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A Reduced-Order Lumped Model for Li-Ion Battery Packs during
Operation
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Modeling heat distribution in Li-ion battery packs can be challenging, especially if the battery pack is large and the cells are
operated at high C-rates, which usually requires high-order physics-based mathematical models. Reduced and simplifying models
can, however, be used at lower rates. This paper presents a fast novel reduced lumped model (RLM) that can be used to calculate
the temperature increase during the high-current discharge of cylindrical Li-ion cells in a subscale of a battery pack. By reducing
the PDE utilized to calculate the state of charge (SoC) to ODE’s and solving them analytically, the reduced model can be a very
reliable and fast tool for calculating the temperature distribution in battery packs. The voltage was calculated by considering the
charge overpotential, the ohmic overpotential, and the activation overpotential, while the properties of the parameters are
dependent on the temperature following an Arrhenius-dependency. Comparing with experimental data, the model showed a good
prediction of the temperature readings showing good potential in using the model for battery packs operating at high C-rates
(>2 C).
© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ac2dcb]

Manuscript submitted June 28, 2021; revised manuscript received August 25, 2021. Published October 20, 2021.

Lithium-ion battery cells are critical components for pushing the
technology towards electrical mobility, whether talking about
electric vehicles, airplanes, volocopters, or even space applications.
Building battery packs is an engineering art, and choosing the
suitable cell chemistries and geometries for specific load profiles in
different ambient is a big challenge. A battery management system
(BMS) can be developed for a battery pack that helps balance the
cells’ potentials, can measure/predict the temperature and feedback
on different key parameters such as the State of Charge (SoC), but
the CPU of the BMS and the controller speed can be a limiting
factor, mainly if the BMS code is based on complex electrochemical
or electrical models. It is, therefore, crucial to find different methods
to decrease the modeling and code complexity while increasing the
computational speed and keeping a high precision.

Mathematical models are powerful tools that can be converted
and deployed to controller code (such as C code) and thus
implemented in BMS. Such modeling tools were developed over
the years by scientists and consist of reducing full-order models
(FOM) to reduced-order models (ROM) for single cells, which can
significantly increase the computation speed while keeping a high
precision. One of the most popular and relievable FOMs used for
reducing reduction is the classical Newman’s model, a physics-
based pseudo-2D model based on the porous electrode theory.1–4

Newman’s model was proven to give a suitable temperature and
voltage prediction for various cell chemistries and geometries even
at high operating rates (over 1C-Rate), which is very appealing for
converting to ROMs. Over the years, different mathematical
methods for modeling reduction were explored, such as domain
decomposition and polynomial approximation methods,5 Padé ap-
proximation and polynomial fitting combined with volume aver-
aging techniques,6 residue grouping methods,7 Kalman filtering,8 or
using transfer functions,9 among others. Most of them are reliable, in
general. Some extended or improved ROMs (eROM’s and iROM’s)
can predict the voltages and SoC even at high C-rates. However, the
level of complexity for reducing and implementing these models, in
addition to the high number of parameters required for a P2D model,

makes them less likely to be implemented in the BMS’s at the
current development stage.

Another method is to use other first-principle simplified FOM’s
derived from the P2D with the assumptions that some of the
gradients in the electrodes can be neglected, such as the Single
Particle Model (SPM) and its derivatives such as Extended Single
Particle Model (ESPM).10,11 Reduction of SPM models was also
made using methods such as the Galerkin approximations, quasi-
linearization, etc.12,13 Xiaoyu Li et al.13 found that the latter
approach gives very high accuracy in predicting the voltage and
the temperature even at high rates while improving the computation
time. But even reduced FOM’s such as the SPM requires some
measured parameters which are not only easy to extract or measure
(such as the diffusion coefficient for both the anode and the cathode).
Other modeling methods requiring fewer parameters while accu-
rately predicting the potentials are so-called lumped models, which
are dimensionless. An example of such a model is the equivalent
circuit model (ECM).14 This method has been used extensively in
the research literature and real-life applications. It was used both in
single cells and in the BMS of battery packs or coupled with many
other physics such as fluid dynamics.15–20 The ECM, although fast
and reliable in many cases at low rates, lacks a mechanistic and
physical interpretation of the phenomena inside the cells.

Another recent lumped model that showed a remarkable potential
was semi-empirical and included some physical interpretation when
calculating the overpotentials.21 The model was developed by
Henrik Ekström, Björn Fridholm, and Göran Lindbergh and has
proven to show great promise when compared its predictions of a
hybrid electric vehicle (HEV) driving load cycle. The model requires
a minimal number of fitting parameters and consists of a single PDE
applied to a one-dimensional particle for calculating the SoC and
different formulations for calculating the overpotential, including a
kinetic expression defined as an inverted Butler-Volmer equation.
The lumped model was later reduced using Laplace transformation
and transfer functions by Benjamin Ng et al.22 It was shown that a
one-step reduced lumped model (consisting only of ODEs) can be
anchored to experimental data and can predict both the temperature
and the voltage at different rates. The challenge, however, is to
demonstrate if such a model can predict the temperature in a battery
pack and further implemented it in a BMS. This paper thus
introduces a novel reduced lumped model used for modeling the
temperature rise in a subscale of a battery pack. The particular modelzE-mail: COMANPT@cec.sc.edu
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was further reduced by solving the ODE’s, and the core model
parameters were defined as temperature-dependent functions.

Battery pack thermal models have been developed by many
authors over the years. Coupling between electrochemical models
and thermal models, CFD or structural models, have been done in
many different creative and inter-disciplinary ways, using various
methods such as genetic algorithms,23 machine learning,24 and
ordinary 2D or 3D FEM or internal thermal networks models.25,26

For a heat transfer or even thermodynamic analysis of a battery pack,
and simulate the temperature rise in each cell, it is essential to
formulate the heat generation rate term or the total energy. Few
methods have been used throughout the years to determine such a
formulation and couple with an electrochemical model. One of the
most comprehensive and accurate methods was given by Thomas
and Newman,27 which comprises of an irreversible resistive heating
term, a reversible entropic heat term, the heat capacity, a heat change
due to residual or side chemical reactions, and a heat of mixing term,
as follows:
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The disadvantage of this formulation consists in the presence of
many unknown parameters which require higher-order models. It
was also demonstrated in many studies that a simplified and fast
forward approach for many battery systems is to use only the heat
generation given by the irreversible resistive heating term and, in
some cases, with the reversible entropic term.27,28
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The current term, I, can be taken directly from the experimental
data or, with some artifices, expressed in terms of current density.
The current density for a full-cell can be calculated using the so-
called NTGK model (Newman, Tiedemann, Gu, and Kim2,29,30).
The current density can also be stated as a function of temperature to
include the Seebeck effect.31 With this in mind, the model presented
in this paper consists of a reduced novel lumped model with a
simplified heat generation term that can be used to model the
temperature rise in a subscale of a battery pack.

Experimental

To demonstrate the reduced lumped model (RLM) value, a
subscale of a battery pack was chosen, as seen in Fig. 1.

Although the selection of a subscale is not a critical part of this
study, it is important to show the source of it and point at the fact
that subscales are an effective way to analyze the contribution of
different components in battery packs (such as air gaps, cell spacing,
boundary conditions, etc). It has the main advantage that it is easy to
build a physical model anchored to a mathematical model without
sacrificing too much precision. Subscaling of full-scale systems,
although not always easy and straightforward, was used in many of
the battery packs built in-house at NASA and UofSC and by other
scientists, such as Vishnu V. Ganesan and Ankur Jain,32 for
example. The system presented in Fig. 1 consists of many
components that are not explained in detail in this paper but can
be read out in Eric Darcy et al.33 This particular full-pack consisted
of two decks populated by 96 cells (12s8p). The cells were attached
with an epoxy layer to the aluminum (AL6061) heat sinks (depicted

with turquoise color in the figure), transporting the heat from the
cells to the top and bottom headers. The headers were connected to a
metallic casing in which two cooling channels are embedded on both
sides (top and bottom). The subscale consists of eight cells
connected electrically to a battery cycler system that was set to
discharge the cells at a constant current (CC) of 9.6 A. In this case,
the subscale model assembly, test setup, and test execution were
performed by Symmetry Resources, Inc.

The experimental set-up is described in detail in Fig. 2.
Eight SAMSUNG INR18650–30Q cells were glued on edge with

a 1.52 mm layer of epoxy (2216 Gray 3 M™ Scotch-Weld™ Epoxy)
to the aluminum AL6061 heat sink shown in Fig. 2a, forming a 90°
contact angle between the cells and the heat sink, and were fitted
with G10 cover plates at both ends of the cells (Fig. 2b). The cells
were then wrapped outside with Kapton tape and electrically
connected in series with spot-welded nickel connectors. One end
of the heat sink was then attached to a mounting plate, as seen in
Fig. 2c. The 8-cell assembly was covered all around with 6 mm thick
durette felt insulation and wrapped with Kapton tape to reduce the
heat loss. The assembly was then mounted on a cooling plate that
was set to keep a constant 25 °C. (Fig. 2d). The entire sides and top
of the subscale was wrapped once more with a 13 mm thick layer of
PE foam insulation (Fig. 2e). The top of the mounting plate and the
cold plate were also insulated, as seen in Fig. 2e. A set of
thermocouples were attached to the heat sink and the cells located
as shown in Fig. 3.

Four thermocouples were placed on the cells steel cans of cells
1–4, and four were inserted inside four boreholes (φ1 × 4.2 mm)
drilled in the heat sink at mid-hight to capture the temperature
gradient inside the cells, as seen in Figs. 3 and 2a. Two thermo-
couples were placed in the vicinity of the cold plate: one drilled at
the interface between the heat sink and the mount plate and another
one drilled in the mounting plate to a position adjacent to the heat
sink interface thermocouple. These two thermocouples are crucial
for aiding the thermal model, as explained in the next sections.

Modeling work

The reduced model was based on the lumped model presented by
Henrik Ekström et al.21 and was reduced to ODE’s using the
methods suggested by Benjamin Ng et al.22 The lumped model
originally developed in Refs. 21 and 22 is a semi-empirical model
which yields a time-dependent formulation for the cell voltage based
on the difference between the open circuit voltage and the over-
potentials due to the linear ohmic resistance, a non-linear charge
transfer resistance and a diffusion impedance. The SoC of the cell
was calculated using a PDE in Ref. 21 and then reduced to an ODE
in Ref. 22 (see the derivation in appendix A in Ref. 22). The model
was initially demonstrated in Ref. 21 to predict a load cycle
consisting of current pulses (ranging between the maximum of
−240 A and 100 A) of different rates for a NMC cell (24.8 Ah). This
indicates that the lumped model can predict the voltage for rates
higher than 1–2C-Rate, which can be a limiting rate for other models
such as the Single Particle Model.

The model presented in this paper is reduced even further, from
ODE’s to AE’s, by solving the ODE’s analytically. Additionally,
some of the parameters are defined to be dependent on the
temperature. To demonstrate the importance of the lumped model,
it was coupled with a Finite Element Thermal Model using
COMSOL Multiphysics v5.6. A simplified 3D geometry of the
subscale was chosen (see the dimensions in Table A·1), as seen in
Fig. 4a.

In this geometry, the G10 cover plates were disregarded, as it was
found that they didn’t have a solid contribution to the thermocouple
readings on the sides, which were of high interest for this particular
study. Also, adding the G10 would have overcomplicated the model
and significantly increased the computation time. The ratio between
its thickness and the width and length is very large, which would
have added a tremendous number of mesh nodes.

Journal of The Electrochemical Society, 2021 168 100525



At the top, where the heat sink was connected to the cold plate,
surface temperature boundary conditions (BCs) were assigned
(Fig. 4b), and the temperature was time-dependent and extracted
from experimental data. The thermocouple measurement drilled
close to that boundary (see Fig. 3) was proven to be extremely useful
in setting up this BC. The boundary conditions on the faces in

contact with the Kapton tape and the insulation blanket (Fig. 4c)
were assumed to be fully insulated (adiabatic conditions). Each cell
domain had assigned a volumetric heat generation term ( ̇ )Qcell that
was calculated using the RLM (Fig. 4c) and added to the heat
equation expressed in Cartesian coordinates for each thermal
anisotropic cell domains:

Figure 1. Sketch showing the method of selection for singling out the subscale (used as a system for the model).ictures showing different building steps of the
experimental set-up for the pack subscale.

Figure 2. Pictures showing different building steps of the experimental set-up for the pack subscale.

Journal of The Electrochemical Society, 2021 168 100525
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The density (ρeff) and the heat capacity (Cp,eff) of the cell
domains are effective values, while the thermal conductivities are
anisotropic (the radial kx and kz are different than the axial ky). The

values are taken from Ref. 34 for a single 18650 cell with an
electrolyte and given in Table I.

The 0.5 mm epoxy layer between the cells and the heat sink can
be modeled in two ways.

1. Adding meshed domain, which would add thousands of extra
meshing nodes and significantly increasing the computation cost
while requiring complex meshing operations.

Figure 3. Sketch showing the 3D geometry (to the left) and the 2D mid-section, indicating the position of the thermocouples used to measure the temperature.
The dimensions in holes in the heat sink are φ1 × 4.2 mm, and they have very little influence on the heat transfer within the heat sink.

Figure 4. Simpified geometry used for the thermal model and the corresponding boundary conditions. The geometry view is flipped (cold plate connection is at
the top) for better visualization of the boundary conditions.
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2. Taking advantage of COMSOL’s “Thin Layer” feature, which
can be applied to a boundary between two domains.

The latter was proven to be extremely useful in thin layers, both
in Ref. 35 and in the COMSOL documentation,36 and was therefore
used in this study.

For calculating the volumetric heat generation term (Q̇cell) using
the formulation from Eq. 1, the RLM was developed. The formula-
tion for calculating the average state of charge can be calculated as:

= [ ]
dSoC

dt

I

Q
3

avg

actual

Solving analytically, yields:

= + [ ]SoC
It

Q
SoC 4avg
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0

The SoC at the surface of the particles can be calculated using the
reduction method shown in Benjamin Ng et al.22 using the technique
presented originally in Ref. 37. SoCsurface is defined in terms of an
eigenfunction as a series:
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where τ is defined as a function of temperature, expressed as in
Eq. 14. In a real system, the initial State of Charge (SoC0) and the
actual capacity is temperature and rate dependent. For simplicity and
for this particular demonstration, these parameters were kept

constant, however, they can also be expressed as a function of
temperature using an Arrhenius formulation or even using the specs
for the SAMSUNG INR18650–30Q cells. The terms ai and bi are the
optimized parameter values in approximated transfer function given
in Table I, as optimized and given originally in Ref. 37.

With algebraic definitions of the average SoC and the surface
SoC, the cell potentials and the overpotentials can be calculated:

η η η= + + + [ ]V U 8cell cell IR act conc

The Open Circuit Voltage (denoted with Ucell) is given as:

= ( ) + ( − )
( )

[ ]U U SoC T T
dU SoC

dT
9cell avg ref

avg

The OCV depends both on the SoC and on the temperature and
requires careful experimental measurements. The dependency on the
temperature was neglected in this study. The effect of temperature
on the OCV can be substantial in some cases, especially when
needing to increase the precision of the temperature curves, as
shown in Refs. 22, and 28 but can also be neglected at low rates and
low SoC, as shown in Ref. 38. Neglecting it will induce some
differences in the temperature profiles but will be discussed in detail
in the Results section. In this model, the OCV is defined as the OCV
measured experimentally:

= ( ) [ ]U U SoC 10cell avg

The OCV was measured experimentally as a function of the state
of charge. The OCV was measured after one hour of rest and
discharge of C/20 in 5% capacity increments. The measured OCV
was then compared with the data from the literature for a similar cell.
Both OCV’s have very similar profiles, as can be seen in Fig. 5.

The overpotentials can be calculated as:21

Ohmic overpotential (ηIR):

η
η

=
( )

[ ]
T I

I
11IR

1CT

1C

Activation overpotential (ηact):

⎜ ⎟
⎛
⎝

⎞
⎠

η =
( )

[ ]
J T I

2RT

F
asinh

I

2
12

T C
act

0 1

Concentration overpotential (ηconc).

η = ( ) − ( ) [ ]U SoC U SoC 13conc surf avg

As seen from Eqs. 6, 7, 10, and 11, some of the parameters (τT, η1CT,
and J0T) were defined as a function of temperature, which is another
figure of merit for this RLM. The ohmic overpotential (ηIR), which is
caused by the change in the internal resistance, is dependent on the
temperature. That is, at higher temperature, the internal resistance
decreases.40 The activation (interfacial kinetics) overpotential (ηact)

Table I. Optimized parameter values in approximated transfer
function.

Parameter Value Parameter Value

a1 35058.7 b1 −268.261
a2 1382.966 b2 −30.9242
a3 141.595 b3 −7.59606
a4 22.32279 b4 −2.59525

Figure 5. Comparison between the OCV measured experimentally as a function of SoC (blue) and the OCV from Ref. 39.
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is also dependent on the temperature. At higher temperatures, the
kinetic activity occurs faster. The concentration (species transport)
overpotential is also dependent on the temperature as it reflects the
concentration gradients inside the electrodes.

The dependency of some parameters to temperature can be done
using an Eyring formulation or Arrhenius. In this paper, an
Arrhenius temperature dependency was used, as follows:41,42

⎛
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⎞
⎠= [ ]−

Y Y e 14T ref

Ea
R

1
T

1
T

Y

ref

These equations were implemented for each cell domain from
Fig. 4d to obtain a voltage profile for each cell using Eq. 8 and use it
in the heat generation equation (Eq. 2). The temperature term (T) in
each of the equations above is calculated in each node of the domain

mesh, although it could be averaged over the entire domain, as
shown in Ref. 35 for faster calculations.

Results

As stated previously, one important boundary condition is the
surface temperature one, which is at one end of the heat sink (the
surface that would be connected to the cold plate via the mounting
plate). The temperature at the interface between a cold plate, for
example, and the heat sink is a critical parameter that affects the
cooling capacity’s performance. It was observed in many in-house
experiments that keeping a constant temperature (or a slight
gradient) at that interface is very difficult, even if thermal grease
or other interface high-conductive materials are used. It is a
bottleneck for many designs, and it plays an important role,

Figure 6. Plot showing the temperature increase measured experimentally at the interface between the cold plate and the heat sink (in point “HS interface” in
Fig. 3) and the linear trendline approximation.

Figure 7. Plots showing the comparison between the model predictions and the experimental data for different thermocouple readings.
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especially when the contact area is small (which is the case in most
of the battery pack designs that are kept cold with a cold plate). The
temperature point (denoted with “HS interface” in Fig. 3) ramped up
from 25 °C to 37 °C during the experiments, as seen in Fig. 6.

The solutions for solving this particular design problem are
many, but it is beyond the scope of this paper; therefore, the
temperature profile measured experimentally (Fig. 6) was used as the
surface temperature boundary condition. With a temperature ramp at
the boundary condition, adiabatic conditions at the exterior, and a
heat generation calculated using the novel RLM, the model was able
to predict all the temperatures measured on the surface of the cells
and inside the heat sink boreholes, as seen in Fig. 7.

By looking at Fig. 7, it can be seen that the model predicts the
experimental data very well, with some differences of a maximum of
2K in the cells that are further away from the cold plate (Cells 3 and 4).

The temperature profiles have slightly different profiles, and one of the
reasons can be the lack of including the entropic term (the reversible
term in Eq. 1). By looking at the heat generation rates for each cell, it
can be seen from Fig. 8 that the cell-to-cell difference in the heat
generation rate between each cell in the subscale is slight. Despite this,
due to the parameters’ temperature dependence, the model reveals that
the cells closer to the heat sink (the cold cells) have a slightly higher
heat generation curve, which is expected since colder cells have a
higher internal resistance.

The heat generation profiles in Fig. 8 would also have a slightly
different profile if the reversible term would be added, but such a
study is beyond the scope of this paper. For the 30Q cells, the energy
released by the cells at 9.6A is approximately 3.2 kJ. Having an
RLM that can estimate the thermal energy released at different rates
and cell configurations can help calculate the waste energy by

Figure 8. Plot showing the heat generation rates for each cell in the subscale.

Figure 9. Plots showing the comparison of the temperatures of the cells when the cold plate interface is kept at a constant temperature of 25 °C (indicated with
const in the legend) vs when the temperature is ramped, as seen in Fig. 6 (indicated with var in the legend).
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dividing the heat energy estimated with the model by the electrical
energy (calculated using the nominal voltage and the capacity). To
further take advantage of the model capabilities, one additional study
has been added to show the effect of constant temperature at the
boundary (Fig. 9).

It can be seen from Fig. 9 that at a constant mount plate
temperature, the difference between the heat sink and the cell shell is
higher than when the temperature at the mount plate is ramped. One
of the reasons is that the cells are colder and therefore generate more
heat, which can also be observed in Fig. 10.

In addition to the fact that the heat generation is generally higher
in the entire pack, there is also a higher cell-to-cell difference, as
shown in Fig. 10b.

Conclusions

Developing reduced-order models is extremely important as they
can very soon be used in battery management systems, which are
currently based mainly on Equivalent Circuit Models. The RLM
presented in this paper has the advantage of being very fast and easy
to implement. It contains only algebraic equations (reduced from a
PDE and ODE’s) that can be transformed into machine code and
then implemented into BMS. The RLM was used to demonstrate that
it can predict the temperature of different cells inside a subscale of a
battery pack connected to a cold plate. The differences in the
temperature between the model predictions and the experimental
data were tiny (<2K). Furthermore, having parameters that are
dependent on temperature following an Arrhenius dependency
formulation, it was shown that the heat generation rate calculated

for each cell emulates the physical interpretation of the phenomena
inside the cells at different temperatures.

Strengths and Limitations

Even though the RLM was proven to be a powerful tool for the
particular set-up/subscale presented in this paper, there are some
limitations. Although significantly smaller than the number of fitted
parameters required for a FOM P2D model, the number of fitted
parameters is still high and does not have an experimental method to be
extracted experimentally (such as the activation energies in the
Arrhenius temperature-dependency formulation). However, when prop-
erly fitted, the model can predict the temperature and the heat
generation in different cells inside a battery pack with high precision.
The model can also be valuable when different cell or pack configura-
tions are to be studied, and the effect of adding, changing, or removing
layers (such as the epoxy layer) is to be analyzed. Another important
limitation of the RLM is given by the fact that good experimental data
is crucial for fitting the parameters. In more complex battery packs
where the temperatures are high with large cell-to-cell gradients, there
will be a need for good experimental data at different temperatures to
determine the activation energies in the Arrhenius formulations.
However, once fitted, the RLM can be used to calculate temperature-
dependent heat generations which can be used in the heat equation for
each cell for further thermal modeling and analysis of different design
features, such as the influence of airgaps, different layers or the
thickness of heat sinks or other design elements.

Appendix

Figure 10. Plots showing a) the heat generation for the case when the temperature boundary condition was variable (see Fig. 6) and b) the heat generated when
the temperature boundary condition was constant 25 °C.

Journal of The Electrochemical Society, 2021 168 100525



ORCID

Paul T. Coman https://orcid.org/0000-0003-2876-7441
Eric C. Darcy https://orcid.org/0000-0002-8426-8607

References

1. J. Newman and T.-A. E. Karen, Electrochemical Systems. (Wiley, New Jersey, NJ)
3rd ed. (2004).

2. J. Newman and W. Tiedemann, “Porous-electrode theory with battery applications.”
AIChE J., 21, 25 (1975).

3. T. F. Fuller and J. Newman, Relaxation Phenomena in Lithium-ion-Insertion Cells.,
141982 (1994).

4. M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, and J.-M. M. Tarascon,
“Comparison of modeling predictions with experimental data from plastic lithium
ion cells.” J. Electrochem. Soc., 143, 1890 (1996).

5. C. Li, N. Cui, C. Wang, and C. Zhang, “Reduced-order electrochemical model for
lithium-ion battery with domain decomposition and polynomial approximation
methods.” Energy, 221, 119662 (2021).

6. L. Wu, K. Liu, and H. Pang, “Evaluation and observability analysis of an improved
reduced-order electrochemical model for lithium-ion battery.” Electrochim. Acta,
368, 137604 (2021).

7. K. A. Smith, C. D. Rahn, and C. Y. Wang, “Model order reduction of 1D diffusion
systems via residue grouping.” J. Dyn. Syst. Meas. Control. Trans. ASME, 130,
0110121 (2008).

8. M. Seo, Y. Song, J. Kim, S. W. Paek, G. H. Kim, and S. W. Kim, “Innovative
lumped-battery model for state of charge estimation of lithium-ion batteries under
various ambient temperatures.” Energy, 226, 120301 (2021).

9. Z. Chu, G. L. Plett, M. S. Trimboli, and M. Ouyang, “A control-oriented
electrochemical model for lithium-ion battery, part i: lumped-parameter reduced-
order model with constant phase element.” J. Energy Storage, 25, 100828 (2019).

10. M. Guo and R. E. White, “Thermal model for lithium ion battery pack with mixed
parallel and series configuration.” J. Electrochem. Soc., 158, A1166 (2011).

11. E. Prada, D. D. Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot, and F. Huet,
“Simplified electrochemical and thermal model of LiFePO4-graphite li-ion batteries
for fast charge applications.” J. Electrochem. Soc., 159, A1508 (2012).

12. G. Fan, X. Li, and M. Canova, “A reduced-order electrochemical model of li-ion
batteries for control and estimation applications.” IEEE Trans. Veh. Technol., 67,
76 (2018).

13. X. Li, G. Fan, G. Rizzoni, M. Canova, C. Zhu, and G. Wei, “A simplified multi-
particle model for lithium ion batteries via a predictor-corrector strategy and quasi-
linearization.” Energy, 116, 154 (2016).

14. S. K. Rahimian, S. Rayman, and R. E. White, “Comparison of single particle and
equivalent circuit analog models for a lithium-ion cell.” J. Power Sources, 196,
8450 (2011).

15. J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Equivalent
circuit model parameters of a high-power Li-ion battery: Thermal and state of
charge effects.” J. Power Sources, 196, 4826 (2011).

16. K. S. Hariharan and V. Senthil Kumar, “A nonlinear equivalent circuit model for
lithium ion cells.” J. Power Sources, 222, 210 (2013).

17. A. Farmann and D. U. Sauer, “Comparative study of reduced order equivalent
circuit models for on-board state-of-available-power prediction of lithium-ion
batteries in electric vehicles.” Appl. Energy, 225, 1102 (2018).

18. Y. Saito, K. Takano, and A. Negishi, “Thermal behaviors of lithium-ion cells during
overcharge.” J. Power Sources, 97–98, 693 (2001).

19. X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models for
Li-ion batteries.” J. Power Sources, 198, 359 (2012).

20. S. Li et al., “Optimal cell tab design and cooling strategy for cylindrical lithium-ion
batteries.” J. Power Sources, 492, 229594 (2021).

21. H. Ekström, B. Fridholm, and G. Lindbergh, “Comparison of lumped diffusion
models for voltage prediction of a lithium-ion battery cell during dynamic loads.”
J. Power Sources, 402, 296 (2018).

22. B. Ng, P. T. Coman, W. E. Mustain, and R. E. White, “Non-destructive parameter
extraction for a reduced order lumped electrochemical-thermal model for simulating
Li-ion full-cells.” J. Power Sources, 445 (2020).

23. V. Pizarro-Carmona, S. Castano-Solís, M. Cortés-Carmona, J. Fraile-Ardanuy, and
D. Jimenez-Bermejo, “GA-based approach to optimize an equivalent electric circuit
model of a Li-ion battery-pack.” Expert Syst. Appl., 172, 1 (2021).

24. F. Kolodziejczyk, B. Mortazavi, T. Rabczuk, and X. Zhuang, “Machine learning
assisted multiscale modeling of composite phase change materials for Li-ion
batteries’ thermal management.” Int. J. Heat Mass Transf., 172, 121199 (2021).

25. D. Kang, P. Y. Lee, K. Yoo, and J. Kim, “Internal thermal network model-based
inner temperature distribution of high-power lithium-ion battery packs with
different shapes for thermal management.” J. Energy Storage, 27, 101017 (2020).

26. Z. Y. Jiang, Z. G. Qu, J. F. Zhang, and Z. H. Rao, “Rapid prediction method for
thermal runaway propagation in battery pack based on lumped thermal resistance
network and electric circuit analogy.” Appl. Energy, 268, 115007 (2020).

27. K. E. Thomas and J. Newman, “Thermal modeling of porous insertion electrodes.”
J. Electrochem. Soc., 150, A176 (2003).

28. A. Amini, T. Özdemir, Ö. Ekici, S. Ç. Başlamışlı, and M. Köksal, “A thermal model
for Li-ion batteries operating under dynamic conditions.” Appl. Therm. Eng., 185,
116338 (2021).

29. K. H. Kwon, C. B. Shin, T. H. Kang, and C. S. Kim, “A two-dimensional modeling
of a lithium-polymer battery.” J. Power Sources, 163, 151 (2006).

Table A·I. List of parameters used in the model.

Parameter Value Unit Description References

rcells 9.144·10−3 m Radius of the cells Measured
Hcells 6.5·10−2 m Height of the cells Measured
η1C,ref 3.0·10−2 V Ohmic overpotential at 1 C pre-exponential factor Fitted
Tref 298.15 K Reference temperature Measured
Eaeta1C 24·103 J mol−1 Ohmic overpotential at 1C activation energy Fitted
J0,ref 0.1 — Dimensionless charge exchange current pre-exponential factor Fitted
EaJ0 −14·103 J mol−1 Dimensionless charge exchange current activation energy Fitted
Eaτ 12·103 J mol−1 Diffusion time-constant activation energy Fitted
τref 1·103 s Diffusion time-constant pre-exponential factor Fitted
I1C 3 A Current corresponding to 1C Fitted
Qactual 10.8·103 C Cell capacity as rated by the supplier Measured
SoC0 1 — Initial state of charge Measured
tepoxy 1.524·10−4 m Thickness of the epoxy layer Measured
hsheight 8.7452·10−2 m Height of the heat sink Measured
hsthickness 7.6424·10−3 m Thickness of the heat sink Measured
dzcells 8.128·10−4 m Clearance between the cell cans in the z-direction Measured
dxcells 2.0574·10−2 m Space between the centers of the cells in the x-direction Measured
dxc−hs 1.0287·10−2 m Space between the heat sink center and the center of the cells in the x-direction Measured
kx = kz 3.4 W m−1 K−1 Cross-plane (radial) cells thermal conductivity 34
ky 20 W m−1 K−1 In-plane (axial) cells thermal conductivity 34
kepoxy 0.391 W m−1 K−1 Thermal conductivity of the Epoxy layer 43
ρeff 2.7·103 kg m−3 Effective density of the cell 34
Cp,eff 1.28·103 J kg−1 K−1 Effective heat capacity of the cell 34
kAl6061 167 W m−1 K−1 Thermal conductivity of the heat sink 44
ρAl6061 2.7·103 kg m−3 Density of the heat sink 44
Cp,Al6061 896 J kg−1 K−1 Heat capacity of the heat sink 44
I −9.6 A Applied constant current Measured

Journal of The Electrochemical Society, 2021 168 100525

https://orcid.org/0000-0003-2876-7441
https://orcid.org/0000-0002-8426-8607
https://doi.org/10.1002/aic.690210103
https://doi.org/10.1149/1.2054868
https://doi.org/10.1149/1.1836921
https://doi.org/10.1016/j.energy.2020.119662
https://doi.org/10.1016/j.electacta.2020.137604
https://doi.org/10.1115/1.2807068
https://doi.org/10.1016/j.energy.2021.120301
https://doi.org/10.1016/j.est.2019.100828
https://doi.org/10.1149/1.3624836
https://doi.org/10.1149/2.064209jes
https://doi.org/10.1109/TVT.2017.2738780
https://doi.org/10.1016/j.energy.2016.09.099
https://doi.org/10.1016/j.jpowsour.2011.06.007
https://doi.org/10.1016/j.jpowsour.2010.12.107
https://doi.org/10.1016/j.jpowsour.2012.08.090
https://doi.org/10.1016/j.apenergy.2018.05.066
https://doi.org/10.1016/S0378-7753(01)00703-0
https://doi.org/10.1016/j.jpowsour.2011.10.013
https://doi.org/10.1016/j.jpowsour.2021.229594
https://doi.org/10.1016/j.jpowsour.2018.09.020
https://doi.org/10.1016/j.jpowsour.2019.227296
https://doi.org/10.1016/j.eswa.2021.114647
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121199
https://doi.org/10.1016/j.est.2019.101017
https://doi.org/10.1016/j.apenergy.2020.115007
https://doi.org/10.1149/1.1531194
https://doi.org/10.1016/j.applthermaleng.2020.116338
https://doi.org/10.1016/j.jpowsour.2006.03.012


30. H. Gu, “Mathematical Analysis of a Zn/NiOOH Cell.” J. Electrochem. Soc., 130,
1459 (1983).

31. S. Chacko and Y. M. Chung, “Thermal modelling of Li-ion polymer battery for
electric vehicle drive cycles.” J. Power Sources, 213, 296 (2012).

32. V. V. Ganesan and A. Jain, “Computationally-efficient thermal simulations of large
Li-ion battery packs using submodeling technique.” Int. J. Heat Mass Transf., 165,
120616 (2021).

33. E. C. Darcy et al., “Safe, high power/voltage battery design challenges.” inNASA
Aerospace Battery Workshop (NASA) 1 (2019).

34. H. Maleki, S. A. Hallaj, J. R. Selman, R. B. Dinwiddie, and H. Wang, “Thermal
properties of lithium-ion battery and components.” J. Electrochem. Soc., 146, 947
(1999).

35. P. T. Coman, E. C. Darcy, C. T. Veje, and R. E. White, “Modelling Li-ion cell
thermal runaway triggered by an internal short circuit device using an efficiency
factor and Arrhenius formulations.” J. Electrochem. Soc., 164, A587 (2017).

36. C. Bost, (2020), COMSOL Blog - Modeling Heat Transfer in Thin Layers via
Layered Material Technology Available at: (https://comsol.com/blogs/modeling-
heat-transfer-in-thin-layers-via-layered-material-technology/). (Accessed: 5th May
2021).

37. M. Guo, X. Jin, and R. E. White, “Nonlinear state-variable method for solving
physics-based li-ion cell model with high-frequency inputs.” J. Electrochem. Soc.,
164, E3001 (2017).

38. M. Song, Y. Hu, and S.-Y. Choe, “Analysis and Measurement of Heat Sources of
Lithium-Ion Polymer Battery Using Electrochemical Thermal Model and
Calorimeter.” NASA Aerospace Battery Workshop, Huntsville, Alabama, Nov. 20,
2019 (2019).

39. F. Elmahdi, L. Ismail, and M. Noureddine, “Fitting the OCV-SOC relationship of a
battery lithium-ion using genetic algorithm method.” E3S Web Conf., 234, 3
(2021).

40. S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, and W. Shang,
“Temperature effect and thermal impact in lithium-ion batteries: A review.” Prog.
Nat. Sci. Mater. Int., 28, 653 (2018).

41. D. Ren, K. Smith, D. Guo, X. Han, X. Feng, L. Lu, M. Ouyang, and J. Li,
“Investigation of lithium plating-stripping process in Li-ion batteries at low
temperature using an electrochemical model.” J. Electrochem. Soc., 165, A2167
(2018).

42. M. Guo, G. Sikha, and R. E. White, “Single-Particle Model for a Lithium-Ion Cell:
Thermal Behavior.” J. Electrochem. Soc., 158, A122 (2011).

43. V. D. McGinniss, F. A. Sliemers, D. K. Lmdstrom, and S. G. Talbert,
“Compendium Of information on identification and testing of materials for plastic
solar thermal collectors.” US Department of Energy, 9, 1 (1980).

44. P. T. Coman, E. C. Darcy, C. T. Veje, and R. E. White, “Numerical analysis of heat
propagation in a battery pack using a novel technology for triggering thermal
runaway.” Appl. Energy, 203, 189 (2017).

Journal of The Electrochemical Society, 2021 168 100525

https://doi.org/10.1149/1.2120009
https://doi.org/10.1016/j.jpowsour.2012.04.015
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120616
https://doi.org/10.1149/1.1391704
https://doi.org/10.1149/2.0341704jes
https://comsol.com/blogs/modeling-heat-transfer-in-thin-layers-via-layered-material-technology/
https://comsol.com/blogs/modeling-heat-transfer-in-thin-layers-via-layered-material-technology/
https://doi.org/10.1149/2.0021711jes
https://doi.org/10.1051/e3sconf/202123400097
https://doi.org/10.1016/j.pnsc.2018.11.002
https://doi.org/10.1016/j.pnsc.2018.11.002
https://doi.org/10.1149/2.0661810jes
https://doi.org/10.1149/1.3521314
https://doi.org/10.2172/5320471
https://doi.org/10.1016/j.apenergy.2017.06.033

	A Reduced-Order Lumped Model for Li-Ion Battery Packs during Operation
	Publication Info

	A Reduced-Order Lumped Model for Li-Ion Battery Packs during Operation

