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Abstract
Metal-supported solid oxide fuel cells (MS-SOFCs) have been fabricated by apply-
ing phase-inversion tape-casting and atmospheric plasma spraying (APS). The
effect of the binder amount of the phase-inversion slurries on the microstruc-
ture development of the 430L stainless steel metal support was investigated.
The pore structures, the viscosity of the slurry, porosity and permeability of
the as-prepared metal supports are significantly influenced by the amount of
the binder. NiO–scandia-stabilized zirconia (ScSZ) anode, ScSZ electrolyte and
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathode layers were consecutively deposited on
the metal support with an ideal microstructure by APS process. The effect of
plasma power of the APS on the microstructure of the electrolyte and cathode
was investigated. A dense electrolyte layer and a porous cathode layer were suc-
cessfully obtained at 40 and 6 kW of the APS plasma power, respectively. MS-
SOFCs, with a cell configuration of 430L/Ni-ScSZ/ScSZ/LSCF, achieved a maxi-
mum cell power density of 1079 mW cm−2 at 700◦C using humidified H2 as fuel
and ambient air as oxidant. The corresponding ohmic resistance and total resis-
tance of MS-SOFCs was 0.14 and 0.32 Ω cm2, respectively. This work demon-
strates the feasibility of fabricating high-performance MS-SOFCs with economi-
cal and scalable techniques.

KEYWORDS
atmospheric plasma spraying, metal-supported solid oxide fuel cells, phase-inversion tape
casting, plasma power

1 INTRODUCTION

Metal-supported solid oxide fuel cells (MS-SOFCs) have
been recognized as a versatile energy conversion device for

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Journal of the American Ceramic Society published by Wiley Periodicals LLC on behalf of American Ceramic Society.

a number of advantages over the state-of-the-art cermet
anode–supported SOFCs, including low-cost structural
materials, high mechanical strength, excellent sealing effi-
ciency, improved thermal shock resistance and extremely

68 wileyonlinelibrary.com/journal/jace J Am Ceram Soc. 2023;106:68–78.
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fast start-up capability.1–3 Anode-supported planar SOFCs
are typically fabricated using tape casting and screen
printing where co-sintering of the anode/electrolyte
bilayers is first performed, followed by a separate thermal
fabrication of the cathode.4,5 However, it is very difficult
to manufacture MS-SOFCs using the anode-supported
SOFC-manufacturing processes without oxidizing the
metal substrate or significantly changing cell component
materials properties. For example, sintering the cathode
material under in air would invoke severe oxidation of
metal substrates such as stainless steel.6 Meanwhile, the
use of high-temperature sintering to densify the electrolyte
typically leads to significant interdiffusion between Fe and
Cr from the stainless steel andNi from the anode,which, in
turn, results in high cell resistance, low cell power density
and a rapid performance degradation of MS-SOFCs.7,8
One major focus of current SOFC development is

to lower the cell operating temperatures in order to
reduce the cost and improve the durability of the SOFC
systems. A mixed ionic–electronic conductor such as
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) is widely used as an SOFC
cathodematerial, which exhibits excellent performances at
intermediate temperatures due to its high-catalytic activ-
ity for oxygen reduction and oxygen ion mobility.9–11 How-
ever, LSCF usually reacts with Zr-based electrolytes to
form insulating La2ZrO7 or SrZrO3 phases at the elec-
trolyte/cathode interface during the preparation or oper-
ation of SOFCs at elevated temperatures.12 Therefore, a
diffusion barrier layer, such as doped ceria, is usually
added between the electrolyte and the cathode to pre-
vent insulating phase formation during high-temperature
process.13–15 However, the introduction of a diffusion bar-
rier layer has added complexity to the cell fabrication pro-
cess and incurred additional ohmic loss in the cell.
To overcome the aforementioned challenges, the

atmospheric plasma spraying (APS) technique has been
explored for manufacturing SOFCs.16–19 The APS process
utilizes high-temperature plasma flame created by a
plasma torch to fully or partially melt particles that are
subsequently deposited on a substrate.20,21 Compared
with other deposition methods such as chemical vapor
deposition,22 pulsed laser deposition,23 vacuum plasma
spraying24,25 and suspension plasma spray,26 APS offers
an ideal cost-effective solution for iterative processes at
high volume productions and fast production rates, thus
minimizing the potential reactions/interdiffusions among
different SOFC layers at lower temperatures without
additional heat treatment. Furthermore, the APS process
can easily control the composition and microstructure of
sprayed layers by adjusting the spraying parameters.
MS-SOFCs fabricated using APS have been reported,

mainly on ceramic powders deposited on a porous metal
substrate, which was fabricated by dry pressing or tape

casting. Pore formers (graphite, starch or polystyrene)were
typically used to control the metallic support microstruc-
ture, forming a sponge-like microstructure with random
and irregular pores.6 However, subsequent heat treat-
ment in reducing conditions to remove pore formers may
result in carbon residues on the metallic support, due to
the pyrolysis of the pore formers. In addition, sponge-
like morphology is also not beneficial to gas diffusion
because of high tortuosity factor, consequently limiting the
cell electrochemical performance.27,28 Recently, the phase-
inversion tape-casting method that combines tape cast-
ing and phase inversion has been utilized to optimize the
cermet anode microstructure in planar anode-supported
SOFCs, exhibiting high performance and low concentra-
tion polarization resistance.29–32 The cermet anode sup-
port fabricated by phase-inversion tape-casting method
has a unique three-layer microstructure, including a skin,
a finger-like and a sponge-like layer. The large straight
pores perpendicular to the ceramic anode support thick-
ness direction in the finger-like layer are expected to facili-
tate gas transport. Consequently,metal supportwith such a
uniquemicrostructure, resulting from the phase-inversion
tape-casting method, may reduce the concentration polar-
ization and enhance the cell performance of MS-SOFCs.
In this work, the phase-inversion tape-casting method

has been used to produce planar metal support. Stainless
steel 430L powders are used to prepare the slurries. The
pore formation mechanism has been evaluated using the
viscous fingering mechanism, and the effects of binder
amount on the microstructure are systematically investi-
gated. TheAPS processwas used to fabricate porous anode,
dense electrolyte and porous cathode on top of the porous
metal substrate. The cell microstructure and electrochem-
ical performances were evaluated as a function of plasma
power of the APS.

2 EXPERIMENTAL SECTION

2.1 Materials

Stainless steel 430L powders (US Research Nanomaterials
Inc., USA) were used as the metal support materials.
These powders have a d50 particle size of about 10 μm and
spherical granule morphology, as revealed in Figure 1A.
Polyethersulfone (PESf, Veradel 3000P, Solvay Specialty
Polymers, USA), N-methyl-2-pyrrolidone (NMP, HPLC
grade, Sigma-Aldrich, USA) and polyvinylpyrrolidone
(PVP, VWR Chemicals, USA) were used as the polymer
binder, solvent and dispersant, respectively. Agglomerated
NiO–scandia-stabilized zirconia (ScSZ) powders (10 mol%
Sc2O3–90 mol% ZrO2) (Qingdao Tianyao Materials Co.,
Ltd., China) with an NiO:ScSZ weight ratio of 60:40 was
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70 LIN et al.

F IGURE 1 SEM images of the starting materials: (A) 430L powders (B) NiO–ScSZ, (C) ScSZ and (D) LSCF. LSCF, La0.6Sr0.4Co0.2Fe0.8
O3−δ; ScSZ, scandia-stabilized zirconia; SEM, scanning electron microscopy

employed as the anode materials. Figure 1B shows the
morphology of NiO–ScSZ powder with particles around
10–40 μm in diameters and good flowability. Fused and
crushed ScSZ powders (Daiichi Kigenso Kagaku Kogyo
Co., Ltd., Japan) were used as the electrolyte feedstock
material that has a particle size in the range of 10–30 μm
and displays an irregular shape (Figure 1C). In addition,
agglomerated LSCF (HC Starck, Germany) spherical
powers with a particle size of 10–50 μm were used as
the cathode material (Figure 1D). To avoid clogging, all
powders were dried prior to the spraying.

2.2 Fabrication of metal support

430L stainless steel metal support was prepared using the
phase-inversion tape-casting process.32 PESf and PVPwere
first dissolved in an NMP solvent to form a homogeneous
solution, and 430L stainless steel powders were subse-
quently added. The composition of the slurries is summa-
rized in Table 1. The slurries were ball-milled for 24 h.
Prior to tape casting, the slurries were de-aired using a
vacuum pump until no bubbles were observed. The slur-
ries were then casted onto a Mylar carrier film via a doctor
blade with a 0.9 mm gap, and the castedmetal support was
immediately transferred into a water bath for 12 h, where
the organic solvent exchanged with water to complete the

TABLE 1 Composition of the casting slurry for preparation of
the metal support

Compositions (wt.%)

NMP PESf PVP
Solid
loading

NMP:PESf:
PVP

Sample
ID

24.83 4.14 1.03 70 6:1:0.25 M1
24 4.8 1.2 70 5:1:0.25 M2
23.48 5.22 1.30 70 4.5:1:0.25 M3
22.86 5.71 1.43 70 4:1:0.25 M4
21.18 7.06 1.76 70 3:1:0.25 M5

Abbreviation: NMP, N-methyl-2-pyrrolidone; PESf, polyethersulfone; PVP,
polyvinylpyrrolidone.

solidification process. The resultant green metal support
tapes were punched into metal pellets with a diameter of
about 15 mm and dried at room temperature. The metal
pellets were then heat-treated in a boxmuffle furnace in air
at 500 ◦C for 1 h with a 1 ◦C min−1 heating rate to remove
the organic binders, and subsequently heat-treated at 1250
◦C for 3.5 h in a tubular furnace under the atmosphere of
5% hydrogen/nitrogen.

2.3 Cell fabrication

The optimized metal disk with a thickness of 0.75 mm
and a diameter of 13 mm was used as metal support to
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LIN et al. 71

TABLE 2 Plasma-spraying parameters for the electrolyte and
cathode

Parameters ScSZ LSCF
Plasma power (kW) 32, 36, 40 6, 9, 12
Primary gas (Ar) (L min−1) 60 60
Secondary gas (He) (L min−1) 6 6
Powder feed rate (g min−1) 5 5
Spray distance (mm) 70 150

Abbreviation: LSCF, La0.6Sr0.4Co0.2Fe0.8O3−δ; ScSZ, scandia-stabilized
zirconia.

fabricate SOFCs using APS. The anode functional layer
was deposited on the metal support using an SG-100 spray
gun (Praxair Surface Technologies, USA) at a plasma arc
power of 24 kWand a feed rate of 3 gmin−1. Argon (Ar)was
used as a primary gas, and helium (He) was used as a sec-
ondary and carrier gas. The pressures of primary and sec-
ondary gas were fixed at 1.0 and 0.8 MPa, respectively. The
flow rates ofAr andHewere set at 60 and 6Lmin−1, respec-
tively. The spray distance was 150 mm. To investigate the
effect of plasma arc power on the microstructure and the
property of the electrolyte and cathode, different plasma
powers were applied to fabricate the electrolyte and the
cathode coatings. The detailed plasma spray parameters
for the electrolyte and the cathode fabrication are listed in
Table 2.

2.4 Characterization of metal substrate
with metal-supported solid oxide fuel cells

Rheological properties of the slurries were determined
using an AR Rheometer (Model AR2000 ex, TA Instru-
ment Co., USA) at 25 ◦C. After the slurries were pres-
heared for 30 s, themeasurementswere performed by step-
ping up to high shearing rates. The porosity of as-prepared
metal supports was measured by the Archimedes method
in water. The gas permeability was tested using a home-
made equipment. Nitrogenwas fed into the cylinder at var-
ious pressures, and the amount of permeated N2 was mea-
sured with a flowmeter. Microstructure characterization
is performed using scanning electron microscopy (SEM,
Zeiss Ultra Plus FESEM). To investigate the performance
of the electrolyte, half-cells with Pt as the air electrode
were sealed to an alumina tube with conductive adhesive
(DAD-87, Shanghai Research Institute of Synthetic Resins,
China). High-temperature ceramic adhesives (552–1105,
Aremco, USA)were then applied outside the attached cells
to avoid gas leaking. Silver paste (Sino-platinum Metals
Co., Ltd., China) was used as the current collector on both
anodes and air electrodes with Ag wire as the lead wire.
Humidified (3 vol% H2O) hydrogen was used as fuel gas,

F IGURE 2 Rheological properties of the suspensions derived
from different binder amounts: (A) viscosity versus shearing rate
and (B) viscosity versus binder amount

whereas ambient air was used as oxidant. Hydrogen flow
rate was controlled at 50 mL min−1 by a mass flow con-
troller (APEX,Alicat Scientific, USA). The electrochemical
performance of cells with LSCF cathode was tested using
the same method as those with a Pt air electrode.

3 RESULTS AND DISCUSSION

3.1 Effect of binder amount on
microstructure

The influence of binder amount in the slurry was investi-
gated by changing the amount of PESf. During the prepara-
tion of the slurries, the solid loading was fixed at 70 wt.%.
Figure 2 shows the relationship between the viscosity of
the tape-casting slurry and the binder amount. At any
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72 LIN et al.

given PESf amount, the viscosity of the stainless steel
slurry decreases with increasing the shear rate (Figure 2A).
On the other hand, the viscosity of the slurry increaseswith
increasing the binder concentration (Figure 2B). Note that
for the slurry with low binder concentration, increase in
the PESf amount leads to a slow increase in the slurry vis-
cosity. However, when the binder amount reaches a criti-
cal value (5.22wt.%), further increase in the binder amount
will result in a sharp increase of the viscosity, demonstrat-
ing that the binder concentration has significant effects on
the slurry viscosity. As the morphology of the metal sup-
port may be also related to the viscosity of tape slurry, a
series of metallic supports with the binder amount of 4.14,
4.80, 5.22, 5.71 and 7.06 wt.% have been fabricated, denoted
as M1, M2, M3, M4 and M5, respectively.
Figure 3 displays the microstructure of the metal sup-

ports fabricated with different binder amounts after sin-
tered at 1250 ◦C for 3.5 h. It can be seen from Figure 3A–E
that with the increase in the PESf concentration of the
tape-casting slurry, the diameter of finger-like pores grad-
ually decreases from 200 to 100 μm, whereas more finger-
like pores are formed in the metal supports. In addition,
the thickness of sponge-like layer decreases when adding
more binder to the slurry. When the PESf amount is above
4.8 wt.%, the thickness of sponge-like layer is around
60 μm. The porosity of M1, M2, M3, M4 and M5 is 44.8%,
49%, 49.2%, 50.9% and 46.4%, respectively. These results are
not similar to the previous report. Ren et al.33 have indi-
cated that the formation of finger-like pores is inhibited in
the samples fabricated using high PESf concentration in
the slurry. This may be due to the fact that the slurry was
made from large particle size powders for phase-inversion
tape casting in this study, and the sedimentation of solid
powders in the slurry may influence the formation of the
finger-like pores.
Figure 4 shows the gas permeability of the metal sup-

ports prepared with different binder amounts. The gas per-
meation performance of the metal support is improved
by increasing the amount of PESf in the tape-casting
slurry. However, further increasing the binder concentra-
tion (M4), the gas permeability has gradually reduced. The
gas permeation result is directly related to the microstruc-
ture of the as-prepared metal supports. For support M1
derived from the slurry with 4.14 wt.% PESf, it has less
finger-like pores and a thicker sponge-like layer, which
may interfere with gas transport and consequently affect
the total gas permeance. However, the orientation of the
finger-like pores for the support M5 is not perpendicular
to the support, which may interfere with gas transport and
consequently affect the total gas permeance. Therefore,
430Lmetal supportM3,which exhibits considerable poros-
ity, highest gas permeability and desired microstructure, is
suitable for MT-SOFCs application.

3.2 Electrochemical performance of
metal-supported SOFCs

Three plasma powers of 32, 36 and 40 kW were applied
to fabricate ScSZ electrolytes, and the corresponding
microstructures of the electrolyte coatings are shown
in Figure 5. Figure 5A–C shows the cross-sectional
microstructure of as-obtained half-cell after being pol-
ished. The NiO–ScSZ anode functional layer with a thick-
ness of around 21 μm can be seen to adhere tightly to the
metal support. With the increase in the plasma power,
the thickness of the ScSZ electrolyte is increased from
35 to 55 μm. In addition, the amount of the apparent
cracks and voids decreases with the increase in the plasma
power. Higher plasma energy is expected to melt the
ScSZ particles better, leading to a lower apparent coat-
ing porosity. The morphology of the fractured ScSZ coat-
ings deposited at different plasma powers is shown in
Figure 5a–c. Unbonded interfaces and cracks were present
in the coatings at a plasma power of 32 and 36 kW. When
the plasma power reaches 40 kW, the amount of unbonded
interface decreases significantly. In addition, the contin-
uous columnar structure was formed across the inter-
layer interface. Therefore, the plasma power has signifi-
cant influence not only on the deposition efficiency, but
also on the microstructure of the ScSZ electrolyte coating,
and higher plasma power is more favorable to obtain desir-
able electrolyte coatings.
To study the gas tightness of the electrolyte, the open

circuit voltage (OCV) of three types of half-cell assembly
with a configuration of 430L/Ni-ScSZ/ScSZ was measured
using 3 vol% H2O-humidified hydrogen as fuel and ambi-
ent air as oxidant. The OCVs of the different half-cells
as a function of test temperature and time are shown in
Figure 6A and B, respectively. From Figure 6A, it can be
seen that the OCVs of the half-cells improved with the
increase in the plasma power at all cell operating tem-
peratures. The OCV of the half-cells with the electrolyte
deposited at 32 kWwas 1.0 V at 700 ◦C, but it reached 1.05 V
when the plasma power was increased to 40 kW. Appar-
ently, this value is still lower than the theoretical OCV of
1.12 V,34 indicating that the electrolyte is not completely
dense. However, this is an acceptable value for SOFC oper-
ations and is significantly higher than that (∼0.93 V) of
cells with the ScSZ electrolyte obtained by APS reported in
the literature,35,36 in which the electrolyte was deposited at
a longer spraying distance (100mm), whereas the spraying
distance for the electrolyte is usually about 70 mm in this
study. To evaluate the stability of the half-cells, the OCV
as a function of time was measured at 650 ◦C, as shown in
Figure 6B. Rapid voltage drop was found for the half-cells
with the ScSZ electrolyte obtained at the plasma power of
32 and 36 kW, which is likely due to the poor density of
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LIN et al. 73

F IGURE 3 Cross-sectional SEM images of the as-prepared 430L metal supports with different binder amounts: (A) 4.14 wt.%,
(B) 4.80 wt.%, (C) 5.22 wt.%, (D) 5.71 wt.% and (E) 7.06 wt.%. SEM, scanning electron microscopy

the ScSZ electrolyte. By comparing the flow rates of the
inlet and outlet of the gas stream, a significant leakage for
these half-cells was observed. One potential reasonmay be
due to the stress-relieving microcracks generated through
the electrolytes at elevated temperatures.19,37 There was
no observable OCV degradation for the ScSZ electrolyte
obtained at the plasma power of 40 kW, indicating that
a relatively good gas-tight electrolyte layer is obtained
by APS.
To investigate the correlation between the microstruc-

ture and the electrochemical performance of the MS-
SOFCs, three types of MS-SOFCs with LSCF cathodes

deposited at the plasma power of 6, 9 and 12 kW, and
denoted as Cell 1, Cell 2 and Cell 3, respectively, were eval-
uated. SEM images of the cross sections of the polished
LSCF cathode layer are shown in Figure 7, indicating
that all the LSCF coatings were bonded well to the ScSZ
electrolyte. As the plasma power was increased to deposit
the LSCF cathode, the thickness of LSCF coatings was
increased from 20 to 30 μm, whereas the amount of the
pores in the LSCF cathode layer decreased significantly.
Therefore, a lower plasma power (6 kW) was selected
to produce the LSCF cathode coating, as the porosity is
beneficial for facile mass transport of oxygen molecules to
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74 LIN et al.

F IGURE 4 Gas permeability of the metal supports from
different binder amounts

the reaction sites in the mixed-conducting LSCF cathode
to enlarge the reaction surface area.
Three types of MS-SOFCs, with the cell configuration

of 430L/Ni-ScSZ/ScSZ/LSCF, were tested at 700 ◦C with
humidified hydrogen (3 vol% H2O) as fuel and ambient air
as oxidant. Figure 8 shows the cell voltage and power den-
sity as a function of current density for the three types of
MS-SOFCs. The OCVs of the three types of MS-SOFCs are
all around 1.02 V, close to the corresponding half-cell value
shown in Figure 6, indicating that the ScSZ electrolyte
layers in all the three types ofMS-SOFCs are dense enough
to separate the fuel gas and air. The maximum power
densities are 1079, 953 and 774 mW cm−2 from Cell 1, Cell
2 and Cell 3, respectively. Although the metal support, the
anode and the electrolyte of the three types of MS-SOFCs
were prepared under identical conditions, it is reasonable
to assume that the performance difference was due to
the different microstructure features of the LSCF cathode

F IGURE 5 SEMmicrographs of a polished section (left) and a fractured surface (right) of ScSZ electrolyte layers deposited at different
plasma powers: (A-a) 32 kW, (B-b) 36 kW and (C-c) 40 kW. ScSZ, scandia-stabilized zirconia; SEM, scanning electron microscopy
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LIN et al. 75

F IGURE 6 (A) OCV of the half-cells with ScSZ fabricated at different plasma powers. (B) OCV of the half-cells versus time measured at
650 ◦C. ScSZ, scandia-stabilized zirconia; OCV, open circuit voltage

F IGURE 7 SEMmicrographs of the polished LSCF cathode layer deposited at different plasma power: (A) 6 kW, (B) 9 kW and (C) 12 kW.
LSCF, La0.6Sr0.4Co0.2Fe0.8O3−δ; SEM, scanning electron microscopy

layer deposited by APS. The porous microstructure of the
LSCF layer shown in Cell 1 is expected to improve the
electrochemical reactions at the triple phase boundary.
Furthermore, Cell 1 exhibitsmuchhigher cell performance
compared to those of theMS-SOFCswith similarmaterials
set but fabricated by APS on metal supports produced
from the pore former method (Table 3). Such a difference
in the cell performance could be attributed to the differ-

ent microstructure features of the metal support. Metal
support with open straight finger-like pores prepared by
the phase-inversion tape-casting method is beneficial to
mass transport, thus improving the cell performance and
mitigating the concentration polarization.
Figure 9A shows the impedance spectra of three types

of MS-SOFCs measured under OCV conditions at 700 ◦C.
The high-frequency intercept corresponds to the ohmic
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TABLE 3 Comparison of electrochemical performance for MS-SOFCs by plasma spraying

Cell configuration
Cell operating
temperature (◦C)

Maximum power
density (mW cm−2) Ref.

Ni–YSZ/LSGM/LSCF 700 170 38

LDC–Ni/LDC/LSGM/LSGM-LSCF 750 978 39

Ni–YSZ/YSZ/BPCF 750 610 40

Ni–YSZ/YSZ/SDC-LSCF 700 460 41

NiO–YSZ/YSZ/SDC-LSCF 750 500 42

NiO–YSZ/LSGM/LSCF 700 290 43

NiO–ScSZ/ScSZ/LSCF 700 754 44

NiO–ScSZ/ScSZ/LSCF 700 1079 This study

Abbreviation: MS-SOFC, metal-supported solid oxide fuel cell.

F IGURE 8 Cell voltage and power density as function of
current density for the MS-SOFCs tested at 700◦C with humidified
H2 as fuel and ambient air as oxidant. MS-SOFC, metal-supported
solid oxide fuel cell

F IGURE 9 (A) Impedance spectra for the cells measured
under the OCV conditions at 700◦C. The equivalent circuit for the
electrode processes and the corresponding fitted curve were also
included. (B) Equivalent circuit for the impedance fitting. OCV,
open circuit voltage

TABLE 4 The area-specific resistance values obtained by
fitting the impedance spectra of the three types of MS-SOFCs

Sample Cell 1 Cell 2 Cell 3
RH (Ω cm2) 0.04 0.08 0.09
RL (Ω cm2) 0.14 0.15 0.18
Rp (Ω cm2) 0.18 0.23 0.27

Abbreviation: MS-SOFC, metal-supported solid oxide fuel cell.

resistance (Ro), whereas the low-frequency intercept rep-
resents the total resistance (Rt). The overall size of the
impedance loop is attributed to the polarization resistance
(Rp), including activation and concentration polarization
resistances. From Figure 9A, the Ro values for Cell 1,
Cell 2 and Cell 3 were determined to be 0.14, 0.15 and
0.17 Ω cm−2, respectively, and the corresponding Rt val-
ues were 0.32, 0.39 and 0.44 Ω cm−2, respectively. Appar-
ently, the Rp value increased from 0.18 to 0.27 Ω cm−2

with the increase in the plasma power for depositing
the LSCF cathode from 6 to 12 kW. Compared with the
ohmic resistance, the polarization resistance varied more
substantially with the plasma power used to deposit the
LSCF cathode. Therefore, an equivalent circuit model was
proposed to further analyze these impedance spectra. As
shown in Figure 9B, the impedance spectra consist of
two arcs: the high-frequency resistance (RH) related to
charge transfer process at the gas/electrode interface and
the low-frequency resistance (RL) that is normally ascribed
to the surface adsorption/desorption and gas diffusion.45
The fitting curves are shown in Figure 9A, and the val-
ues extracted from the curve fitting are summarized in
Table 4. Both RH and RL increase with the plasma power
for depositing the LSCF cathode. Although the metal sup-
port, the anode and the electrolyte are nominally identi-
cal, the difference in the polarization resistances for the
various cells can be attributed to the microstructure differ-
ence in the cathode microstructure. The densification of
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the LSCF cathode at higher plasma powers not only leads
to less effective charge transfer due to the loss of active sites
but also increases gas-diffusion resistance owing to insuf-
ficient porosity. In addition, it is apparent that RL domi-
nates in the overall cell Rp, indicating that the adsorption/
desorption and gas-diffusion process become the limiting
step. Therefore, the electrochemical performance of the
MS-SOFCs can be significantly improved by tailoring the
microstructure of the cathode.

4 CONCLUSION

In this study, planar MS-SOFCs with the cell configura-
tion of 430L/Ni-ScSZ/ScSZ/LSCF have been successfully
fabricated by the APS process on metal supports manu-
factured through the phase-inversion tape-castingmethod.
The binder amount of the slurry can significantly influ-
ence the morphology of the metal support fabricated. The
metal support with the desired microstructure could be
tailored by adjusting the amount of the PESf binder in
the slurry. Metal supports with large straight pores are
beneficial to mass transport, thus mitigating the concen-
tration polarization. The plasma power is a key factor in
controlling the coating microstructures of the ScSZ elec-
trolyte and the LSCF cathode byAPS. Satisfactory gas-tight
ScSZ electrolytes and porous LSCF cathodeswere obtained
by selecting a proper plasma power during the APS pro-
cess. The optimized MS-SOFCs exhibited a maximum cell
output power density of 1079 mW cm−2 at 700 ◦C using
humidified H2 as fuel and ambient air as oxidant. The cor-
responding ohmic and total resistance of MS-SOFCs was
0.14 and 0.32 Ω cm2, respectively, suggesting that APS is a
promising approach for manufacturing high-performance
MS-SOFCs.
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