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Abstract: The discovery of new carbon allotropes with different building blocks and crystal sym-
metries has long been of great interest to broad materials science fields. Herein, we report several
hundred new carbon allotropes predicted by the state-of-the-art RG2 code and first-principles calcu-
lations. The types of new carbon allotropes that were identified in this work span pure sp2, hybrid
sp2/sp3, and pure sp3 C–C bonding. All structures were globally optimized at the first-principles
level. The thermodynamic stability of some selected carbon allotropes was further validated by
computing their phonon dispersions. The predicted carbon allotropes possess a broad range of
Vickers’ hardness. This wide range of Vickers’ hardness is explained in detail in terms of both atomic
descriptors such as density, volume per atom, packing fraction, and local potential energy throughout
the unit cell, and global descriptors such as elastic modulus, shear modulus, and bulk modulus,
universal anisotropy, Pugh’s ratio, and Poisson’s ratio. For the first time, we found strong correlation
between Vickers’ hardness and average local potentials in the unit cell. This work provides deep
insight into the identification of novel carbon materials with high Vickers’ hardness for modern appli-
cations in which ultrahigh hardness is desired. Moreover, the local potential averaged over the entire
unit cell of an atomic structure, an easy-to-evaluate atomic descriptor, could serve as a new atomic
descriptor for efficient screening of the mechanical properties of unexplored structures in future
high-throughput computing and artificial-intelligence-accelerated materials discovery methods.

Keywords: carbon allotropes; atomic descriptors; mechanical properties; Vickers’ hardness; super-
hard materials; high-throughput computing

1. Introduction

Carbon atoms can form several allotropes with different bond lengths due to their
ability to from new and various hybridizations [1,2]. The three carbon allotropes that
exist naturally are sp2, sp3, and hybrid sp2/sp3, which represent the following struc-
tures: graphite, diamond, and amorphous carbon, respectively. In the past few decades,
there has been an intense amount of research into the fabrication of naturally existing
carbon allotropes and new carbon allotropes with various hybridizations such as graphene,
nanotubes, fullerenes, and lonsdaleite. Those new carbon allotropes can be materials
with different dimensions; fullerenes are a zero-dimensional material (0D), carbon nan-
otubes are one-dimensional (1D), and graphene is a two-dimensional material (2D) [3–10].
Furthermore, more hybridizations have been predicted theoretically and synthesized exper-
imentally, such as 1D sp-carbyne, 2D sp-sp2-graphyne, and 3D sp-sp3-yne-diamond [11,12].
Several techniques have been used to produce more carbon allotropes. Recently, graphite
with sp2 was transformed into a sp2/sp3 mixture by cold compression at a pressure of
17 GPa, which produced a similar hardness to that of diamond [10]. This experimental
discovery motivated researchers to fabricate more high-pressure carbon crystalline phases
such as W-carbon [13], Z-carbon [14], M-carbon [5], O-carbon [15], and bct-C4 carbon [7].
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Superhard materials are desired in an enormous number of engineering applications,
such as drilling and cutting tools, automotive and aerospace applications, medical im-
plants, grinding and polishing, armor plating, and abrasives for lapping [16,17]. As a
result, an extensive amount of research has been carried out on the enhancement and
application of existing materials with high Vickers’ hardness, and with the goal to go
beyond known materials to discover more novel materials with ultrahigh Vickers’ hard-
ness values [16,17]. Discovering new superhard materials with Vickers’ hardness values
greater than 40 GPa [18,19] requires an understanding the properties of those materials
that explain why some materials are superhard, in order to make the process much simpler
and screen out a huge number of untested materials from the large range of materials. In
the past few years, there has been some effort to explain Vickers’ hardness through the
development of theoretical and semiempirical models: (1) a thermodynamic concept that
relates the chemical bonding to the energy density [20]; (2) the relationship of hardness
with electronegativity and the electron holding energy of the bond [21]; (3) chemical bond
strength [22]; (4) ionicity, charge density, and bond length [23]. When it comes to mathemat-
ically calculating Vickers’ hardness, Teter noted in 1998 that there is a correlation between
shear modulus and Vickers’ hardness [24]. The equation that Teter used to define Vickers’
hardness is as follows:

HV,Teter = 0.151G (1)

where G is the shear modulus. Chen and his coworkers deduced that the discrepancy of
Teter’s model with the experimental results is because Teter’s model does not consider
plastic deformation in the model [25]. Chen suggested that Pugh’s ratio should be included
in the Vicker’s hardness formula. Pugh’s ratio was defined as:

k =
G
B

(2)

where B is the bulk modulus. K is a measure of the brittleness of a material, i.e., high K
arises in highly brittle materials. Chen’s model for Vickers’ hardness is given as follows:

HV,Chen = 2
(

k2G
)0.585

− 3 (3)

Chen’s model yielded better results when it was compared to the experimental results.
However, Tian in 2012 noticed that ductile materials such as KI and KCl had negative
Vickers’ hardness values, since the intercept had a nonphysical basis [26]. As a result, Tian’s
model was proposed. Tian’s model is defined as follows:

HV,Tian = 0.92k1.137G0.708 (4)

Tian’s model did not have an intercept term, which proved to be useful with ductile
and brittle materials when compared with the experimental results. Therefore, Tian’s
model was utilized in this work due to its massive success when compared to experimental
results for a wide variety of ductile and brittle materials.

In this work, carbon allotropes were generated computationally utilizing a powerful
code named RG2. RG2 code was used to generate carbon allotropes with different hy-
bridizations. RG2 code generates carbon allotropes with different hybridizations based on
reasonable bonding features [27,28]. Some carbon allotropes generated by the code were
also seen in SACADA database [29]. This demonstrates that the code is not only able to
generate novel carbon allotropes, but also to reproduce some existing carbon allotropes,
which proves the high proficiency of the code. The hybridization in the carbon allotropes,
namely sp2, sp3, and hybrid sp2/sp3, can be judged by number of bonded neighbors (three,
four, and mixed three and four, respectively) [30,31].
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2. Computational Procedure and Methods

For generation and screening of materials, the following computational procedure
was executed:

Step 1: Initially, the RG2 code generated 1598 carbon allotropes in total with different
hybridization states.
Step 2: We perform first-principles calculations to fully optimize those structures with low
Monkhorst-pack k-mesh. The k-mesh in low-resolution DFT calculations depends on total
number of atoms in the cell. Specifically, for numbers of atoms < 10, 11–30, 30–50, and
> 50, the k-mesh was 8× 8× 8, 4× 4× 4, 2× 2× 2, and 1× 1× 1, respectively. After this
step, we had 1576 carbon allotropes.
Step 3: We continued to perform first-principles calculations to fully optimize the structures
that were successfully optimized in the previous step, with high Monkhorst-pack k-mesh.
The k-mesh in high-resolution DFT calculations depends on the length of lattice of the cell.
Specifically, the product of the k-mesh in each direction and lattice size was approximately
60 Å. This was equivalent to the k-mesh of 16× 16× 16 for diamond with an 8-atom
conventional cell, which was high enough for global structure optimization. After this step,
we had 1461 carbon allotropes.
Step 4: After global structure optimization was finished, we cross-checked the 1461 carbon
structures and also compared the structures with those downloaded from the SACADA
database [29]. We found that some of the finally optimized structures had been already
identified or reported in previous studies. After cross-checking and screening, we had
1105 new and unique carbon allotropes.
Step 5: We finally calculated the elastic constants with conventional unit cells for all
1105 unique structures. Again, the k-mesh in each direction was determined by the same
procedure as in Step 3. After this step, we successfully obtained the elastic constants of
1105 carbon allotropes.
Step 6: Some structures had unreasonable universal anisotropy [32] so we decided to only
report the carbon allotropes with universal anisotropy between 0 and 3. Finally, 904 carbon
allotropes remained from all the screening processes.

The RG2 package was used to generate new carbon structures in which sp2, sp3, and
sp2/sp3 mixture hybridizations were formed [28,33–35]. The input parameters of RG2

mainly included the target space symmetry group(s), elements, number of inequivalent
atoms in the unit cell, number of bonded atoms for each element, and bond feature
information (e.g., bond angle, bond length, and the tolerance for their derivation). With
these input parameters, the RG2 package built the correct labeled quotient graph. In this
article, different structures with different numbers of carbon structures with different
hybridization states were arbitrarily distributed in a stochastic cell which had an arbitrary
symmetry and lattice constant [27]. The number of symmetrically independent atoms
usually ranged from 2 to 10, with majority between 3 and 7. A structure was initially
generated with an equivalent number of carbon atoms based on symmetry. The code
then computed the distance matrix of all the carbon atoms in that specifically generated
structure and built the labeled quotient graph (LQG) based on sp2 or sp3 hybridizations.
The generated structures with reasonable LQGs based on the bond lengths and angles
could be relaxed by the code. The new structures produced by the code were named
according to parameters used to predict the structures in the code, and those parameters
(characters or numbers) used in the names were separated by a hyphen. The naming
process took place from left to right as the following: space group number, number of
nonequivalent atoms in the unit cells, element names (always C in this work), ring or loop
structure in carbon local ID, and possibly one more hyphen to distinguish two IDs.

Vienna ab initio simulation package (VASP) was used to perform first-principles
calculations based on the density functional theory (DFT) [36–38]. Global structure opti-
mization was carried out in VASP with full degrees of freedom for both lattice shape, size,
and atomic coordinates. As for the exchange-correlation functional, the Perdew–Burke–
Ernzerhof (PBE) generalized gradient approximation (GGA) was selected [39]. The kinetic
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energy cutoff for the electronic wavefunctions was set to be 520 eV with a plane-wave
basis set obtained through projector augmented wave method (PAW) modeling [38,40].
The value of 520 eV was chosen by following the recommendation from VASP, i.e., the
energy cutoff should be at least 1.3 times the maximum ENMAX for an atomic species in
a material, which is equal to 400 eV for carbon. Different Monkhorst-pack k-mesh sizes
were used depending on the lattice constants to sample the Brillouin zone [41]. Generally
speaking, the k-mesh size used was dense enough and equivalent to a regular diamond
lattice (primitive cell) at 16 × 16 × 16. The energy and force criteria for the structure
optimization were 10−7 eV and 10−4 eV/A, respectively. The unit cell could change its
size, and the atoms could move to reach the convergence criteria mentioned previously.

The elastic stiffness tensor matrix was calculated via the finite difference method in
VASP by the conventional unit cell constructed with the relaxed structure from the structure
optimization process. The elastic stiffness tensor was obtained from the OUTCAR file,
which is an output file from running VASP code with Hessian matrix calculations from
finite differences. The Hessian matrix is the matrix of the second derivatives of energy
with respect to the positions of atoms, which is also used to compute the elastic stiffness
tensor in VASP. The elastic stiffness tensor matrix can be obtained by executing six finite
distortions on the unit cell/lattice and deriving the elastic constants from the stress–strain
relationship [42]. For each crystal system, the elastic stiffness tensor matrix is different [43].
The most general form, which is also applied to the triclinic crystal system, is shown below:

C =



c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

 (5)

where cij is the elastic constant component in direction ij and cij = cji. The number of
independent elastic constants varies for each crystal system depending on the symmetry of
the crystal system. For example, the triclinic crystal system, which is the least symmetrical
crystal system, has 21 independent elastic constants, whereas a cubic crystal system, which
is the most symmetrical crystal system, only has three independent elastic constants. It can
be noted that the crystal system in the most general form in Equation (5) is triclinic with
21 independent elastic constants, assuming that all the elastic constants are independent.
Some of the elastic constants can be equal to zero. Also, some elastic constants in certain
directions can be equal to elastic constants in other directions which means that those
elastic constants are dependent. All the previously mentioned two different scenarios
related to elastic constants can be represented in a cubic crystal system as

ccubic =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 (6)

In Equation (6), some elastic constants in the cubic crystal system are dependent in
which c12 = c13, c11 = c22 = c33, and c44 = c55 = c66. Moreover, many of the elastic
constants in the elastic stiffness tensor matrix are equal to zero. The compliance tensor is
the inverse of the elastic tensor and defined as[

cij
]
= [sij]

−1 (7)

Shear (G) and bulk (B) moduli calculations from the elastic constants can be calculated
through two definitions averaging Viogt’s [44] approximation and Reuss’ [45] approxima-
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tion. Voigt’s approximation assumes uniform strain throughout the crystal, while Reuss’
approximation assumes uniform stress throughout the crystal. The Voigt’s bound equations
take the following form:

9BV = (c11 + c22 + c33) + 2(c12 + c23 + c31)
15GV = (c11 + c22 + c33)− (c12 + c23 + c31) + 4(c44 + c55 + c66)

(8)

where as the Reuss’ equations are:

1
BR

= (s11 + s22 + s33) + 2(s12 + s23 + s31)

15/GR = 4(s11 + s22 + s33)− 4(s12 + s23 + s31) + 3(s44 + s55 + s66)
(9)

Hill demonstrated that both Reuss and Voigt approximations are strictly lower and
upper bounds, and the average of both approximations yields the actual elastic behavior
results for G and B in polycrystalline materials [46]. Therefore, G and B according to Hill
are as follows:

BVRH =
(BV + BR)

2
GVRH =

(GV + GR)

2
(10)

In this article, Hill’s approximation is implemented for G and B in the Results and
Discussion section.

Young’s modulus and Poisson’s ratio are defined as follows:

E =
9BG

3B + G
(11)

ν =
3B− 2G

2(3B + G)
(12)

Researchers have made a significant effort to quantify anisotropy. In 1948, Zener
introduced a definition to quantify anisotropy in which he used the elastic constants c11,
c12, and c44 from the elastic stiffness tensor, and the formula A = 2c44

c11−c12
[47]. In 1967,

Chung proposed another empirical formula to measure the anisotropy of cubic crystal
systems in which he utilized the Voigt and Reuss approximations in the formula [48].
Chung’s definition was Ac = GV−GR

GV+GR
. The previous two definitions of anisotropy have a

good performance to a certain extent since they yield acceptable results when it comes to
cubic crystals, which have an isotropic bulk resistance. However, the definitions do not
show adequate results when they are used in other crystal systems besides the cubic crystal
system, because the other systems generally exhibit anisotropic bulk resistance responses.
In order to accurately quantify anisotropy, all the contributions must be considered. To
this end, Ranganathan proposed a novel formula to quantify universal anisotropy which
overcame the constraints of the two previous definitions [32]. The formula of universal
anisotropy is

AU = 5
GV
GR

+
BV
BR
− 6 (13)

In this work, the universal anisotropy definition from Ranganatha is implemented in
the Results and Discussion section.

A supercomputer with 48 cores per node was used. All VASP jobs were run on
24 cores, i.e., one node could run two VASP jobs simultaneously. Generally speaking, the
CPU time for optimization of a carbon structure ranged from a few minutes to several
hours, depending on the systems, with majority around half an hour, while the elastic
constant calculation typically took 1 to 5 h per structure.

A supercell of 2 × 2 × 2 of four carbon allotropes (their crystal structures are shown
in Figure 1 and their IDs with their materials properties are in Table 1 in the Results and
Discussion section) were created. The harmonic second-order force constant for those four
materials was obtained via the finite displacement method using PHONOPY code [49].
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Using PHONOPY code, the dynamic matrix of the reciprocal space was obtained from the
energy derivatives to plot the phonon dispersion of each carbon allotrope.

Crystals 2021, 11, x FOR PEER REVIEW 6 of 16 
 

 

CPU time for optimization of a carbon structure ranged from a few minutes to several 
hours, depending on the systems, with majority around half an hour, while the elastic 
constant calculation typically took 1 to 5 h per structure. 

A supercell of 2 × 2 × 2 of four carbon allotropes (their crystal structures are shown 
in Figure 1 and their IDs with their materials properties are in Table 1 in the Results and 
Discussion section) were created. The harmonic second-order force constant for those four 
materials was obtained via the finite displacement method using PHONOPY code [49]. 
Using PHONOPY code, the dynamic matrix of the reciprocal space was obtained from the 
energy derivatives to plot the phonon dispersion of each carbon allotrope. 

 
Figure 1. 2 × 2 unit cell structures of (a) 135-3-40-C-r89-np-id355667 with pure spଶ hybridization, (b) 136-3-20-C-r689-np-
id545421_1 with hybrid spଶ/spଷ hybridization, (c) 179-3-36-C-r6789-p-id545421 with pure spଷ hybridization, and (d) 165-
3-28-C-r68-np-id545421 with pure spଷ hybridization. 

3. Results and Discussion 
The RGଶ code originally generated 1598 carbon allotropes, from which 1576 carbon 

allotropes were successfully optimized with low resolution. Subsequently, 1461 carbon 
allotropes were optimized with a high resolution of 16×16×16. Some structures already 
existed in SACADA database or had been reported in previous studies [29], but 1105 
unique carbon allotropes remained after screening the 1461 carbon allotropes from those 
that already existed in SACADA. Some carbon allotropes exhibited high universal anisot-
ropy [32], so carbon allotropes with universal anisotropy between 0 and 3 remained. After 
multiple screening steps, 904 carbon allotropes with different hybridization states re-
mained from the RGଶ code. A total of 309 carbon allotropes had Vickers’ hardness values 
from Tian’s model greater than 40 GPa, which qualified them as superhard materials 
[18,19]. The structural information and the mechanical properties for all new carbon allo-
tropes reported herein are provided as a separate JSON file as supplemental material. Me-
chanical properties such as shear modulus (𝐺), bulk modulus (𝐵), Poisson’s ratio (𝜈), 
Pugh’s ratio (𝑘), elastic modulus (𝐸), and Vickers’ hardness (𝐻) using Tian’s model were 
calculated using the elastic constants in the elastic stiffness tensor matrix from the OUT-
CAR file outputted by VASP, and the structural properties such as density (ρ), volume 
per atom (VPA), and packing fraction (PF) were calculated using Matminer [50]. Average 
local potential (defined below) was also calculated from the LOCPOT file outputted by 

Figure 1. 2 × 2 unit cell structures of (a) 135-3-40-C-r89-np-id355667 with pure sp2 hybridization, (b) 136-3-20-C-r689-
np-id545421_1 with hybrid sp2/sp3 hybridization, (c) 179-3-36-C-r6789-p-id545421 with pure sp3 hybridization, and
(d) 165-3-28-C-r68-np-id545421 with pure sp3 hybridization.

Table 1. Some representative carbon allotropes with different hybridizations.

Materials Hybridizations Vickers’ Hardness,
(GPa)

Ground-State Energy,
(eV)

Average Local
Potential, (eV)

(a) 135-3-40-C-r89-np-id355667 sp2 30.88994 −341.2203 −11.7709

(b) 136-3-20-C-r689-np-id545421_1 Hybrid sp2/ sp3 69.35087 −175.5362 −12.7828

(c) 179-3-36-C-r6789-p-id545421 sp3 90.11029 −320.6033 −12.9213

(d) 165-3-28-C-r68-np-id545421 sp3 90.10081 −245.7932 −13.1631

3. Results and Discussion

The RG2 code originally generated 1598 carbon allotropes, from which 1576 carbon
allotropes were successfully optimized with low resolution. Subsequently, 1461 carbon
allotropes were optimized with a high resolution of 16×16×16. Some structures already ex-
isted in SACADA database or had been reported in previous studies [29], but 1105 unique
carbon allotropes remained after screening the 1461 carbon allotropes from those that al-
ready existed in SACADA. Some carbon allotropes exhibited high universal anisotropy [32],
so carbon allotropes with universal anisotropy between 0 and 3 remained. After multiple
screening steps, 904 carbon allotropes with different hybridization states remained from the
RG2 code. A total of 309 carbon allotropes had Vickers’ hardness values from Tian’s model
greater than 40 GPa, which qualified them as superhard materials [18,19]. The structural
information and the mechanical properties for all new carbon allotropes reported herein are
provided as a separate JSON file as supplemental material. Mechanical properties such as
shear modulus (G), bulk modulus (B), Poisson’s ratio (ν), Pugh’s ratio (k), elastic modulus
(E), and Vickers’ hardness (H) using Tian’s model were calculated using the elastic con-
stants in the elastic stiffness tensor matrix from the OUTCAR file outputted by VASP, and
the structural properties such as density (ρ), volume per atom (VPA), and packing fraction
(PF) were calculated using Matminer [50]. Average local potential (defined below) was
also calculated from the LOCPOT file outputted by VASP to analyze the average atomic
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interactions in the unit cell. Positive values of local potential indicate repulsive interactions
and, as local potential gets higher, interactions become more repulsive. On the other hand,
negative local potential represents attraction and, the more negative the potential, the more
attraction is present between the atoms [51,52].

VLOCPOT(r) = V(r) +
∫ n(r′)
|r− r′|dr′ + VXC(r) (14)

3.1. Ground-State Energy and Thermodynamic Stability

Figure 1 shows the 2 × 2 unit cells of selected carbon allotropes with different hy-
bridizations, in which VESTA code was used for plotting [53]. The materials with their
hybridizations are (a) 135-3-40-C-r89-np-id355667 with pure sp2 bonding, (b) 136-3-20-C-
r689-np-id545421_1 with hybrid sp2/sp3 bonding, (c) 179-3-36-C-r6789-p-id545421 with
pure sp3 bonding, and (d) 165-3-28-C-r68-np-id545421 with pure sp3. The atomic structures
of the carbon allotropes mentioned previously are shown in Figure 1.

Figure 2 shows their corresponding phonon dispersion for each selected carbon
allotrope in Figure 1.
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id545421, (d) 165-3-28-C-r68-np-id545421.

The phonon dispersions of each structure (shown in Figure 2) indicated that all
the structures were thermodynamically stable since no negative phonon frequency was
found in the phonon dispersion plots [54–57], which means that those carbon allotropes
could be synthesized experimentally [58]. Interestingly, the acoustic phonon dispersions
show in Figure 2c had few couplings or intersection with optical phonons until 10 THz.
This feature is very promising for high thermal conductivity of this structure, since the
intrinsic acoustic–optical phonon scattering would be very weak. The ground-state energy
per atom for the final unique 904 carbon allotropes ranged from −9.2795 eV/atom to
−7.6504 eV/atom. Many new structures had energy values very close to that of diamond,
which is −9.0929 eV/atom. It is worth noting that, although the carbon allotropes were
similar in the sense that they only contained the single element of carbon, these carbon
allotropes were different and displayed a wide range of various properties, which was
also confirmed by the diverse mechanical properties and ground-state energy calculations.
Table 1 shows a summary of important information about the four representative structures
with their Vickers’ hardness results.
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From Table 1, it can be noted that both materials with pure sp3 hybridizations had
higher Vickers’ hardness values than the other two hybridizations. The structure with pure
sp2 had the lowest Vickers’ hardness. The hybridization sp3 was noted to have higher
Vickers’ hardness for the available data used in this article. The area occupied by materials
with sp3 and sp2 hybridizations in a 2D map of shear and bulk moduli with Pugh’s ratio
and Poisson’s ratio as indicators for high and low hardness is shown below.

3.2. Pearson Correlation

The Pearson correlation matrix of the properties mentioned previously is shown in
Figure 3. The Pearson correlation matrix was generated using open-source Python to give
an insight of how much each property correlated with the other properties [59]. Since the
explanation of Vickers’ hardness is more important in this article than explaining the other
properties, the Vickers’ hardness explanation based on the other properties is the focus.
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A Pearson correlation matrix relates two parameters to each other, and the values are
between −1 and 1. A value of −1 in the correlation matrix indicates a perfectly inverse
correlation between two parameters, a value of 0 indicates that no correlation exists between
the two parameters, and a value of 1 indicates a perfect positive correlation. If a value is
between 0 and 1, the correlation is direct, and the degree of the direct correlation depends on
the value itself. If the value is close to 0, that denotes a weak direct correlation. Furthermore,
if the value is close to 1, a strong direct correlation is present between two parameters.
The same explanation applies to the numbers between −1 and 0, wherein a weak inverse
correlation exists if the value is close to 0, but a strong inverse correlation exists between
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two forms of criteria if the value is close to −1. In Figure 3, values of 1 are present in the
diagonal elements of the matrix, which is because the column and row parameters are
identical. For example, the third row in the correlation matrix is shear modulus (G) and
the third column is shear modulus (G), so it makes sense that the correlation between them
is equal to 1 because they are identical. The properties that were directly proportional
to Vickers’ hardness were shear modulus, bulk modulus, elastic modulus, Pugh’s ratio,
density, and packing fraction. The properties that were inversely proportional to Vickers’
hardness are universal anisotropy, Poisson’s ratio, volume per atom, and average local
potential. Table 2 shows some carbon allotropes with high hardness. Table 3 shows some
carbon allotropes with low hardness.

Table 2. Carbon allotropes with high Vickers’ hardness with other material properties.

Materials
Vickers’

Hardness,
(GPa)

Universal
Anisotropy

Bulk
Modulus,

(GPa)

Elastic
Modulus,

(GPa)

Poisson’s
Ratio

Density,
(kg/m3)

Volume
Per Atom

Packing
Fraction

Average
Local

Potential,
(eV)

206-1-16-C-r0-np-
id355667 104.302 0.00457 385.28 1060.73 0.04114 3.5534 5.61272 0.25595 −13.467

181-1-6-C-r0-p-
id224838_1 94.8507 0.04505 429.82 1108.01 0.07036 3.9125 5.71263 0.2515 −13.185

154-1-6-C-r0-p-
id224838 94.36159 0.044264 431.9735 1109.813 0.071805 3.496109 5.704695 0.251855 −13.195

180-1-12-C-r0-p-
id224838 94.16793 0.055942 428.2763 1102.033 0.071136 3.485896 5.72141 0.251119 −13.169

182-1-12-C-r6x-p-
id224838 94.13454 0.084798 433.4282 1111.486 0.072599 3.487636 5.718554 0.251244 −13.169

Table 3. Carbon allotropes with low Vickers’ hardness with other material properties.

Materials
Vickers’

Hardness,
(GPa)

Universal
Anisotropy

Bulk
Modulus,

(GPa)

Elastic
Modulus,

(GPa)

Poisson’s
Ratio

Density,
(kg/m3)

Volume
Per Atom

Packing
Fraction

Average
Local

Potential
(eV)

224-3-72-C-r69-
np-id355667 2.99986 1.56873 99.07801 87.23116 0.353262 1.561686 12.77097 0.112502 −8.092

131-2-48-C-r68x-
np-id224838 3.082382 2.944065 170.7716 125.9887 0.37704 2.074342 9.61473 0.149433 −9.773

207-3-72-C-r689-
np-id224838 1.162879 1.085925 66.67588 42.13926 0.394666 1.276296 15.62666 0.091943 −6.915

222-3-112-C-r6x-
np-id355667 1.541133 1.974846 118.8571 70.42662 0.401245 1.477887 13.4951 0.106465 −7.750

155-3-54-C-r6x-p-
id355667 3.318981 2.33672 69.3944 72.49172 0.325894 1.541569 12.93762 0.111052 −8.030

The Pearson correlation confirmed some results in the literature that we mentioned
previously, and showed some obvious correlations with Vickers’ hardness. Pugh’s ratio and
shear modulus are part of the Vickers’ hardness definition in Equation (4), so it is obvious
why the correlation between Vickers’ hardness with Pugh’s ratio and Vickers’ hardness
with shear modulus was extremely high. However, some properties are not included in
Equation (4), but they were highly proportional to Vickers’ hardness. Bulk modulus was
highly correlated with hardness, and it has been reported in the literature that a linear
correlation between hardness and bulk modulus could be used to calculate hardness in
InSb, GaSb, Ge, Si, and diamond, but failed in a wide range of other materials [60,61]. It has
also been reported that the relationship between hardness and bulk modulus is nonlinear
and cannot be used to calculate hardness in many different types of materials [24,62]. The
Pearson correlation shown in Figure 3 suggests that the correlation between hardness



Crystals 2021, 11, 783 10 of 15

and bulk modulus was 0.8653, which is high, but not as high as the shear modulus and
Pugh’s ratio correlation coefficients (0.9898 and 0.9405, respectively). Tian reported that
materials with high hardness tend to have a high elastic modulus [26]. Figure 3 and the
comparison between Tables 2 and 3 confirms Tian’s report, with an exceptionally high
correlation coefficient of 0.9817 which also happened to be even higher than the correlation
coefficient of shear modulus with Vickers’ hardness, which was equal to 0.9405.

Volume per atom, density, and packing fraction results from Figure 3 and Tables 2 and 3
indicated that materials with high Vickers’ hardness are more packed and denser than
materials with lower Vickers’ hardness. Local potential differs from one area to another
in a unit cell since electrons and nuclei are in different positions throughout the unit cell,
which consequently affects the value of local potential in each grid of the unit cell. We
believe that the average local potential of the unit cell gives a massive insight into the
interactions of the unit cell, as proven by the results from Figure 3 and Tables 2 and 3.
The Pearson correlation shown in Figure 3 indicates that the relationship between local
potential and hardness had a correlation coefficient of −0.8072. In other words, materials
with lower local potential in their unit cells have high hardness. This can be interpreted by
the fact a high attraction of unit cells with lower local potential occurs in materials with
high hardness, which also reflects the high strength in the bonds of those materials. Table 2
confirms that materials with high hardness had local potentials lower than −13 eV (i.e.,
higher attraction) whereas the materials with low hardness shown in Table 3 had local
potentials higher than −9 eV (i.e., lower attraction). The higher attraction with lower local
potential in superhard materials also explains why the superhard carbon allotropes had
high density and packing fraction.

It was also noted that a strong inverse relationship occurred between Poisson’s ratio
and Vickers’ hardness (−0.9201). This result confirms that ductile/brittle materials have
low/high hardness, since high/low Poisson’s ratio is an indicator of a ductile/brittle
material [63]. The Pearson correlation matrix in Figure 3 also shows that highly anisotropic
materials had lower hardness and vice versa, which was also confirmed by the comparison
between the superhard materials shown in Table 2 with the materials with low Vickers’
hardness shown in Table 3. Poisson’s and Pugh’s ratios had an extraordinarily high inverse
correlation with a coefficient of −0.9975 from Pearson correlation matrix, as shown in
Figure 3, and both Pugh’s and Poisson’s ratios also had an extremely correlation with
Vickers’ hardness of the carbon allotropes (as shown in Figure 3). In fact, they are mathe-
matically related by combining Equations (2) and (12) to yield the following equation [64]:

ν =
3− 2k

2(3 + k)
=

3− 2k
6 + 2k

(15)

Equation (15) also confirms the inverse correlation between Pugh’s ratio and Poisson’s
ratio because when k gets larger, ν gets smaller, and vice versa. Furthermore, Pugh’s and
Poisson’s ratios have inverse physical interpretations, and both are used to classify brittle
and ductile materials. Materials with high Pugh’s ratio (> 0.57) and small Poisson’s ratio
(<0.33) are brittle materials [63], and vice versa.

Figures 4 and 5 show the relationship of shear and bulk moduli with Pugh’s ratio and
Poisson’s ratio, respectively. Figures 4 and 5 visually explain hardness using the 2D map of
bulk modulus vs. shear modulus and show Pugh’s ratio and Poisson’s ratio, which are strongly
correlated to Vickers’ hardness, as color bars. Carbon allotropes with high hardness had high
bulk and shear moduli, as shown previously in Figure 3 and Tables 2 and 3.
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It is shown in Figures 4 and 5 that Pugh’s ratio changed with different bulk and
shear moduli values. Where the shear modulus was equal to 200 GPa, different colors of
Pugh’s ratio and different values of bulk modulus appear in Figure 4. Therefore, hardness
differed among different materials with the same value of shear modulus. Furthermore,
the materials with higher values of shear modulus with the same value of bulk modulus
had higher Pugh’s ratios and consequently higher Vickers’ hardness. Carbon allotropes
with pure sp3 hybridization had a high Pugh’s ratio, bulk modulus, and shear modulus, so
they are shown in the upper right area of Figure 4. On the other hand, carbon allotropes
with pure sp2 hybridization had lower Pugh’s ratio, bulk modulus, and shear modulus,
which means that they are shown at the lower left of Figure 4. As for hybrid sp2/sp3, it had
a wide range of Vickers’ hardness values, and the materials with hybrid sp2/sp3 bonding
are placed between pure sp2 and pure sp3 in Figure 4.

It is shown in Figure 4 and that Pugh’s ratio and Poisson’s ratio changed with different
bulk and shear moduli. When the bulk modulus was equal to 200 GPa, shear modulus and
Poisson’s ratio differed in those carbon allotropes (Figure 5), and the carbon allotropes with
higher shear modulus with the same bulk modulus had lower Poisson’s ratio and higher
Vickers’ hardness. Carbon allotropes with pure sp2, hybrid sp2/sp3, and pure sp3 had the
same positions in Figure 5 as in Figure 4 even after the color bar was changed from Pugh’s
ratio in Figure 4 to Poisson’s ratio in Figure 5. Figures 4 and 5 also confirm the inverse
relationship between Poisson’s ratio and Pugh’s ratio shown in the Pearson correlation in
Figure 3.

4. Conclusions

Discovering new materials has been an important research topic in the past few
decades. In this report, the state-of-the-art RG2 predicted new carbon allotropes that
had ultrahigh hardness (40 GPa) according to Tian’s model, which has been shown to be
successful in calculating Vickers’ hardness values for a wide variety of ductile and brittle
materials. Those new carbon allotropes had a wide range of hybridizations, including
pure sp2, hybrid sp2/sp3, and pure sp3. First-principles calculations were performed to
optimize the structures and calculate Vickers’ hardness. Atomic descriptors such as packing
fraction, density, and volume per atom along with mechanical properties such as bulk,
shear, and elastic moduli; universal anisotropy; Poisson’s ratio; and Pugh’s ratio were
utilized to explain the wide range of Vickers’ hardness results for the ductile and brittle
carbon allotropes. The relationships between the average of local potential in the carbon
allotrope unit cell and the anisotropy of a carbon allotrope with Vickers’ hardness were
reported for the first time in this article, to the best of our knowledge. We believe that
this work adds more insight and understanding to Vickers’ hardness in terms of finding
various descriptors to explain Vickers’ hardness and accelerating the process of discovering
unexplored novel superhard materials with captivating properties.
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