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Article

Illustrative Application of the nth-Order Comprehensive
Adjoint Sensitivity Analysis Methodology for Nonlinear
Systems to the Nordheim–Fuchs Reactor
Dynamics/Safety Model
Dan Gabriel Cacuci

Center for Nuclear Science and Energy, University of South Carolina, Columbia, SC 29208, USA;
cacuci@cec.sc.edu

Abstract: The application of the recently developed “nth-order comprehensive sensitivity analy-
sis methodology for nonlinear systems” (abbreviated as “nth-CASAM-N”) has been previously
illustrated on paradigm nonlinear space-dependent problems. To complement these illustrative
applications, this work illustrates the application of the nth-CASAM-N to a paradigm nonlinear
time-dependent model chosen from the field of reactor dynamics/safety, namely the well-known
Nordheim–Fuchs model. This phenomenological model describes a short-time self-limiting power
transient in a nuclear reactor system having a negative temperature coefficient in which a large
amount of reactivity is suddenly inserted, either intentionally or by accident. This model is sufficiently
complex to demonstrate all the important features of applying the nth-CASAM-N methodology
yet admits exact closed-form solutions for the energy released in the transient, which is the most
important system response. All of the expressions of the first- and second-level adjoint functions
and, subsequently, the first- and second-order sensitivities of the released energy to the model’s
parameters are obtained analytically in closed form. The principles underlying the application of the
3rd-CASAM-N methodology for the computation of the third-order sensitivities are demonstrated
for both mixed and unmixed second-order sensitivities. For the Nordheim–Fuchs model, a single
adjoint computation suffices to obtain the six 1st-order sensitivities, while two adjoint computations
suffice to obtain all of the 36 second-order sensitivities (of which 21 are distinct). This illustrative
example demonstrates that the number of (large-scale) adjoint computations increases at most linearly
within the nth-CASAM-N methodology, as opposed to the exponential increase in the parameter-
dimensional space which occurs when applying conventional statistical and/or finite difference
schemes to compute higher-order sensitivities. For very large and complex models, the nth-CASAM-
N is the only practical methodology for computing response sensitivities comprehensively and
accurately, overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems.

Keywords: large-scale nonlinear models; high-order sensitivities; adjoint operators; curse of
dimensionality

1. Introduction

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear
Systems (nth-CASAM-N) has been presented in [1]. The nth-CASAM-N methodology
enables the most efficient computation of exactly-determined expressions of arbitrarily
high-order sensitivities of results of interest (called “responses”) produced by models that
are nonlinear in their underlying state functions, with respect to the model’s parameters,
uncertain boundaries, and internal interfaces in the model’s phase-space. The nth-CASAM-
N is formulated in linearly increasing higher-dimensional Hilbert spaces (as opposed
to exponentially increasing parameter-dimensional spaces), thus overcoming the curse
of dimensionality in sensitivity analysis of nonlinear systems. In previous works [2–5],
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the principles underlying the application of the nth-CASAM-N have been illustrated on
paradigm time-independent (i.e., stationary) nonlinear problems, including a nonlinear heat
conduction model and a Bernoulli model. These paradigm models were chosen because
they admitted closed-form expressions for all of the high-order sensitivities of responses
with respect to the models’ uncertain parameters. Noteworthy, the results obtained in
these illustrative applications included response sensitivities to imprecisely-known domain
boundaries in space, such as would arise from manufacturing tolerances outside of the
user’s control.

This work aims to illustrate the principles underlying the application of the nth-
CASAM-N to dynamical (i.e., time-dependent) models. Dynamical models deserve par-
ticular attention because, contrary to static models, dynamic models can display not
only steady-state asymptotic behavior but also periodic (i.e., limit-cycle) and aperiodic
(i.e., chaotic) behavior. The sensitivity analysis of such models is particularly challenging,
as has been demonstrated by Cacuci and DiRocco [6], who applied the 1st-CASAM-N
to the reduced-order phenomenological model of boiling water reactor (BWR) dynamics
originally developed by March-Leuba, Cacuci, and Perez [7]. Cacuci and DiRocco [6] have
shown that in the stable region, the sensitivities of the model’s state functions/variables
(i.e., the neutron density; the delayed neutron precursors; the fuel temperature; the coolant
density; the reactivity) with respect to the model’s uncertain parameters attain asymp-
totically time-independent values. In the “limit-cycle” regions, however, the sensitivities
of the state functions oscillate among two, four, and eight unstable equilibrium points,
respectively. The 1st-CASAM-N also accurately predicts the response sensitivities in these
regions. In the chaotic region, the sensitivities of the state function with respect to the initial
conditions and the model parameters oscillate aperiodically among infinitely many unsta-
ble equilibrium points, while the amplitudes of the oscillations of the sensitivities increase
exponentially in time, reaching very large values (1023), thus confirming that the model is
extremely sensitive to any perturbation in the chaotic region. These novel results demon-
strated that the 1st-CASAM-N reliably produces the exact 1st-order sensitivities of state
functions with respect to the model parameters not only in the stable region in phase-space
but also in the “limit-cycle” regions and in the “chaotic” region, in contradistinction with
the unreliable results produced by “brute-force” methods using finite-differences [6,8]. The
first-order uncertainty analysis presented by DiRocco and Cacuci [8] used the sensitivity
analysis results produced in [6] to show that in the stable region, the standard deviations
induced by the imprecisely known model parameters and initial conditions in each of
the BWR-model’s state functions are very large immediately after perturbing the initially
critical reactor, reaching values that are about ten times larger than the respective state
functions themselves. Although these standard deviations decay to small values after a
while, the amplitudes of the oscillations of these standard deviations at the start of the
transient are so large as to possibly cause the BWR-system to transit from the stable region
into an oscillatory region in phase-space.

As the reduced-order reactor dynamics model of March-Leuba, Cacuci, and Perez [7]
has been able to predict in advance reactor transients such as those undergone by the
LaSalle reactor [9], it has been used in BWR simulators. Furthermore, since this reduced-
order model was shown in [6] to possess large sensitivities of its state functions to its
model parameters, it would be prudent to quantify the effects of higher-order sensitivities
on the responses of such dynamical models to establish the actual importance of higher-
order sensitivities quantitatively. The development of the nth-CASAM-N [1] makes it
now possible to quantify the effects of arbitrarily-high order of response sensitivities for
nonlinear models. The application of the nth-CASAM-N to a nonlinear dynamical model
will be illustrated in this work by considering a well-known paradigm model that describes
a short-time self-limiting power excursion in a nuclear reactor system having a negative
temperature coefficient in which a large amount of reactivity is suddenly inserted, either
intentionally or by accident. In his textbook, Lamarsh [10] refers to this model as the
“Fuchs model”, while in the textbook of Hetrick [11], this model is called the “Nordheim–
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Fuchs model”. The Nordheim–Fuchs model (as it will be called in this work) provides a
benchmark for all reactor safety/dynamics models. In particular, the reduced-order model
of March-Leuba et al. [7] also reduces to the Nordheim–Fuchs model when all neutrons are
considered to be prompt. The Nordheim–Fuchs paradigm model is evidently incapable of
simulating the oscillatory regions in which a BWR may enter under high-power/low flow
conditions, created either intentionally during start-up or accidentally, such as undergone
by the LaSalle reactor [9]. However, on the other hand, the Nordheim–Fuchs model is
sufficiently complex to model realistically self-limiting power excursions for short times
while admitting closed-form exact expressions for the time-dependence of the neutron flux,
temperature distribution, and energy released during the transient power burst.

This work is structured as follows: Section 2 presents the balance equations under the
Nordheim–Fuchs phenomenological model. Section 3 illustrates the application of the 1st-
CASAM-N to obtain the exact expressions of the sensitivities of a generic response of this
phenomenological model with respect to the model’s imprecisely known (i.e., uncertain)
parameters. In particular, Section 3 also presents the closed-form analytical expressions of
the first-order sensitivities of the total energy released during the modeled power burst
with respect to the parameters that describe a prompt-critical reactor transient. Section 4
illustrates the application of the 2nd-CASAM-N to obtain the exact expressions of all of the
second-order sensitivities of the total energy released during the modeled power-burst with
respect to the model’s imprecisely known parameters. Section 5 illustrates the application
of the 3rd-CASAM-N to obtain the exact expressions of selected third-order sensitivities of
the total energy released during the modeled power-burst with respect to typical uncertain
parameters. Section 6 concludes this work by discussing the didactic significance of this
illustrative paradigm application of the nth-CASAM-N for efficiently determining the exact
expressions of user-selected high order response sensitivities to model parameters, which
provide analytical benchmark solutions for verifying production software codes.

2. The Nordheim–Fuchs Phenomenological Reactor Dynamics/Safety Model

The Nordheim–Fuchs [10,11] phenomenological model describes a short-time self-
limiting power transient in a nuclear reactor system having a negative temperature coeffi-
cient in which a large amount of reactivity is suddenly inserted, either intentionally or by
accident. The response of such a reactor system can be estimated by considering that the
reactivity insertion is sufficiently large and the time-span of the transient phenomena under
consideration is sufficiently small (i.e., of the order of the lifetime of prompt-neutrons) to
consider that all neutrons in the system are prompt neutrons and that the heat generated
in the transient remains within the reactor. For such short times, the local spatial varia-
tions of the neutron distribution in the reactor are negligible. Using the notation provided
by Lamarsh [10], the Nordheim–Fuchs paradigm model describing the aforementioned
self-limiting power transient comprises the following balance equations:

1. The time-dependent neutron balance (point kinetics) equation for the neutron flux ϕ(t):

dϕ(t)
dt

=
k(t)− 1

lp
ϕ(t), t > 0 (1)

ϕ(0) = ϕ0, t = 0 (2)

where lp denotes the prompt-neutron lifetime, k(t) denotes the reactor’s multiplication
factor, and ϕ0 denotes the initial (i.e., extant flux) prior to initiating the transient at
time t = 0.

2. The reactivity-temperature feedback equation:

k(t) = k0 − αTk0[T(t)− T0] (3)

where k0 , k(0) ≥ 1 denotes the changed multiplication factor following the reactivity
insertion at t = 0, αT denotes the magnitude of the negative temperature coefficient,
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T(t) denotes the reactor’s temperature, and T0 denotes the reactor’s initial temperature
at time t = 0.

3. The energy conservation equation:

cp[T(t)− T0] = W(t), W(t) = γΣ f

t∫
0

ϕ(x) dx (4)

where W(t) denotes the total energy released (per cm3) at time t in the reactor since
the onset of reactivity change, cp denotes the specific heat (per cm3) of the reactor,
γ denotes the recoverable energy per fission, and Σ f denotes the reactor’s effective
macroscopic fission cross-section.

The model parameters involved in Equations (1)–(4) are considered to be the compo-
nents of a “vector of model parameters” denoted as α and defined as follows:

α , (α1, . . . , α8)
† ,

(
γ, Σ f , ϕ0, lp, αT , cp, T0, k0

)†
(5)

In this work, all vectors are considered column vectors and the dagger symbol (†) will
be used to denote “transposition”. The model parameters are considered to be uncertain
(i.e., imprecisely known) but have known nominal values, which will be denoted using a
superscript “zero”, as follows:

α0 ,
(

α0
1, . . . , α0

8

)†
,
(

γ0, Σ0
f , ϕ0

0, l0
p, α0

T , c0
p, T0

0 , k0
0

)†
(6)

Using Equations (3) and (4) in Equation (1) yields the following relation:

dϕ(t)
dt

=
k0 − 1
lpγΣ f

dW(t)
dt

− αTk0

lpcpγΣ f
W(t)

dW(t)
dt

(7)

Integrating Equation (7) while using the initial condition provided in Equation (2)
yields the following relation:

ϕ(t) = ϕ0 +
k0 − 1
lpγΣ f

W(t)− αTk0

2lpcpγΣ f
W2(t) (8)

Multiplying Equation (8) by γΣ f and using the relation provided in Equation (4) yields
the following Riccati-type equation W(t):

dW(t)
dt

= b(α)W2(t) + ω0(α)W(t) + P0(α), W(0) = 0, (9)

where:
b(α) , − αTk0

2lpcp
; ω0(α) ,

k0 − 1
lp

; P0(α) , ϕ0γΣ f (10)

The initial condition W(0) = 0 results from Equation (4), the quantity P0(α) is the ini-
tial power density of the reactor, and the quantity ω0(α) is the inverse initial reactor period.

The Riccati equation represented by Equation (9) can be readily integrated to obtain
the following closed-form expression for the released total energy W(t):

W(t) = 2P0(α)
exp[tω(α)]− 1

[ω(α)−ω0(α)] exp[tω(α)] + [ω(α) + ω0(α)]
(11)

where the “inverse reactor period” ω(α) is defined as follows:

ω(α) ,
[
ω0

2(α)− 4b(α)P0(α)
]1/2

> 0 (12)
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Using the expression obtained in Equation (11) in Equation (8) or, alternately, differ-
entiating Equation (11) and dividing the resulting expression by γΣ f yields the following
closed-form expression for the neutron flux ϕ(t):

ϕ(t) =
4ϕ0ω2(α) exp[tω(α)]

{[ω(α)−ω0(α)] exp[tω(α)] + ω(α) + ω0(α)}2 (13)

It is apparent from Equation (13) that the neutron flux ϕ(t) increases up a maximum
value which is attained at a time t = tm, at which its time-derivative vanishes; after having
reached its maximum values, the neutron flux steadily decreases in time. Setting the left
side of Equation (7) to zero or, alternatively, setting the time-derivative of Equation (13) to
zero and resolving the resulting algebraic equation yields the following expression for tm:

tm =
1

ω(α)
ln

ω(α) + ω0(α)

ω(α)−ω0(α)
(14)

The maximum value of the flux, denoted as ϕm , ϕ(tm), has the following expression:

ϕm =
ϕ0

1− [ω0(α)/ω(α)]2
(15)

At t = tm, when the neutron flux ϕ(t) attains its maximum value, the released total
energy attains the following value:

W(tm) =
2P0(α)ω0(α)

ω2(α)−ω2
0(α)

(16)

It is apparent from Equations (4) and (11) that released total energy W(t) is a continu-
ously increasing function of time, which remains finite at all times. If the phenomenological
model were valid for an unlimited amount of time (which it is not), the released total energy
would reach the following limiting value:

W(∞) =
2P0(α)

ω(α)−ω0(α)
(17)

It is observed from the results provided in Equations (16) and (17) that, after the flux
attains its maximum value at t = tm, the released total energy continues to increase. If the
model were valid for an infinitely long amount of time, the maximum theoretical increase
of the released total energy after the time instance t = tm would be as follows:

W(∞)−W(tm) =
2P0(α)ω(α)

ω2(α)−ω2
0(α)

= ω(α)
lpcp

αTk0
> 0 (18)

The most important response for the model comprising Equations (1)–(4) is the re-
leased total energy W(τ) from the initiation of the power transient until some user-chosen
(final) time 0 ≤ t = t f ≤ ∞, when this model ceases to represent the long-time evolution of
the reactor system. The evolution of the reactor beyond t = t f would necessarily need to
include the effects of delayed neutrons and other physical phenomena, which are unimpor-
tant during the short time span modeled by Equations (1)–(4). From a phenomenological
point of view, the released total energy W(t) increases monotonically in time up to the
limiting value shown in Equation (17) regardless of whether the reactor becomes instantly
prompt critical or prompt supercritical when undergoing self-limiting power transients
as described by Equations (1)–(4). Therefore, the application of the nth-CASAM-N for
performing sensitivity analysis (with respect to the model parameters) of the total released
energy can be illustrated by considering the “prompt-critical reactor” (k0 = 1) case, thereby
reducing the complexity of the mathematical manipulations without loss of conceptual
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generality. The same mathematically simplifying effect can also be achieved, as done by
Hetrick [11], by modeling the transient phenomena that occur just after the neutron flux
has peaked by shifting the origin of time to t = tm.

3. Illustrative Application of the 1st-CASAM-N to Compute First-Order
Response Sensitivities

The state functions (i.e., dependent variables) for the model represented by Equations (1)–(4)
are the neutron flux distribution ϕ(t), the reactor’s temperature T(t), and the total energy
released W(t), per cm3 at time t. To keep the subsequent notation as simple as possible,
these state functions are considered to be components of a “vector of state functions”
denoted as u(t) , [ϕ(t), T(t), W(t)]†. A generic response for this model can be represented
mathematically by the following function of the model’s dependent variables u(t) and
parameters α:

R(u;α) =
∫ t f

0
F(u;α)dt (19)

where F(u;α) denotes a suitably differentiable function of its arguments. The application
of the 1st-CASAM-N to obtain the generic expressions of the first-order sensitivities with
respect to the model parameters when the initial reactivity insertion renders the reactor
prompt supercritical (i.e., k0 > 1) is presented in the next Subsection.

3.1. First-Order Sensitivity Analysis of the Prompt Supercritical Power Transient

The first-order sensitivities of R(u;α) with respect to the model parameters are pro-
vided by the first-order total Gateaux (G-) differential, δR

(
u0;α0δu; δα

)
, of this response

computed at the nominal parameter values for arbitrary variations δα , α− α0 in the
model parameters around the respective nominal values and corresponding variations
v(1)(t) , [δϕ(t), δT(t), δW(t)]†, δϕ(t) , ϕ(t) − ϕ0(t), δT(t) , T(t) − T0(t), δW(t) ,
W(t) −W0(t), in the state functions. The first-order G-differential δR

(
u0;α0δu; δα

)
is

defined as follows:

δR
(

u0;α0; δv(1); δα
)
, d

dε

{∫ t f
0 F

(
u0 + εv(1);α0 + εδα

)
dt
}

ε=0
,
{

δR
(
u0;α0; δα

)}
dir +

{
δR
(

u0;α0; δv(1)
)}

ind
,

(20)

where the “direct-effect term” and, respectively, the “indirect-effect term” are defined
as follows: {

δR
(

u0;α0; δα
)}

dir
,
∫ t f

0

{
∂F(u;α)

∂α

}
α0=0

dt (21){
δR
(

u0;α0; δv(1)
)}

ind
,
∫ t f

0

{
∂F(u;α)

∂u v(1)(t)
}
α0=0

dt

=
{∫ t f

0

[
∂F
∂ϕ δϕ(t) + ∂F

∂T δT(t) + ∂F
∂W δW(t)

]
dt
}
α0=0

.
(22)

The direct-effect term can be evaluated immediately, but the indirect-effect term can
be evaluated only after having obtained the variations v(1)(t) , [δϕ(t), δT(t), δW(t)]†.
For given variations δα , α− α0, the variations v(1)(t) , [δϕ(t), δT(t), δW(t)]† are the
solutions of the 1st-Level Variational Sensitivity System (1st-LVSS), which is obtained by
determining the first-order G-differentials of the equations underlying the model, in which
it is convenient to use Equation (9) instead of Equation (1). Applying the definition of the
G-differential to these equations yields the following relations:

d
dε

{
d[W0(t)+εδW(t)]

dt − b0(α)
[
W0(t) + εδW(t)

]2 −ω0
0(α)

[
W0(t) + εδW(t)

]}
ε=0

= d
dε

{[
b0(α) + εδb(α)

]
W2(t) +

[
ω0

0(α) + εδω0(α)
]
W(t) + P0

0 (α) + εδP0(α)
}

ε=0,
(23)

d
dε

{
W0(0) + εδW(0)

}
ε=0

= 0 (24)
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d
dε

{
T0(t) + εδT(t)

}
ε=0

=
d
dε

{
W0(t) + εδW(t)

c0
p + εδcp

+ T0
0 + εδT0

}
ε=0

(25)

d
dε

{
ϕ0(t) + εδϕ(t)

}
ε=0

=
1

(γ0 + εδγ)
(

Σ0
f + εδΣ f

) d
[
W0(t) + εδW(t)

]
dt

(26)

Carrying out the operations indicated in Equations (23)–(26) yields the following
matrix form for the 1st-LVSS:{

N(1)(u;α)v(1)(t)
}
α0

=
{

q(1)
V (u;α; δα)

}
α0

, t > 0, (27)

δW(0) = 0, t = 0. (28)

where

N(1)(u;α) ,


d
dt − 2b(α)W(t)−ω0(α) 0 0

−1/cp 1 0(
1/γΣ f

)
d/dt 0 1

; (29)

v(1)(t) ,

δW(t)
δT(t)
δϕ(t)

; q(1)
V (u;α; δα) ,


δb(α)W2(t) + δω0(α)W(t) + P0(α)

−
[
W(t)/c2

p

]
δcp + δT0

−
(

δγ/γ2Σ f + δΣ f /γΣ2
f

)
dW(t)/dt

; (30)

δb(α) ,

{
− δαT

2lpcp
+

αT

2lp
(
cp
)2 δcp +

αT

2
(
lp
)2cp

δlp

}
α0

(31)

δP0(α) ,
{

γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ
(

δΣ f

)}
α0

; δω0(α) ,

{
δk0

lp
+

δlp

l2
p

}
α0

(32)

The notation {}α0 , which appears in Equations (27), (31), and (32), is −and will
henceforth be− used to signify that the quantity within the braces is to be evaluated at the
nominal values of the respective parameters and state functions (i.e., dependent variables).

Evidently, the 1st-LVSS would need to be solved anew for every parameter variation
to determine the corresponding the variations v(1)(t) , [δϕ(t), δT(t), δW(t)]†, which is
impractical for the large-scale systems encountered in practice. Such repeated computations
can be avoided by expressing the indirect-effect term defined in Equation (22) by applying
the principles of the 1st-CASAM-N to derive an alternative expression for the indirect-effect
term

{
δR
(

u0;α0; δv(1)
)}

ind
, involving a 1st-level adjoint sensitivity function, which will

be denoted as a(1)(t) ,
[

a(1)1 (t); a(1)2 (t); a(1)3 (t)
]†

, which will be independent of parameter
variations and will be the solution of a 1st-Level Adjoint Sensitivity System (1st-LASS)
constructed as follows:

(i) Consider that the vector u(t) and, hence, v(1)(t) are elements of a Hilbert space
denoted as H1, which is endowed with an inner product of two vectors u(a)(x) ∈ H1 and
u(b)(x) ∈ H1 denoted as

〈
u(a), u(b)

〉
1

and defined as follows:

〈
u(a), u(b)

〉
1
,

{∫ t f

0

3

∑
i=1

u(a)
i (t)u(b)

i (t)dt

}
α0

(33)

(ii) Using the definition of the adjoint operator in H1(Ωx), the left side of Equation (27)
is transformed as follows:{〈

a(1), N(1)(u;α)v(1)
〉

1

}
α0

=
{〈[

N(1)(u;α)
]∗

a(1), v(1)
〉

1

}
α0

+
[

a(1)1

(
t f

)
+ a(1)3

(
t f

)
/γΣ f

]
δW
(

t f

)
.

(34)
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where the symbol []∗ indicates “formal adjoint” operator, which implies that the operator[
N(1)(E;α)

]∗
has the following expression:

[
N(1)(E;α)

]∗
,

− d
dt − 2b(α)W(t)−ω0(α) −1/cp

(
−1/γΣ f

)
d/dt

0 1 0
0 0 1

 (35)

(iii) Require the first term on the right side of Equation (34) to represent the indirect-
effect term represented by Equation (22) by imposing the following relationship:{[

N(1)(u;α)
]∗

a(1)(x)
}
α0

=
{

q(1)
A [u(x);α]

}
α0

, t > 0,

q(1)
A [u(x);α] , [∂F/∂W, ∂F/∂T, ∂F/∂ϕ]†.

(36)

In component form, Equation (36) reads as follows:

−
[

d
dt

+ 2b(α)W(t) + ω0(α)

]
a(1)1 (t)−

a(1)2 (t)
cp

− 1
γΣ f

da(1)3 (t)
dt

=
∂F
∂W

(37)

a(1)2 (t) =
∂F
∂T

(38)

1
γΣ f

da(1)3 (t)
dt

=
∂F
∂ϕ

(39)

(iv) The boundary terms on the right side of Equation (34) will vanish by imposing
the following “final-time” condition on the 1st-level adjoint function a(1)(t):

a(1)
(

t f

)
= 0, t = t f (40)

Equations (36) and (40) constitute the 1st-Level Adjoint Sensitivity System (1st-LASS)
for the 1st-level adjoint sensitivity function a(1)(t).

(v) In view of Equations (27), (34)−(40), it follows that the indirect-effect term{
δR
(

u0;α0; δv(1)
)}

ind
is now given by the following expression:

{
δR
(

u0;α0; δv(1)
)}

ind
=

{∫ t f

0
a(1)(t)q(1)

V (u;α; δα)dt
}

α0
(41)

The total sensitivity (total G-differential) δR
(
u0;α0δu; δα

)
is obtained by adding the

expression for the indirect-effect term provided in Equation (41) with the expression for
the direct-effect term provided in Equation (21). Notably, the 1st-LASS is independent
of parameter variations, so it needs to be solved just once to obtain the 1st-level adjoint
sensitivity function a(1)(t). The partial sensitivities ∂R(u;α)/δαi are subsequently obtained
exactly and efficiently by using quadrature formulas, rather than having to solve the 1st-
LVSS repeatedly. This will be demonstrated explicitly in the next subsection by considering
a specific (rather than a general) response, namely the total energy released after the
initiation of a prompt-critical power transient.

3.2. Closed-Form Expressions for the First-Order Sensitivities of the Energy Released during a
Prompt Critical Power Transient

In the particular case when the reactivity insertion is k0 = 1, the reactor system
becomes “prompt critical”, in which case ω0(α) = 0. In this case, the balance equation
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satisfied by the energy released within the prompt-critical reactor takes on the following
particular form of Equation (9):

dE(t)
dt

= b(α)E2(t) + P0(α), E(0) = 0, (42)

where E(t) , W(t; k0 = 1) denotes the energy released within the prompt-critical reactor.
Furthermore, the expressions provided in Equations (11)−(13) for the inverse reactor period
ω(α), the neutron flux and the released total energy, respectively, take on the following
particular expressions:

τ(α) , ω(α; k0 = 1) = [−4b(α)P0(α)]
1/2 =

[
2

αT ϕ0γΣ f

lpcp

]1/2

(43)

E(t) , W(t; k0 = 1) =
2P0(α)

τ(α)
tanh

[
t
τ(α)

2

]
(44)

ϕp(t) , ϕ(t; k0 = 1) = ϕ0

{
sech

[
tτ(α)

2

]}2
(45)

When the initial reactivity insertion renders the reactor prompt critical, the results
provided in Equations (14)–(17) take on the following particular forms:

tm(k0 = 1) = 0; ϕm(tm; k0 = 1) = ϕ0;
W(tm; k0 = 1) = 0; E(∞) , W(∞; k0 = 1) = 2P0(α)

τ(α)

(46)

The response considered for the sensitivity analysis presented in this Subsection is the
total energy, E

(
t f

)
, released after the initiation at t = 0 of a prompt-critical (k0 = 1) power

transient up to a user-chosen final-time t = t f . This response can be defined mathematically
in several equivalent ways, the simplest of which is as follows:

E
(

t f

)
=
∫ t f

0
E(t)δ

(
t− t f

)
dt (47)

where δ(t− τ) denotes the Dirac-delta functional.
The first-order G-differential δE

(
t f

)
of E

(
t f

)
for known parameter variations

δα , α−α0 around the nominal values
(
E0;α0) is obtained, by definition, as follows:

δE
(

t f

)
=
∫ t f

0
δE(t)δ(t− τ) dt (48)

Taking the G-differential of Equation (42), the 1st-LVSS for the variational function
δE(t) is obtained as follows:{[

d
dt
− 2b(α)E(t)

]
δE(t)

}
α0

=
{

δb(α)E2(t) + δP0(α)
}
α0

, t > 0, (49)

δE(0) = 0, t = 0. (50)

In view of Equation (48), the solution a(1)(t) of the 1st-LASS, cf. Equations (36) and (40),

takes on the particular form a(1)(t) =
[

a(1)1 (t); 0; 0
]†

, where the non-zero component a(1)1 (t)
satisfies the following simplified form of the 1st-LASS:{[

− d
dt
− 2b(α)E(t)

]
a(1)(t)

}
α0

= δ
(

t− t f

)
, t > 0 (51)
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a(1)
(

t f

)
= 0, t = t f (52)

Furthermore, the first-order total G-differential δE
(

t f

)
of the response E

(
t f

)
takes

on the following expression in terms of the 1st-level adjoint function a(1)(t):

δE
(

t f

)
=

{
δb(α)

∫ t f

0
a(1)(t)E2(t)dt + δP0(α)

∫ t f

0
a(1)(t)dt

}
α0

(53)

The integrating factor for the left side of Equation (51) has the following expression:

I(t) = exp
[
2b(α)

∫ t E(x)dx
]
= exp

[
4b(α)P0(α)

τ(α)

∫ t
0 tanh

[
xτ(α)

2

]
dx
]

= exp{−2 ln[cosh tτ(α)/2]} = cosh−2[tτ(α)/2].
(54)

Solving the 1st-LASS yields the following expression for the 1st-level adjoint function
a(1)(t):

a(1)(t) = H
(

t f − t
) cosh[tτ(α)/2]

cosh
[
t f τ(α)/2

]


2

(55)

where H
(

t− t f

)
denotes the Heaviside functional. Using the expression obtained in

Equation (55) in Equation (53) yields the following results:

∂E(t f )
∂b(α)

δb(α) = δb(α)
∫ t f

0 a(1)(t)E2(t) dt

= P0(α)
b(α)

{
t f

2 cosh2[t f τ(α)/2]
− tanh[t f τ(α)/2]

τ(α)

}
δb(α);

(56)

∂E(t f )
∂P0(α)

δP0(α) = δP0(α)
∫ t f

0 a(1)(t)dt

=

{
1

τ(α)
tanh

[
t f τ(α)/2

]
+

t f

cosh2[t f τ(α)/2]

}
δP0(α).

(57)

The above expressions are to be evaluated at the nominal parameter and state functions,
but the notation {}α0 has been omitted for simplicity.

Using the expressions obtained in Equation (31) and, respectively, Equation (32) in
Equation (56) and, respectively, Equation (57) yields the following expressions for the
respective partial first-order sensitivities:

∂E(t f )
∂α1

,
∂E(t f )

∂γ = ϕ0Σ f
∫ t f

0 a(1)(t)dt

= ϕ0Σ f

{
1

τ(α)
tanh

[
t f τ(α)/2

]
+

t f

cosh2[t f τ(α)/2]

}
;

(58)

∂E(t f )
∂α2

,
∂E(t f )

∂Σ f
= ϕ0γ

∫ t f
0 a(1)(t)dt

= ϕ0γ

{
1

τ(α)
tanh

[
t f τ(α)/2

]
+

t f

cosh2[t f τ(α)/2]

}
;

(59)

∂E(t f )
∂α3

,
∂E(t f )

∂ϕ0
= γΣ f

∫ t f
0 a(1)(t)dt

= γΣ f

{
1

τ(α)
tanh

[
t f τ(α)/2

]
+

t f

cosh2[t f τ(α)/2]

}
;

(60)

∂E(t f )
∂α4

,
∂E(t f )
∂lp(α)

= αT

2(lp)
2
cp

∫ t f
0 a(1)(t)E2(t)dt

= αT

2(lp)
2
cp

P0(α)
b(α)

{
t f

2 cosh2[t f τ(α)/2]
− tanh[t f τ(α)/2]

τ(α)

}
;

(61)
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∂E(t f )
∂α5

,
∂E(t f )

∂αT
= − 1

2lpcp

∫ t f
0 a(1)(t)E2(t)dt

= − 1
2lpcp

P0(α)
b(α)

{
t f

2 cosh2[t f τ(α)/2]
− tanh[t f τ(α)/2]

τ(α)

}
;

(62)

∂E(t f )
∂α6

,
∂E(t f )

∂cp
= αT

2lp(cp)
2

∫ t f
0 a(1)(t)E2(t)dt

= αT

2lp(cp)
2

P0(α)
b(α)

{
t f

2 cosh2[t f τ(α)/2]
− tanh[t f τ(α)/2]

τ(α)

}
.

(63)

As E
(

t f

)
does not depend on the temperature T(t), it follows that ∂E

(
t f

)
/∂T0 ≡ 0.

The expressions obtained in Equations (58)–(63) can be verified by differentiating the
expression provided in Equation (44), evaluated at a user-chosen time t = t f . Since this
user-chosen time instance is arbitrary within the interval 0 < t f < ∞, it follows that the
expressions of the sensitivities obtained in Equations (58)–(63) are also valid at any instance
t = t f .

In summary, the application of the 1st-CASAM-N necessitates a single large-scale
computation (for solving the 1st-LASS) to obtain all of the six first-order sensitivities for
the Nordheim–Fuchs reactor safety model. Using any other methods (e.g., statistical or
finite-differences) would require at least 2 × 6 large-scale computations for solving the
original model with altered parameter values if a simple two-point finite-difference scheme
is used.

4. Illustrative Application of the 2nd-CASAM-N to Compute Second-Order
Response Sensitivities

The fundamental principle of the 2nd-CASAM-N is to compute the second-order
sensitivities by treating each first-order sensitivity as a “model response” and subsequently
determining the G-differential of the respective “model response”. These concepts will be
illustrated in this Section by considering the first-order sensitivities of the response E

(
t f

)
obtained in Section 2 above.

The response E
(

t f

)
admits six non-zero sensitivities, as obtained in Equations (58)–(63).

In principle, each of these non-zero sensitivities would be considered a response. Each
of these responses would give rise to a 2nd-level adjoint sensitivity system (2nd-LASS),
which means that, in principle, there would be six such systems to be solved to obtain the
2nd-level adjoint sensitivity function that would correspond to the respective response.
However, writing Equation (53) in the following form:

δE
(

t f

)
=

[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]∫ t f
0 a(1)(t)E2(t)dt

+
[

ϕ0Σ f (δγ) + ϕ0γ
(

δΣ f

)
+ γΣ f (δϕ0)

]∫ t f
0 a(1)(t)dt.

(64)

reveals that the indirect-effect terms for all of the 2nd-order sensitivities will arise from only

two functionals that depend on the state functions, namely
∫ t f

0 a(1)(t)dt, which underlies
the three non-zero first-order sensitivities with respect to the parameters comprising the

initial power P0(α), and
∫ t f

0 a(1)(t)E2(t)dt, which underlies the remaining three non-zero
first-order sensitivities. As the number of large-scale computations arises from solving
the 2nd-LASS and as each indirect-effect term gives rise to a 2nd-LASS, it follows from
Equation (64) that the number of 2nd-LASS that would need to be solved can be reduced
to just two (from the possible total of six), thereby reducing the computational work by a
factor of three.
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4.1. Second-Order Sensitivities Stemming from the First-Order Sensitivities ∂E
(

t f

)
/∂αj1 ,

j1 = 1, 2, 3

In this work, the index j1 will be used to enumerate the 1st-order sensitivities of
E
(

t f

)
with respect to the six model parameters. Recalling the definitions of the first three

model parameters, i.e., α1 , γ, α2 , Σ f , and α3 , ϕ0, it follows from Equation (64) that

the 1st-order sensitivities of the released energy E
(

t f

)
to the parameters underlying the

reactor’s initial power P0(α) = γΣ f ϕ0 can be written in the following form:

∂E(t f )
∂αj1

= Cj1(α)
∫ t f

0 a(1)(t) dt; j1 = 1, 2, 3;

C1(α) , ϕ0Σ f ; C2(α) , ϕ0γ; C3(α) , γΣ f .
(65)

The 2nd-order sensitivities which stem from the 1st-order ones defined in Equation (65)
are obtained from the first-order G-differential δ

{
∂E
(

t f

)
/∂αi

}
, which is obtained, by

definition, as follows:

δ

{
∂E(t f )

∂αj1

}
,
{

d
dε

[
Cj1
(
α0 + εδα

)∫ t f
0

(
a(1) + εδa(1)

)
dt
]}

ε=0

,
{

δ
[
∂E
(

t f

)
/∂αj1

]}
dir

+
{

δ
[
∂E
(

t f

)
/∂αj1

]}
ind

, j1 = 1, 2, 3;
(66)

where {
δ
[
∂E
(

t f

)
/∂αj1

]}
dir

,
{[

∂Cj1(α)

∂α
δα

]∫ t f

0
a(1)(t)dt

}
α0

, j1 = 1, 2, 3; (67)

{
δ
[
∂E
(

t f

)
/∂αj1

]}
ind

,
{

Cj1(α)J(E)
}
α0 ; J(E) ,

∫ t f

0
δa(1)(t)dt; j1 = 1, 2, 3. (68)

The direct-effect term defined in Equation (67) can be computed immediately. The
functional J(E) defined in Equation (68) can be determined only after having computed
the variational function δa(1)(t), which is the solution of the system of equations obtained
by G-differentiating the 1st-LASS defined by Equations (51) and (52). Performing the
G-differentiation of the 1st-LASS yields the following equations:{[

− d
dt
− 2b(α)E(t)

]
δa(1)(t)− 2b(α)δE(t)

}
α0

= 2{δb(α)E(t)}α0 , t > 0, (69)

δa(1)
(

t f

)
= 0, t = t f (70)

Concatenating Equations (69) and (70) with the 1st-LVSS for δE(t) defined in Equations (49)
and (50) yields the following 2nd-Level Variational Sensitivity System (2nd-LVSS) for the

2nd-level variational function V(2)(2; t) ,
[
v(2)(1; t), v(2)(2; t)

]†
,
[
δE(t), δa(1)(t)

]†
:{

VM(2)[2× 2;α]V(2)(2; t)
}
α0

=
{

Q(2)
V [2;α; δα]

}
α0

, t > 0, (71)

{
B(2)

V

[
2; V(2)(2; t);α; δα

]}
α0

= 0[2], 0[2] , [0, 0]†, t = 0 (72)

where

VM(2)[2× 2;α] ,
( d

dt − 2b(α)E(t) 0
−2b(α) − d

dt − 2b(α)E(t)

)
(73)

Q(2)
V [2;α; δα] ,

(
δb(α)E2(t) + δP0(α)

2δb(α)E(t)

)
(74)
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B(2)
V

[
2; V(2)(2; t);α; δα

]
,

(
δE(0)

δa(1)
(

t f

)) (75)

The need for solving the 2nd-LVSS is circumvented by deriving an alternative expres-
sion for the functional J(E) defined in Equation (68), in which the variational function
δa(1)(t) is replaced by a 2nd-level adjoint function which will be denoted as A(2)(2; t) ,[

a(2)(1; t), a(2)(2; t)
]†
∈ H2 and which will be the solution of a 2nd-Level Adjoint Sensitiv-

ity System (2nd-LASS) to be constructed by applying the 2nd-CASAM-N. The 2nd-LASS is
constructed in a Hilbert space, denoted as H2, which comprises as elements vectors of the
same form as V(2)(2; t), and is endowed with the following inner product of two vectors

Ψ(2)(2; t) ,
[
ψ(2)(1; t), ψ(2)(2; t)

]†
∈ H2 and Φ(2)(t) ,

[
ϕ(2)(1; t), ϕ(2)(2; t)

]†
∈ H2:

〈
Ψ(2)(2; t), Φ(2)(2; t)

〉
2
,

2

∑
i=1

∫ t f

0
ψ(2)(i; t)ϕ(2)(i; t)dt (76)

The inner product defined in Equation (76) is used to construct the 2nd-Level Adjoint
Sensitivity System (2nd-LASS) for the 2nd-level adjoint function A(2)(2; j1 = 1, 2, 3; t) ,[

a(2)(1; j1 = 1, 2, 3; t), a(2)(2; j1 = 1, 2, 3; t)
]†
∈ H2, as follows:

(i) Using Equation (76), form the inner product of

A(2)(2; j1 = 1, 2, 3; t) ,
[

a(2)(1; j1 = 1, 2, 3; t), a(2)(2; j1 = 1, 2, 3; t)
]†

with Equation (71) to
obtain the following relation:{〈

A(2)(2; t), VM(2)[2× 2;α]V(2)(2; t)
〉

2

}
α0

=
{

a(2)(1; t)δE(t)− a(2)(2; t)δa(1)(t)
}t=t f

t=0

+
{〈

V(2)(2; t), AM(2)[2× 2;α]A(2)(2; t)
〉

2

}
α0

=
{〈

A(2)(2; t), Q(2)
V (2;α; δα)

〉
2

}
α0

.
(77)

The notation for A(2)(2; j1 = 1, 2, 3; t) ,
[

a(2)(1; j1 = 1, 2, 3; t), a(2)(2; j1 = 1, 2, 3; t)
]†

has the following significance: (i) the letter “A” indicates “adjoint”; (ii) the superscript
“(2)” indicates “second-level”; (iii) the first argument, i.e., “2”, indicates that this vector
has 2 components; (iv) the second argument, i.e., “j1 = 1, 2, 3”, indicates that this adjoint
vector will correspond to the first three 1st-order sensitivities under consideration, in
this case ∂E

(
t f

)
/∂αj1 , j1 = 1, 2, 3. In the most general case, when all sensitivities have

distinct “indirect-effect terms”, there will be a distinct 2nd-level adjoint sensitivity vector
of the same type as A(2)(2; j1 = 1, 2, 3; t), corresponding for each 1st-order sensitivity. Each
of the components a(2)(i; j1 = 1, 2, 3; t), i = 1, 2, of A(2)(2; j1 = 1, 2, 3; t) are scalar-valued
functions of time. The index j1 = 1, 2, 3 will be omitted, for simplicity, in the derivations to
follow below, but will be reinstated after obtaining the final closed-form expressions for the
components a(2)(i; j1 = 1, 2, 3; t).

(ii) Eliminate the boundary terms on the right side of Equation (77) and require the
term on the right side of the second equality in Equation (77) to represent the functional
J
(

E f

)
, by imposing the following relations:

{
AM(2)[2× 2;α]A(2)(2; t)

}
α0

=

(
0
1

)
(78)

{
B(2)

A

[
2; A(2)(2; t);α

]}
α0

,

{(
a(2)
(

1; t f

)
a(2)(2; 0)

)}
α0

=

(
0
0

)
(79)

where:

AM(2)[2× 2;α] ,
[
VM(2)(2× 2;α)

]∗
,
(
− d

dt − 2b(α)E(t) −2b(α)
0 d

dt − 2b(α)E(t)

)
(80)
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The relations represented by Equations (78) and (79) constitute the 2nd-LASS for the

2nd-level adjoint function A(2)(2; t) ,
[

a(2)(1; t), a(2)(2; t)
]†

.
(iii) Use the relations provided in Equations (68) and (77) together with the 2nd-LASS

to obtain the following expression for the functional J(E) in terms of the 2nd-level adjoint
function A(2)(2; t):

J(E) = {δP0(α)J1(α) + δb(α)J2(α)}α0 (81)

where

J1(α) ,
∫ t f

0 a(2)(1; j1 = 1, 2, 3; t)dt;
J2(α) ,

∫ t f
0

[
a(2)(1; j1 = 1, 2, 3; t)E2(t) + 2a(2)(2; j1 = 1, 2, 3; t)E(t)

]
dt.

(82)

In Equation (81), the 1st-level adjoint sensitivity function a(1)(t) is the solution of
the 1st-LASS comprising Equations (51) and (52), while the 2nd-level adjoint sensitivity

function A(2)(2; j1 = 1, 2, 3; t) ,
[

a(2)(1; j1 = 1, 2, 3; t), a(2)(2; j1 = 1, 2, 3; t)
]†

is the solution
of the 2nd-LVSS comprising Equations (78) and (79). Notably, the 2nd-LASS comprises
Equations (78) and (79) is independent of parameter variations, so it needs to be solved just
once to obtain the 2nd-level adjoint sensitivity function A(2)(2; j1 = 1, 2, 3; t). Furthermore,
the 2nd-LASS is an upper-triangular system, so the equations need not solved simultane-
ously, but can be solved sequentially, first for the component a(2)(2; t) and subsequently for
the component a(2)(1; t). This procedure yields the following closed-form expressions for
the components of the 2nd-level adjoint sensitivity function:

a(2)(1; j1 = 1, 2, 3; t) =
2b(α)
τ2(α)

− cosh2[tτ(α)/2] +
cosh4

[
t f τ(α)/2

]
cosh2[tτ(α)/2]

 (83)

a(2)(2; j1 = 1, 2, 3; t) = − 1
τ(α)

sinh[τ(α)t] (84)

The components of A(2)(2; j1 = 1, 2, 3; t) ,
[

a(2)(1; j1 = 1, 2, 3; t), a(2)(2; j1 = 1, 2, 3; t)
]†

are to be evaluated at the nominal parameter values, but the notation {}α0 has been omitted
for simplicity.

Collecting the results obtained in Equations (67), (68) and (81) yields the expressions
for the 2nd-order sensitivities, which stem from the first-order sensitivities ∂E

(
t f

)
/∂αi,

i = 1, 2, 3, as presented below.

4.1.1. Second-Order Sensitivities Stemming from ∂E
(

t f

)
/∂α1, ∂E

(
t f

)
/∂γ

Collecting the results for j1 = 1 in Equations (67), (68), (81) and using the expressions
provided in Equations (31) and (32) yields the following expression for the 2nd-order partial
differential stemming from ∂E

(
t f

)
/∂α1, ∂E

(
t f

)
/∂γ:

∂2E(t f )
∂α∂γ δα =

(
ϕ0∂Σ f + Σ f ∂ϕ0

)∫ t f
0 a(1)(t)dt

+ϕ0Σ f

{
γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ

(
δΣ f

)}
J1(α)

+ϕ0Σ f

[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
J2(α),

(85)
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Collecting the terms that multiply the same parameter variations on the left side and,
respectively, right side of Equation (85) yields the following expressions for the respective
2nd-order partial sensitivities:

∂2E
(

t f

)
∂γ∂γ

=
(

ϕ0Σ f

)2
J1(α) (86)

∂2E
(

t f

)
∂Σ f ∂γ

= ϕ0

∫ t f

0
a(1)(t)dt + (ϕ0)

2γΣ f J1(α) (87)

∂2E
(

t f

)
∂ϕ0∂γ

= Σ f

∫ t f

0
a(1)(t)dt+ ϕ0γ

(
Σ f

)2
J1(α) (88)

∂2E
(

t f

)
∂lp∂γ

=
ϕ0Σ f αT

2
(
lp
)2cp

J2(α) (89)

∂2E
(

t f

)
∂αT∂γ

= −
ϕ0Σ f

2lpcp
J2(α) (90)

∂2E
(

t f

)
∂cp∂γ

=
ϕ0Σ f αT

2lp
(
cp
)2 J2(α) (91)

4.1.2. Second-Order Sensitivities Stemming from ∂E
(

t f

)
/∂α2, ∂E

(
t f

)
/∂Σ f

Collecting the results for j1 = 2 in Equations (67), (68), (81) and using the expressions
provided in Equations (31) and (32) yields the following expressions for the 2nd-order
partial differential stemming from ∂E

(
t f

)
/∂α2, ∂E

(
t f

)
/∂Σ f :

∂2E(t f )
∂α∂Σ f

δα = (ϕ0δγ + γδϕ0)
∫ t f

0 a(1)(t)dt

+ϕ0γ
[
γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ

(
δΣ f

)]
J1(α)

+ϕ0γ

[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
J2(α).

(92)

Collecting the terms that multiply the same parameter variations on the left side and,
respectively, right side of Equation (92) yields the following expressions for the respective
2nd-order partial sensitivities:

∂2E
(

t f

)
∂γ∂Σ f

= ϕ0

∫ t f

0
a(1)(t)dt + (ϕ0)

2γΣ f J1(α) (93)

∂2E
(

t f

)
∂Σ f ∂Σ f

= (ϕ0γ)2 J1(α) (94)

∂2E
(

t f

)
∂ϕ0∂Σ f

= γ
∫ t f

0
a(1)(t)dt + γ2 ϕ0Σ f J1(α) (95)

∂2E
(

t f

)
∂lp∂Σ f

=
ϕ0γαT

2
(
lp
)2cp

J2(α) (96)
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∂2E
(

t f

)
∂αT∂Σ f

= − ϕ0γ

2lpcp
J2(α) (97)

∂2E
(

t f

)
∂cp∂Σ f

=
ϕ0γαT

2lp
(
cp
)2 J2(α) (98)

4.1.3. Second-Order Sensitivities Stemming from ∂E
(

t f

)
/∂α3, ∂E

(
t f

)
/∂ϕ0

Collecting the results for j1 = 3 in Equations (67), (68), (81), and using the expressions
provided in Equations (31) and (32) yields the following expressions for the 2nd-order
partial differential stemming from ∂E

(
t f

)
/∂α3, ∂E

(
t f

)
/∂ϕ0:

∂2E(t f )
∂α∂ϕ0

δα ,
(

γδΣ f + Σ f δγ
)∫ t f

0 a(1)(t)dt

+γΣ f

[
γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ

(
δΣ f

)]
J1(α)

+γΣ f

[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
J2(α).

(99)

Collecting the terms that multiply the same parameter variations on the left side and,
respectively, right side of Equation (99) yields the following expressions for the respective
2nd-order partial sensitivities:

∂2E
(

t f

)
∂γ∂ϕ0

= Σ f

∫ t f

0
a(1)(t)dt+

(
Σ f

)2
ϕ0γJ1(α) (100)

∂2E
(

t f

)
∂Σ f ∂ϕ0

= γ
∫ t f

0
a(1)(t)dt + γ2Σ f ϕ0 J1(α) (101)

∂2E
(

t f

)
∂ϕ0∂ϕ0

=
(

γΣ f

)2
J1(α) (102)

∂2E
(

t f

)
∂lp∂ϕ0

=
γΣ f αT

2
(
lp
)2cp

J2(α) (103)

∂2E
(

t f

)
∂αT∂ϕ0

= −
γΣ f

2lpcp
J2(α) (104)

∂2E
(

t f

)
∂cp∂ϕ0

=
γΣ f αT

2lp
(
cp
)2 J2(α) (105)

4.2. Second-Order Sensitivities Stemming from the First-Order Sensitivities ∂E
(

t f

)
/∂αj1 ,

j1 = 4, 5, 6

Recalling the definitions of the first three model parameters, i.e., α4 , lp, α5 , αT ,

and α6 , cp, it follows from Equation (64) that the 1st-order sensitivities ∂E
(

t f

)
/∂lp,

∂E
(

t f

)
/∂αT and ∂E

(
t f

)
/∂cp can be written in the following form:

∂E(t f )
∂αj1

= Cj1(α)
∫ t f

0 a(1)(t)E2(t)dt; j1 = 4, 5, 6;

C4(α) ,
αT

2(lp)
2
cp

; C5(α) , − 1
2lpcp

; C6(α) ,
αT

2lp(cp)
2 .

(106)
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The 2nd-order sensitivities which stem from the 1st-order ones defined in Equation (106)
are obtained by applying the definition of the first-order G-differential to Equation (106),
which yields the following relations:

δ

{
∂E(t f )

∂αj1

}
,
{

d
dε

[
Cj1
(
α0 + εδα

)∫ t f
0

(
a(1) + εδa(1)

)
[E(t) + εδE(t)]2dt

]}
ε=0

,
{

δ
[
∂E
(

t f

)
/∂αj1

]}
dir

+
{

δ
[
∂E
(

t f

)
/∂αj1

]}
ind

, j1 = 4, 5, 6,
(107)

where{
δ
[
∂E
(

t f

)
/∂αj1

]}
dir

,
{[

∂Cj1(α)

∂α
δα

]∫ t f

0
a(1)(t)E2(t)dt

}
α0

, j1 = 4, 5, 6; (108)

{
δ
[
∂E
(

t f

)
/∂αj1

]}
ind

,
{

Cj1(α)K(E)
}
α0 ; j1 = 4, 5, 6;

K(E) ,
∫ t f

0

[
δa(1)(t)E2(t) + 2a(1)(t)E(t)δE(t)

]
dt.

(109)

The direct-effect term defined in Equation (108) can be computed immediately. The
functional K(E) defined in Equation (109) can be determined only after solving the 2nd-
Level Variational Sensitivity System (2nd-LVSS) defined by Equations (71) and (72) to obtain

the 2nd-level variational function V(2)(2; t) ,
[
v(2)(1; t), v(2)(2; t)

]†
,
[
δE(t), δa(1)(t)

]†
.

As before, the need for solving the 2nd-LVSS is circumvented by deriving an alternative
expression for the functional K(E), in which the variational function V(2)(2; t) is replaced by
a 2nd-level adjoint function denoted as A(2)(2; j1 = 4, 5, 6; t) ,[

a(2)(1; j1 = 4, 5, 6; t), a(2)(2; j1 = 4, 5, 6; t)
]†
∈ H2, which will be the solution of a 2nd-Level

Adjoint Sensitivity System (2nd-LASS) to be constructed by applying the 2nd-CASAM-N.
The 2nd-LASS is constructed in the same Hilbert space, which was denoted as H2 in the
previous subsection, and which is endowed with the inner product defined in Equation (76).
This inner product is used to construct the 2nd-Level Adjoint Sensitivity System (2nd-LASS)
for the 2nd-level adjoint function A(2)(2; j1 = 4, 5, 6; t), as follows:

(i) Using Equation (76), form the inner product of A(2)(2; j1 = 4, 5, 6; t)with Equation (71)
to obtain the following relation, which has the same form as shown in Equation (77), namely:{〈

A(2)(2; j1 = 4, 5, 6; t), VM(2)[2× 2;α]V(2)(2; t)
〉

2

}
α0

=
{

a(2)(1; j1 = 4, 5, 6; t)δE(t)− a(2)(2; j1 = 4, 5, 6; t)δa(1)(t)
}t=t f

t=0
+
{〈

V(2)(2; t), AM(2)[2× 2;α]A(2)(2; j1 = 4, 5, 6; t)
〉

2

}
α0

=
{〈

A(2)(2; j1 = 4, 5, 6; t), Q(2)
V (2;α; δα)

〉
2

}
α0

,

(110)

where the operator AM(2)[2× 2;α] has the same expression as defined in Equation (80).
(ii) Eliminate the boundary terms on the right side of Equation (110) and require the

term on the right side of the second equality in Equation (110) to represent the functional
K(E), by imposing the following relations:

{
AM(2)[2× 2;α]A(2)(2; j1 = 4, 5, 6; t)

}
α0

=

{(
2a(1)(t)E(t)

E2(t)

)}
α0

(111)

{
B(2)

A

[
2; A(2)(2; j1 = 4, 5, 6; t);α

]}
α0

,

{(
a(2)
(

1; j1 = 4, 5, 6; t f

)
a(2)(2; j1 = 4, 5, 6; 0)

)}
α0

=

(
0
0

)
(112)

The relations represented by Equations (111) and (112) constitute the 2nd-LASS
for the function, the 2nd-level adjoint function A(2)(2; j1 = 4, 5, 6; t). Notably, the 2nd-
LASS is independent of parameter variations, so it needs to be solved just once to obtain
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A(2)(2; j1 = 4, 5, 6; t). Furthermore, the 2nd-LASS is an upper-triangular system, so the
equations need not be solved simultaneously but can be solved sequentially, first for the
component ψ(2)(2; t) and subsequently for the component ψ(2)(1; t).

(iii) Use the relations provided in Equations (110) and (109) together with Equations
(111) and (112) to obtain the following expression for the functional K(E) in terms of the
2nd-level adjoint function A(2)(2; j1 = 4, 5, 6; t):

K(E) = {δP0(α)K1(α) + δb(α)K2(α)}α0 (113)

where

K1(α) ,
∫ t f

0 a(2)(1; j1 = 4, 5, 6; t)dt;
K2(α) ,

∫ t f
0

[
a(2)(1; j1 = 4, 5, 6; t)E2(t) + 2a(2)(2; j1 = 4, 5, 6; t)E(t)

]
dt.

(114)

Solving Equations (111) and (112) yields the following closed-form expressions for the
components of the 2nd-level adjoint sensitivity function A(2)(2; j1 = 4, 5, 6; t):

a(2)(1; j1 = 4, 5, 6; t) = cosh−2
[

τ(α)t
2

]
×
∫ t f

t

[
2a(1)(x)E(x) + 2b(α)ψ(2)(2; x)

]
cosh2

[
τ(α)x

2

]
dx

= cosh−2(τt/2)
{

8P0
τ2

[
1− cosh(τt/2)

cosh(τt f /2)

]
+ 8b

3τ2

(
2P0
τ

)2[ 1
2 cosh2

(
τt f /2

)
− 1

2 cosh2(τt/2)− ln
cosh(τt f /2)
cosh(τt/2)

]}
;

(115)

a(2)(2; j1 = 4, 5, 6; t) = cosh2[τ(α)t/2]
∫ t

0 E2(x) cosh−2[τ(α)x/2]dx

= 2
3τ(α)

[
2P0(α)
τ(α)

]2
tanh[τ(α)t/2]sinh2[τ(α)t/2].

(116)

Collecting the results obtained in Equations (108), (109), and (113) yields the ex-
pressions for the 2nd-order sensitivities, which stem from the first-order sensitivities
∂E
(

t f

)
/∂αj1 , j1 = 4, 5, 6, as presented below.

4.2.1. Second-Order Sensitivities Stemming from ∂E
(

t f

)
/∂α4, ∂E

(
t f

)
/∂lp

Collecting the results for j1 = 4 in Equations (107)−(109), (113), and using the expres-
sions provided in Equations (31) and (32) yields the following expressions for the 2nd-order
partial differential stemming from ∂E

(
t f

)
/∂α4, ∂E

(
t f

)
/∂lp:

∂2E(t f )
∂α∂lp

δα ,
[

δαT

2(lp)
2
cp
− αTδcp

2(lpcp)
2 −

αTδlp

(lp)
3
cp

]∫ t f
0 a(1)(t)E2(t)dt

+C4(α)
[
γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ

(
δΣ f

)]
K1(α)

+C4(α)

[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
K2(α).

(117)

Collecting the terms that multiply the same parameter variations on the left side and,
respectively, right side of Equation (117) yields the following expressions for the respective
2nd-order partial sensitivities:

∂2E
(

t f

)
∂γ∂lp

= Σ f ϕ0C4(α)K1(α) (118)

∂2E
(

t f

)
∂Σ f ∂lp

= γϕ0C4(α)K1(α) (119)
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∂2E
(

t f

)
∂ϕ0∂lp

= γΣ f C4(α)K1(α) (120)

∂2E
(

t f

)
∂lp∂lp

= − αT(
lp
)3cp

∫ t f

0
a(1)(t)E2(t)dt +

αTC4(α)

2
(
lp
)2cp

K2(α) (121)

∂2E
(

t f

)
∂αT∂lp

=
1

2
(
lp
)2cp

∫ t f

0
a(1)(t)E2(t)dt− C4(α)

2lpcp
K2(α) (122)

∂2E
(

t f

)
∂cp∂lp

= − αT

2
(
lpcp

)2

∫ t f

0
a(1)(t)E2(t)dt +

αTC4(α)

2lp
(
cp
)2 K2(α) (123)

4.2.2. Second-Order Sensitivities Stemming from ∂E
(

t f

)
/∂α5, ∂E

(
t f

)
/∂αT

Collecting the results for j1 = 5 in Equations (107)–(109), (113), and using the expres-
sions provided in Equations (31) and (32) yields the following expressions for the 2nd-order
partial differential stemming from ∂E

(
t f

)
/∂α5, ∂E

(
t f

)
/∂αT :

∂2E(t f )
∂α∂αT

δα ,
[

δlp

2(lp)
2
cp

+
δcp

2lp(cp)
2

]∫ t f
0 a(1)(t)E2(t)dt

+C5(α)
[
γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ

(
δΣ f

)]
K1(α)

+C5(α)

[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
K2(α).

(124)

Collecting the terms that multiply the same parameter variations on the left side and,
respectively, right side of Equation (124) yields the following expressions for the respective
2nd-order partial sensitivities:

∂2E
(

t f

)
∂γ∂αT

= Σ f ϕ0C5(α)K1(α) (125)

∂2E
(

t f

)
∂Σ f ∂αT

= γϕ0C5(α)K1(α) (126)

∂2E
(

t f

)
∂ϕ0∂αT

= γΣ f C5(α)K1(α) (127)

∂2E
(

t f

)
∂lp∂αT

=
1

2
(
lp
)2cp

∫ t f

0
a(1)(t)E2(t)dt +

αTC5(α)

2
(
lp
)2cp

K2(α) (128)

∂2E
(

t f

)
∂αT∂αT

=
1

2
(
lp
)2cp

∫ t f

0
a(1)(t)E2(t)dt− C5(α)

2lpcp
K2(α) (129)

∂2E
(

t f

)
∂cp∂αT

=
1

2lp
(
cp
)2

∫ t f

0
a(1)(t)E2(t)dt +

αTC5(α)

2lp
(
cp
)2 K2(α) (130)
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4.2.3. Second-Order Sensitivities Stemming from ∂E
(

t f

)
/∂α6, ∂E

(
t f

)
/∂cp

Collecting the results for j1 = 6 in Equations (107)–(109), (113), and using the expres-
sions provided in Equations (31) and (32) yields the following expressions for the 2nd-order
partial differential stemming from ∂E

(
t f

)
/∂α6, ∂E

(
t f

)
/∂cp:

∂2E(t f )
∂α∂cp

δα ,
[

δαT

2lp(cp)
2 −

αTδlp

2(lpcp)
2 −

αTδcp

lp(cp)
3

]∫ t f
0 a(1)(t)E2(t)dt

+C6(α)
[
γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ

(
δΣ f

)]
K1(α)

+C6(α)

[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
K2(α).

(131)

Collecting the terms that multiply the same parameter variations on the left side and,
respectively, right side of Equation (131) yields the following expressions for the respective
2nd-order partial sensitivities:

∂2E
(

t f

)
∂γ∂cp

= Σ f ϕ0C6(α)K1(α) (132)

∂2E
(

t f

)
∂Σ f ∂cp

= γϕ0C6(α)K1(α) (133)

∂2E
(

t f

)
∂ϕ0∂cp

= γΣ f C6(α)K1(α) (134)

∂2E
(

t f

)
∂lp∂cp

= − αT

2
(
lpcp

)2

∫ t f

0
a(1)(t)E2(t)dt +

αTC6(α)

2
(
lp
)2cp

K2(α) (135)

∂2E
(

t f

)
∂αT∂cp

=
1

2lp
(
cp
)2

∫ t f

0
a(1)(t)E2(t)dt− C6(α)

2lpcp
K2(α) (136)

∂2E
(

t f

)
∂cp∂cp

= − αT

lp
(
cp
)3

∫ t f

0
a(1)(t)E2(t)dt +

αTC6(α)

2lp
(
cp
)2 K2(α) (137)

4.3. Computational Advantages of Using the 2nd-CASAM-N

“Large-scale” computations are those needed to solve differential and/or integral
equations, such as those underlying the original model and the 1st-LASS. By comparison,
the computational effort involved in evaluating integrals by means of quadrature formulas
are “small-scale”. The application of the 1st-CASAM-N has shown that a single large-scale
computation needed to solve the 1st-LASS to obtain the 1st-level adjoint sensitivity function
suffices to obtain all of the 1st-order sensitivities of a model response with respect to the
underlying model parameters, which are computed using quadrature formulas to evaluate
integrals involving the 1st-level adjoint sensitivity function. Using any other methods
(e.g., statistical methods or finite-difference methods) would require at least as many large-
scale computations—for solving the original model with altered parameter values—as
there are model parameters.

Each of the first-order sensitivities becomes the “model response” for the application
of the 2nd-CASAM-N. If all of the first-order sensitivities have differing (among each other)
functional dependencies on the original state functions and 1st-level adjoint sensitivity
functions, then there will be as many 2nd-Level Adjoint Systems to be solved as there are
1st-order sensitivities. Notably, all of these 2nd-LASS have the same left side; only the
sources on the right sides of these 2nd-LASS would differ from each other, each source
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stemming from one of the distinct 1st-level sensitivities. Thus, the same software package
would be used to invert the (matrix-valued) operator on the left side of the 2nd-LASS.

In most practical situations, however, the 1st-order sensitivities do share common
expressions involving the original state functions and 1st-level adjoint sensitivity functions.
For the paradigm Nordheim–Fuchs model, the sensitivities ∂E

(
t f

)
/∂αj1 , j1 = 1, 2, 3, have

in common the functional J(E), while the sensitivities ∂E
(

t f

)
/∂αj1 , j1 = 4, 5, 6, have in

common the functional K(E). In such cases, the number of 2nd-level adjoint sensitivity
functions (and corresponding large-scale computations) is reduced considerably; in the
case of the Nordheim–Fuchs model, the number of large-scale computations is reduced by
a factor of 3 (from 6 to 2), as illustrated in Section 4.2.

As has been illustrated in Section 4.2, one adjoint computation for solving the 2nd-
LASS for a selected 1st-order sensitivity provides the 2nd-level adjoint needed for comput-
ing all of the partial 2nd-order sensitivities stemming from the selected 1st-order sensitivi-
ties. The order of priority of computing the 2nd-order sensitivities should be established
in the ranking order of the magnitude of the 1st-order sensitivities: thus, the 2nd-order
sensitivities stemming from the largest (in absolute value) 1st-order sensitivity should be
computed with the highest priority, the 2nd-order sensitivities stemming from the next-
largest (in absolute value) 1st-order sensitivity should be computed next, and so on. The
user may decide if any of the 1st-order sensitivities would be sufficiently insignificant to be
neglected in this process.

As there are 6 first-order sensitivities, there will be 36 second-order sensitivities, of
which 21 are distinct from one another. As illustrated by the results obtained in Section 4.2,
the unmixed 2ndorder sensitivities of the form ∂2E

(
t f

)
/∂αj1 ∂αj1 , j1 = 1, . . . , 6, have in-

dividually distinct expressions, each involving the 2nd-level adjoint sensitivity function
corresponding to the originating 1st-order sensitivities. In contradistinction, the mixed
2nd-order sensitivities ∂2E

(
t f

)
/∂αj2 ∂αj1 , j2 6= j1 = 1, . . . , 6, are obtained twice, using dis-

tinct (in general) 2nd-level adjoint systems. Occasionally, although obtained following two
different computational paths, some of these mixed sensitivities have the same expression,
as exemplified by the 2nd-order sensitivities, which involve the functionals J1(α) and
K2(α), respectively, as shown below:

∂2E
(

t f

)
∂Σ f ∂γ

= ϕ0

∫ t f

0
a(1)(t)dt + (ϕ0)

2γΣ f J1(α) =
∂2E

(
t f

)
∂γ∂Σ f

(138)

∂2E
(

t f

)
∂ϕ0∂γ

= Σ f

∫ t f

0
a(1)(t)dt+ ϕ0γ

(
Σ f

)2
J1(α) =

∂2E
(

t f

)
∂γ∂ϕ0

(139)

∂2E
(

t f

)
∂ϕ0∂Σ f

= γ
∫ t f

0
a(1)(t)dt + γ2 ϕ0Σ f J1(α) =

∂2E
(

t f

)
∂Σ f ∂ϕ0

(140)

∂2E
(

t f

)
∂αT∂lp

=
1

2
(
lp
)2cp

∫ t f

0
a(1)(t)E2(t)dt− C4(α)

2lpcp
K2(α) =

∂2E
(

t f

)
∂lp∂αT

(141)

∂2E
(

t f

)
∂cp∂lp

= − αT

2
(
lpcp

)2

∫ t f

0
a(1)(t)E2(t)dt +

αTC4(α)

2lp
(
cp
)2 K2(α) =

∂2E
(

t f

)
∂lp∂cp

(142)

∂2E
(

t f

)
∂cp∂αT

=
1

2lp
(
cp
)2

∫ t f

0
a(1)(t)E2(t)dt +

αTC5(α)

2lp
(
cp
)2 K2(α) =

∂2E
(

t f

)
∂αT∂cp

(143)

In most cases, however, the mixed sensitivities have distinct expressions involving
distinct adjoint functions, as is apparent from the results obtained in Section 4.2. In all
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cases, though, the symmetry property ∂2E
(

t f

)
/∂αj1 ∂αj2 = ∂2E

(
t f

)
/∂αj2 ∂αj1 provides

an intrinsic verification procedure for assessing the accuracy of computing the respec-
tive 2nd-level adjoint sensitivity functions. Furthermore, the user can select which of
the alternative −but equivalent− expressions of the 2nd-order mixed sensitivity under
consideration is computationally more advantageous to use. For example, the expressions
in Equations (118) and (89) must be equivalent, i.e.,

∂2E(t f )
∂γ∂lp

=
Σ f ϕ0αT

2(lp)
2
cp

∫ t f
0 a(2)(1; j1 = 4, 5, 6; t)dt =

∂2E(t f )
∂lp∂γ

=
ϕ0Σ f αT

2(lp)
2
cp

∫ t f
0

[
a(2)(1; j1 = 1, 2, 3; t)E2(t) + 2a(2)(2; j1 = 1, 2, 3; t)E(t)

]
dt.

(144)

Consequently, either of the two equivalent expressions above can be used to eval-
uate ∂2E

(
t f

)
/∂lp∂γ but the expression involving the integral over a(2)(1; j1 = 4, 5, 6; t)

appears to be simpler to compute. Similar considerations apply to the remaining mixed
2nd-order sensitivities.

In summary, the application of the 2nd-CASAM-N has necessitated 2 large-scale com-
putations (for solving the two 2nd-LASS) to obtain all of the 36 second-order sensitivities
for the Nordheim–Fuchs reactor safety model. Using any other methods (e.g., statistical or
finite-differences) would have required ca. 5 × 36 large-scale computations for solving the
original model with altered parameter values, as needed for the respective finite-difference
or statistical schemes.

5. Illustrative Application of the 3rd-CASAM-N to Compute Third-Order
Response Sensitivities

The fundamental principle of the 3rd-CASAM-N is to compute the second-order sensi-
tivities by treating each second-order sensitivity as a “model response” and subsequently
determining the G-differential of the respective “model response”. Roughly speaking, the
third-order sensitivities are obtained from their recursive definition of being the “first-order
sensitivities of the second-order sensitivities”. These concepts will be illustrated in this
Section by determining the 3rd-order sensitivities stemming from an unmixed 2nd-order
sensitivity of the response E

(
t f

)
, since the unmixed sensitivities have unique expressions,

as shown in Section 3, above. In practice, the order of priority for computing the 3rd-order
sensitivities should be established by following the ranking order of the magnitudes of the
2nd-order sensitivities: the largest (in absolute value) 2nd-order sensitivity should be con-
sidered with the highest priority. The user may decide if any of the 2nd-order sensitivities
would be sufficiently insignificant to be neglected in this process.

Two paradigm examples illustrating the application of the 3rd-CASAM-N for comput-
ing 3rd-order sensitivities will be presented in this Section. The first example will illustrate
the determination of the 3rd-order sensitivities stemming from a representative unmixed
2nd-order sensitivity, while the second example will illustrate the determination of the
3rd-order sensitivities stemming from a representative mixed 2nd-order sensitivity.

5.1. Computation of the Third-Order Sensitivities Stemming from ∂2E
(

t f

)
/∂cp∂cp

As indicated in Equation (137), the expression of the unmixed 2nd-order sensitivity
∂2E

(
t f

)
/∂cp∂cp of the response E

(
t f

)
with respect to the sixth parameter (j1 = 6) α6 ,

cp, involves all of the key elements (i.e., model parameters, original state function, 1st-
level adjoint sensitivity function, 2nd-level adjoint sensitivity function) that could be
comprised in the expression of a 2nd-order sensitivity and is, therefore, representative
of the operations involved in determining the (six) 3rd-order sensitivities that arise from
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a 2nd-order sensitivity. For subsequent mathematical considerations, it is convenient to
recast the expression of ∂2E

(
t f

)
/∂cp∂cp in the following form:

∂2E(t f )
∂cp∂cp

= D1(α)
∫ t f

0 a(1)(t)E2(t)dt

+D2(α)
∫ t f

0

[
a(2)(1; 6; t)E2(t) + 2a(2)(2; 6; t)E(t)

]
t;

(145)

D1(α) , −
αT

lp
(
cp
)3 ; D2(α) ,

αTC6(α)

2lp
(
cp
)2 (146)

The 3rd-order sensitivities which stem from ∂2E
(

t f

)
/∂cp∂cp are obtained by ap-

plying the definition of the first-order G-differential to Equation (145), which yields the
following relations:

δ

{
∂2E(t f )
∂cp∂cp

}
,
{

d
dε D1

(
α0 + εδα

)∫ t f
0

(
a(1) + εδa(1)

)
[E(t) + εδE(t)]2dt

+D2
(
α0 + εδα

)∫ t f
0

[
a(2)(1; 6; t) + εδa(2)(1; 6; t)

]
[E(t) + εδE(t)]2dt

+2D2
(
α0 + εδα

)∫ t f
0

[
a(2)(2; 6; t) + εδa(2)(2; 6; t)

]
[E(t) + εδE(t)]dt

}
ε=0

,
{

δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
dir

+
{

δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
ind

,

(147)

where{
δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
dir

,
{[

∂D1(α)

∂α
δα

]
F1(α) +

[
∂D2(α)

∂α
δα

]
F2(α)

}
α0

(148)

with

F1(α) ,
{∫ t f

0
a(1)(t)E2(t)dt

}
α0

(149)

F2(α) ,
∫ t f

0

[
a(2)(1; 6; t)E2(t) + 2a(2)(2; 6; t)E(t)

]
dt (150)

and {
δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
ind

,
{

D1(α)
∫ t f

0

[
δa(1)E2(t) + 2a(1)(t)E(t)δE(t)

]
dt

+D2(α)
∫ t f

0

[
δa(2)(1; 6; t)E2(t) + 2E(t)a(2)(1; 6; t)δE(t)

]
dt

+2D2(α)
∫ t f

0

[
δa(2)(2; 6; t)E(t) + a(2)(2; 6; t)δE(t)

]
dt
}
α0

.

(151)

The direct-effect term defined in Equation (148) can be computed already at this stage.
However, the indirect-effect term defined in Equation (151) can be computed only after having

determined the vectors of variational functions δA(2)(2; 6; t) ,
[
δa(2)(1; 6; t), δa(2)(2; 6; t)

]†

and V(2)(2; t) ,
[
δE(t), δa(1)(t)

]†
. Recall that V(2)(2; t) ,

[
δE(t), δa(1)(t)

]†
is the solution

of the 2nd-Level Variational Sensitivity System (2nd-LVSS) defined by Equations (71)

and (72). On the other hand, the vector δA(2)(2; 6; t) ,
[
δa(2)(1; 6; t), δa(2)(2; 6; t)

]†
is the

solution of the G-differentiated 2nd-LASS, which is obtained by applying the definition of
the G-differential to Equations (111) and (112), to obtain the following system:{

d
dε

[
− d

dt − 2b
(
α0 + εδα

)(
E0 + εδE

)][
a(2,0)(1; 6; t) + εδa(2)(1; 6; t)

]
−2b

(
α0 + εδα

)[
a(2,0)(2; 6; t) + εδa(2)(2; 6; t)

]
− 2
(

a(1,0) + εδa(1)
)(

E0 + εδE
)}

ε=0
= 0,

(152)
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{
d
dε

[
d
dt − 2b

(
α0 + εδα

)(
E0 + εδE

)][
a(2,0)(2; 6; t) + εδa(2)(2; 6; t)

]
−
(
E0 + εδE

)2
}

ε=0
= 0,

(153)

{
δB(2)

A

[
2; A(2)(2; 6; t);α

]}
α0

,

{(
δa(2)

(
1; 6; t f

)
δa(2)(2; 6; 0)

)}
α0

=

(
0
0

)
(154)

Carrying out the operations indicated in Equations (152)–(154) and concatenating
the resulting equations with the equations underlying the 2nd-LVSS yields the following
3rd-Level Variational Sensitivity System (3rd-LVSS) for the 3rd-level variational function

V(3)(4; 6; t) ,
[
V(2)(2; t), δA(2)(2; 6; t)

]†
,
[
δE(t), δa(1)(t), δa(2)(1; 6; t), δa(2)(2; 6; t)

]†
:{

VM(3)[4× 4]V(3)(4; 6; t)
}
α0

=
{

Q(3)
V [4; 6;α; δα]

}
α0

, t > 0, (155)

where

VM(3)[4× 4;α] ,

(
VM(2)[2× 2;α] 0[2× 2]
VM(3)

21 [2× 2;α] VM(3)
22 [2× 2;α]

)
; (156)

VM(3)
21 [2× 2;α] ,

(
−2b(α)− 2a(1)(t) −2E(t)
−2b(α)− 2E(t) 0

)
; 0[2× 2] ,

(
0 0
0 0

)
; (157)

VM(3)
22 [2× 2;α] , AM(2)[2× 2;α] ,

(
− d

dt − 2b(α)E(t) −2b(α)
0 d

dt − 2b(α)E(t)

)
(158)

Q(3)
V [4; 6;α; δα] ,

(
Q(2)

V [2;α; δα]

Q(3)
2 [2; 6;α; δα]

)
;

Q(3)
2 [2; 6;α; δα] ,

(
2δb(α)E(t)a(2)(1; 6; t) + 2δb(α)a(2)(2; 6; t)
2δb(α)E(t)a(2)(2; 6; t)

)
.

(159)

The first argument (i.e., “4”) of the 3rd-level variational vector V(3)(4; 6; t) indicates
that this vector has four components. The second argument (i.e., “6”) indicates that
this vector’s components stem from a 2nd-level adjoint function related to the 2nd-order
sensitivity involving the sixth parameter (j1 = 6), i.e., α6 , cp. For the block-matrix
VM(3)[4× 4;α] , the argument “4× 4” indicates the dimensions of this matrix.

The boundary conditions for the components of V(3)(4; 6; t), which are included within
the 3rd-LVSS, are as follows:[

δE(0), δa(1)
(

t f

)
, δa(2)

(
1; 6; t f

)
, δa(2)(2; 6; 0)

]†
= [0, 0, 0, 0]† (160)

The need for solving the 3rd-LVSS for all parameter variations is circumvented by ap-
plying the 3rd-CASAM-N to eliminate the appearance of the variational function V(3)(4; 6; t)
in the expression of the indirect-effect term defined in Equation (151) by expressing this
indirect-effect term in terms of a 3rd-level adjoint sensitivity function which would be
independent of parameter variations. This 3rd-level adjoint function is the solution of a 3rd-
Level Adjoint Sensitivity System (3rd-LASS) which is constructed in a Hilbert space denoted
as H3, and which comprises as elements block-vectors of the same form as V(3)(4; 6; t).
The inner product, denoted as

〈
Ψ(3)(4; t), Φ(3)(4; t)

〉
3
, of two generic vectors Ψ(3)(4; t) ,[

ψ(3)(1; t), . . . , ψ(3)(4; t)
]†
∈ H3 and Φ(3)(4; t) ,

[
ϕ(3)(1; t), . . . , ϕ(3)(4; t)

]†
∈ H3 in the

Hilbert space H3 is defined as follows:

〈
Ψ(3)(4; t), Φ(3)(4; t)

〉
3
,

4

∑
i=1

∫ t f

0
ψ(3)(i; t)ϕ(3)(i; t)dt (161)
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The 3rd-Level Adjoint Sensitivity System (3rd-LASS) for the 3rd-level adjoint func-

tion A(3)(4; 6; t) ,
[

a(3)(1; 6; t), a(3)(2; 6; t), a(3)(3; 6; t), a(3)(4; 6; t)
]†
∈ H3 is constructed

as follows:
(i) Using Equation (161), form the inner product of the vector A(3)(4; 6; t)with Equation (155)

to obtain the following relation:{〈
A(3)(4; 6; t), VM(3)[4× 4]V(3)(4; 6; t)

〉
3

}
α0

=
{

a(3)(1; 6; t)δE(t)

−a(3)(2; 6; t)δa(1)(t)− a(3)(3; 6; t)δa(2)(1; 6; t) + a(3)(4; 6; t)δa(2)(2; 6; t)
}t=t f

t=0
+
{〈

V(3)(4; 6; t), AM(3)[4× 4]A(3)(4; 6; t)
〉

3

}
α0

=
{〈

A(3)(4; 6; t), Q(3)
V [4; 6;α; δα]

〉
3

}
α0

.

(162)

(ii) Eliminate the boundary terms on the right side of Equation (162) and require
the second term on the right side of the first equality in Equation (162) to represent the
indirect-effect term

{
δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
ind

defined in Equation (151) by imposing the
following relations:{

AM(3)[4× 4]A(3)(4; 6; t)
}
α0

=
{

Q(3)
A [4; j2; 6;α]

}
α0

(163)

{
B(3)

A

[
4; A(3)(4; 6; t);α

]}
α0

,


a(3)
(

1; 6; t f

)
a(3)(2; 6; 0)
a(3)(3; 6; 0)

a(3)
(

4; 6; t f

)
 =


0
0
0
0

; (164)

where the block-matrix AM(3)[4× 4] ,
[
VM(3)[4× 4]

]∗
is the formal adjoint of the

block-matrix VM(3)[4× 4] and is obtained by transposing the adjoints of the elements
of VM(3)[4× 4], namely:

AM(3)[4× 4] ,
[
VM(3)[4× 4]

]∗
=


{[

VM(2)
]∗}† {[

VM(3)
21

]∗}†

0[2× 2]
{[

VM(3)
22

]∗}†

; (165)

and where:
Q(3)

A [4; 6;α] ,
[
q(3)

A (1; 6;α), . . . , q(3)
A (4; 6;α)

]†
; (166)

q(3)
A (1; 6;α) , 2D1(α)a(1)(t)E(t) + 2D2(α)E(t)a(2)(1; 6; t) + 2D2(α)a(2)(2; 6; t); (167)

q(3)
A (2; 6;α) , D1(α)E2(t) (168)

q(3)
A

(
3; j2; j1; U(3);α

)
, D2(α)E2(t) (169)

q(3)
A

(
4; j2; j1; U(3);α

)
, 2D2(α)E(t) (170)

The relations represented by Equations (163) and (164) constitute the 3rd-LASS for

the 3rd-level adjoint function A(3)(4; 6; t) ,
[

a(3)(1; 6; t), . . . , a(3)(4; 6; t)
]†

. Notably, the
3rd-LASS is independent of parameter variations; consequently, it needs to be solved
just once to obtain the 3rd-level adjoint sensitivity function A(3)(4; 6; t). Furthermore, the
3rd-LASS is an upper-triangular system, so the equations need not be solved simulta-
neously by inverting the matrix-operator on the left side of Equation (163), but can be
solved sequentially.
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(iii) Use the relations provided in Equations (162) and (151) together with the 3rd-LASS
to obtain the following expression for the indirect-effect term

{
δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
ind

:

{
δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
ind

=
〈

A(3)(4; 6; t), Q(3)
V [4; 6;α; δα]

〉
3

= {δP0(α)G1(α) + δb(α)G2(α)}α0 =
{[

γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ
(

δΣ f

)]
G1(α)

}
α0

+

{[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
G2(α)

}
α0

.

(171)

In addition to the definitions of δb(α) and δP0(α) given in Equations (31) and (32), re-
spectively, the following definitions have been used to obtain the expression in Equation (171):

G1(α) ,
∫ t f

0
a(3)(1; 6; t)dt; (172)

G2(α) ,
∫ t f

0

{
E2(t)a(3)(1; 6; t) + 2E(t)a(3)(2; 6; t)+2a(3)(3; 6; t)

×
[

E(t)a(2)(1; 6; t) + a(2)(2; 6; t)
]
+ 2a(3)(4; 6; t)E(t)a(2)(2; 6; t)

}
dt.

(173)

The expression of the total first-order G-differential of the 2nd-order sensitivity
∂2E

(
t f

)
/∂cp∂cp, which contains the partial 3rd-order sensitivities of the form

∂3E
(

t f

)
/∂cp∂cp∂αj3 , j3 = 1, . . . , 6, is obtained by adding the expression obtained in Equa-

tion (171) for the indirect-effect term with the expression obtained in Equation (148) for the
direct-effect term. Using in Equation (148) the definitions of D1(α) and D2(α) provided in
Equations (146) together with the definition of C6(α) provided in Equation (106) yields the
following explicit form of the direct-effect term:{

δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
dir

,
{[
− δαT

lp(cp)
3 +

αTδlp

(lp)
2
(cp)

3 +
3αTδcp

lp(cp)
4

]
F1(α)

}
α0

+

{
αT

lp(cp)
2

[
δαT

lp(cp)
2 −

αTδlp

(lp)
2
(cp)

2 −
2αTδcp

lp(cp)
3

]
F2(α)

}
α0

.
(174)

Adding Equation (171) with Equation (174) and collecting the coefficients that multiply
the respective parameter variations yields the following expressions for the partial 3rd-
order sensitivities stemming from the 2nd-order sensitivity ∂2E

(
t f

)
/∂cp∂cp:

∂3E
(

t f

)
∂γ∂cp∂cp

=
{

ϕ0Σ f G1(α)
}
α0

(175)

∂3E
(

t f

)
∂Σ f ∂cp∂cp

= {ϕ0γG1(α)}α0 (176)

∂3E
(

t f

)
∂ϕ0∂cp∂cp

=
{

γΣ f G1(α)
}
α0

(177)

∂3E
(

t f

)
∂lp∂cp∂cp

=

{
αTG2(α)

2
(
lp
)2cp

+
αT F1(α)(
lp
)2(cp

)3 −
(

αT
lpcp

)2 F2(α)

lp
(
cp
)2

}
α0

(178)

∂3E
(

t f

)
∂αT∂cp∂cp

=

{
−G2(α)

2lpcp
− F1(α)

lp
(
cp
)3 +

αT F2(α)(
lp
)2(cp

)4

}
α0

(179)

∂3E
(

t f

)
∂cp∂cp∂cp

=

{
αTG2(α)

2lp
(
cp
)2 +

3αT F1(α)

lp
(
cp
)4 −

2(αT)
2F2(α)(

lp
)2(cp

)5

}
α0

(180)



J. Nucl. Eng. 2022, 3 217

5.2. Computation of the Third-Order Sensitivities Stemming from ∂2E
(

t f

)
/∂γ∂lp

The 3rd-order sensitivities which stem from ∂2E
(

t f

)
/∂γ∂lp are obtained by applying

the definition of the first-order G-differential to either one of the two equivalent expressions
provided in Equation (144). Thus, applying the definition of the G-differential to the simpler
expression of ∂2E

(
t f

)
/∂γ∂lp yields the following relation:

δ

{
∂2E(t f )

∂γ∂lp

}
=

{
d
dε

(
Σ0

f +εδΣ f

)
(ϕ0

0+εδϕ0)(α0
T+εδαT)

2(l0
p+εδlp)

2
(c0

p+εδcp)

×
∫ t f

0

[
a(2,0)(1; 6; t) + εδa(2)(1; 6; t)

]
dt
}

ε=0
,
{

δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
dir

+
{

δ
[
∂2E

(
t f

)
/∂cp∂cp

]}
ind

,

(181)

where {
δ
[
∂2E

(
t f

)
/∂γ∂lp

]}
dir

,
{[

ϕ0αT

2(lp)
2
cp

δΣ f +
Σ f αT

2(lp)
2
cp

δϕ0 +
Σ f ϕ0

2(lp)
2
cp

δαT

−Σ f ϕ0αT

(lp)
3
cp

δlp −
Σ f ϕ0αT

2(lpcp)
2 δcp

]∫ t f
0 a(2)(1; 6; t)dt

}
α0

;
(182)

{
δ
[
∂2E

(
t f

)
/∂γ∂lp

]}
ind

,

{
Σ f ϕ0αT

2
(
lp
)2cp

∫ t f

0
δa(2)(1; 6; t)dt

}
α0

(183)

The direct-effect term defined in Equation (182) can be computed already at this
stage. The indirect-effect term can be computed after having solved the 3rd-LVSS to
determine the variational function δa(2)(1; 6; t) or, alternatively, by constructing a 3rd-LASS
so as to replace the appearance of this variational function with a corresponding 3rd-level
adjoint sensitivity function. This 3rd-LASS is constructed by applying the 3rd-CASAM-N,
just as was done previously in Section 5.1. As the 3rd-LASS would correspond to the
indirect-effect term

{
δ
[
∂2E

(
t f

)
/∂γ∂lp

]}
ind

stemming from a mixed (rather than unmixed)
2nd-order sensitivity, the corresponding 3rd-level adjoint sensitivity function would have
an additional index, i.e., would have the form A(3)(4; j2; j1; t), j2 6= j1, by comparison to
the 3rd-level adjoint sensitivity function A(3)(4; 6; t), j2 = j1 = 6, which was used in above
in Section 5.1. Since 4th- and/or higher-order sensitivities will not be determined in this
work, the proliferation of indices can be avoided in this particular case by designating as

Ψ(3)(4; t) ,
[

ψ(3)(1; t), . . . , ψ(3)(4; t)
]†
∈ H3 the 3rd-level adjoint sensitivity function to

be determined for obtaining the alternative expression for
{

δ
[
∂2E

(
t f

)
/∂γ∂lp

]}
ind

. Thus,
the 3rd-Level Adjoint Sensitivity System (3rd-LASS) for the 3rd-level adjoint function

Ψ(3)(4; t) ,
[

ψ(3)(1; t), . . . , ψ(3)(4; t)
]†

is constructed as follows:

(i) Using Equation (161), form the inner product of the vector Ψ(3)(4; t) with Equation
(155) to obtain the following relation:{〈

Ψ(3)(4; t), VM(3)[4× 4]V(3)(4; 6; t)
〉

3

}
α0

=
{

ψ(3)(1; t)δE(t)

−ψ(2)(2; t)δa(1)(t)− ψ(3)(3; t)δa(2)(1; 6; t) + ψ(3)(4; t)δa(2)(2; 6; t)
}t=t f

t=0
+
{〈

V(3)(4; 6; t), AM(3)[4× 4]Ψ(3)(4; t)
〉

3

}
α0

=
{〈

Ψ(3)(4; t), Q(3)
V [4; 6;α; δα]

〉
3

}
α0

.

(184)
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(ii) Eliminate the boundary terms on the right side of Equation (184) and require
the second term on the right side of the first equality in Equation (184) to represent the
indirect-effect term

{
δ
[
∂2E

(
t f

)
/∂γ∂lp

]}
ind

by imposing the following relations:

{
AM(3)[4× 4]Ψ(3)(4; t)

}
α0

=

{[
0, 0, Σ f ϕ0αT/2

(
lp
)2cp, 0

]†
}

α0
(185)

ψ(3)
(

1; t f

)
= ψ(3)(2; 0) = ψ(3)(3; 0) = ψ(3)

(
4; t f

)
= 0 (186)

The relations represented by Equations (185) and (186) constitute the 3rd-LASS for the
3rd-level adjoint function Ψ(3)(4; t). Notably, the left side of this 3rd-LASS is the same as
the left side of Equation, so the system of equations in (185) and (186) is solved sequentially
rather than simultaneously by inverting the matrix-operator on the left side of Equation
(163) or (185). Only the sources on the right sides of these 3rd-LASS are different.

(iii) Use the relations provided in Equations (184)−(186) in Equation (183) to obtain
the following expression for the indirect-effect term

{
δ
[
∂2E

(
t f

)
/∂γ∂lp

]}
ind

:

{
δ
[
∂2E

(
t f

)
/∂γ∂lp

]}
ind

=
〈

Ψ(3)(4; t), Q(3)
V [4; 6;α; δα]

〉
3

= {δP0(α)H1(α) + δb(α)H2(α)}α0

=
{[

γΣ f (δϕ0) + ϕ0Σ f (δγ) + ϕ0γ
(

δΣ f

)]
H1(α)

}
α0

+

{[
− δαT

2lpcp
+ αT

2lp(cp)
2 δcp +

αT

2(lp)
2
cp

δlp

]
H2(α)

}
α0

.

(187)

In addition to the definitions of δb(α) and δP0(α) given in Equations (31) and (32), re-
spectively, the following definitions have been used to obtain the expression in Equation (187):

H1(α) ,
∫ t f

0
ψ(3)(1; t)dt; (188)

H2(α) ,
∫ t f

0

{
E2(t)ψ(3)(1; t) + 2E(t)ψ(3)(2; t)+2ψ(3)(3; t)

×
[

E(t)a(2)(1; 6; t) + a(2)(2; 6; t)
]
+ 2ψ(3)(4; t)E(t)a(2)(2; 6; t)

}
dt.

(189)

The expression of the total first-order G-differential of the 2nd-order sensitivity
∂2E

(
t f

)
/∂γ∂lp, which contains the partial 3rd-order sensitivities of the form

∂3E
(

t f

)
/∂γ∂lp∂αj3 , j3 = 1, . . . , 6, is obtained by adding the expression obtained in

Equation (187) for the indirect-effect term with the expression obtained in Equation (182)
for the direct-effect term. Collecting in the resulting expression the coefficients that mul-
tiply the respective parameter variations yields the following expressions for the partial
3rd-order sensitivities stemming from the 2nd-order sensitivity ∂2E

(
t f

)
/∂γ∂lp:

∂3E
(

t f

)
∂γ∂γ∂lp

=
{

ϕ0Σ f H1(α)
}
α0

(190)

∂3E
(

t f

)
∂Σ f ∂γ∂lp

=

{
ϕ0αT

2
(
lp
)2cp

∫ t f

0
a(2)(1; 6; t)dt + ϕ0γH1(α)

}
α0

(191)

∂3E
(

t f

)
∂ϕ0∂γ∂lp

=

{
Σ f αT

2
(
lp
)2cp

∫ t f

0
a(2)(1; 6; t)dt + γΣ f H1(α)

}
α0

(192)
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∂3E
(

t f

)
∂lp∂γ∂lp

=

{
−

Σ f ϕ0αT(
lp
)3cp

∫ t f

0
a(2)(1; 6; t)dt +

αT H2(α)

2
(
lp
)2cp

}
α0

(193)

∂3E
(

t f

)
∂αT∂γ∂lp

=

{
Σ f ϕ0

2
(
lp
)2cp

∫ t f

0
a(2)(1; 6; t)dt− H2(α)

2lpcp

}
α0

(194)

∂3E
(

t f

)
∂cp∂γ∂lp

=

{
−

Σ f ϕ0αT

2
(
lpcp

)2

∫ t f

0
a(2)(1; 6; t)dt +

αT H2(α)

2lp
(
cp
)2

}
α0

(195)

6. Discussion

As has been shown in [1], the “nth-order comprehensive sensitivity analysis method-
ology for nonlinear systems” (abbreviated as “nth-CASAM-N”) enables the determina-
tion of arbitrarily high-order sensitivities of model responses with respect to uncertain
model parameters, interfaces, and external boundaries for computational models that
are nonlinear in their underlying state functions. This work has illustrated the applica-
tion of the nth-CASAM-N to the well-known Nordheim–Fuchs reactor dynamics/safety
model [10,11]. This phenomenological model describes a short-time self-limiting power
transient in a nuclear reactor system having a negative temperature coefficient in which a
large amount of reactivity is suddenly inserted, either intentionally or by accident. This
model has been chosen for demonstrating the application of the n-CASAM-N based on the
following considerations:

(i) The demonstration model should be time-dependent (dynamic), nonlinear in its
underlying state functions, and of practical relevance.

(ii) For didactical purposes, the model should admit exact closed-form expressions (in
terms of elementary function) for the first- and higher-level adjoint functions, as well as for
the first- and higher-order sensitivities of the chosen model response with respect to the
model’s uncertain parameters.

(iii) The expressions obtained for the first- and higher-level adjoint functions, as well as for
the first- and higher-order sensitivities, should enable benchmarking of computational tools.

The Nordheim–Fuchs phenomenological model of a “severe accident” satisfies all of
the above considerations, admitting exact closed-form transient solutions, expressible in
terms of elementary functions, for the model’s state functions (particularly for the energy
released in the transient −which is the most important model response interest), adjoint
functions and response sensitivities. Furthermore, the Nordheim–Fuchs model is indepen-
dent of reactor type and is sufficiently complex to demonstrate all of the important features
of applying the nth-CASAM-N methodology. The closed-form expressions obtained for
the adjoint functions and sensitivities enable the benchmarking of computational tools
for any, rather than for just a specific type of nuclear reactor. Numerical results have not
been provided as numerical results cannot be universally valid (in contradistinction to
mathematical expressions) but can be valid for only a specific type of reactor (e.g., results
for a sodium fast reactor would be irrelevant for a boiling water reactor and/or for a molten
salt reactor, etc.).

It is recommended that one should always compute the sensitivities of the next-higher
order to demonstrate—rather than speculate—whether they are negligible or not. In other
words, one should compute at least the second-order sensitivities to demonstrate whether
they are negligible or not. If the second-order sensitivities are not negligible, then the
3rd-order sensitivities must be computed to ascertain whether they are important or not.
It is for this reason that this work has outlined the application of the 3rd-CASAM-N
methodology for the computation of the third-order sensitivities stemming from either
mixed or unmixed second-order sensitivities for the Nordheim–Fuchs model. In general,
the nth-CASAM-N methodology enables the user to select a priori the specific high-order
sensitivities to be computed as well as the priority order in which the selected sensitivities
are to be computed.
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This work has also illustrated the linear increase of the dimension of the Hilbert
space in which the various-order sensitivities are computed as the order of the respective
sensitivities increases. This linear increase is in contradistinction to the exponential increase
in the parameter-dimensional space, which occurs when using conventional statistical
and/or finite difference schemes to compute higher-order sensitivities. For the Nordheim–
Fuchs model, a single adjoint computation sufficed to obtain the six 1st-order sensitivities
and two adjoint computations (to solve the 2nd-LASS with two distinct sets of source terms)
sufficed to obtain all of the 36 second-order sensitivities (of which 21 are distinct).

As has been mentioned in the introductory Section 1 of this work, the 1st-CASAM-N
has been implemented by Cacuci and DiRocco [6] to obtain first-order sensitivities for the
reduced-order dynamic BWR model conceived by March-Leuba, Cacuci, and Perez [7], in
both the stable and oscillatory (periodic and aperiodic) regions in phase-space. A higher-
order sensitivity analysis of this model has not been performed yet. On the other hand,
solvers for the computation of first-, second-, third- and fourth-order sensitivities for neu-
tron transport models are available, as described in the works by Fang and Cacuci [12,13],
where it was found that the microscopic total cross-sections of isotopes 1H and 239Pu
of the reactor physics benchmark analyzed therein are the most important parameters
affecting that benchmark’s leakage response. In particular, it was shown that the largest
unmixed 4th-order sensitivity is S(4)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
= 2.720× 106, which is

with respect to the total cross-section σ30
t,6 for the 30th energy group (which comprises

thermalized neutrons in the energy interval from 1.39 × 10−4 eV to 0.152 eV) of isotope 6
(i.e., 1H). This sensitivity is ca. 90 times larger than the corresponding largest 3rd-order
relative sensitivity; ca. 6350 times larger than the corresponding largest 2nd-order one; and
ca. 291,000 times larger than the corresponding largest 1st-order relative sensitivity. For
example, considering that all of the microscopic total cross sections are uncorrelated, having
a 5% relative standard deviation, a 5% relative standard deviation of σ

g=30
t,6 contributes

around 99.8% to the leakage response’s expected value, 99.97% to its variance, and 99.99%
to its skewness.

The question of “when to stop computing progressively higher-order sensitivities ?”
has been addressed by Cacuci [14] in conjunction with the question of convergence of
the Taylor-series expansion of the response in terms of the uncertain model parameters
as this Taylor-series expansion is the fundamental premise for the expressions provided
by the “propagation of errors” methodology for the cumulants of the model response
distribution in the phase-space of model parameters. The convergence of this Taylor series,
which depends on both the response sensitivities to parameters and the uncertainties
associated with the parameter distribution, must be ensured. This can be done by ensuring
that the combination of parameter uncertainties and response sensitivities are sufficiently
small to fall inside the radius of convergence of the Taylor-series expansion. If the Taylor-
series fails to converge, targeted experiments must be performed to reduce the largest
sensitivities as well as the largest uncertainties (particularly standard deviations) that
affect the most important parameters by applying, e.g., the principles of the BERRU-
PM [15] predictive-modeling methodology to obtain best-estimate parameter values with
reduced uncertainties.
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