Modeling Approaches, Physiological Responses, and Climate Change: How Good is "Good Enough?"

Nicole Kish
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Recommended Citation

This Open Access Thesis is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
MODELING APPROACHES, PHYSIOLOGICAL RESPONSES, AND CLIMATE CHANGE: HOW GOOD IS “GOOD ENOUGH?”

By

Nicole E. Kish
Bachelor of Science
University of South Carolina, 2012

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Marine Science
College of Arts and Sciences
University of South Carolina
2013

Accepted by:
Brian Helmuth, Major Professor
David Wethey, Committee Member
Claudia Benitez-Nelson, Committee Member
Lacy Ford, Vice Provost and Dean of Graduate Studies
ACKNOWLEDGEMENTS

I received assistance from many people during the course of my research. I am grateful to my adviser, Brian Helmuth, for his guidance and insight into expanding my research. David Wethey helped to streamline my research question and presentation and provided insight into the technical details regarding how to conduct my research. Claudia Benitez-Nelson provided support regarding the presentation and interpretation of my analyses. Sally Woodin also provided insight and ideas. I am grateful to Evan Kodra and Greg Carbone regarding their insight into the realm of forecast verification, and to Nirnimesh Kumar for assistance with programming in Matlab. I would also like to thank the Helmuth lab (Mackenzie Zippay, Cristian Monaco, Shadow Gulledge, Nick Colvard, and Alli Matzelle) for their assistance and support.
ABSTRACT

Predicting spatial and temporal patterns in the responses of organisms and ecosystems to climate change has emerged as a major focus of macrophysiological research, with much work centered on the impacts of temperature. A potential difficulty lies in the observation that measures of “habitat” such as air, land and sea surface temperature often differ greatly from the body temperature actually experienced by organisms, as the latter drives reproduction and survival. As a result, it is unclear how often these simple measurements of habitat are “good enough” for predicting physiological stress in the field, and when more complicated methods are needed. Using a dataset of body temperatures of rocky intertidal mussels, I compared the predictive capacity of four methods for mapping patterns of physiological stress at five sites along the west coast of the United States. Using a thermal physiology framework, I divided predicted and measured temperatures into lethal, suboptimal (both too hot and too cold) and optimal categories. Results suggest that while the various methods have similar accuracy (skill) when compared using common metrics such as Root Mean Square Error, they differ significantly in their ability to predict physiological responses, especially extremely high temperatures. My results emphasize that tests of model skill need to be matched to physiologically meaningful metrics when attempting to predict patterns of stress in the field.
TABLE OF CONTENTS

Acknowledgements..ii

Abstract..iii

List of Tables..v

List of Figures...vi

Introduction...1

Chapter 1...12

 1.1 Introduction..13
 1.2 Methods...17
 1.3 Results...27
 1.4 Discussion...31

Tables...36

Figures...38

Conclusion..42

References..43
LIST OF TABLES

Table 1.1 Bias, RMSE, and MAE of all models at all sites...............................36

Table 1.2 Forecast verification skill scores for all models at all sites....................37
LIST OF FIGURES

Figure 1.1 Location of study sites...38

Figure 1.2 Comparison of local and gridded solar radiation data......................39

Figure 1.3 Hit rates for all models at all sites...40

Figure 1.4 False alarm ratios for all models at all sites.....................................41
INTRODUCTION

Due to greenhouse gas emissions resulting from anthropogenic activities, global surface air temperatures have been increasing since the mid-19th century. Changes in the hydrologic cycle, wind and precipitation patterns, and the duration and intensity of extreme heat events are predicted to accompany the warming trend (IPCC, 2007). As surface, air and sea temperatures warm, species ranges are predicted to shift poleward, toward higher altitudes (Walther et al., 2002; Parmesan & Yohe, 2003) or into less thermally stressful refuges (Helmuth et al., 2002). Since some warming would still take place even if greenhouse gas emissions were stabilized (IPCC, 2007) accurately predicting the effects the changing climate will have on species is imperative to understanding future species distributions and changes in ecosystem function.

Specific physical factors limit the physiological performance and survival of all organisms—taken together, these factors comprise the axes of Hutchinson’s niche, or “n-dimensional hypervolume” within which a species can survive (1957). Hutchinson further divided the concept into that of the “fundamental niche” which accounted for limits set only by physical parameters (and the organism’s physiological tolerance of those parameters), and the “realized niche,” which included the effects of biotic interactions such as competition and predation. Here I focus on the concept of the fundamental (physiological) niche, although changes in the extent of one organism’s fundamental niche may affect another’s realized niche as a result of biotic interactions. By mapping niche parameters onto physical space, one can determine the current and
potentially future extent of habitat suitable for a particular organism (Kearney, 2006). Since external conditions interact with an organism’s behavioral, morphological, and physiological traits, two species exposed to the same environment can experience very different levels of physiological stress, i.e. exist at different locations within their respective niche (Kearney 2006, Kearney et al., 2010). Moreover, two organisms with similar physiological tolerances can also experience different levels of stress- and live within different regions of their respective niche spaces- as a result of differences in how “habitat” (such as air and surface temperature) are translated into conditions more relevant to the organism’s physiology, such as body temperature. Since the Hutchinsonian niche concept is in essence a property inherent to a particular organism, rather than that organism’s environment, Kearney suggests that the term “niche” be reserved only for mechanistic interactions between organism and environment, and “habitat” used to refer to parameters that describe the physical nature of an the region the organism occupies (Kearney, 2006), regardless of how that habitat is perceived at a physiological level by each species. I use these definitions throughout the remainder of this paper.

Since temperature has long been shown to influence a wide variety of physiological processes (e.g.; Somero, 2002; Denny, 2011; Huey & Kingsolver, 2011), climate change will alter the extent of an organism’s fundamental niche in space and time. Physiological responses to temperature are represented by thermal performance curves, the breadth of which represents fundamental thermal niche width (Huey & Stevenson, 1979; Roughgarden, 1972). Performance curves are often asymmetric around an optimum temperature range; as temperatures fall below optimum, performance
gradually declines; as temperatures rise above optimum, performance drops off sharply (Huey & Stevenson, 1979). Therefore, even a relatively small increase of only a few degrees in temperature may result in a sharp decline in physiological performance when the organism is already living at or slightly above its optimal body temperature. Because of this asymmetric nature of performance curves, organisms are predicted to center their body temperature range at a value slightly below optimal when they experience a range of temperatures, in order to maximize total fitness (Martin & Huey, 2008).

Frequently, changes in a species thermal niche are predicted by correlating species presence data with a single environmental parameter, quite often air temperature, and forecasting or hindcasting changes in abundance (e.g. Lesser et al., 2010; Firth et al., 2011). Because these correlative models rely on data taken at the “habitat” level, they do not account for the mechanisms by which environmental conditions are translated into physiological stress and as a result can be problematic, especially when applied to novel climatic conditions (Kearney et al., 2008). For example, because convection by wind can cool organisms exposed to solar radiation, an organism with a morphology that enhances turbulence may experience a lower body temperature than one that is more “streamlined” even when both organisms are exposed to precisely the same conditions of weather. As a result, it has been suggested that commonly used metrics of “habitat temperature” such as air or surface temperature may not effectively represent body temperature, which ultimately controls physiological performance.

The parameters that define the fundamental niche vary temporally: both short-term, infrequent exposures to extremes and prolonged or repeated exposures to sublethal stressors affect survival and fitness (Petes et al. 2008; Jones et al. 2009, 2010; Sorte et al.
Extreme events themselves may not necessarily be caused by extremes in any one particular aspect of the environment, but rather the simultaneous occurrence of several stressors which interact synergistically (Denny et al., 2009), such as elevated air temperature and maximal levels of solar radiation (Marshall et al. 2010). Temporal non-coincidence of sublethal stressors can also affect physiological performance, since they do not allow for a period of recovery (Pincebourde et al., 2012). In this instance, correlative approaches using a single climatic variable do not account for interactions between these drivers, especially if a non-climatic factor is of importance (Marshall et al., 2010).

Other approaches seek to overcome these drawbacks. Mechanistic niche models, though significantly more complex than correlative models as they require extensive parameterization and detailed knowledge of the characteristics of both organism and environment, can potentially more accurately predict the effects of climate change as they account for the means by which environmental parameters are translated into physiologically relevant characteristics (Kearney, 2006; Kearney et al, 2010). For example, a mechanistic model designed to predict the fundamental thermal niche as a function of body temperature will account for the sources, sinks, and stores of heat within the organism (Porter & Gates 1969; Helmuth, 1998). Heat may be gained from short wave solar radiation; gained or lost due to radiation with the sky, radiation with the ground, conduction with the ground, and convection with the surrounding air; and lost due to evaporative cooling. By accounting for the ways in which an organism’s traits (size, shape, color, specific heat capacity of tissue) affect these sources and sinks of heat,
a mechanistic niche model will predict stored heat within an organism, which in turn determines body temperature (Porter & Gates 1969; Helmuth, 1998).

An example of the complexity involved in predicting physiological stress due to climate is body temperature of intertidal ectotherms, since these organisms must contend alternatively with terrestrial and marine conditions. Body temperature—the factor responsible for stress—of intertidal ectotherms is driven by multiple aspects of the environment, such as air temperature, water temperature, solar irradiance, wave splash, wind speed, and the timing of the tides (Helmuth 1998, 1999; Helmuth et al., 2002) and often differs greatly from the temperature of the ambient air or water (e.g. Southward, 1958; Lewis, 1963; Etter, 1988; Helmuth, 1998). As a result, body temperatures of these organisms are believed to frequently approach the physiological limits of their species (Somero, 2002). Because their survival is so closely tied to aspects of the physical environment, intertidal ectotherms may be especially vulnerable to the changes brought about climate change and can serve as an effective tool for predicting its effects (Denny & Harley 2006).

In order to accurately predict the effects of a change in body temperature on species distributions and ecosystem function, models must be grounded in a physiological framework; i.e., they must account not only for the conditions an organism experiences but where those conditions place it along its performance curve or within its fundamental niche. During stressful conditions, organisms make potentially ecologically-significant trade-offs, such as reallocating energy used for processes such as reproduction and growth towards energetically costly defense and repair mechanisms (Petes et al., 2008). In the intertidal zone, sublethal but stressful high temperatures have been shown to lead
to protein damage (e.g. Helmuth & Hofmann, 2001), diminished growth, and decreased energy allocated to reproduction (e.g. Petes et al., 2007). Predictions of the effects of a changing climate must account for changes in ecosystem function due to sublethal stress as well as changes due to mortality.

A central problem facing climate scientists is how to quantify the accuracy of models, especially when forecasting future responses under what will likely be novel conditions. Several studies have attempted to compare mechanistic (process-based) models against correlative models (e.g. Buckley et al. 2010). Yet, a key assumption in these comparisons is that the metric being used to test accuracy is biologically relevant. For example, mechanistic models that use weather data collapsed into monthly averages may fail for the same reason as correlative approaches (Kearney et al. 2012). As a result, they may appear to perform with similar accuracy to correlative models (Buckley et al. 2010) when in reality both are failing to account for the role of high frequency variation in body temperature (Kearney et al. 2012).

I tested the predictive capacity of four methods for quantifying body temperature (and thus, thermal stress) of the California mussel, *Mytilus californianus*. *In situ* body temperatures of living mussels were collected by biomimetic sensors deployed at five sites spanning ten degrees of latitude along the west coast of the United States. Using a thermal physiology framework, I divided both measured and predicted temperatures into categories of optimal, suboptimal (in terms of both heat and cold stress), and lethal conditions. I analyzed the overall ability of each method to predict body temperature using both common statistical metrics such as Root Mean Squared Error, but in addition-and in contrast to most previous studies- I also compared the ability of each method to
capture the physiological stress experienced by mussels. I hypothesized that simple metrics of the environment such as air temperature might be sufficient for predicting average conditions. However, because high body temperatures have been shown to differ significantly from the temperature of the mussel’s surroundings, I hypothesized that mechanistic models would be necessary to predict extreme (and ecologically significant) events.

1.1.1 Model stationarity

Both correlative and mechanistic approaches assume “model stationarity,” i.e. that models developed and tested in one location and/or time can be applied to different geographic regions and future conditions. This assumption is based on the idea of “niche conservatism,” that the limitations on the fundamental niche remain constant over time. It also assumes that the mechanisms setting limits in the region being tested are the same as those in the location for which the model is being applied. Such an assumption may be faulty because, for example, both lethal extremes and chronic exposure to sublethal extremes that ultimately result in death or reproductive failure have been shown to set range limits (Wethey et al. 2011a, Woodin et al. 2013). Thus, while the validity of the model stationarity assumption is essential for accurately predicting the effects of climate change biogeographic models have been observed to fail when applied to novel conditions (Woodin et al., 2013). Even mechanistic models may not accurately reflect body temperatures at sites other than the ones for which they were developed (e.g. Gilman et al., 2006a; Wethey et al., 2011b).
The models used in this study aim to predict body temperature from habitat-level measurements; thus, failure of these models at certain locations would not imply a fundamental niche shift or changes in the mechanism by which distribution is limited. Instead, it would indicate inability to accurately reflect the interaction between environment and organism at that site.

I explored the concept of model stationarity in space by performing analyses at five different sites spanning ten degrees of latitude on the west coast of the United States and varied the level of site-specificity in the models I chose. One model, developed by Elvin & Gonor (1979) was developed and tested only for one particular site; however, I applied this model to all five sites without modification. I used a general biophysical model (Helmuth et al., 2011), developed at one particular site and applied to others, to generate predictions of body temperature. The use of air temperature as a proxy was also intended to be a general approach applicable to all sites. Finally, I used a multiple regression approach to create simple models tailored to each particular location. The aim of this approach was to investigate any potential patterns in geography that might lead to model failure at one site as opposed to another.

1.1.2 Ecology of Mytilus californianus

The California mussel, *Mytilus californianus*, is a sessile invertebrate that inhabits rocky shores of North America, whose range extends from Alaska to Baja California (Smith et al, 2006), and whose ecology has been extensively studied. It is competitively dominant throughout the mid-intertidal zone, with predation from the seastar *Pisaster ochraceus* limiting its presence in the low intertidal (Paine, 1974) and desiccation and
temperature stress restricting coupled with reduced feeding time assumed to limit its upper intertidal limit (Seed & Suchanek, 1992). *M. californianus* uses byssus threads to attach to hard substrata and others of its species, thus providing structure and stability to the intertidal ecosystem (Smith et al. 2006; Zippay & Helmuth, 2012). This species of mussel does not have a distinct spawning season, but instead “dribbles” gametes throughout the year (Seed & Suchanek, 1992).

The ability of *M. californianus* to behaviorally regulate its body temperature is limited, as it cannot move to a less-thermally stressful location, and laboratory experiments have demonstrated little effect of gaping behavior on the body temperature of these organisms (Fitzhenry et al, 2004). Optimal temperatures for this species range from 17°C to 22°C (Bayne et al, 1976). Exposure to freezing conditions is lethal (Seed & Suchanek, 1992), and Denny et al. (2011) report the LT₅₀ (temperature at which 50% mortality is observed) for *M. californianus* as 38.2°C, with 100% mortality when body temperatures exceed 41°C. During periods of aerial exposure, the body temperature of *M. californianus* has been observed to regularly exceed 30°C (e.g. Elvin & Gonor, 1979). Thermal stress in this species does not increase with decreasing latitude along the Pacific coast of the US; midday low tides, during which mussels are exposed to the “harshest” terrestrial conditions, occur more frequently during the summer at northern sites in Washington and Oregon than at southern sites in California (Helmuth et al, 2002), and “risky” days, when low tides coincide with high solar elevation, have a greater likelihood of occurrence at northern sites than at southern (Mislan et al, 2009). Individuals of the closely related species *Mytilus edulis* displayed a negative energy balance (energy assimilated did not meet the maintenance energy requirement) when acclimatized to
warm conditions (Widdows & Bayne, 1971), resulting in decreased physiological performance and sublethal effects such as decreased tissue weight and reproductive output.

1.1.3 Forecast Verification

The appeal of physiological niche modeling lies in its ability to potentially predict how species might respond to future climatic conditions. While only a single incident of exposure to lethal temperatures can cause mass mortality within a community, commonly-used metrics of model skill may necessarily reflect a model’s ability to predict these rare but extreme events. Additionally, since considerable temperature variability can exist between individual mussels located within the same bed, it is less important that a model reproduces reality per se than that it indicates if certain thresholds of stress were reached, and what these stress levels were.

Forecast verification techniques have received considerable attention in meteorological research, since an unskilled weather forecast can compromise public safety and result in economic loss (Thornes, 2001). As a result, a variety of verification metrics and skill scores designed to assess different aspects of forecast quality; these skill scores reflect the overall association between a previous forecast and previous observations and measure how much more skillful a forecast is than some reference, such as climatology, persistence, and chance (Stephenson, 2000; Thornes, 2001). Due to the potential of rare extreme weather events to cause significant societal impacts and losses and the predicted increase in the frequency of these events resulting from anthropogenic
climate change, interest in verification methods for extreme events has grown in recent years (Casati et al., 2008).

Here, I applied several forecast verification techniques used in meteorological research to predictions made by the simple and biophysical models. I applied the physiological framework mentioned previously to the calculation of the verification metrics, to assess the skill of each model in predicting certain thresholds of stress. Overall skill scores indicate how much skill is gained using each predictive method as opposed to a random forecast, while the hit rate and false alarm ratios provide measures of skill within particular regions of the physiological performance curve. These approaches allow the assessment of a model's ability to predict all temperatures, rather than simply mean conditions.
CHAPTER 1

MODELING APPROACHES, PHYSIOLOGICAL RESPONSES, AND CLIMATE CHANGE: HOW GOOD IS “GOOD ENOUGH?”¹

¹ Kish, N.E., Helmuth, B., and Wethey, D.S. To be submitted to Global Change Biology
1.1 INTRODUCTION

Accurately predicting the effects of a changing climate on species is imperative to understanding future species distributions and changes in ecosystem function. Frequently, changes in a species thermal niche are predicted by correlating species presence data with a single environmental parameter, quite often air temperature, and forecasting or hindcasting changes in abundance (e.g. Lesser et al., 2010; Firth et al., 2011). Because these correlative models rely on data taken at the “habitat” level, as defined by Kearney (2006), they do not account for the mechanisms by which environmental conditions are translated into physiological stress and as a result can be problematic, especially when applied to novel climatic conditions (Kearney et al., 2008). Mechanistic niche models can potentially more accurately predict the effects of climate change as they account for the means by which environmental parameters are translated into physiologically relevant characteristics (Kearney, 2006; Kearney et al, 2010).

A perfect example of the complexity involved in predicting physiological stress due to climate is body temperature of intertidal ectotherms. The rocky intertidal zone is a stressful, constantly changing environment, in which organisms must contend alternatively with terrestrial and marine conditions. Body temperature—the factor responsible for stress—of intertidal ectotherms is driven by multiple aspects of the environment, such as air temperature, water temperature, solar irradiance, wave splash, wind speed, and the timing of the tides (Helmuth 1998, 1999; Helmuth et al., 2002). Body temperatures of intertidal organisms often differ greatly from the temperature of the ambient air or water (e.g. Southward, 1958; Lewis, 1963; Etter, 1988; Helmuth, 1998) and are believed to frequently approach the physiological limits of their species (Somero,
Because their survival is so closely tied to aspects of the physical environment, intertidal ectotherms may be especially vulnerable to the changes brought about by climate change and can serve as an effective tool for predicting its effects (Denny & Harley 2006).

A central problem facing climate scientists is how to quantify the accuracy of models, especially when forecasting future responses under what will likely be novel conditions. Several studies have attempted to compare mechanistic (process-based) models against correlative models (e.g. Buckley et al. 2010). Yet, a key assumption in these comparisons is that the metric being used to test accuracy is biologically relevant. For example, mechanistic models that use weather data collapsed into monthly averages may fail for the same reason as correlative approaches (Kearney et al. 2012). As a result, they may appear to perform with similar accuracy to correlative models (Buckley et al. 2010) when in reality both are failing to account for the role of high frequency variation in body temperature (Kearney et al. 2012).

In order to accurately predict the effects of a change in body temperature on species distributions and ecosystem function, models must account not only for the conditions an organism experiences but where those conditions place it along its performance curve or within its fundamental niche. During stressful conditions, organisms reallocate energy used for processes such as reproduction and growth towards energetically costly defense and repair mechanisms (Petes et al., 2008). This trade-off can be ecologically significant, since the cost of survival is paid in terms of future reproduction. In addition, while only a single incident of exposure to lethal temperatures can cause mass mortality within a community, metrics of model skill based on central
tendency do not necessarily reflect a model’s ability to predict these rare but extreme events.

Forecast verification techniques have received considerable attention in meteorological research, since an unskilled weather forecast can compromise public safety and result in economic loss (Thornes, 2001). As a result, a variety of verification metrics and skill scores designed to assess different aspects of forecast quality; these skill scores reflect the overall association between a previous forecast and previous observations and measure how much more skillful a forecast is than some reference (commonly used baselines include climatology, persistence, and chance) (Stephenson, 2000; Thornes, 2001). Due to the potential of rare extreme weather events to cause significant societal impacts and losses and the predicted increase in the frequency of these events resulting from anthropogenic climate change, interest in verification methods for extreme events has grown in recent years (Casati et al., 2008).

Here, we tested the predictive capacity of four methods for quantifying body temperature (and thus, thermal stress) of the California mussel, *Mytilus californianus*. *In situ* body temperatures of living mussels were collected by biomimetic sensors deployed at five sites spanning ten degrees of latitude along the west coast of the United States. Using a thermal physiology framework, we divided both measured and predicted temperatures into categories of optimal, suboptimal (in terms of both heat and cold stress), and lethal conditions. We analyzed the overall ability of each method to predict body temperature using both common statistical metrics such as Root Mean Squared Error, but in addition- and in contrast to most previous studies- we also compared the ability of each method to capture the physiological stress experienced by mussels. We
also applied several forecast verification techniques used in meteorological research to predictions made by the models. These approaches allow the assessment of a models ability to predict all temperatures, rather than simply mean conditions.
1.2 METHODS

Data were collected from five sites along the west coast of the United States: Boiler Bay (Lat.: 44.83, Lon: -124.06) and Strawberry Hill (Lat: 44.25, Lon: -124.11), OR, and Bodega Bay (Lat: 38.32, Lon: -123.07), Pacific Grove (Lat: 36.62, Lon: -121.91), and Lompoc Landing (Lat: 34.72, Lon: -120.61), CA. At each site, “robomussels,” biomimetic sensors designed to replicate the thermal characteristics of mid-size (~75 mm shell length) *M. californianus* mussels (Fitzhenry et al., 2004) were deployed in the growth position in the mid intertidal zone (MLLW +1.5 m). Robomussels consisted of a Tidbit datalogger (Onset Computer Corporation) encased in polyester resin; temperatures recorded by these loggers fall within ~2°C of living mussels (Fitzhenry et al., 2004). Because local topography and substratum angle can result in significant differences in the body temperature of individuals separated by only meters (e.g. Helmuth & Hofmann, 2001; Seabra et al., 2011), only loggers deployed on horizontal surfaces on wave exposed benches (where thermally-stressful high temperatures are most likely to occur) were considered in this analysis. Loggers were programmed to collect data every ten minutes and deployed for approximately six months, at which point they were collected and replaced with new loggers. Five loggers were deployed at each site; however, due to wave action, some instrument loss occurred. On average, three loggers were recovered at each time of instrument retrieval. Brief gaps (~1-2 days) in the data record occur when old loggers were replaced.
Weather station data (air temperature, wind speed, and significant wave height) were obtained from the nearest National Buoy Data Center (http://www.ndbc.noaa.gov/), with two exceptions. Hourly average air temperature and wind speed data for Bodega Bay were obtained from the Bodega Ocean Observing Node (http://bml.ucdavis.edu/boon/), and ten-minute air temperature and wind speed data for Pacific Grove were obtained from a local weather station maintained by the Hopkins Marine Station Marine Life Observatory (http://mlo.stanford.edu/) and located immediately adjacent to the logger deployment site. Data from the Hopkins station were averaged over the course of each hour. At certain times, NDBC data were available only as point measurements on the hour; since air and water temperature were assumed to change slowly, during these intervals each observation was averaged with the following observation to obtain an hourly mean.

Direct solar radiation is not frequently measured by weather stations. Local solar radiation data were available at Hopkins station for the entire period of record and for Bodega Bay beginning in August 2008. For all other sites, gridded direct solar radiation data were obtained from the GEWEX Continental Scale International Project (GCIP; Pinker & Lazlo, 1992) Surface Radiation Budget (http://www.atmos.umd.edu/~srb/gcip/). Surface downwelling shortwave hourly average data are available from a ½ degree grid for the years 1996-2010; the data were found to be closely correlated with local solar radiation measurements from Hopkins station (Figure 1: Pearson correlation: 0.909, p<0.01). When included in a biophysical model, results using GCIP solar data as inputs were similar to results using local weather station data (Mislan & Wethey, 2011). The GCIP dataset is limited in that data are only available between the hours of 9:00 and
16:00 local standard time, so apparent solar azimuth and elevation for each site were obtained from the NASA Jet Propulsion Laboratory HORIZON’s web interface (http://ssd.jpl.nasa.gov/?horizons). Solar radiation observations were assumed to be zero at times when apparent solar elevation was negative; remaining missing observations were obtained by linearly interpolating from sunrise until 9:00 local or from 16:00 local until sunset.

Since *M. californianus* experiences its most thermally stressful conditions during periods of aerial exposure, only data taken when mussels were exposed to the air were considered in this analysis. For each study site, observed tidal height data were obtained from the nearest NOAA Center for Operational Oceanographic Products and Services observing station (http://tidesandcurrents.noaa.gov/). The effect of wave splash was estimated using metrics of significant wave height and shore slope data presented in Gilman et al (2006b). Wave run-up for each site was added to measurements of still tidal height; these data were used to separate periods of emersion and immersion based on the absolute tidal height of the loggers.

I took four different approaches to modeling body temperatures of *Mytilus californianus*. The first of these was to use air temperature as a proxy for body temperature. Although the body temperature of intertidal ectotherms frequently differs, often greatly, from ambient air temperature (e.g. Southward, 1958; Helmuth, 1998; Chapperon & Seuront, 2011), this approach is frequently used in climate envelope studies of species distributions. In addition, while air temperature may not accurately reflect high body temperatures, it may be useful as a proxy when cold stress events are of
interest (e.g. Firth et al., 2010), or when one is modeling the distribution of refuges for populations (e.g. Jones et al., 2010).

The second approach was a simple thermal model first presented in Elvin & Gonor (1979). Between 1970 and 1974, Elvin and Gonor collected data on *M. californianus* tissue temperatures, water temperature, air temperature, wind speed, and relative humidity at Yaquina Head, OR, located approximately 20 km from Boiler Bay and approximately 45 km from Strawberry Hill. Their aim was to estimate the thermal regime for *M. californianus* to determine scope for growth. From these data, they calculated that hourly tissue temperatures could be estimated by the formula: $T_{mussel} = T_{air} + 5.03L$, where L represents solar isolation in langley per minute and T_{air} and T_{mussel} represent air temperature and mussel body temperature, respectively. I applied this formula to data collected at Boiler Bay and Strawberry Hill as well as my study sites in California; hereafter I refer to it as the Elvin & Gonor model.

I also modified the Elvin & Gonor model at each site to test the concept of model stationarity. For each study site, I performed multiple regressions of air temperature and solar irradiance against robomussel temperature. Although use of a multiple regression introduces error into the predictions, since correlation exists between air temperature and solar radiation, this method is used in situations such as the Elvin & Gonor model or in the prediction of sea turtle nest temperatures (Hawkes et al., 2007).

The final approach was a steady-state full biophysical model, presented in Helmuth et al. (2011) and based on data first presented in Helmuth (1999) and modified upon in Kearney et al. (2010). I refer to it as the Helmuth biophysical model. This generic model, developed and tested for loggers at Bodega Bay, is designed to calculate
hourly body temperatures of mid-size (~75 mm) mussels in a horizontal bed. The model uses hourly measurements of direct shortwave solar radiation, air temperature, and wind speed as inputs to estimate heat gain and/or loss due to short-wave solar radiation, infrared radiation to and from the sky, infrared radiation to and from the ground, conduction to and from the ground, and convection to and from the surrounding air as modified by the morphological characteristics of the mussels themselves (Helmuth, 1999). For simplicity, the model assumes that ground temperature and air temperature equivalent, that cloud cover is constant in regards to infrared heat exchange, and that the effect of evaporative cooling is negligible (Helmuth et al, 2011). The model assumes that mussels reach equilibrium within an hour; “thermal inertia,” or the time constant that reflects the ability of an organism to resist changes in temperature, for a mid-size mussel is approximately 20-30 minutes (Helmuth, 1999; Helmuth et al, 2011).

For Boiler Bay, Bodega Bay, Hopkins Station, and Lompoc Landing, only data collected when all observations were present were included in the analysis. That is, if data were missing from one microsite or one environmental parameter, observations of other parameters taken at that same time were not included. Throughout the Strawberry Hill period of record, three out of any four mid exposed horizontal microsites had loggers deployed at any particular time. Since excluding data where observations were missing for one microsite would have limited the dataset to only a few hundred observations (when four loggers were deployed at once), I analyzed each microsite individually.

A thermal physiology framework was developed to categorize results. “Optimal” temperature was defined to be 17°-22°C, the range at which the highest scope for growth is reported (Bayne et al., 1976). Zero scope-for-growth is believed to occur at 26°C.
heat shock proteins are observed when body temperatures exceed 32°C, and Denny et al. (2011) report the LT_{50} to be 38.2°C; “high suboptimal” was therefore defined to range from 22°-32°C, “high sublethal” as 32°-38°C, and “high lethal” as temperatures exceeding 38°C. Less work has been done regarding cold stress in *M. californianus*; however, exposure to freezing conditions is known to be lethal (Seed & Suchanek, 1992). Yao & Somero (2012) report double-stranded DNA breaks and caspase-3 activation, a signal of apoptosis, in *M. californianus* at 2° and 6°C, but not at 13°C; it is also important to note that the stress response was time-dependent. “Cold suboptimal” was defined to range from 10°-17°C and “cold sublethal” as 0°C-10°C. Temperatures less than 0°C were defined as “cold lethal.”

Since forecasting the effects of climate change on ecosystems requires accurately predicting temperatures along the entire range of the probability distribution as well as mean conditions, I calculated a number of forecast verification statistics used in meteorological research. Since these metrics rely on paired data consisting of one forecast value and one observed value (Wilks, 1995), I calculated the daily maximum temperature, defined as the highest hourly average measurement in a 24 hour period, for both the forecast and observed values. The daily maximum was chosen as a metric since it eliminates the need for the models to match temperature trajectory of the observations while still remaining indicative of physiological stress.

Using daily maximum data, I calculated the bias, mean absolute error (MAE), and root mean squared error (RMSE)—metrics which have commonly been used to evaluate ecological model performance—for each model relative to logger temperature. I also assessed model performance by applying several forecast verification techniques used by
the meteorological community to my data. Hit rate and false alarm ratios were used to assess performance within a particular temperature band and the Heidke score, Peirce score, and Gerrity score to assess overall model performance. The hit rate indicates the relative number of times an event that was forecasted occurred, and can be calculated using the formula:

\[H = \frac{\text{hits}}{\text{hits} + \text{misses}} \]

Scores range from 0 to 1, where 0 indicates no skill and 1 indicates a perfect forecast. (http://www.cawcr.gov.au/projects/verification/)

The false alarm ratio indicates the relative number of times an event that was forecast to occur did not:

\[\text{FAR} = \frac{\text{false alarms}}{\text{hits} + \text{false alarms}} \]

Like the hit rate, scores range from 0 to 1, but here, 1 indicates no skill and 0 a perfect forecast. (Stephenson, 2000; Center for Australian Weather and Climate Research, http://www.cawcr.gov.au/projects/verification/). An occurrence where both the predicted and observed temperatures fell within the same range of physiological stress was defined as a “hit.” If models predicted temperatures to fall within one range of physiological performance, while in reality they fell within another temperature band, this occurrence was defined as a “false alarm” for the predicted range. Because temperatures fall along a continuum, a “false alarm” within one band is also a “miss” within another.

For multi-category forecasts, the Heidke skill score is calculated using the equation:
\[HSS = \left[\frac{1}{N} \sum_{i=1}^{k} n(F_i O_i) - \frac{1}{N^2} \sum_{i=1}^{k} n(F_i) n(O_i) \right] / \left[1 - \frac{1}{N^2} \sum_{i=1}^{k} n(F_i) n(O_i) \right] \]

where \(n(F_i O_i) \) is the number of forecasts in category \(i \) that have observations in category \(i \), \(N(F_i) \) is the number of forecasts in category \(i \), \(N(O_i) \) is the number of observations in category \(i \), and \(N \) is the total number of forecasts. (Center for Australian Weather and Climate Research, http://www.cawcr.gov.au/projects/verification/). This score compares the proportion of correct forecasts to the proportion correct obtained from a no-skill random forecast (Stephenson, 2000), and relies on the hit rate as the basic measure of accuracy (Wilks, 1995). This score ranges from -1 to 1, where a score of 0 indicates no skill and a score of 1 indicates a perfect forecast. The Heidke skill score is considered a more impartial measure of forecast skill than the proportion correct, since proportion is strongly influenced by the most common category (such as “no event” for rare occurrences) and, as a result, can be misleading. (Stephenson 2000). The Peirce score, (Peirce 1884) represents the difference between the hit rate and false alarm rate. It is calculated using the equation:

\[PSS = \left[\frac{1}{N} \sum_{i=1}^{k} n(F_i O_i) - \frac{1}{N^2} \sum_{i=1}^{k} n(F_i) n(O_i) \right] / \left[1 - \frac{1}{N^2} \sum_{i=1}^{k} (n(O_i))^2 \right] \]

When the score is greater than 0, number of hits exceeds number of false alarms. (Center for Australian Weather and Climate Research, http://www.cawcr.gov.au/projects/verification/).

The Gerrity score (Gerrity, 1992) is calculated using the equation:

\[GS = \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{k} n(F_i O_j)s_{ij} \]
s_{ij} are elements of a scoring matrix. On the diagonal, $(i=j)$, s_{ij} is given by:

$$s_{ij} = \frac{1}{k-1} \left(\sum_{r=1}^{i-1} a_r^{-1} + \sum_{r=i}^{k-1} a_r \right)$$

and off-diagonal $(i \neq j)$, s_{ij} is given by:

$$s_{ij} = \frac{1}{k-1} \left(\sum_{r=1}^{i-1} a_r^{-1} - (j - i) + \sum_{r=i}^{k-1} a_r \right)$$

where:

$$a_i = \left(1 - \sum_{r=1}^{i} p_r \right) / \sum_{r=1}^{i} p_r$$

and

$$p_i = n(O_i) / N$$

Like the Peirce and Heidke scores, the Gerrity evaluates the skill of a forecast in predicting the correct category relative to random chance. (Center for Australian Weather and Climate Research, http://www.cawcr.gov.au/projects/verification/).

Hit rate, false alarm rate, and the Peirce, Heidke, and Gerrity scores were calculated using the “verification” package (NCAR-Research Application Program, 2012) in the R statistical software system (cran.r-project.org). Because of the high within-site variability of temperatures in the intertidal (Denny et al., 2011), bias, RMSE, MAE, and forecast verification metrics were calculated using daily maximum temperatures from each individual microsite as a separate set of observations. The result is a range of statistics that may be indicative of variability in the field.

To further quantify the effect of variability, verification statistics were compared among replicate measurements on the ground. That is, data collected by one logger at a
particular site were considered a “forecast” and data from another “observations;” hit rate and false alarm ratios were calculated accordingly. If verification statistics calculated using a model as a forecast were similar to those calculated for the inter-logger comparison, that model could be considered at least as useful as deploying an additional logger in the field. The results from the inter-logger analysis are displayed alongside the results from each model forecast.
1.3 RESULTS

With the exception of air temperature, for which errors were larger than for other metrics, bias, MAE, and RMSE reflected relatively little difference in model skill when applied to the same site (Table 1.1). These methods also indicated larger errors at the northernmost (Boiler Bay) and southernmost (Lompoc Landing) sites.

Bias, MAE, and RMSE are all measures of average error between a prediction and a model. Because sample sizes are small near the tails of a probability distribution, errors in this region would need to be very large to outweigh small errors nearer to the mean. While these metrics indicated relatively little difference between models (Table 1.1), forecast verification techniques indicated larger differences in model skill and provide a more detailed understanding of the strengths and weaknesses of each approach. Pierce and Heidke scores for the use of air temperature as a proxy were poor overall; at Bodega Bay, Hopkins, and Lompoc Landing, they indicated very little improvement in skill versus a random forecast, although they indicated a slightly larger improvement in skill at Boiler Bay and Strawberry Hill (Table 1.2). Still, scores for air temperature at the northern sites were poorer than for other methods at the same locations, strongly cautioning against the use of air temperature alone as a proxy, especially when heat stress is of concern. It is also important to note the inter-logger variability in skill scores, especially considering that each set of observations was taken by instruments separated by only meters and deployed at similar heights and surface orientations.
Pierce, Heidke, and Gerrity scores indicated relatively little difference between the Helmuth biophysical model, the Elvin model, and the multiple regression approach (Table 1.2). However, when applied to a physiological framework, each predictive method demonstrated different levels of skill at different points along the physiological performance curve, and the temperatures at which each model was most skilled varied with geographic location. At all sites, hit rates indicated more success (values closer to 1) at low to mid temperatures than at high temperatures, with the highest values being reported for the 10°-17° C range at most sites (Figure 1.3). On the other hand, false alarm ratios for the lowest temperature category were also high at all sites, indicating the tendency of all models to “run cold” (Figure 1.4).

Results from the inter-logger analysis indicated almost-perfect hit rates at all sites for temperatures falling between 10° and 17°C. Overall, hit rates tended to decrease as temperatures increased at all sites, although at Boiler Bay, Strawberry Hill, and Hopkins, hit rates for the 22-32°C category were higher than those for 17-22°C. At four sites, hit rates decreased to 0 for temperatures above 38°C; the notable exception is Strawberry Hill, for which inter-logger hit rates indicated that loggers were recording similar high temperatures.

False alarm ratios for the inter-logger analysis varied across categories and across sites. Due to the nature of forecasts with multiple categories, a “miss” in one category is a “false alarm” in another. Because of the high variability in maximum temperatures and small sample sizes for the two highest categories (32-38°C and>38°C), the false alarm ratio would at times be undefined due to division by zero. Frequently, false alarm ratios
for the inter-logger analysis had values closer to 1 (indicating less skill) at high temperatures, although this trend is not consistent across sites.

At all sites, hit rates for air temperature were highest for the cold suboptimal band of 10°-17°C; at Bodega Bay and Lompoc Landing, cold suboptimal hit rates exceeded 0.9. However, hit rates for the next highest temperature category (optimal, 17°-22° C) were quite poor, and virtually no skill was gained by using air temperature as a proxy for body temperature within the suboptimal high, sublethal high, and lethal high categories. Results strongly caution against the use of air temperature as a metric for heat stress, since, at all sites, air temperature greatly under-predicted the number of instances mussels experienced optimal, high suboptimal, high sublethal, and high lethal temperatures.

Hit rates for the Elvin & Gonor model were generally comparable to or slightly lower than hit rates for air temperature alone at the cold sublethal and cold suboptimal levels and indicated more model skill in predicting temperatures at optimal levels. Although the Elvin and Gonor model was developed for a site near to Strawberry Hill and Boiler Bay, the hit rate was relatively low for high suboptimal temperatures at these sites. Hit rates indicated some skill at predicting high suboptimal temperatures at Bodega Bay and Hopkins.

The skill of multiple regression approaches varied from site to site and from category to category. At Strawberry Hill, Bodega Bay, and Hopkins, hit rates for multiple regression approaches were similar to those of the Elvin and Gonor model, whereas at Lompoc Landing and Boiler Bay, hit rates indicated more skill at predicting temperatures at high suboptimal levels.
Hit rates for the Helmuth biophysical model were generally lower than other approaches at cold sublethal and cold suboptimal temperatures. The biophysical model had higher hit rates than other methods for the 22-32°C range at Bodega Bay and Hopkins.

A common trend among all models were hit rates of 0 and incalculable false alarm ratios for temperatures greater than 38°C, which indicates that although loggers reached high temperatures, these conditions were not predicted by the models. Since the ability to predict extreme conditions is imperative to predicting the potential effects of climate change, this result is troubling.
1.4 DISCUSSION

In light of a changing climate, it is important to be able to predict sublethal levels of stress as well as lethal conditions, and models designed to make these predictions must perform well along the entire width of the physiological performance curve. Results from this study emphasize the importance of evaluating model performance in context of an organism’s physiology. While statistics such as RMSE indicated that models were performing relatively well, hit and false alarm rates indicated different levels of performance within different regions of the performance curve. Probability distributions of body temperature are predicted to be centered slightly below optimal in order to maximize overall fitness under fluctuating conditions (Martin & Huey, 2008); therefore, the most ecologically damaging conditions are stressful events and extremes, since organisms that cannot withstand the harshest conditions that occur at a particular location will not be able to occupy it (Gaines & Denny, 1993). In light of this, the tendency of model performance to decrease as organisms experienced higher temperatures is especially troubling. The fact that, in many cases, hit rates were 0 (and false alarm ratios incalculable due to division by 0) for the sublethal high and lethal high categories indicate that these particular models may be unable to predict high temperatures.

It is important to note that all three of the methods I used are based only on one or two environmental parameters, and that even the biophysical model used in this study makes a number of simplifying assumptions. More complex biophysical models designed to predict body temperatures of *M. californianus* exist (ex. Gilman et al., 2006a; Wethey et al., 2011b) future work would involve applying this same physiological framework to alternate modeling approaches.
Should a model be capable of predicting extreme high temperatures, a physiologically-grounded approach will also elucidate some of the difficulties faced in predicting and verifying a model’s ability to predict extreme events. Extreme events are also rare events (Casati et al., 2008; IPCC, 2012) and this rarity leads to small sample sizes and, as a result, large sampling uncertainties. For example, though several years of data were pooled at each site in this study, sample sizes of observed temperatures for the high sublethal and high lethal categories consisted of only a handful of data points.

A second difficulty in predicting extreme events, especially extreme highs, in this context lies in the variable nature of the intertidal zone itself. In this case, the use of data from one logger as a forecast for another also indicated low levels of skill at high temperatures, even though data were collected from microsites with similar wave exposures and substratum angles, further emphasizing how localized heat stress events may be. Denny et al. (2011) found that, while the mean range of maximum body temperatures between individual mussels in a single exposed bed was 3.7°C, inter-individual variation in body temperature could be as large as 11.7°C. The rocky intertidal zone is spatially heterogeneous, and factors such as substratum angle strongly influence the temperatures organisms experience (e.g. Helmuth & Hofmann, 2001; Wethey, 2002). Furthermore, wave splash modulates patterns of emersion and immersion in intertidal systems (Gilman et al., 2006b), and predictions generated using the Helmuth biophysical model were sensitive to changes in estimates of wave run-up (pers. obs). As a result, even the most skilled models available may not be able to explicitly predict the temperatures organisms in the field will experience but rather the probability that certain thresholds of stress will be reached.
Despite the inter-individual variability in predicting high body temperatures and uncertainty in verifying predictions in this region, this analysis provides some insight into the methods necessary to gain an understanding of physiological stress in the field. The ability of air temperature to serve as an effective proxy for body temperature decreases sharply once body temperatures reach what could be considered “optimal” (17-22°C).

Although a variety of factors influence the thermal regime of rocky-shore organisms, high temperatures are driven primarily by interactions of air temperature (a climatic factor) and solar radiation (a non-climatic factor) (Denny & Harley, 2006). Solar radiation, in particular, has a profound effect on maximum temperatures experienced by *M. californianus* (*per sobs*), reflected in the poor predictive capacity of air temperature in regards to physiological heat stress. Recent studies have suggested that thermal adaptation of certain intertidal species may be driven primarily by adaptation to non-climatic sources of heat (Marshall et al, 2010); however, most studies do not distinguish between heating from the ambient air and solar heating (Helmuth et al., 2006). Although climate change will not directly affect the amount of solar irradiance reaching the surface, a thorough understanding of non-climatic sources of heat and their interaction with climatic sources will be necessary to gain an understanding of how climate change might affect intertidal systems.

Surface air temperatures are predicted to increase under future climate scenarios (IPCC, 2007); in conjunction with high solar radiation, this will likely shift an organism’s average location along its physiological performance curve to the right. Because of the left-skewed nature of physiological performance curves, even a slight increase in body temperature could affect physiological performance. Unlike high sublethal and high
lethal temperatures, high suboptimal temperature temperatures are not rare occurrences. At the two central sites (Bodega Bay and Hopkins), hit rates for the biophysical model for high suboptimal temperatures were higher than those for other methods, which suggests some skill of this approach at predicting high temperatures.

Cold stress in *M. californianus* has typically received less attention than heat stress. Except for situations when the loss of infrared radiation in high (e.g. clear nights), air temperature sets the lower limit to body temperature in the absence of evaporative cooling, and air temperature was shown to be an effective proxy for cold stress when applied to a winter mortality even in the invasive mussel *Perna viridis*. (Firth et al., 2011). Air temperature alone tended to overestimate the number of hourly occurrences within the coldest temperature bins, likely due to the influence of solar heating during the day. However, since both minimum air temperature and the most stressful cold temperatures are likely to take place at night, when the effect of solar insolation is absent, minimum air temperature may still remain a useful proxy for cold stress.

It is important to note that both cold stress and heat stress events are time-dependent. While short-term exposures to extremes can result the restructuring of an ecosystem (Wethey et al., 2011a), sublethal effects can lead to reproductive failures (Petes et al., 2008) and negative energy balance. In addition, while organisms may be able to withstand short term exposures to extreme temperatures, more moderate temperatures may become lethal as the window of exposure is expanded. For example, while *M. californianus* was shown to survive short term (8-hour) exposures to extreme cold temperatures (2°C), as of yet, it is unknown how chronic or long-term exposures to these temperatures may affect physiology (Yao & Somero, 2012). Since these chronic
exposures to sublethal temperatures can be as ecologically relevant as short-term extreme events, any models designed to predict the effects of climate change be able to accurately reflect sublethal temperatures as well as lethal.

Results also indicate a lack of model stationarity at certain sites, most notably at Lompoc Landing. Here, recorded temperatures exceeded temperatures predicted by the biophysical model (Figure 1.4), and in terms of both physiological bins and overall statistics, the most “skilled” model at higher temperatures was the multiple regression tailored specifically for that site. The failure of the general models at Lompoc Landing may indicate gaps in our ability to account for the effect of local topography. Since more complex biophysical models have been observed to perform well at certain sites and less well at others (e.g. Gilman et al., 2006a, Wethey et al., 2011), this suggests that a more thorough understanding of the effect of topography on the interactions between environment and organism is necessary to apply the assumption of model stationarity to different locations in space.
TABLE 1.1 Bias, RMSE, and MAE of all models at all sites

| Bias | Bodega Bay | Hopkins | Lompoc | Boiler Bay | Strawberry Hill | Average | SD
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature</td>
<td>-2.93</td>
<td>-3.56</td>
<td>-6.45</td>
<td>-4.83</td>
<td>-4.44</td>
<td>-4.44</td>
<td>1.34</td>
</tr>
<tr>
<td>Elvin Model</td>
<td>0.93</td>
<td>-0.34</td>
<td>-2.66</td>
<td>-2.51</td>
<td>-1.02</td>
<td>-1.12</td>
<td>1.51</td>
</tr>
<tr>
<td>Multiple Regression</td>
<td>-0.91</td>
<td>-0.86</td>
<td>1.41</td>
<td>-1.53</td>
<td>-0.84</td>
<td>-0.55</td>
<td>1.13</td>
</tr>
<tr>
<td>Helmuth Model</td>
<td>1.95</td>
<td>0.69</td>
<td>-2.78</td>
<td>-2.21</td>
<td>-0.76</td>
<td>-0.62</td>
<td>1.97</td>
</tr>
</tbody>
</table>

| RMSE | Bodega Bay | Hopkins | Lompoc | Boiler Bay | Strawberry Hill | Average | SD
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature</td>
<td>5.25</td>
<td>6.11</td>
<td>8.83</td>
<td>8.17</td>
<td>5.55</td>
<td>6.78</td>
<td>1.62</td>
</tr>
<tr>
<td>Elvin Model</td>
<td>4.20</td>
<td>4.13</td>
<td>5.45</td>
<td>5.90</td>
<td>4.07</td>
<td>4.75</td>
<td>0.86</td>
</tr>
<tr>
<td>Multiple Regression</td>
<td>4.29</td>
<td>4.17</td>
<td>4.52</td>
<td>4.80</td>
<td>3.91</td>
<td>4.34</td>
<td>0.34</td>
</tr>
<tr>
<td>Helmuth Model</td>
<td>4.73</td>
<td>4.39</td>
<td>5.57</td>
<td>5.88</td>
<td>4.03</td>
<td>4.92</td>
<td>0.78</td>
</tr>
</tbody>
</table>

| Mean Absolute Error | Bodega Bay | Hopkins | Lompoc | Boiler Bay | Strawberry Hill | Average | SD
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature</td>
<td>3.68</td>
<td>4.51</td>
<td>6.88</td>
<td>5.62</td>
<td>3.72</td>
<td>4.88</td>
<td>1.37</td>
</tr>
<tr>
<td>Elvin Model</td>
<td>3.26</td>
<td>3.08</td>
<td>3.85</td>
<td>3.96</td>
<td>2.70</td>
<td>3.37</td>
<td>0.53</td>
</tr>
<tr>
<td>Multiple Regression</td>
<td>3.08</td>
<td>3.10</td>
<td>3.53</td>
<td>3.31</td>
<td>2.60</td>
<td>3.12</td>
<td>0.34</td>
</tr>
<tr>
<td>Helmuth Model</td>
<td>3.73</td>
<td>3.29</td>
<td>4.01</td>
<td>3.99</td>
<td>2.72</td>
<td>3.55</td>
<td>0.55</td>
</tr>
</tbody>
</table>
TABLE 1.2 Forecast verification skill scores for all models at all sites

<table>
<thead>
<tr>
<th>Model</th>
<th>Air Temperature</th>
<th>Elvin Model</th>
<th>Helmuth Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>SD</td>
<td>Average</td>
</tr>
<tr>
<td>Peirce Score</td>
<td>0.14</td>
<td>0.08</td>
<td>0.29</td>
</tr>
<tr>
<td>Heidke Score</td>
<td>0.16</td>
<td>0.09</td>
<td>0.31</td>
</tr>
<tr>
<td>Gerrity Score</td>
<td>NaN</td>
<td>0.09</td>
<td>NaN</td>
</tr>
<tr>
<td>Multiple Regression</td>
<td>0.42</td>
<td>0.08</td>
<td>0.30</td>
</tr>
<tr>
<td>Helmuth Model</td>
<td>0.41</td>
<td>0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>Gerrity Score</td>
<td>NaN</td>
<td>0.06</td>
<td>NaN</td>
</tr>
</tbody>
</table>
FIGURE 1.1 Location of study sites
FIGURE 1.2 Comparison of local and gridded solar radiation data
Figure 1.3: Hit Rates for all models at all sites. Category labels are as follows: 0 represents temperatures from less than 0°C; 1 represents 0-10°C; 2 represents 10-17°C; 3 represents 17-22°C; 4 represents 22-32°C; 5 represents 32-38°C; and 6 represents 38° and above.
Figure 1.4 False alarm ratios for all models at all sites. Category labels are as follows: 0 represents temperatures from less than 0°C; 1 represents 0-10°C. 2 represents 10-17°C; 3 represents 17-22°C; 4 represents 22-32°C; 5 represents 32-38°C; and 6 represents 38° and above
CONCLUSION

In light of a changing climate, it is essential that any model used to predict the thermal conditions an organism experiences performs well for the prediction of extreme events as well as mean conditions. In my thesis, I applied forecast verification metrics commonly used to analyze meteorological models to several simple and biophysical ecological models. I also applied a physiological framework to the predictions made by the models, to assess model performance based on levels of physiological stress the organisms experienced.

While all models performed relatively well at low temperatures, model performance decreased as temperatures rose. Variability in body temperatures of individual mussels also increases as temperatures increase; however, none of the models were capable of predicting extreme high temperatures. This poor performance was not reflected in commonly used methods of measuring model skill, such as RMSE. Since both sublethal stressors and extreme conditions affect an organism’s survival and fitness (Petes et al. 2008; Jones et al. 2009, 2010; Sorte et al. 2011), the models’ lack of ability to predict these conditions is troubling and limits their use for the purpose of predicting the effects of climate change. My thesis emphasizes the need to match tests of model skill with physiologically meaningful metrics to ensure that the models use for the purposes of predicting the effects of climate change is justified.
REFERENCES

