
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

1-1-2013

AccelPrint:Accelerometers are Different by Birth AccelPrint:Accelerometers are Different by Birth

Sanorita Dey
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Dey, S.(2013). AccelPrint:Accelerometers are Different by Birth. (Master's thesis). Retrieved from
https://scholarcommons.sc.edu/etd/2350

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F2350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.sc.edu%2Fetd%2F2350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/2350?utm_source=scholarcommons.sc.edu%2Fetd%2F2350&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

AccelPrint:Accelerometers are Different by Birth

by

Sanorita Dey

Bachelor of Engineering
Bengal Engineering and Science University, Shibpur 2007

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2013

Accepted by:

Srihari Nelakuditi, Major Advisor

Wenyuan Xu, Committee Member

Manton M. Matthews, Graduate Director and Committee Member

Lacy K. Ford, Jr., Vice Provost and Dean of Graduate Studies

c© Copyright by Sanorita Dey, 2013
All Rights Reserved.

ii

Abstract

This thesis submits a hypothesis that smartphone accelerometers possess unique

fingerprints. We believe that the fingerprints arise from hardware imperfections dur-

ing the sensor manufacturing process, causing every sensor chip to respond differently

to the same motion stimulus. The differences in responses are subtle enough that

they do not affect most of the higher level functions computed on them. Nonetheless,

upon close inspection, these fingerprints emerge with consistency, and can even be

somewhat independent of the stimulus that generates them. Measurements and clas-

sification on 80 standalone accelerometer chips, 25 Android phones, and 2 tablets,

show precision and recall upward of 96%, along with good robustness to real-world

conditions. Unsurprisingly, such sensor fingerprints invite new threats in smartphone

applications. A crowd-sourcing app running in the cloud could segregate sensor data

for each device, making it easy to track a user over space and time. This thesis

makes the case that such attacks are almost trivial to launch, while simple solutions

may not be adequate to counteract them.

iii

Table of Contents

Abstract . iii

List of Tables . v

List of Figures . vi

Chapter 1 Introduction . 1

Chapter 2 Accelerometers: A Closer Look 5

Chapter 3 Threat Model . 10

Chapter 4 AccelPrint Design . 12

Chapter 5 Performance Evaluation 18

Chapter 6 Related Work . 27

Chapter 7 Limitations and Discussion 30

Bibliography . 33

iv

List of Tables

Table 4.1 List of Time Domain Features. The vector x is the time domain

representation of the data. N is the number of elements in x. . . . 15

Table 4.2 List of Frequency Domain Features. The vector y is the fre-

quency domain representation of the data. Here vectors ym and

yf hold the magnitude coefficients and bin frequencies respec-

tively. N is the number of elements in ym and yf 16

v

List of Figures

Figure 1.1 Example threat: Bob uses traffic and health apps, supported

by the same cloud backend. Even when device IDs are blocked,

exporting a slice of sensor data enables the cloud to infer that

it is the same user. 2

Figure 2.1 The internal architecture of MEMS accelerometer chip used in

smartphones. 6

Figure 2.2 Accelerometer responses of 6 chips for the same stimulation:

(a) Using Root Sum Square (RSS) of the three axes over time

offers some differentiation among chips; (b) Clustering on 2

dimensions – RSS mean and deviation – improves separation;

(c) Clusters that overlap with mean/deviation, separate out

further using a Skewness feature. 7

Figure 2.3 Experimental setup with the Arduino board on the left, the

red accelerometer chip on the breadboard, and the vibration

motor connected over the wire. 8

Figure 4.1 Identifying when the vibration motor is ON from the accelerom-

eter readings directly. 13

Figure 4.2 The threshold for segregating alien phones can be chosen from

a wide range, indicating robustness. 17

vi

Figure 5.1 Overall performance: confusion matrix 20

Figure 5.2 Overall performance: (a) precision; (b) recall. 21

Figure 5.3 Performance with different sampling rates 23

Figure 5.4 Precision with varying CPU loads 24

Figure 5.5 Performance with and without phone cases 25

Figure 5.6 Performance with different surfaces 26

vii

Chapter 1

Introduction

Inspired by past work on device fingerprinting [29,44,51], where WiFi chipsets were

shown to exhibit unique clock skews and frequency offsets, we asked the question:

could sensors in today’s smartphones also have unique fingerprints? In the pursuit of

this question, we gathered, over time, around 80 standalone accelerometer chips used

in popular smartphones, subjected each of them to vibrations from a single vibration

motor (common in today’s phones), and experimented with the large volume of

motion data received from each of them. We found that while high level operations

on the accelerometer signals yielded similar results, e.g., all the chips were comparable

in counting the number of walking steps, an appropriately designed high dimensional

feature-vector exhibited strong diversity, a fingerprint.

Our initial skepticism that this fingerprint is an outcome of non-identical vibra-

tions was dispelled when a given accelerometer repeatedly exhibited the same dis-

tinct pattern. Moreover, we found that the fingerprints persist even if the vibrations

are subjected in less controlled settings, e.g., when the user is naturally holding an

accelerometer-equipped phone. Even different phone cases made of rubber or plastic

did not affect much, so long as the system was trained on those casings. Finally, our

attempts to scrub off the fingerprint (without affecting the high level functions such

as step-count) did not meet immediate success. Inducing small amounts of noise in

the accelerometer signal still preserved the fingerprint; adding too much noise af-

1

Health'
App'

ICC_ID%

Fingerprint%matches…%It’s%the%same%phone!%

Traffic'
App'

IMEI%

Bob’s'phone'
@'8'AM'

Bob’s'phone'
@'6'PM'

Figure 1.1: Example threat: Bob uses traffic and health apps, supported by the same
cloud backend. Even when device IDs are blocked, exporting a slice of sensor data
enables the cloud to infer that it is the same user.

fected the activity and gesture recognition applications. This thesis reports on our

effort to verify the existence of accelerometer fingerprints, and draws attention to

new kinds of threats that may arise as a consequence.

Figure 1.1 illustrates one possible threat. Consider a common scenario where

multiple motion-sensing apps, such as a road traffic estimator, a calorie counter, a

gesture-based gaming app, etc., all use a common backend service. To prevent the

backend from aggregating and indexing data per individual, a “cookie law” has been

enforced in the US and Europe [39] requiring apps to obtain user-permission before

uploading cookies or any other identifiers to the cloud. Interestingly, research [22]

shows that stealing of various IDs, such as the IMEI (device ID), IMSI (subscriber

ID), or ICC-ID (SIM card serial number), is still rampant in apps. While a recent

proposal [21] has designed solutions to thwart ID-theft, we observe that sensor data

is not entitled to scrutiny since they are legitimately required by apps. If the sensor

data indeed exhibits a fingerprint, the backend can easily bypass the law, and index

2

the data by these fingerprints.

Put differently, an accelerometer fingerprint can serve as an electronic cookie,

empowering an adversary to consolidate data per user, and track them over space

and time. Alarmingly, such a cookie is hard to erase, unless the accelerometer wears

out to the degree that its fingerprint becomes inconsistent. We have not noticed any

evidence of this in the 9 months of experimentation with 107 accelerometers.

The notion that sensors can offer side-channel information is obviously not new.

Past work has demonstrated how accelerometers can leak information in smartphones

– for instance, from accelerometer data gathered during typing, authors in [13,14,34]

have shown that the typed characters, such as PIN numbers, can be inferred. Even

swiping motion patterns can be estimated [8]. While disabling the accelerometer

during a sensitive operation (e.g., typing PINs) is a plausible solution, the same does

not apply in our case because even a small slice of the sensor reading is adequate to

extract the fingerprint. Another alternative could be to perform the computations

locally on the phone and only send the higher level results to the cloud. However,

some operations are far too CPU-heavy to be performed on-phone, while others

require matching against large databases that are expensive to download to the

phone. Pre-processing the signals and scrubbing off the fingerprint is probably the

appropriate approach, however, as we find later, this requires deeper investigation in

the future. Scrubbing the signal without an understanding of the app is risky – an

app that needs high fidelity signals could easily be affected upon over-scrubbing.

A natural question on sensor fingerprints pertains to scalability, i.e., is the fin-

gerprint unique against millions of sensors? We admittedly have no proof of such

large scale, neither a theoretical basis to justify our claim. We have only attempted

to lease/gather as many devices as possible, amounting to: (1) 80 stand-alone ac-

3

celerometer chips of three types (used in the latest smartphones and tablets, including

the Samsung Galaxy S III and Kindle Fire). (2) 25 Android phones composed of a

mix of Samsung S3, Galaxy Nexus, and Nexus S. (3) 2 Samsung tablets. Each of the

standalone chips were plugged into the same customized circuit board connected to

an external vibration motor to provide the motion stimulus. As a result, the recorded

accelerometer readings are free of any potential effects caused by the OS version and

the middleware of smartphones. The Android phones and tablets were used as is;

the stimulus induced by programming its on-board vibration motor.

The sensor fingerprint is designed as a vector of 36 features drawn from the time

and frequency domain of accelerometer signals. A Bagged Decision Tree [16] is used

for ensemble learning and classification (detailed later). Results show that among

these sensors, classification precision and recall reach upwards of 96%. Moreover, the

fingerprints proved to be robust, visible even through natural hand-held positions,

and even for various casings, including one of soft rubber. While more extensive

evaluation is warranted to verify the hypothesis (perhaps in an actual manufac-

turing pipeline), we believe that our results are still valuable. To the best of our

knowledge, this is the earliest work that suggests and verifies (in a lab setting) that

accelerometers in modern smartphones are identifiable. We call the overall system,

AccelPrint.

4

Chapter 2

Accelerometers: A Closer Look

This section presents a brief background on accelerometers to qualitatively reason

about the source of fingerprints. Then, we describe our experiment framework and

present early evidence of accelerometer fingerprints. Detailed results and numerous

associated issues are presented in the evaluation section.

Hardware Imperfections

Accelerometers in smartphones are based on Micro Electro Mechanical Systems

(MEMS) that emulate the mechanical parts through micro-machining technology [7].

Figure 2.1 shows the basic structure of an accelerometer chip, composed of several

pairs of fixed electrodes and a movable seismic mass. The distances d1 and d2 rep-

resent the small gaps that vary due to acceleration and form a differential capacitor

pair. The chip measures the acceleration according to the values of these differential

capacitor pairs. It is the lack of precision in this electro-mechanical structure that

introduces subtle idiosyncrasies in different accelerometer chips. Even slight gaps be-

tween the structural parts (introduced during the manufacturing process) can change

the capacitance [7]. Moreover accelerometer chips use Quad Flat Non-leaded (QFN)

or Land Grid Array (LGA) packaging, another potential source of imperfections [18].

According to the official data sheets, the target applications for smartphone ac-

celerometers are gesture recognition, display rotation, motion-enabled games, fitness

5

C1 C2

d1 d2
• d1 ≠ d2

• C1 ≠ C2

(Under Acceleration)

C1 C2

d1 d2

• d1 = d2

• C1 = C2

(No Acceleration)
Structure of MEMS

Accelerometer

Accelerometer Chip Anchor

Tether
(spring)

Movable
Seismic
Mass

Differential
Capacitor Pair

Fixed
Electrodes

Figure 2.1: The internal architecture of MEMS accelerometer chip used in smart-
phones.

monitoring, etc. These applications primarily depend on the relative change in the

accelerometer readings as opposed to their absolute values. Therefore, while sub-

tle imperfections in the accelerometer chips can lead to different acceleration values,

they may not affect the rated performance of the target applications. However, these

discrepancies may be sufficient to discriminate between them.

Evidence of Fingerprints

To gain early evidence on the existence of fingerprints, we conducted an experiment

using 6 stand-alone accelerometer chips of 3 types: (i) MPU-6050; (ii) ADXL-345;

and (iii) MMA-8452q. MPU-6050 is a MEMS chip [5] used in many mobile devices,

including the Galaxy S III and Kindle Fire. The ADXL-345 is a small, thin, ultra-low

power 3-axis accelerometer [1] with a high resolution of 13 bits and scaling up to±16g

(where g is acceleration due to gravity). This is mainly used for tap/swipe sensing

and activity recognition. MMA-8452q is a 12 bit digital 3-axis low-power capacitive

accelerometer [4], available in QFN packaging, and configurable to ±2g/±4g/±8g

6

Time (s)!

R
SS

 o
f A

cc
l.

Va
lu

e!

!!!!!4!!!!!!!!!!!!!!!!!6!!!!!!!!!!!!!!!!!8!!!!!!!!!!!!!10! !!!!!4!!!!!!!!!!!!!!!!!6!!!!!!!!!!!!!!!!!8!!!!!!!!!!!!!10!

15!

10!

5!

15!

10!

5!

15!

10!

5!

A" B"

C" D"

E" F"

A"

B"
F"

E"

D

C"
 0.8

 1

 1.2

 0 10 20 30 40 50

S
k
e

w
n

e
s
s

Experiment Number

C
D

Figure 2.2: Accelerometer responses of 6 chips for the same stimulation: (a) Using
Root Sum Square (RSS) of the three axes over time offers some differentiation among
chips; (b) Clustering on 2 dimensions – RSS mean and deviation – improves sepa-
ration; (c) Clusters that overlap with mean/deviation, separate out further using a
Skewness feature.

through high-pass filters. The mix of chips included in the experiment are three

MPU-6050 from two different vendors (SparkFun and Amazon), two ADXL-345, and

one MMA-8452q. We setup the Arduino Uno R3 boards [2] to collect accelerometer

readings from the chips. We use an external vibration motor – the model used in

most smartphones – to stimulate the accelerometer with a specific vibration duty-

cycle, controlled through the Arduino board. Figure 2.3 shows the experimental

setup.

Each of the six stand-alone chips are stimulated with an identical vibration se-

quence and their accelerometer readings are recorded. Figure 2.2a shows the root

sum square (RSS) of the three axes values against time. The plots on each column

are distinct but the elements in the top two rows look similar. To separate them

7

Figure 2.3: Experimental setup with the Arduino board on the left, the red ac-
celerometer chip on the breadboard, and the vibration motor connected over the
wire.

out, Figure 2.2b plots the mean RSS values against their standard deviations (i.e.,

in a 2-dimensional plane). Each experiment on a chip yields a data point on the

graph and the points from multiple experiments on the same chip exhibits a cluster.

The top two rows that appear similar in Figure 2.2a begin to separate out on this

2-dimensional plane, although some overlap still remains. Of course, other features

might be more effective in reducing the overlap.

As an example, consider a feature called skewness, which measures the asymmetry

of a probability distribution. Figure 2.2c shows the skewness of the accelerometer

readings of the two similar MPU-6050 chips (tagged “C” and “D”). Evidently, one

consistently shows a higher skewness over the other even though they are the same

make and model. This suggests that chips that appear indistinguishable on one

dimension may be well separated on others. Recruiting an appropriate set of feature

vectors and projecting the accelerometer signals on them may demonstrate that

accelerometers could indeed be unique.

An accelerometer fingerprint (under controlled vibration sequences) may not nec-

essarily translate to a smartphone fingerprint in the real world. First, the OS running

8

on the phone, application API, and CPU load, can all influence the sensor readings.

Second, considering that fingerprinting is based on subtle features in response to brief

vibrations, the surface on which the device is placed, or its casing, may also mat-

ter. While these make fingerprinting a naturally-used smartphone more challenging

compared to a standalone accelerometer, we observe that additional sensors on the

phone could be harnessed as well. A gyroscope, barometer, and accelerometer may

together exhibit a fingerprint robust to OS versions, CPU-load, and surfaces. While

we leave this exploration to future work, in this thesis we show that accelerometers

alone can achieve reasonable smartphone fingerprinting under uncontrolled condi-

tions. Naturally, this makes the threats imminent.

9

Chapter 3

Threat Model

We consider an adversary that aims to identify smartphones but cannot gain access

to unique device IDs (e.g., IMEI or ICC-ID). This can be because these IDs are

protected by monitoring strategies [21, 22]. Thus, the adversary attempts to obtain

fingerprints of in-built sensors (in this thesis, we focus only on accelerometers, and

leave other sensors to future work).

Access Mechanisms

We assume that the adversary is able to accomplish the needful to access accelerom-

eter data (discussed next), and can communicate over networks.

Smartphone Access. We assume that an adversary can access apps that are

either installed legitimately by a user or affected by malware. In either case, the

adversary can interact with the smartphone through the apps over the communica-

tion networks. For instance, an adversary could be an advertiser (e.g., ad networks)

looking to obtain users’ personal data for delivering targeted ads. With the cur-

rent practice of inserting ads into free apps, the process is quite simple – advertisers

provide prepackaged developer kits (e.g., iApp) that allows app-developers to get

revenue by including a few lines of code into their apps. The code not only displays

ads in the app, but also tunnels back data from the smartphones to the backend ad

networks.

10

Sensor Access. We assume that an adversary is able to collect raw sensor read-

ings directly. Such an assumption is easy to satisfy, because among all smartphone

sensors, only the location sensor requires explicit user permission (on both Android

and the iPhone platforms). Other sensors (e.g., accelerometers and gyroscopes) can

be accessed without notifying users. Even if explicit permission is required in the

future to access sensors, the apps could be legitimately granted permission and the

adversary may inherit such a permission to launch an attack.

Packaged Sensors. Since it is difficult to replace the sensors inside a smart-

phone, we assume that throughout the operational lifetime of a smartphone, the

sensors on the smartphone are not replaced.

Attack Scenarios

Consider a health-conscious and commuting user (hereafter Bob) installing apps for

monitoring his daily activities and traffic conditions. All these apps rely on inertial

sensors (e.g., accelerometer, gyroscope) and could be loaded with ads supplied by

the same ad network. As a result, the ad networks can collect detailed data of Bob

along with Bob’s sensor readings/fingerprints. When the ad network observes Bob’s

sensor fingerprints for the first time, it creates a user profile that grows as more data

arrives from Bob (note that this profile may not include Bob’s name or any ID).

Even after Bob uninstalls all these apps, his fingerprint profile remains in the digital

world. Now, once Bob installs a new app with ads from the same ad network, the

ad network can now extract the sensor fingerprint, correlate with the past data, and

make strong inferences about Bob’s behavior.

11

Chapter 4

AccelPrint Design

This section describes the 3 sub-modules of the overall system: (1) Accelerometer

data collection; (2) Fingerprint generation; (3) Fingerprint matching.

Accelerometer Data Collection

We define the accelerometer fingerprint as the response it yields to any predefined

motion stimulus. We found that the vibration motor internal to a smartphone –

mainly used to “buzz” the device – generates consistent motion stimuli, and can be

programmed to ON/OFF states at fine time scales. Hence, we collect accelerometer

data during time windows when the vibration motor is ON, and call this raw data

a trace. Of course, the vibration motor need not be explicitly turned on for trace

collection (or else a malware may raise the user’s suspicion due to frequent vibra-

tions). Instead, the malware could opportunistically collect the accelerometer data

whenever the vibration motor is active, perhaps due to an incoming email, SMS,

phone-rings, or other alerts and push notifications.

A natural question is how can one detect when the vibration motor is active, given

that no standard Android API is available to check its ON/OFF status? AccelPrint

uses the accelerometer data itself to identify portions during which the vibration

motor was ON. This is feasible mainly due to 2 factors: First, the to-and-fro motion

generated by a vibration motor is faster than any normal human activity. Second,

12

based on our analysis on 6 types of Android devices (4 smartphones and 2 tablets),

the effect of a vibration motor is significantly higher on the Z-axis irrespective of the

device orientation. This is because a motor is typically mounted on the phone such

that it has greater movement freedom along the Z-axis. Leveraging this observation,

our detection algorithm calculates the derivatives of the acceleration in all 3 axes

and compares them against empirically designed thresholds. We tested our scheme

by turning on the vibration motor at random duty cycles (we used the “fastest”

sampling mode in Android). Figure 4.1 shows the results – the detection is reliable

across various user activities, including when driving a car, placed on a table top,

walking, running, etc.

Accl. Z axis
Actual Duty Cycle

Algo output

Still On Car

Walk Run

Figure 4.1: Identifying when the vibration motor is ON from the accelerometer
readings directly.

13

Fingerprint Generation

Trace Pre-processing. Instead of extracting features from a raw trace, AccelPrint

pre-processes the trace to obtain two sets of intermediate data: one represents how

often an accelerometer reading was recorded and one represents the absolute value of

accelerometer readings. Let {sx(k), sy(k), sz(k)} be the kth acceleration along x, y,

and z axes, and T (k) be the timestamps. AccelPrint calculates sampling intervals

I(k) and the root sum square (RSS) of accelerometer readings S(k) as follows.
I(k) = T (k + 1)− T (k)

S(k) =
√

s2
x(k) + s2

y(k) + s2
z(k)

Since {sx(k), sy(k), sz(k)} are not sampled at a fixed interval, the derived values

{T (k), S(k)} are not equally-spaced. This makes the frequency domain characteris-

tics difficult to compute. Hence, AccelPrint employs a cubic spline interpolation [35]

to construct new data points such that {T (k), S(k)} are now equally-spaced.

Feature Selection. We extract 40 scalar features in both time and frequency

domains using LibXtract [3], a popular feature extraction library. The time domain

features are calculated using {T (k), S(k)} prior to interpolation, and the frequency

domain features are drawn from the interpolated version. Since we consider features

for both S(k) and I(k) (where I(k) is the interval between samples), a total of 80

features are available for use. To select features, we ranked features using the FEAST

toolbox [6] and utilized the joint mutual information criterion for ranking (known to

be effective for small training data [12]). From the results, we select the top 8 time

domain features (see Table 4.1) and top 10 frequency domain features (see Table 4.2).

In total, 36 features are used to construct the fingerprint.

Formally, for a trace i, we denote F(I)i and F(S)i as the set of selected features

14

Table 4.1: List of Time Domain Features. The vector x is the time domain repre-
sentation of the data. N is the number of elements in x.

Feature Name Description

Mean x̄ = 1
N

N∑
i=1

x(i)

Std-Dev σ =

√
1

N−1

N∑
i=1

(x(i)− x̄)2

Average Deviation Dx̄ = 1
N

N∑
i=1
|x(i)− x̄|

Skewness γ = 1
N

N∑
i=1

((x(i)−x̄)
σ

)3
Kurtosis β = 1

N

N∑
i=1

((x(i)−x̄)
σ

)4
− 3

RMS Amplitude A =

√
1
N

N∑
i=1

(x(i))2

Lowest Value L = (Min(x(i))|i=1 to N)
Highest Value H = (Max(x(i))|i=1 to N)

of I(k) and S(k), respectively. The fingerprint of this trace is then represented by

< F(I)i,F(S)i > .

Fingerprint Matching

AccelPrint uses supervised learning to classify smartphone accelerometers, begin-

ning with a training phase followed by testing (or classification). During training, n

traces from a smartphone are collected for extracting fingerprints, and the n sets of

features < F(I)i,F(S)i >i∈[1,n] are used to train the classifier. For m smartphones,

n × m sets of features can be used to train the classifier all together. In addition,

given n set of features that constitute the fingerprint of a new smartphone, the clas-

sifier database can be updated to incorporate the new smartphone. We employ an

ensemble classification approach for training mainly to achieve robustness over any

single classification approach [10, 17, 33, 41]. Among various ensemble techniques

possible, we use Bagged Decision Trees [11] for ensemble learning.

15

Table 4.2: List of Frequency Domain Features. The vector y is the frequency domain
representation of the data. Here vectors ym and yf hold the magnitude coefficients
and bin frequencies respectively. N is the number of elements in ym and yf .

Feature Name Description

Spec. Std Dev σs =

√(
N∑
i=1

(yf (i))2 ∗ ym(i)
)/(N∑

i=1
ym(i)

)
Spec. Centroid Cs =

(
N∑
i=1

yf (i)ym(i)
)/(N∑

i=1
ym(i)

)
Spec. Skewness γs =

(
N∑
i=1

(ym(i)− Cs)3 ∗ ym(i)
)
/σ3

s

Spec. Kurtosis βs =
(

N∑
i=1

(ym(i)− Cs)4 ∗ ym(i)
)
/σ4

s − 3

Spectral Crest CRs = (Max(ym(i))|i=1 to N) /Cs

Irregularity-K IKs =
N−1∑
i=2

∣∣∣ym(i)− ym(i−1)+ym(i)+ym(i+1)
3

∣∣∣
Irregularity-J IJs =

N−1∑
i=1

(ym(i)−ym(i+1))2

N−1∑
i=1

(ym(i))2

Smoothness Ss =
N−1∑
i=2

∣∣∣20.log(ym(i))−(
20.log(ym(i−1))+20.log(ym(i))+20.log(ym(i+1))

)
3

∣∣∣
Flatness Fs =

(
N∏
i=1

ym(i)
) 1

N /((N∑
i=1

ym(i)
)
/N

)
Roll Off Rs = SampleRate

N
∗ n
∣∣∣ n∑

i=1

ym<Threshold

During the testing phase, AccelPrint collects a trace, extracts a set of features

< F(I),F(S) >, and inputs to the classifier. The classifier either outputs a positive

match with one of the phones that it has been trained with, or indicates an “alien”,

implying that this accelerometer is not from any of the phones used for training. In

such a case, AccelPrint initiates a training request that collects n traces from the

alien smartphone, inserts a new entry to the classifier database, and re-trains the

system. Although false negatives could occur, additional side-information could be

leveraged to exercise caution before re-training. For instance, enforcing the rule that

the classifier can be re-trained only when the trace is the first one collected by an

16

app since installation, could improve the confidence in re-training.

To distinguish an alien device from the known devices, we apply a threshold on

the classification score – if the match is less than the threshold, then the trace is

declared “alien”. Figure 4.2 plots the classification scores for both alien and pre-

registered phones (the first half of the X-axis are traces drawn from alien devices,

and the vice versa). Observe that the alien phones generally present a relatively low

score and a threshold is not difficult to find to accomplish reliable segregation. In

AccelPrint, we have picked the threshold to be 0.6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
la

s
s
if
ic

a
ti
o
n
 S

c
o
re

Trace Number

Alien Phones

Pre-registered Phones

Figure 4.2: The threshold for segregating alien phones can be chosen from a wide
range, indicating robustness.

17

Chapter 5

Performance Evaluation

We have evaluated the performance of AccelPrint using 80 stand-alone accelerom-

eter chips, 25 smartphones and 2 tablets. The key questions we investigated and the

corresponding findings are summarized below.

• How much training is needed to learn the fingerprint? We find that 30 seconds

of accelerometer trace is sufficient to model a device’s fingerprint.

• Does the fingerprint manifest only at the fastest sampling rate? No, even at

slower sampling rates, devices exhibit distinguishing features. However, the

performance is slightly better at faster rates.

• Does the system need to be aware of the surface on which a device is placed?

No. Whereas training on a variety of surfaces improves the performance, the

system itself is surface-agnostic.

• Can we mask the fingerprint of a device with a case? The fingerprints of a

device with and without a case are different. However, similar to surfaces, by

training with and without a case, a device can be classified with high precision.

• Is the system sensitive to CPU load? Somewhat. If the difference in CPU load

at the time of training and testing is less than 40%, it does not significantly

affect the performance of AccelPrint.

18

We now begin by describing the experimental setup and the performance metrics

used for evaluation.

Experimental Setup

We have conducted experiments with 80 accelerometer chips of 3 types, 60 MPU-

6050, 10 ADXL-345, and 10 MMA-8425q. The setup used for experiments with

stand-alone chips is described earlier in Section 2. We have also experimented with

25 Android phones of 5 different models and 2 tablets: i) 8 Nexus One; ii) 7 Samsung

Galaxy Nexus; iii) 6 Samsung Galaxy S3 iv) 2 Nexus S; v) 1 HTC Incredible Two;

vi) 1 HTC MyTouch; and vii) 2 Samsung Galaxy Tab 2.

As it is difficult to gather large amounts of sensor readings in natural settings

from many users, we conducted experiments in our lab. The internal vibration

motor of smartphones is used to stimulate the accelerometer for 2 seconds and the

accelerometer readings are recorded with the sampling mode set to “Fastest” by

default. We refer to this 2 seconds of accelerometer data as trace. We collect 50

accelerometer traces for each of the 80 chips and 27 phones/tablets, a total of 5350

traces. Out of these traces, 30 from each device, i.e., a total of 3210 are used as the

testing set. The rest of the traces are used for training at different times depending

upon the training size. Once trained, we test the system with 30 traces from each

device and measure how well it performs in classifying those traces. Note that the

training and testing traces are non-overlapping.

19

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
c
tu

a
l
D

e
v
ic

e
 N

u
m

b
e

r

Classified Device Number

Figure 5.1: Overall performance: confusion matrix

Performance Metrics

Given an accelerometer trace, AccelPrint classifies it as belonging to one of the

devices for which it is trained for. Let k be the total number of devices or classes.

Then, based on the ground truth, for each class i, we define TPi as the true positives

for class i, i.e., the number of traces that are correctly classified as i. Similarly, FNi,

and FPi, respectively refer to the number of traces that are wrongly rejected, and

wrongly classified as i. Now, we can define the standard multi-class classification

metrics, precision, and recall, as follows.

precisioni = (TPi)
(TPi + FPi)

recalli = (TPi)
(TPi + FNi)

Then, we can compute the average precision and recall.

average precision =
∑k

i=1 precisioni

k

average recall =
∑k

i=1 recalli
k

20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.75 0.8 0.85 0.9 0.95 1

C
D

F

Precision

Training Traces: 5
Training Traces: 10
Training Traces: 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.75 0.8 0.85 0.9 0.95 1

C
D

F

Recall

Training Traces: 5
Training Traces: 10
Training Traces: 15

Figure 5.2: Overall performance: (a) precision; (b) recall.

Overall Performance

As mentioned earlier, we trained the system with 15 traces and tested it with a differ-

ent set of 30 traces from each of the 107 chips/phones/tablets. The resulting average

classification score for each device is shown on a heat map in Figure 5.1. In this plot,

the darker the shade, the higher the classification score. Evidently, the diagonal cells

are the darkest, implying that the traces from device i is indeed classified to class i.

While there are some gray non-diagonal cells, instances of misclassification are rare.

This is because the classifier picks the device with the maximum score, so long it is

greater than a threshold (used for segregating alien phones).

Zooming into the results, we compute the precisioni and recalli for each class i,

21

and plot the CDF of their distributions in Figures 5.2a and 5.2b. Since the burden of

training is of interest in practical settings, we show the performance of AccelPrint

with varying number of training traces: 5, 10, and 15. Even with 5 training traces

(amounting to 10 seconds of training), both precision and recall are above 75% for

all classes. The tail for both precision and recall gets shortened as the training size

increases to 10, with none of the classes having precision below 85%. With training

size 15, the worst case precision improves to 87%, while the average precision and

recall are both above 99%. Since 30 seconds of training is not too burdensome (a

malware in a phone could silently collect data from, say, 30 incoming phone rings),

we fix the training size to 15 in the rest of the evaluation.

Next, we consider several factors that could affect our ability to model fingerprints

and classify devices. The rate at which an app samples the accelerometer readings

depends on the configured mode as well as the CPU load. The surface on which the

phone is placed may influence the vibration sensed by the accelerometer. In view

of operations in uncontrolled environments, we study the impact of these factors on

the fingerprint classification performance.

Significance of Sampling Rate

The Android OS allows four different sampling rates for the accelerometer. These

with decreasing order of rate are: i) Fastest; ii) Game; iii) UI; and iv) Normal. The

sampling rate of the Fastest mode on our devices varies from around 100 Hz to 20 Hz,

depending upon the hardware/software specification and the activity level. However,

the sampling rate of the Normal mode remains same for all the devices (around 4

Hz).

To study the effect of sampling rate on fingerprinting, we have conducted exper-

22

iments with each of the four modes. The results of these experiments are shown in

Figure 5.3. It is evident that the faster the sampling rate the higher the precision

and recall are. However, even at the slowest rate of Normal, precision and recall

are both above 80%. This indicates that with only 4 samples of accelerometer read-

ings per second, different devices can be distinguished with reasonable amount of

precision. Of course, with larger number of samples per second, subtle differences

between accelerometers can be discerned with much higher precision.

 0

 0.2

 0.4

 0.6

 0.8

 1

Normal UI Game Fastest

P
re

c
is

io
n
/R

e
c
a
ll

Sampling Mode

Precision
Recall

Figure 5.3: Performance with different sampling rates

Impact of CPU Load

To control the CPU load and measure its effect on AccelPrint, we create a back-

ground process using Android IntentService class. This service is kept awake for a

certain fraction of a second and made to sleep the rest of the time. Let us refer to

the percentage of time the background service remains awake as “load level”. To

measure the impact of load, we first train our system with 0 load level. Then we test

it with traces collected at four different levels (0%, 20%, 40% and 60%). Then, we

gradually increase the load level for training and test with traces collected at four

load levels.

23

Figure 5.4 depicts the precision of AccelPrint in this scenario as a heat diagram,

i.e., the darker the region, the higher the precision. It is evident that whenever we

train and test the system with the traces collected at the same CPU load (diagonal

region), we achieve high precision, whereas if we keep increasing the load difference

between train and test cases then the precision starts to reduce. The reason is that

at higher loads, some of the accelerometer readings get skipped, yielding different

set of features. However, the precision is still above 80% when the load difference is

within 40%. Overall, these results show that when the difference in load at the time

of training and testing is not large, it does not significantly affect the performance

of AccelPrint.

0.9500!

0.9608!

0.9470!

0.9498!

0.8600!

0.7951!

0.7448!

0.8617!

0.8574!

0.8017!

0.8071!

0.8511!

0.7331!

0.8101!

0.8702!

0.8498!

Figure 5.4: Precision with varying CPU loads

Impact of Smartphone Casing

People typically use cases for phones and hence it is pertinent to understand how

a smartphone having a case affects its accelerometer’s response to vibration. Com-

monly used cases are of two types: hard covers made of plastic and soft covers made

of rubber/leather. So, we have conducted experiments using both types of covers

24

and collected accelerometer readings of phones with and without those covers. The

results of the experiments are shown in the following figure.

 0

 0.2

 0.4

 0.6

 0.8

 1

Train w/ casing
Test w/o casing

Train w/o casing
Test w/ casing

Train w/o casing
Test w/o casing

Train w/ casing
Test w/ casing

All

P
re

c
is

io
n
/R

e
c
a
ll

Precision
Recall

Figure 5.5: Performance with and without phone cases

When the training is done using the traces of phones without a case and then

testing is done with phones having a case, and vice versa, the classification perfor-

mance is not high. Clearly, a phone’s case does influence its accelerometer’s response

to vibration. However, when the system is trained and tested with a case, having the

case did not affect the classification of a phone, yielding high precision and recall.

Furthermore, when the system is trained by a mix of traces with and without cases,

it performed almost as well. Considering that people do not change their phone’s

case often, its accelerometer’s fingerprint helps identify it even with a case.

Impact of Surface

The amount of stimulation generated by a smartphone’s vibration motor may de-

pend upon the surface on which it is placed. To measure this effect, we collected

accelerometer readings, keeping each smartphone on four types of surfaces: wooden

table, carpeted floor, sofa cushion and on top of a palm. The system is trained

with traces from each surface and tested with traces from all surfaces. We have also

25

trained the system with a mix of traces, equal number from each surface, and tested

again with all surface traces. The number of traces used for training is kept same in

all cases. The results of these experiment are shown in Figure 5.6.

 0

 0.2

 0.4

 0.6

 0.8

 1

Table Floor Hand Cushion All

A
v
e
ra

g
e
 P

re
c
is

io
n
/R

e
c
a
ll

Training Surface

Precision
Recall

Figure 5.6: Performance with different surfaces

When the system is trained by placing the phones on a table and then tested by

placing them also on carpet, cushion, and hand, it classifies with an average precision

of around 80% and recall close to 60%. This is reasonable considering that compared

to table other surfaces like cushion absorb different amounts of vibration, and hence

accelerometer readings reveal different set of features. However, when we train the

system with a few traces from each surface, it can classify a given trace from any of

the surfaces with 98% precision and recall. Note that, it achieves this performance

without us having to explicitly indicate the surface while testing a trace. In other

words, AccelPrint is surface-agnostic.

To summarize, our evaluation using 107 different types of stand-alone chips,

smartphones, and tablets shows that they can be identified robustly leveraging the

fingerprints of their accelerometers. While even larger study is needed to confirm

the scalability of our findings, to the best of our knowledge, this is the first work to

attempt device identification based on fingerprints of accelerometers.

26

Chapter 6

Related Work

Device Fingerprinting

Fingerprints are originally used as a biometrics technology to identify human be-

ings [45, 49]. The concept was applied to device identification as early as in 1960s,

when a “specific emitter identification” system that utilizes externally observable

characteristics of signals was developed to distinguish radars [48]. Later, the similar

technology was used to identify transmitters in cellular networks [20, 31, 43]. Since

then, much effort has been devoted to identifying network devices by building a

fingerprint out of their software or hardware.

In terms of software-based fingerprint, MAC address was exploited to detect the

presence of multiple 802.11 devices. The combination of chipsets, firmware and device

drivers [24], or the patterns of wireless traffic [38] were also used to identify devices.

The downside of these software-based methods is that fingerprints will be different

once computer configuration or traffic behavior changes.

Hardware-based approaches rely on stabler fingerprints. Network devices have

different clock oscillators that create stable and constant clock skews [47], which

can be estimated remotely using TCP and ICMP timestamps for device fingerprint-

ing [29]. Radio frequency (RF) fingerprinting has been extensively studied to iden-

tify wireless transmitters and can be divided into two categories: channel-based and

27

device-based. Channel-based methods estimate the channel impulse response that

characterizes multipath effect [40] and attenuation [23,54] between a transmitter and

a receiver for RF fingerprinting. Device-based methods rely on the distinct radio-

metrics of transmitters at the waveform [25–27, 32, 44, 50] or modulation [51] levels.

Wired Ethernet NICs can also be identified by analyzing their analog signals [42].

Our work is inspired by the aforementioned device fingerprinting work. Instead

of wireless or wired transmitters, we focus on fingerprinting smartphones utilizing

the imperfections of on-board sensors.

Privacy and Side Channel

Sensor-rich smartphones and tablets are increasingly becoming the target of attacks

for harvesting sensitive data [19]. Enck et al. [21,22] showed the potential misuse of

users’ private information through third-party applications, and Schlegel et al. [46]

demonstrated that a smartphone’s microphone can be used maliciously to retrieve

sensitive data.

Since Cai et al. pointed out that smartphones built-in sensors (e.g., GPS, micro-

phone and camera) can be used as a side channel to record user actions by stealthily

sniffing on them [15], several systems (e.g., TouchLogger [13], ACCessory [37], Ta-

plogger [53]) have been built. They have shown that collecting data from an ac-

celerometer or a gyroscope alone is enough to infer the sequences of touches on a soft

keyboard. Cai et al. [14] compared gyroscopes and accelerometers as a side channel

for inferring numeric and soft-keyboard inputs. They found that inference based on

the gyroscope is more accurate than the accelerometer. Milluzo et al. went one step

ahead to develop TapPrint [36] that uses gyroscopic and accelerometer reading in

combination to infer the location of tapping on tablet and smatphone keyboards.

28

In addition, it was shown that accelerometer readings can be used to infer not only

PINs but also Android’s graphical password patterns [9].

Inferring keystrokes on a regular keyboard has attracted much attention. Elec-

tromagnetic waves [52], acoustic signals [55], timing events [30], and specialized soft-

ware [28] were exploited to intercept the keystrokes with high accuracy. It is also

possible to infer keystrokes using the accelerometer readings from an iPhone placed

two inches away from the keyboard.

Instead of treating sensors as a side channel, we focus on the built-in fingerprint

of a smartphone for device identification.

29

Chapter 7

Limitations and Discussion

(1) Scalability. Accelerometer fingerprints may not need to be globally unique

to pose a threat. For instance, if a smartphone accelerometer in the US proves

to be identical to another in Taiwan, the backend adversary may still be able to

disambiguate using the device’s cell tower location. Put differently, broad location,

device type, and other contextual factors can relax the stringency on uniqueness.

Moreover, combining additional sensors within the fingerprint, such as the gyroscope

and the microphone, can further increase the ability to discriminate. From crude

measurements, we have observed that the gyroscope also responds to stimuli from

the phone’s vibration motor. For the microphone, it may be feasible to play a fixed

audio file through the speakers, and the recording processed for the fingerprint.

(2) Scrubbing the Fingerprint. In an attempt to scrub the fingerprint, we first

attempted to compute the resting acceleration of each device, i.e., the acceleration

value when the phone is completely at rest on a pre-defined location. Given that the

resting values are different across phones, we equalized the RSS values by suitably

adding or subtracting from the signal. Still, the fingerprinting accuracy did not

degrade since the uniqueness probably arose from a wide range of features. Equalizing

across all these features is certainly difficult. Alternatively, we added 0dB white

Gaussian noise to the signal, but observed only a marginal drop in precision and

recall (to 93%). Upon adding 5dB of noise, the performance dropped sharply, but

30

other higher level operations were also affected severely. Finally, we used a low

pass filter to eliminate the high-frequency components of the signal, but again was

not able to remove the fingerprint without affecting the application. We opine that

fingerprint scrubbing requires closer investigation, and will be a critical next step to

AccelPrint.

(3) Influence of Operating Systems We have used the Android operating

system (ice cream sandwich and gingerbread) for all the smartphones. Between all

phones using the identical OS version, the fingerprints are still discernible, implying

that AccelPrint is not affected by the operating system.

31

Conclusion

At the core of an accelerometer, a electro mechanical moving part holds the key to

sensing. The manufacturing of such moving parts are susceptible to imperfections,

bringing about diversity in the behavior of accelerometers. This diversity is not con-

spicuous from a higher level since various operations such as step-counts and display

rotations are tolerant to noise. However, when the properties of these imperfections

are deliberately extracted, they lead to a sensor fingerprint, adequate to identify a

device, and even an user. Our results offer confidence that such fingerprints exist,

and are visible even in real, uncontrolled environments. While commercial-grade

measurements are necessary towards a conclusive result, we believe that our lab

findings are still an early and important step for understanding sensor fingerprints

and their consequences at large.

32

Bibliography
[1] Adxl-345 3-axis digital accelerometer, http://www.analog.com/static/

imported-files/data_sheets/ADXL345.pdf.

[2] Arduino unosetup, http://www.arduino.cc/en/Main/ArduinoBoardUno/.

[3] LibXtract: Feature Extraction Library Documentation, http://libxtract.
sourceforge.net//.

[4] Mma-8452q 3-axis digital acelerometer, http://www.freescale.com/files/
sensors/doc/data_sheet/MMA8452Q.pdf.

[5] MPU6050: Triple Axis Accelerometer and Gyroscope, http://www.
invensense.com/mems/gyro/documents/PS-MPU-6000A.pdf.

[6] adam pocock and gavin brown, Feast, 2012, http://www.mloss.org/software/
view/386/.

[7] Matej AndrejaÅąic, Mems accelerometers, Seminar (2008).

[8] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith, Practicality
of accelerometer side channels on smartphones, Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC ’12, 2012, pp. 41–50.

[9] Adam J Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M Smith, Practicality
of accelerometer side channels on smartphones, Proceedings of the 28th Annual
Computer Security Applications Conference, ACM, 2012, pp. 41–50.

[10] L. Breiman, Random forests, Machine Learning 45 (2001), no. 1, 1049–1060.

[11] Leo Breiman, Bagging predictors, Machine Learning, 1996, pp. 123–140.

33

[12] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, Conditional likelihood max-
imisation: A unifying framework for information theoretic feature selection, The
Journal of Machine Learning Research 13 (2012), 27–66.

[13] Liang Cai and Hao Chen, Touchlogger: inferring keystrokes on touch screen
from smartphone motion, Proceedings of the 6th USENIX conference on Hot
topics in security, 2011.

[14] , On the practicality of motion based keystroke inference attack, Trust
and Trustworthy Computing, Springer, 2012, pp. 273–290.

[15] Liang Cai, Sridhar Machiraju, and Hao Chen, Defending against sensor-sniffing
attacks on mobile phones, Proceedings of the 1st ACM workshop on Networking,
systems, and applications for mobile handhelds, ACM, 2009, pp. 31–36.

[16] T.G. Dietterich, Bagging predictors, Machine Learning 24 (1996), no. 2, 123–
140.

[17] , Ensemble methods in machine learning, Multiple Classifier Systems 45
(2000), no. 1, 1–15.

[18] Cheryl Tulkoff Dr. Craig Hillman, Manufacturing and reliability challenges with
qfn, SMTA DC Chapter 45 (2009), no. 1, 1049âĂŞ1060.

[19] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna, PiOS:
Detecting privacy leaks in iOS applications, Proceedings of the Network and
Distributed System Security Symposium, 2011.

[20] Motron Electronix, TxID Transmitter FingerPrinter, http://www.motron.
com/TransmitterID.html/.

[21] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N Sheth, Taintdroid: an information-flow track-
ing system for realtime privacy monitoring on smartphones, Proceedings of
USENIX OSDI, 2010, pp. 1–6.

[22] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri, A

34

study of android application security, Proceedings of the USENIX security sym-
posium, 2011.

[23] D.B. Faria and D.R. Cheriton, Detecting identity-based attacks in wireless net-
works using signalprints, Proceedings of ACM WiSec, 2006, p. 43âĂŞ52.

[24] Jason Franklin, Damon McCoy, Parisa Tabriz, and Vicentiu Neagoe, Passive
data link layer 802.11 wireless device driver fingerprinting, USENIX Security,
Vancouver, BC, Canada, August 2006.

[25] Jeyanthi Hall, Detection of rogue devices in wireless networks, PhD thesis (2006).

[26] A.M. Yu H.C. Choe, C.E. Poole and H.H. Szu, Novel identification of intercepted
signals from unknown radio transmitters, SPIE 2491 (2003), no. 504.

[27] M. Barbeau J. Hall and E. Kranakis, Radio frequency fingerprinting for intrusion
detection in wirless networks, Defendable and Secure Computing, 2005.

[28] Kevin S Killourhy and Roy A Maxion, Comparing anomaly-detection algorithms
for keystroke dynamics, Proceedings of IEEE DSN, IEEE, 2009, pp. 125–134.

[29] Tadayoshi Kohno, Andre Broido, and K.C. Claffy, Remote physical device fin-
gerprinting, IEEE Symposium on Security and Privacy, Washington, DC, USA,
September 2005.

[30] Denis Kune and Yongdae Kim, Timing attacks on pin input devices, Proceedings
of the 17th ACM conference on Computer and communications security, ACM,
2010, pp. 678–680.

[31] L.E. Langley, Specific emitter identification (sei) and classical parameter fusion
technology, Proceedings of WESCON, 1993.

[32] J. Hall M. Barbeau and E. Kranakis, Detecting impersonation attacks in future
wireless and mobile networks, Proceedings of MADNES, 2006.

[33] A. Toscher M. Jahrer and R. Legenstein, Combining a predictions for accurate
recommender systems, Proceedings of ACM SIGKDD, 2010, pp. 693–702.

35

[34] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor, (sp)
iPhone: decoding vibrations from nearby keyboards using mobile phone ac-
celerometers, Proceedings of ACM CCS, 2011, pp. 551–562.

[35] S. McKinley and M. Levine, Cubic spline interpolation, College of the Redwoods
45 (1998), no. 1, 1049–1060.

[36] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury, Tapprints: your finger taps have fingerprints, Proceedings of ACM
Mobisys, 2012, pp. 323–336.

[37] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang, Acces-
sory: password inference using accelerometers on smartphones, Proceedings of
the Twelfth Workshop on Mobile Computing Systems and Applications, ACM,
2012, p. 9.

[38] Jeffrey Pang, Ben Greenstein, Ramakrishna Gummadi, Srinivasan Seshan, and
David Wetherall, 802.11 user fingerprinting, Proceedings of MobiCom, 2007,
pp. 99–110.

[39] European Parliament and Council, Directive 2002/58 on privacy and electronic
communications, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=OJ:L:2002:201:0037:0047:EN:PDF, 2011.

[40] Neal Patwari and Sneha Kumar Kasera, Robust location distinction using tem-
poral link signatures, Proceedings of MobiCon, 2007.

[41] G.Crew R. Caruana, A. Niculescu-Mizil and A. Ksikes, Ensemble selection from
libraries of models, Twenty-first international conference on Machine Learning,
ICML, March 2004, p. 18.

[42] M. Mina R. Gerdes, T. Daniels and S. Russell, Device identiïňĄcation via analog
signal fingerprinting: A matched filter approach, Proceedings of NDSS, 2006.

[43] M.J. Reizenman, Cellular security: better, but foes still lurk, Spectrum, IEEE,
2000.

36

[44] K.A. Remley, C.A. Grosvenor, R.T. Johnk, D.R. Novotny, P.D. Hale, M.D.
McKinley, A. Karygiannis, and E. Antonakakis, Electromagnetic signatures of
wlan cards and network security, ISSPIT, 2005.

[45] A. Ross and A. Jain, Information fusion in biometrics, Pattern Recognition
Letters 24 (2003), no. 13, 2115–2125.

[46] Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu Kapa-
dia, and X Wang, Soundcomber: A stealthy and context-aware sound trojan for
smartphones, Proceedings of the 18th Annual Network and Distributed System
Security Symposium (NDSS), 2011, pp. 17–33.

[47] Don Towsley Sue B. Moont, Paul Skelly, Estimation and removal of clock skew
from network delay measurements, Proceedings of InfoCom, 1999.

[48] K.I. Talbot, P.R. Duley, and M.H. Hyatt, Specic emitter identification and ver-
ification, Technology Review, 2003.

[49] P. Tuyls and J. Goseling, Capacity and examples of template-protecting biometric
authentication systems, ECCV, 2004.

[50] O. Ureten and N. Serinken, Rf fingerprinting, Electrical and Computer Engi-
neering Canadian Journal 32 (2007), no. 1, 27–33.

[51] M. Gruteser Sangho Oh Vladimir Brik, Suman Banerjee, Wireless device iden-
tification with radiometric signatures, Proceedings of Mobicom, 2008.

[52] Martin Vuagnoux and Sylvain Pasini, Compromising electromagnetic emana-
tions of wired and wireless keyboards, Proceedings of USENIX security, 2009,
pp. 1–16.

[53] Zhi Xu, Kun Bai, and Sencun Zhu, Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors, Proceedings of ACM confer-
ence on Security and Privacy in Wireless and Mobile Networks, 2012, pp. 113–
124.

[54] R. Miller Z. Li, W. Xu and W. Trappe, Securing wireless systems via lower layer
enforcements, Proceedings of ACM Wise, 2006, p. 33âĂŞ42.

37

[55] Li Zhuang, Feng Zhou, and J Doug Tygar, Keyboard acoustic emanations revis-
ited, Proceedings of ACM CCS, ACM, 2005, pp. 373–382.

38

	AccelPrint:Accelerometers are Different by Birth
	Recommended Citation

	tmp.1387031462.pdf.hXfNy

