

g(2z)Θ(g(z))− g(z)Θ(g(2z)) =
∞∑
t=0

∑
s∈Z

(t− 4s)a(s)a(t− 2s)
 qt.

Proof. We have g(z) = ∑∞
n=0 a(n)qn. It follows that

g(2z) =
∞∑
n=0

a(n)q2n, Θ(g(z)) =
∞∑
n=0

na(n)qn, Θ(g(2z)) =
∞∑
n=0

2na(n)q2n.

From this, we see that

g(2z)Θ(g(z)) =
∞∑
t=0

( ∑
2s+r=t

a(s)ra(r)
)
qt =

∞∑
t=0

∑
s∈Z

(t− 2s)a(s)a(t− 2s)
 qt,

g(z)Θ(g(2z)) =
∞∑
t=0

( ∑
2s+r=t

a(r)2sa(s)
)
qt =

∞∑
t=0

∑
s∈Z

2sa(s)a(t− 2s)
 qt.

The desired result follows.

Lemma 2.9 establishes that we have the q-series identity

∞∑
n=1

A(n)qn = (g(2z)Θ(g(z))− g(z)Θ(g(2z)))⊗ χ−1.
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It is not clear that the expression on the right is a modular form, since it contains

derivatives of modular forms. Letting h(z) = g(2z) and applying Proposition 1.11,

we see that

g(2z)Θ(g(z))− g(z)Θ(g(2z))

= 1
12h(z) (g̃(z) + kg(z)E2(z))− g(z)

(
h̃(z) + kh(z)E2(z)

)
= 1

12
(
g̃(z)h(z) = kg(z)h(z)E2(z)− g(z)h̃(z)− kg(z)h(z)E2(z)

)
= 1

12
(
g̃(z)h(z)− g(z)h̃(z)

)
,

which is modular of weight 2k + 2

Theorem 2.1 tells us that the image will have level dividing 32N . However an

application of Proposition 1.10 shows us that the level will in fact divide 16N . This

completes the proof.
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Chapter 3

Elliptic Curve Congruences

3.1 Framework

Let r be an odd integer with 1 ≤ r ≤ 23, let s ≥ 0 be even, and let χ3 be the Dirichlet

character modulo 12 as defined in (1.2.4). In (Garvan, 2010) it was proved that the

subspace

Sr,s := {η(24z)rf(24z) | f(z) ∈Ms(SL2(Z))} ⊆ Sr/2+s(Γ0(576), χ3) (3.1.1)

is stable under the Hecke operators T`2 := T`2,r/2+s,χ3 for primes ` ≥ 5. That is, for

primes ` ≥ 5 and f ∈ Sr,s, we have f | T`2 ∈ Sr,s. We have Ms(SL2(Z)) = CEs(z)

when s ∈ {0, 4, 6, 8, 10, 14}, so for these values of s, the form

fr,s(z) := η(24z)rEs(24z) =
∞∑
n=1

ar,s(n)qn = qr + · · · (3.1.2)

is an eigenform. Considering all such possibilities for r and s, there are 72 eigenforms

in total.

For a fixed squarefree t ≥ 1, the Shimura lift St maps

St : Sr,s ⊆ Sr/2+s(Γ0(576), χ3)→ Sr−1+2s(Γ0(N)),

with N | 288. In this section, we will stick to the convention of using the Shimura

map Sr on the form fr,s. We define

Fr,s(z) :=
∞∑
n=1

Ar,s(n)qn = Sr(fr,s(z)) ∈ Sr−1+2s(Γ0(N)) (3.1.3)

and recall that the map Sr is Hecke-equivariant. In our case, this means that for all

primes ` ≥ 5, we have

Sr(fr,s(z) | T`2) = Sr(fr,s(z)) | T` = Fr,s(z) | T`. (3.1.4)
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We now outline the general idea for connecting elliptic curves and weight 2 new-

forms on one hand with half-integral weight eigenforms fr,s(z) as in (3.1.2) on the

other. To make the connection, start with G(z) ∈ Snew
2 (Γ0(6`j)) ∩ Z[[q]]. By Theo-

rem 1.14, there exists an elliptic curve

EG/Q : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with conductor N(EG) = 6`j such that for primes p /∈ {2, 3, `}, we have

cG(p) = p+ 1− |EG(Fp)|.

For all 0 ≤ a ≤ ` − 1, we find that ΘaG(z) is congruent modulo ` to a form

in S2+a(`+1)(Γ0(6`j)). Furthermore, a theorem of Serre asserts that for some b ≤

a +
⌊

2a
`−1

⌋
, we have ΘaG(z) congruent modulo ` to a form in S2+a(`+1)−b(`−1)(Γ0(6)).

To verify this congruence when b ≥ 0, it suffices to compute

(2 + a(`+ 1)) 6`j
12

(
1 + 1

2

)(
1 + 1

3

)(
1 + 1

`

)
= (2 + a(`+ 1))(`+ 1)`j

coefficients of the forms modulo `. Next, we twist ΘaG(z) by χ3 via Proposition 1.10

to obtain

ΘaG(z)⊗ χ3 =
∞∑
n=1

nacG(n)χ3(n)qn ∈ S2+a(`+1)−b(`−1)(Γ0(144))

modulo `. To connect with the half-integral weight eigenform fr,s(z), we try to find

G(z), and hence EG/Q, for which

Fr,s(z) = Sr(fr,s(z)) ≡ ΘaG(z)⊗ χ3 (mod `).

The form on the left has weight r − 1 + 2s and level N | 288. Experiments suggest

that N = 144 as in the speculation above. The form on the right has weight 2+a(`+

1)− b(`− 1) and level 144. Therefore, for such a congruence to hold, we must have

r − 1 + 2s = 2 + a(`+ 1)− b(`− 1) = (a− b)`+ a+ b+ 2.
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To verify the congruence, we must compute

(r − 1 + 2s)288
12

(
1 + 1

2

)(
1 + 1

3

)
= 48(r − 1 + 2s)

coefficients of the forms modulo ` at level 288 = 24 · 12.

3.2 Examples

We will demonstrate a few examples to illustrate the method of proof outlined.

Example 3.1. Let f17(z) = η(24z)17 = ∑∞
n=0 a7(n)qn. We see that f17(z) ∈ S17/2(Γ0(576), χ3),

and

f17(z) = q17 − 17q41 + 119q65 − 408q89 + · · · .

Letting F7(z) := ∑∞
n=1 A7(n)qn denote the image of f17(z) under the Shimura map

S17, we find that F17(z) ∈ S16(Γ0(288)), and that

F17(z) = q + 114810q5 + 3034528q7 − 103451700q11 + · · · .

Let E denote the elliptic curve

y2 + xy + y = x3 + x2 − 4x+ 5

defined over Q, and let G(z) = ∑∞
n=1 cG(n)qn ∈ S2(Γ0(42)) be the cuspform associated

to the curve E (which has conductor 42). We will show that

F7(z) ≡
∞∑
n=1

χ3(n)ncG(n)qn (mod 7).

From (1.3.8), we find that

E6 ·ΘG ≡ ΘG =
∞∑
n=1

ncG(n)qn (mod 7)

is congruent to a modular form in S16(Γ0(42)), and one can show that that is con-

gruent to a modular form in S16(Γ0(6)). Using Proposition 1.10, we find that the χ3

quadratic twist

ΘG⊗ χ3 =
∞∑
n=1

n
(12
n

)
cG(n)qn
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is congruent to a modular form in S16(Γ0(864)). Since F7(z) ∈ S16(Γ0(288)) ⊆

S16(Γ0(864)), we may check that

∞∑
n=1

n
(12
n

)
cG(n)qn ≡ F7(z) (mod 7)

by checking that the first 2304 coefficients agree modulo 7.
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Chapter 4

Pseudo Eigenforms

4.1 Background and Statement of Results

For an integer 1 ≤ r ≤ 12, we let δr denote the least positive integer such that

24 | 2rδr. Note that we have δr = 12/ gcd(12, r). Theorem 1.3 tells us that

η(δrz)2r ∈ Sr
(

Γ0(δ2
r),
(−1
·

)r)
.

In (Dummit et al., 1985), a complete classification of eta-products that are also Hecke

eigenforms was given. In particular, they proved that η(az)b is a newform if and only

there exists r ∈ Z with b = 2r and a = δr such that r | 12. We note that this holds

if and only if

(r, δr) ∈ A := {(1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1)}.

It turns out that these forms all have order of vanish at the cusp infinity equal to

one, and they lie in one-dimensional spaces. Later, in (Martin, 1996), all eta-quotient

newforms were classified. We will prove that the forms η(δrz)2r are eigenforms for

primes p ≡ 1 (mod δr) when (r, δr) come from the set

B := {(5, 12), (7, 12), (8, 3), (9, 2), (10, 6), (11, 12)},

and we will describe Hecke invariant spaces of forms analogous to the space Sr,s as

defined in (3.1.1).

Let fr(z) := η(δrz)2r, let br := 2rδr/24, and observe that

fr(z) = qbr
∞∏
n=1

(1− qδrn)2r = qbr + · · ·
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is supported on exponents br + δrn ≡ br (mod δr).

Lemma 4.1. Let 1 ≤ r ≤ 12, and let fr, δr, and br be as above. Suppose that p is

prime with p - δr, and that fr | Tp 6= 0. Then the q-expansion of fr | Tp has support

on exponents pbr (mod δr).

Proof. Writing fr(z) = ∑∞
n=0 ar(n)qn, we have

fr | Tp =
∞∑
n=0

(
ar(pn) + pr−1

(
−1
p

)r
ar(n/p)

)
qn,

where ar(n/p) = 0 if p - n. It is clear that the image has support on exponents n

with ar(pn) 6= 0 or ar(n/p) 6= 0. Observe that if an integer m is coprime to 24, then

m2 ≡ 1 (mod 24). Since δr | 24, it follows that m2 ≡ 1 (mod δr) for integers m

coprime to δr. We also recall that ar(m) 6= 0 implies that m ≡ br (mod δr). Hence,

if we suppose that ar(pn) 6= 0, then we must have pn ≡ br (mod δr). Since p - δr, we

multiply both sides by p and use our observation above to obtain n ≡ pbr (mod δr).

Similarly, we suppose that p | n. We see that a(n/p) 6= 0 implies that n/p ≡ br

(mod δr). It follows that n ≡ pbr (mod δr), as desired.

The vital input for the main results in this chapter is the following technical

proposition. We state the proposition and its corollaries now; we defer the proofs and

examples to Section 4.2.

Proposition 4.2. Let 1 ≤ r ≤ 12, let δr and br be as above, and let p be prime with

p - δr. Define j ≥ 1 to be j = r if r | 12 and to be the least positive residue of pbr

(mod 12) if r - 12. Suppose that k ≥ 0 is even and that F (z) ∈ Mk(SL2(Z)). Then

there exists K(z) ∈Mk+r−j(SL2(Z)) such that

H(z) := (η(δrz)2rF (δrz)) | Tp
η(δrz)2j = K(δrz).

Let s ≥ 0 be an integer, and define

Ar,s :=
{
η(δrz)2rFs(δrz) | (r, δr) ∈ A and F (z) ∈Ms(SL2(Z))

}
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Br,s :=
{
η(δrz)2rFs(δrz) | (r, δr) ∈ B and F (z) ∈Ms(SL2(Z))

}
Then Ar,s, Br,s ⊆ Mr+s

(
Γ0(δ2

r),
(
−1
·

)r)
For (r, δr) ∈ A, we see that j = r in the

statement of Proposition 4.2, and so

fr | Tp = η(δrz)2rF (δrz) | Tp = η(δrz)2rK(δrz),

where F (z) and K(z) ∈Ms(SL2(Z)). We have proved the following.

Corollary 4.3. The subspace Ar,s is stable under the Hecke operators Tp for primes

p - δr. If s ∈ {0, 4, 6, 8, 10, 14} and f(z) ∈ Ar,s, then f(z) is a Hecke eigenform.

Corollary 4.4. The subspace Br,s is stable under the Hecke operators Tp for primes

p ≡ 1 (mod δr). Given f ∈ Br,s, we have, f | Tp | Tp ∈ Br,s for primes p - δr.

For example, let

f(z) = η(12z)10E4(12z) ∈M9

(
Γ0(144),

(−1
·

))
=
∞∑
n=0

a(n)qn = q5 + 230q17 − 205q29 + · · ·

Here, we have (r, δr) = (5, 12) ∈ B, so that f is an eigenform for primes p ≡ 1

(mod 12). Indeed, we find that

f | T13 = 478f = a(13 · 5)f

f | T37 = 925922f = a(37 · 5)f.

4.2 Proofs

Proof of Proposition 4.2. Define

g(z) := gr,F (z) = η(δrz)2rF (δrz) ∈ Sr+k
(

Γ0(δ2
r),
(−1
·

)r)
,
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and let

H(z) := Hp,r,F (z) = gr,F (z) | Tp
η(δrz)2j

Note that H(z) is modular on Γ0(δ2
r). Since F (z) ∈Mk(SL2(Z)), we have

F
(
− 1
δrz

)
= (δrz)kF (δrz),

and the transformation for the Dedekind eta-function implies that

η
(
− 1
δrz

)2j
= (−iδrz)jη(δrz)2j.

Next, we observe that

g | Wδ2
r

= (δrz)−(r+k)η
(
− 1
δrz

)2r
F
(
− 1
δrz

)
= (δrz)−(r+k)(−iδrz)rη(δrz)2r(δrz)kF (δrz)

= (−i)rη(δrz)2rF (δrz)

= i−rg(z).

We conclude that g | Wδ2
r

= i−rg(z). Also, we have

(g | Tp)
(
− 1
δ2
rz

)
= (δrz)r+k(g | Tp) | Wδ2

r

= (δrz)r+k
(
−1
p

)r
(g | Wδ2

r
) | Tp

= (δrz)r+k
(
−1
p

)r
i−rg(z) | Tp

= (δrz)r+ki(p−1)r−rg | Tp,

the last equality coming from the fact that (−1) p−1
2 =

(
−1
p

)
. Rearranging, we see

that

(g | Tp) | Wδ2
r

= (δrz)−(r+k)(g | Tp)
(
− 1
δ2
rz

)
.
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To finish the proof, we compute

H

(
− 1
δ2
rz

)
=

(g | Tp)
(
− 1
δ2
rz

)
η
(
− 1
δrz

)2j

= i(p−1)r−r(δrz)k+r−jg(z) | Tp
i−jη(δrz)2j

= i2r(p−1)(δrz)r+k−jH(z)

= (δrz)r+k−jH(z).

Our earlier Lemma implies that H(z) has q-series supported on multiples of δr. It

follows thatK(z) = Kp,r,F (z) = H(z/δr) is a q-series supported on integral exponents,

and hence, that K(z + 1) = K(z). Further, we find that

K
(
−1
z

)
= H

(
− 1
δrz

)
= zk+r−jH

(
z

δr

)
= zk+r−jK(z).

Therefore, the series K(z) is modular on SL2(Z). It remains to see that K(z) is

holomorphic on H and at the cusp infinity. Since η(z) 6= 0 on H, K(z) is holomorphic

there. By the minimality of j, the order of vanish of g | Tp at infinity is δrn0 + 2jδr
24

for some n0 ≥ 0. We conclude that K(z) is holomorphic at infinity.

41



Chapter 5

Appendix

5.1 Efficient Computation of q-expansions

In this section, we will describe some of the methods used to compute the q-expansions

of the forms fr,s(z) := η(24z)rEs(24z). Throughout this section and the next, we will

stick to the convention of fr,s(z) := ∑∞
n=0 a(n)qn ∈ Sλ+1/2(Γ0(576), χ3), and Fr,s(z)

will denote the image Sr(fr,s(z)) := ∑∞
n=1 A(n)qn ∈ S2λ(Γ0(288)) under the shimura

map Sr. By (2.1.1), we see that computing the Shimura image Fr,s(z) from the

definition requires the ability to compute many coefficients of fr,s(z).

First, we outline methods used to compute powers η(24z)r. We have

η(24z)r = qr
∞∏
n=1

(
1− q24n

)r
= qr + · · · =

∞∑
n=0

a(n)qn. (5.1.1)

This power series is supported on terms q24n+r. Because of this sparseness, it is more

memory efficient to compute the q-expansion
∞∏
n=1

(1− qn)r =
∞∑
n=0

c(n)qn = 1 + · · · . (5.1.2)

This can be done effectively using the classical Pentagonal Number Theorem, which

gives
∞∏
n=1

(1− qn) = 1 +
∞∑
n=1

(−1)n
(
q
n(3n−1)

2 + q
n(3n+1)

2

)
=
∞∑
n=0

b(n)qn. (5.1.3)

A useful identity commonly attributed to J.C.P. Miller (see (Zeilberger, 1995) and

§4.7 of (Knuth, 1997)) allows us to compute the coefficients of (5.1.2) in terms of the

coefficients of (5.1.3). We have c(0) = b(0)r = 1, and for k ≥ 1, we have

c(k) = 1
k

k∑
j=1

((r + 1)j − k) b(j)c(k − j). (5.1.4)
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This allows us to compute the coefficients c(m), and we can use the relationship

a(m) = c
(
m−r

24

)
to get the coefficients a(m) of (5.1.1).

Next, we outline the method used to compute Es(24z). Again, for reasons of

sparseness, we will work with Es(z) and reindex as necessary. From the definition

(1.2.1), we have

Es(z) := 1− 2s
Bs

∞∑
n=1

σs−1(n)qn.

Instead of computing σs−1(n) for each n, we use the fact that if n = pe1
1 · · · perr , then

σk(n) =
r∏
i=1

pei+1)k
i − 1
pki − 1

 . (5.1.5)

So to compute the first k coefficients of Es(z), we can compute the primes up to k,

and construct the coefficients using this multiplicative property.

5.2 Efficient Computation of Shimura Images

In this section, we will describe some methods to compute Shimura images. Our

ultimate goal here is to devise a computational scheme allowing us to efficiently

compute the Fourier coefficients of Fr,s(z), so that we may computationally verify

the congruences from Chapter 3.

Our first task is to compute each Shimura image to the precision required to

uniquely identify it as a modular form in S2λ(Γ0(288)). Using 8 1.5, we see that

it is necessary to compute 96λ coefficients of Fr,s(z) to do this. Due to the Hecke-

equivariance of the Shimura map, computing the `th coefficient of the Shimura image

is equivalent to computing an eigenvalue of the half-integral weight form fr,s(z). Let

λ` be the eigenvalue fr,s | T`2 = λ`fr,s. It follows that the definition of Ar,s(n) given

by (2.1.1) is equivalent to the following:

• Ar,s(1) = 1

• Ar,s(`) = λ` for all primes ` - 576
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• Ar,s(`k) = Ar,s(`)Ar,s(`k−1)− `2λ−1Ar,s(`k−2) for ` - 576 and k ≥ 2

• Ar,s(mn) = Ar,s(m)Ar,s(n) for m and n relatively prime

Using this, we can compute the first k coefficients of Fr,s by computing Ar,s(`) for

primes ` ≤ k, since the other coefficients can be reconstructed using these relation-

ships. Since fr,s(z) = qr + · · · and r is square-free, we have from (1.3.5) that

λ` = a(`2r) +
(

(−1)λ12r
`

)
`λ−1 (5.2.1)

The difficulty here is in computing a(`2r), and we do this via the methods of the pre-

vious section. In particular, we see that Ar,s(`) depends on having r`2 coefficients of

fr,s(z) at our disposal. One can see that for large values of `, this becomes impractical.

Next, we will outline a method to compute these images to near arbitrary precision

in an efficient manner by finding the image as a linear combination of forms that are

much simpler to compute. In the course of our computations, we observed that the

images Fr,s(z) are actually χ3-twists of forms in Snew
2λ (Γ0(6)). A non-computational

proof of this fact is given in (Yang, 2011). Using Proposition 1.2, we construct the

following forms:

f1(z) := E2(z)− 2E2(2z)− E2(3z) + 2E2(6z)

f2(z) := E2(z)− 2E2(2z) + E2(3z)− 2E2(6z)

f3(z) := E2(z)− E2(2z)− 2E2(3z) + E2(6z),

all of which live in M2(Γ0(6)). Define

C := {f e1
1 f

e2
2 f

e3
3 ⊗ χ3 | e1 + e2 + e3 = λ} . (5.2.2)

The forms in C all live in M2λ(Γ0(6)) ⊗ χ3 ⊆ M2λ(Γ0(144)). We were able to find

each shimura image Fr,s as a linear combination of elements in C. Since the forms

in C are relatively easy to compute to high precision, this allows us to compute each

image Fr,s to the precision necessary to verify the congruences we’re interested in.
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5.3 Congruence Tables

This section lists information about congruences of the form

Fr,s(z)E`−1(z)m1 ≡ Θa(M(z))E`−1(z)m2 ⊗ χ3 (mod `),

where M(z) is a weight 2 newform associated to an elliptic curve, and Fr,s(z) is the

Shimura image of the form fr,s(z) of weight λ + 1/2 defined earlier. Here, we have

the relationship

2λ+m1(`− 1) = 2 + a(`+ 1) +m2(`− 1),

where m1m2 = 0 and a ≥ 0.

The values of (r, s),m1,m2, and a are as above. The label column gives the

Cremona label of the elliptic curve associated to M(z). This label uniquely identifies

the curve, as well as gives the conductor. The twist column gives the Cremona label

of the quadratic twist of the curve having minimal conductor. If there is more than

one curve with minimal conductor, then the one with smallest label in the database

is returned.

Table 5.1 Congruences for p = 5
(r, s) m1 m2 a label twist level weight bound
(1, 6) 0 1 1 150a1 150a1 3600 12 8640
(1, 6) 2 0 3 150b1 150a1 3600 20 14400
(1, 10) 0 3 1 150a1 150a1 3600 20 14400
(1, 10) 0 0 3 150b1 150a1 3600 20 14400
(1, 14) 0 5 1 150a1 150a1 3600 28 20160
(1, 14) 0 2 3 150b1 150a1 3600 28 20160
(5, 6) 0 2 1 150a1 150a1 3600 16 11520
(5, 6) 1 0 3 150b1 150a1 3600 20 14400
(5, 10) 0 4 1 150a1 150a1 3600 24 17280
(5, 10) 0 1 3 150b1 150a1 3600 24 17280
(5, 14) 0 6 1 150a1 150a1 3600 32 23040
(5, 14) 0 3 3 150b1 150a1 3600 32 23040
(7, 0) 0 1 0 30a1 30a1 720 6 864
(7, 4) 0 3 0 30a1 30a1 720 14 2016
(7, 6) 0 1 2 30a1 30a1 720 18 2592

Continued on next page
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Table 5.1 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound
(7, 6) 0 4 0 150c1 30a1 3600 18 12960
(7, 8) 0 5 0 30a1 30a1 720 22 3168
(7, 10) 0 3 2 30a1 30a1 720 26 3744
(7, 10) 0 6 0 150c1 30a1 3600 26 18720
(7, 14) 0 5 2 30a1 30a1 720 34 4896
(7, 14) 0 8 0 150c1 30a1 3600 34 24480
(11, 0) 0 2 0 30a1 30a1 720 10 1440
(11, 4) 0 4 0 30a1 30a1 720 18 2592
(11, 6) 0 2 2 30a1 30a1 720 22 3168
(11, 6) 0 5 0 150c1 30a1 3600 22 15840
(11, 8) 0 6 0 30a1 30a1 720 26 3744
(11, 10) 0 4 2 30a1 30a1 720 30 4320
(11, 10) 0 7 0 150c1 30a1 3600 30 21600
(11, 14) 0 6 2 30a1 30a1 720 38 5472
(11, 14) 0 9 0 150c1 30a1 3600 38 27360
(13, 0) 0 1 1 30a1 30a1 720 12 1728
(13, 0) 2 0 3 150c1 30a1 3600 20 14400
(13, 4) 0 3 1 30a1 30a1 720 20 2880
(13, 4) 0 0 3 150c1 30a1 3600 20 14400
(13, 6) 0 1 3 30a1 30a1 720 24 3456
(13, 6) 0 4 1 150c1 30a1 3600 24 17280
(13, 8) 0 5 1 30a1 30a1 720 28 4032
(13, 8) 0 2 3 150c1 30a1 3600 28 20160
(13, 10) 0 3 3 30a1 30a1 720 32 4608
(13, 10) 0 6 1 150c1 30a1 3600 32 23040
(13, 14) 0 5 3 30a1 30a1 720 40 5760
(13, 14) 0 8 1 150c1 30a1 3600 40 28800
(17, 0) 0 2 1 30a1 30a1 720 16 2304
(17, 0) 1 0 3 150c1 30a1 3600 20 14400
(17, 4) 0 4 1 30a1 30a1 720 24 3456
(17, 4) 0 1 3 150c1 30a1 3600 24 17280
(17, 6) 0 2 3 30a1 30a1 720 28 4032
(17, 6) 0 5 1 150c1 30a1 3600 28 20160
(17, 8) 0 6 1 30a1 30a1 720 32 4608
(17, 8) 0 3 3 150c1 30a1 3600 32 23040
(17, 10) 0 4 3 30a1 30a1 720 36 5184
(17, 10) 0 7 1 150c1 30a1 3600 36 25920
(17, 14) 0 6 3 30a1 30a1 720 44 6336

Continued on next page
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Table 5.1 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound

(17, 14) 0 9 1 150c1 30a1 3600 44 31680
(19, 0) 0 1 2 150a1 150a1 3600 18 12960
(19, 0) 0 4 0 150b1 150a1 3600 18 12960
(19, 4) 0 3 2 150a1 150a1 3600 26 18720
(19, 4) 0 6 0 150b1 150a1 3600 26 18720
(19, 6) 0 7 0 150a1 150a1 3600 30 21600
(19, 6) 0 4 2 150b1 150a1 3600 30 21600
(19, 8) 0 5 2 150a1 150a1 3600 34 24480
(19, 8) 0 8 0 150b1 150a1 3600 34 24480
(19, 10) 0 9 0 150a1 150a1 3600 38 27360
(19, 10) 0 6 2 150b1 150a1 3600 38 27360
(19, 14) 0 11 0 150a1 150a1 3600 46 33120
(19, 14) 0 8 2 150b1 150a1 3600 46 33120
(23, 0) 0 2 2 150a1 150a1 3600 22 15840
(23, 0) 0 5 0 150b1 150a1 3600 22 15840
(23, 4) 0 4 2 150a1 150a1 3600 30 21600
(23, 4) 0 7 0 150b1 150a1 3600 30 21600
(23, 6) 0 8 0 150a1 150a1 3600 34 24480
(23, 6) 0 5 2 150b1 150a1 3600 34 24480
(23, 8) 0 6 2 150a1 150a1 3600 38 27360
(23, 8) 0 9 0 150b1 150a1 3600 38 27360
(23, 10) 0 10 0 150a1 150a1 3600 42 30240
(23, 10) 0 7 2 150b1 150a1 3600 42 30240
(23, 14) 0 12 0 150a1 150a1 3600 50 36000
(23, 14) 0 9 2 150b1 150a1 3600 50 36000

Table 5.2 Congruences for p = 7
(r, s) m1 m2 a label twist level weight bound
(1, 4) 0 1 0 42a1 42a1 1008 8 1536
(1, 8) 3 0 4 294a1 294b1 7056 34 45696
(1, 8) 0 1 1 294b1 294b1 7056 16 21504
(1, 10) 0 3 0 42a1 42a1 1008 20 3840
(1, 14) 1 0 4 294a1 294b1 7056 34 45696
(1, 14) 0 3 1 294b1 294b1 7056 28 37632
(5, 4) 1 0 2 294d1 294d1 7056 18 24192
(5, 4) 5 0 5 294e1 294d1 7056 42 56448
(5, 4) 5 0 5 294f1 294g1 7056 42 56448
(5, 4) 1 0 2 294g1 294g1 7056 18 24192

Continued on next page
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Table 5.2 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound
(5, 8) 0 3 0 294d1 294d1 7056 20 26880
(5, 8) 1 0 3 294e1 294d1 7056 26 34944
(5, 8) 1 0 3 294f1 294g1 7056 26 34944
(5, 8) 0 3 0 294g1 294g1 7056 20 26880
(5, 10) 0 1 2 294d1 294d1 7056 24 32256
(5, 10) 3 0 5 294e1 294d1 7056 42 56448
(5, 10) 3 0 5 294f1 294g1 7056 42 56448
(5, 10) 0 1 2 294g1 294g1 7056 24 32256
(5, 14) 0 5 0 294d1 294d1 7056 32 43008
(5, 14) 0 1 3 294e1 294d1 7056 32 43008
(5, 14) 0 1 3 294f1 294g1 7056 32 43008
(5, 14) 0 5 0 294g1 294g1 7056 32 43008
(7, 4) 0 2 0 42a1 42a1 1008 14 2688
(7, 8) 2 0 4 294a1 294b1 7056 34 45696
(7, 8) 0 2 1 294b1 294b1 7056 22 29568
(7, 10) 0 4 0 42a1 42a1 1008 26 4992
(7, 14) 0 0 4 294a1 294b1 7056 34 45696
(7, 14) 0 4 1 294b1 294b1 7056 34 45696
(11, 4) 0 0 2 294d1 294d1 7056 18 24192
(11, 4) 4 0 5 294e1 294d1 7056 42 56448
(11, 4) 4 0 5 294f1 294g1 7056 42 56448
(11, 4) 0 0 2 294g1 294g1 7056 18 24192
(11, 8) 0 4 0 294d1 294d1 7056 26 34944
(11, 8) 0 0 3 294e1 294d1 7056 26 34944
(11, 8) 0 0 3 294f1 294g1 7056 26 34944
(11, 8) 0 4 0 294g1 294g1 7056 26 34944
(11, 10) 0 2 2 294d1 294d1 7056 30 40320
(11, 10) 2 0 5 294e1 294d1 7056 42 56448
(11, 10) 2 0 5 294f1 294g1 7056 42 56448
(11, 10) 0 2 2 294g1 294g1 7056 30 40320
(11, 14) 0 6 0 294d1 294d1 7056 38 51072
(11, 14) 0 2 3 294e1 294d1 7056 38 51072
(11, 14) 0 2 3 294f1 294g1 7056 38 51072
(11, 14) 0 6 0 294g1 294g1 7056 38 51072
(13, 0) 5 0 5 294d1 294d1 7056 42 56448
(13, 0) 1 0 2 294e1 294d1 7056 18 24192
(13, 0) 1 0 2 294f1 294g1 7056 18 24192
(13, 0) 5 0 5 294g1 294g1 7056 42 56448

Continued on next page
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Table 5.2 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound
(13, 4) 1 0 3 294d1 294d1 7056 26 34944
(13, 4) 0 3 0 294e1 294d1 7056 20 26880
(13, 4) 0 3 0 294f1 294g1 7056 20 26880
(13, 4) 1 0 3 294g1 294g1 7056 26 34944
(13, 6) 3 0 5 294d1 294d1 7056 42 56448
(13, 6) 0 1 2 294e1 294d1 7056 24 32256
(13, 6) 0 1 2 294f1 294g1 7056 24 32256
(13, 6) 3 0 5 294g1 294g1 7056 42 56448
(13, 8) 0 3 1 294d1 294d1 7056 28 37632
(13, 8) 1 0 4 294e1 294d1 7056 34 45696
(13, 8) 1 0 4 294f1 294g1 7056 34 45696
(13, 8) 0 3 1 294g1 294g1 7056 28 37632
(13, 10) 0 1 3 294d1 294d1 7056 32 43008
(13, 10) 0 5 0 294e1 294d1 7056 32 43008
(13, 10) 0 5 0 294f1 294g1 7056 32 43008
(13, 10) 0 1 3 294g1 294g1 7056 32 43008
(13, 14) 0 5 1 294d1 294d1 7056 40 53760
(13, 14) 0 1 4 294e1 294d1 7056 40 53760
(13, 14) 0 1 4 294f1 294g1 7056 40 53760
(13, 14) 0 5 1 294g1 294g1 7056 40 53760
(17, 0) 0 1 1 42a1 42a1 1008 16 3072
(17, 0) 3 0 4 294c1 42a1 7056 34 45696
(17, 4) 3 0 5 294a1 294b1 7056 42 56448
(17, 4) 0 1 2 294b1 294b1 7056 24 32256
(17, 6) 0 3 1 42a1 42a1 1008 28 5376
(17, 6) 1 0 4 294c1 42a1 7056 34 45696
(17, 8) 0 1 3 42a1 42a1 1008 32 6144
(17, 8) 0 5 0 294c1 42a1 7056 32 43008
(17, 10) 1 0 5 294a1 294b1 7056 42 56448
(17, 10) 0 3 2 294b1 294b1 7056 36 48384
(17, 14) 0 3 3 42a1 42a1 1008 44 8448
(17, 14) 0 7 0 294c1 42a1 7056 44 59136
(19, 0) 4 0 5 294d1 294d1 7056 42 56448
(19, 0) 0 0 2 294e1 294d1 7056 18 24192
(19, 0) 0 0 2 294f1 294g1 7056 18 24192
(19, 0) 4 0 5 294g1 294g1 7056 42 56448
(19, 4) 0 0 3 294d1 294d1 7056 26 34944
(19, 4) 0 4 0 294e1 294d1 7056 26 34944

Continued on next page
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Table 5.2 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound
(19, 4) 0 4 0 294f1 294g1 7056 26 34944
(19, 4) 0 0 3 294g1 294g1 7056 26 34944
(19, 6) 2 0 5 294d1 294d1 7056 42 56448
(19, 6) 0 2 2 294e1 294d1 7056 30 40320
(19, 6) 0 2 2 294f1 294g1 7056 30 40320
(19, 6) 2 0 5 294g1 294g1 7056 42 56448
(19, 8) 0 4 1 294d1 294d1 7056 34 45696
(19, 8) 0 0 4 294e1 294d1 7056 34 45696
(19, 8) 0 0 4 294f1 294g1 7056 34 45696
(19, 8) 0 4 1 294g1 294g1 7056 34 45696
(19, 10) 0 2 3 294d1 294d1 7056 38 51072
(19, 10) 0 6 0 294e1 294d1 7056 38 51072
(19, 10) 0 6 0 294f1 294g1 7056 38 51072
(19, 10) 0 2 3 294g1 294g1 7056 38 51072
(19, 14) 0 6 1 294d1 294d1 7056 46 61824
(19, 14) 0 2 4 294e1 294d1 7056 46 61824
(19, 14) 0 2 4 294f1 294g1 7056 46 61824
(19, 14) 0 6 1 294g1 294g1 7056 46 61824
(23, 0) 0 2 1 42a1 42a1 1008 22 4224
(23, 0) 2 0 4 294c1 42a1 7056 34 45696
(23, 4) 2 0 5 294a1 294b1 7056 42 56448
(23, 4) 0 2 2 294b1 294b1 7056 30 40320
(23, 6) 0 4 1 42a1 42a1 1008 34 6528
(23, 6) 0 0 4 294c1 42a1 7056 34 45696
(23, 8) 0 2 3 42a1 42a1 1008 38 7296
(23, 8) 0 6 0 294c1 42a1 7056 38 51072
(23, 10) 0 0 5 294a1 294b1 7056 42 56448
(23, 10) 0 4 2 294b1 294b1 7056 42 56448
(23, 14) 0 4 3 42a1 42a1 1008 50 9600
(23, 14) 0 8 0 294c1 42a1 7056 50 67200

Table 5.3 Congruences for p = 11
(r, s) m1 m2 a label twist level weight bound
(1, 6) 0 1 0 66a1 66a1 1584 12 3456
(1, 8) 1 0 2 726d1 726d1 17424 26 82368
(1, 8) 7 0 7 726i1 726d1 17424 86 272448
(5, 4) 0 1 0 66b1 66b1 1584 12 3456
(5, 8) 9 0 9 726b1 726g1 17424 110 348480
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Table 5.3 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound
(5, 8) 3 0 4 726g1 726g1 17424 50 158400
(5, 14) 0 3 0 66b1 66b1 1584 32 9216
(7, 6) 2 0 3 726a1 726a1 17424 38 120384
(7, 6) 8 0 8 726f1 726a1 17424 98 310464
(7, 8) 0 2 0 66b1 66b1 1584 22 6336
(11, 6) 0 2 0 66a1 66a1 1584 22 6336
(11, 8) 0 0 2 726d1 726d1 17424 26 82368
(11, 8) 6 0 7 726i1 726d1 17424 86 272448
(13, 0) 0 1 0 66c1 66c1 1584 12 3456
(13, 4) 9 0 9 726d1 726d1 17424 110 348480
(13, 4) 3 0 4 726i1 726d1 17424 50 158400
(13, 6) 0 1 1 66a1 66a1 1584 24 6912
(13, 6) 5 0 6 726h1 66a1 17424 74 234432
(13, 8) 1 0 3 726d1 726d1 17424 38 120384
(13, 8) 7 0 8 726i1 726d1 17424 98 310464
(13, 10) 0 3 0 66c1 66c1 1584 32 9216
(13, 14) 7 0 9 726d1 726d1 17424 110 348480
(13, 14) 1 0 4 726i1 726d1 17424 50 158400
(17, 0) 1 0 2 726b1 726g1 17424 26 82368
(17, 0) 7 0 7 726g1 726g1 17424 86 272448
(17, 4) 0 1 1 66b1 66b1 1584 24 6912
(17, 4) 5 0 6 726c1 66b1 17424 74 234432
(17, 6) 7 0 8 726a1 726a1 17424 98 310464
(17, 6) 1 0 3 726f1 726a1 17424 38 120384
(17, 8) 0 3 0 726b1 726g1 17424 32 101376
(17, 8) 3 0 5 726g1 726g1 17424 62 196416
(17, 10) 0 1 2 726b1 726g1 17424 36 114048
(17, 10) 5 0 7 726g1 726g1 17424 86 272448
(17, 14) 0 3 1 66b1 66b1 1584 44 12672
(17, 14) 3 0 6 726c1 66b1 17424 74 234432
(19, 0) 8 0 8 726a1 726a1 17424 98 310464
(19, 0) 2 0 3 726f1 726a1 17424 38 120384
(19, 4) 0 0 2 726b1 726g1 17424 26 82368
(19, 4) 6 0 7 726g1 726g1 17424 86 272448
(19, 6) 2 0 4 726a1 726a1 17424 50 158400
(19, 6) 8 0 9 726f1 726a1 17424 110 348480
(19, 8) 0 2 1 66b1 66b1 1584 34 9792
(19, 8) 4 0 6 726c1 66b1 17424 74 234432
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Table 5.3 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound

(19, 10) 6 0 8 726a1 726a1 17424 98 310464
(19, 10) 0 0 3 726f1 726a1 17424 38 120384
(19, 14) 0 2 2 726b1 726g1 17424 46 145728
(19, 14) 4 0 7 726g1 726g1 17424 86 272448
(23, 0) 0 2 0 66c1 66c1 1584 22 6336
(23, 4) 8 0 9 726d1 726d1 17424 110 348480
(23, 4) 2 0 4 726i1 726d1 17424 50 158400
(23, 6) 0 2 1 66a1 66a1 1584 34 9792
(23, 6) 4 0 6 726h1 66a1 17424 74 234432
(23, 8) 0 0 3 726d1 726d1 17424 38 120384
(23, 8) 6 0 8 726i1 726d1 17424 98 310464
(23, 10) 0 4 0 66c1 66c1 1584 42 12096
(23, 14) 6 0 9 726d1 726d1 17424 110 348480
(23, 14) 0 0 4 726i1 726d1 17424 50 158400

Table 5.4 Congruences for p = 13
(r, s) m1 m2 a label twist level weight bound
(1, 10) 2 0 3 1014c1 1014c1 24336 44 192192
(1, 10) 9 0 9 1014g1 1014c1 24336 128 559104
(5, 8) 9 0 9 1014a1 1014a1 24336 128 559104
(5, 8) 2 0 3 1014d1 1014a1 24336 44 192192
(7, 4) 0 1 0 78a1 78a1 1872 14 4704
(7, 8) 3 0 4 1014a1 1014a1 24336 58 253344
(7, 8) 10 0 10 1014d1 1014a1 24336 142 620256
(7, 14) 9 0 10 1014a1 1014a1 24336 142 620256
(7, 14) 2 0 4 1014d1 1014a1 24336 58 253344
(11, 4) 8 0 8 1014b1 1014f1 24336 114 497952
(11, 4) 1 0 2 1014f1 1014f1 24336 30 131040
(11, 6) 10 0 10 1014c1 1014c1 24336 142 620256
(11, 6) 3 0 4 1014g1 1014c1 24336 58 253344
(11, 14) 4 0 6 1014b1 1014f1 24336 86 375648
(11, 14) 0 3 0 1014f1 1014f1 24336 38 165984
(13, 10) 1 0 3 1014c1 1014c1 24336 44 192192
(13, 10) 8 0 9 1014g1 1014c1 24336 128 559104
(17, 8) 8 0 9 1014a1 1014a1 24336 128 559104
(17, 8) 1 0 3 1014d1 1014a1 24336 44 192192
(19, 4) 0 2 0 78a1 78a1 1872 26 8736
(19, 8) 2 0 4 1014a1 1014a1 24336 58 253344
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Table 5.4 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound
(19, 8) 9 0 10 1014d1 1014a1 24336 142 620256
(19, 14) 8 0 10 1014a1 1014a1 24336 142 620256
(19, 14) 1 0 4 1014d1 1014a1 24336 58 253344
(23, 4) 7 0 8 1014b1 1014f1 24336 114 497952
(23, 4) 0 0 2 1014f1 1014f1 24336 30 131040
(23, 6) 9 0 10 1014c1 1014c1 24336 142 620256
(23, 6) 2 0 4 1014g1 1014c1 24336 58 253344
(23, 14) 3 0 6 1014b1 1014f1 24336 86 375648
(23, 14) 0 4 0 1014f1 1014f1 24336 50 218400

Table 5.5 Congruences for p = 17
(r, s) m1 m2 a label twist level weight bound
(5, 10) 11 0 11 1734d1 1734e1 41616 200 1468800
(5, 10) 2 0 3 1734e1 1734e1 41616 56 411264
(7, 6) 0 1 0 102b1 102b1 2448 18 7776
(11, 4) 0 1 0 102a1 102a1 2448 18 7776
(11, 8) 3 0 4 1734c1 1734c1 41616 74 543456
(11, 8) 12 0 12 1734f1 1734c1 41616 218 1600992
(11, 10) 5 0 6 1734d1 1734e1 41616 110 807840
(11, 10) 14 0 14 1734e1 1734e1 41616 254 1865376
(13, 6) 2 0 3 1734a1 1734a1 41616 56 411264
(13, 6) 11 0 11 1734h1 1734a1 41616 200 1468800
(13, 14) 10 0 11 1734d1 1734e1 41616 200 1468800
(13, 14) 1 0 3 1734e1 1734e1 41616 56 411264
(19, 0) 0 1 0 102c1 102c1 2448 18 7776
(19, 6) 14 0 14 1734a1 1734a1 41616 254 1865376
(19, 6) 5 0 6 1734h1 1734a1 41616 110 807840
(19, 8) 0 2 0 102a1 102a1 2448 34 14688
(19, 14) 4 0 6 1734d1 1734e1 41616 110 807840
(19, 14) 13 0 14 1734e1 1734e1 41616 254 1865376
(23, 6) 0 2 0 102b1 102b1 2448 34 14688

Table 5.6 Congruences for p = 19
(r, s) m1 m2 a label twist level weight bound
(1, 10) 0 1 0 114b1 114b1 2736 20 9600
(5, 8) 0 1 0 114a1 114a1 2736 20 9600
(7, 10) 2 0 3 2166e1 2166e1 51984 62 565440
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Table 5.6 – continued from the previous page
(r, s) m1 m2 a label twist level weight bound
(7, 10) 12 0 12 2166g1 2166e1 51984 242 2207040
(11, 10) 14 0 14 2166c1 2166f1 51984 282 2571840
(11, 10) 4 0 5 2166f1 2166f1 51984 102 930240
(13, 4) 0 1 0 114c1 114c1 2736 20 9600
(19, 10) 0 2 0 114b1 114b1 2736 38 18240
(23, 8) 0 2 0 114a1 114a1 2736 38 18240

Table 5.7 Congruences for p = 23
(r, s) m1 m2 a label twist level weight bound
(5, 10) 0 1 0 138a1 138a1 3312 24 13824
(5, 14) 3 0 4 3174b1 3174b1 76176 98 1298304
(5, 14) 15 0 15 3174c1 3174b1 76176 362 4795776
(13, 6) 0 1 0 138b1 138b1 3312 24 13824
(17, 4) 0 1 0 138c1 138c1 3312 24 13824
(17, 8) 3 0 4 3174e1 3174e1 76176 98 1298304
(17, 8) 15 0 15 3174f1 3174e1 76176 362 4795776
(19, 14) 0 2 0 138a1 138a1 3312 46 26496

Table 5.8 Congruences for p = 29
(r, s) m1 m2 a label twist level weight bound

(11, 10) 0 1 0 174c1 174c1 4176 30 21600
(13, 14) 19 0 19 5046g1 5046j1 121104 572 11943360
(13, 14) 4 0 5 5046j1 5046j1 121104 152 3173760
(17, 14) 6 0 7 5046f1 5046f1 121104 212 4426560
(17, 14) 21 0 21 5046k1 5046f1 121104 632 13196160
(19, 6) 0 1 0 174b1 174b1 4176 30 21600
(23, 4) 0 1 0 174e1 174e1 4176 30 21600
(23, 14) 9 0 10 5046c1 5046m1 121104 302 6305760
(23, 14) 24 0 24 5046m1 5046m1 121104 722 15075360

Table 5.9 Congruences for p = 31
(r, s) m1 m2 a label twist level weight bound
(5, 14) 0 1 0 186c1 186c1 4464 32 24576
(13, 10) 0 1 0 186a1 186a1 4464 32 24576
(17, 8) 0 1 0 186b1 186b1 4464 32 24576
(23, 10) 4 0 5 5766h1 5766h1 138384 162 3856896
(23, 10) 20 0 20 5766i1 5766h1 138384 642 15284736
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Table 5.10 Congruences for p = 37
(r, s) m1 m2 a label twist level weight bound

(11, 14) 0 1 0 222a1 222a1 5328 38 34656
(19, 10) 0 1 0 222b1 222b1 5328 38 34656
(23, 8) 0 1 0 222d1 222d1 5328 38 34656

Table 5.11 Congruences for p = 41
(r, s) m1 m2 a label twist level weight bound

(23, 10) 0 1 0 246a1 246a1 5904 42 42336

Table 5.12 Congruences for p = 43
(r, s) m1 m2 a label twist level weight bound

(17, 14) 0 1 0 258c1 258c1 6192 44 46464
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