Appendix 1: Solution Conditions

<table>
<thead>
<tr>
<th>Std</th>
<th>Run</th>
<th>Iron (µM)</th>
<th>Sulfide (µM)</th>
<th>Phosphate (mM)</th>
<th>Carbonate (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>1</td>
<td>42.5</td>
<td>510</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>74</td>
<td>2</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>28.75</td>
<td>755</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>28.75</td>
<td>755</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>56.25</td>
<td>265</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>56.25</td>
<td>755</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>54</td>
<td>7</td>
<td>70</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>59</td>
<td>8</td>
<td>42.5</td>
<td>1000</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>56.25</td>
<td>265</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>63</td>
<td>10</td>
<td>42.5</td>
<td>510</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>28.75</td>
<td>265</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>68</td>
<td>12</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>13</td>
<td>56.25</td>
<td>265</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>28.75</td>
<td>265</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>73</td>
<td>15</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>56</td>
<td>16</td>
<td>42.5</td>
<td>20</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>77</td>
<td>17</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>39</td>
<td>18</td>
<td>28.75</td>
<td>265</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>56.25</td>
<td>265</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>28.75</td>
<td>755</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>56.25</td>
<td>265</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>31</td>
<td>22</td>
<td>28.75</td>
<td>755</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>67</td>
<td>23</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>24</td>
<td>42.5</td>
<td>20</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
<td>28.75</td>
<td>755</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
<td>56.25</td>
<td>265</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>51</td>
<td>27</td>
<td>15</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>56.25</td>
<td>265</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>28.75</td>
<td>265</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>36</td>
<td>30</td>
<td>56.25</td>
<td>755</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>28</td>
<td>31</td>
<td>56.25</td>
<td>265</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>32</td>
<td>56.25</td>
<td>265</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>56.25</td>
<td>755</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>11</td>
<td>34</td>
<td>56.25</td>
<td>755</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>52</td>
<td>35</td>
<td>70</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>75</td>
<td>36</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>62</td>
<td>37</td>
<td>42.5</td>
<td>510</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>38</td>
<td>28.75</td>
<td>755</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>20</td>
<td>39</td>
<td>28.75</td>
<td>755</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>56.25</td>
<td>265</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>71</td>
<td>41</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>42</td>
<td>28.75</td>
<td>265</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>45</td>
<td>43</td>
<td>28.75</td>
<td>755</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>30</td>
<td>44</td>
<td>56.25</td>
<td>265</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>76</td>
<td>45</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>53</td>
<td>46</td>
<td>70</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>47</td>
<td>15</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>55</td>
<td>48</td>
<td>42.5</td>
<td>20</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>38</td>
<td>49</td>
<td>28.75</td>
<td>265</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>61</td>
<td>50</td>
<td>42.5</td>
<td>510</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>46</td>
<td>51</td>
<td>56.25</td>
<td>755</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>28.75</td>
<td>265</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>78</td>
<td>53</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>54</td>
<td>28.75</td>
<td>265</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>27</td>
<td>55</td>
<td>28.75</td>
<td>265</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>64</td>
<td>56</td>
<td>42.5</td>
<td>510</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
<td>28.75</td>
<td>755</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>56.25</td>
<td>265</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>72</td>
<td>59</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>49</td>
<td>60</td>
<td>15</td>
<td>510</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>61</td>
<td>56.25</td>
<td>755</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>43</td>
<td>62</td>
<td>28.75</td>
<td>755</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>24</td>
<td>63</td>
<td>56.25</td>
<td>755</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>70</td>
<td>64</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>48</td>
<td>65</td>
<td>56.25</td>
<td>755</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>9</td>
<td>66</td>
<td>28.75</td>
<td>755</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>1</td>
<td>67</td>
<td>28.75</td>
<td>265</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>23</td>
<td>68</td>
<td>56.25</td>
<td>755</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>37</td>
<td>69</td>
<td>28.75</td>
<td>265</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>34</td>
<td>70</td>
<td>56.25</td>
<td>755</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>15</td>
<td>71</td>
<td>28.75</td>
<td>265</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>32</td>
<td>72</td>
<td>28.75</td>
<td>755</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>No</td>
<td>Age</td>
<td>Value</td>
<td>1000</td>
<td>Value</td>
<td>25</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>60</td>
<td>73</td>
<td>42.5</td>
<td>1000</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>74</td>
<td>56.25</td>
<td>755</td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td>47</td>
<td>75</td>
<td>56.25</td>
<td>755</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>65</td>
<td>76</td>
<td>42.5</td>
<td>510</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>58</td>
<td>77</td>
<td>42.5</td>
<td>1000</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>69</td>
<td>78</td>
<td>42.5</td>
<td>510</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix 2: Data
Each “Point” refers to the similarly numbered experimental condition as shown in Table 2.2.1. Each graph depicts all replicates for each sampled point. The data for concentration v. time of Fe(II) and HS⁻ are shown.
Point 6 [S\(^2\)-]

Point 7 [Fe(II)]
Point 9 [S^{2-}]

Point 10 [Fe(II)]
Point 11 \([S^2^-]\)

Point 12 \([\text{Fe(II)}]\)
Point 12 [S²⁻]

![Graph of S²⁻ concentration over time]

Midpoint [Fe(II)]

![Graph of Fe(II) concentration over time]
Point 13 $[S^{2-}]$

Point 14 $[\text{Fe(II)}]$
Point 17 \([S^2^-]\)

Point 18 \([\text{Fe(II)}]\)
Appendix 3: Plots of $\ln(A/A_0)$

Each “Point” refers to the similarly numbered experimental condition as shown in Table 2.2.1. Each graph depicts all replicates for each sampled point. The data for $\ln(A/A_0)$ vs time for both Fe(II) and HS$^-$ are shown.

![Point 1 $\ln(\text{Fe}(\text{II})/\text{Fe}(\text{II})_0)$](image)

![Point 1 $\ln(S/S_0)$](image)
Point 2 $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$

- $y = -9.9774 \times 10^{-4}x - 3.5611 \times 10^{-1}$
 - $R^2 = 9.2119 \times 10^{-1}$
- $y = -1.4750 \times 10^{-3}x - 7.8759 \times 10^{-1}$
 - $R^2 = 7.4810 \times 10^{-1}$
- $y = -1.0095 \times 10^{-3}x - 7.0133 \times 10^{-1}$
 - $R^2 = 8.9976 \times 10^{-1}$

Point 2 $\ln(S/S_0)$

- $y = -9.9774 \times 10^{-4}x - 3.5611 \times 10^{-1}$
 - $R^2 = 9.2119 \times 10^{-1}$
- $y = -1.4750 \times 10^{-3}x - 7.8759 \times 10^{-1}$
 - $R^2 = 7.4810 \times 10^{-1}$
- $y = -1.0095 \times 10^{-3}x - 7.0133 \times 10^{-1}$
 - $R^2 = 8.9976 \times 10^{-1}$
Point 3 $\ln(\text{Fe(II)/Fe(II)}_0)$

\begin{align*}
\ln(\text{Fe(II)/Fe(II)}_0) &= -1.1772 \times 10^{-3}x - 9.5374 \times 10^{-1} \\
R^2 &= 9.1929 \times 10^{-1}
\end{align*}

\begin{align*}
\ln(\text{Fe(II)/Fe(II)}_0) &= -2.6065 \times 10^{-3}x - 1.8657 \times 10^{-1} \\
R^2 &= 9.6992 \times 10^{-1}
\end{align*}

Point 3 $\ln(S/S_0)$

\begin{align*}
\ln(S/S_0) &= -2.0916 \times 10^{-3}x - 3.3858 \times 10^{-1} \\
R^2 &= 8.6517 \times 10^{-1}
\end{align*}

\begin{align*}
\ln(S/S_0) &= -2.0916 \times 10^{-3}x - 3.3858 \times 10^{-1} \\
R^2 &= 9.6992 \times 10^{-1}
\end{align*}
Point 4 $\ln(\text{Fe}(\text{II})/\text{Fe}(\text{II})_0)$

- $y = -1.2265E-03x - 8.9590E-01$
 - $R^2 = 9.6995E-01$

Point 4 $\ln(S/S_0)$

- $y = -1.6131E-03x - 7.7715E-01$
 - $R^2 = 6.0531E-01$
- $y = -1.2265E-03x - 8.9590E-01$
 - $R^2 = 9.6995E-01$
Point 5 \(\ln(\text{Fe(II)}/\text{Fe(II)}_0) \)

\[y = -1.2254 \times 10^{-03}x - 6.0139 \times 10^{-01} \]
\[R^2 = 8.9116 \times 10^{-01} \]

Point 5 \(\ln(S/S_0) \)

\[y = -2.0461 \times 10^{-03}x - 4.1479 \times 10^{-01} \]
\[R^2 = 8.2355 \times 10^{-01} \]

\[y = -1.1961 \times 10^{-03}x - 7.2885 \times 10^{-01} \]
\[R^2 = 9.4317 \times 10^{-01} \]
Point 8 $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$

$y = -1.5484E-03x - 7.6315E-01$

$R^2 = 5.8582E-01$

Point 8 $\ln(S/S_0)$

$y = -1.9263E-03x - 4.5732E-01$

$R^2 = 9.4380E-01$
Point 9 \(\ln(\text{Fe(II)}/\text{Fe(II)}_0) \)

- \[y = -7.3887 \times 10^{-4}x - 1.0667 \times 10^0 \]
 \(R^2 = 5.4572 \times 10^{-1} \)

Point 9 \(\ln(S/S_0) \)

- \[y = -7.3887 \times 10^{-4}x - 1.0667 \times 10^0 \]
 \(R^2 = 5.4572 \times 10^{-1} \)

- \[y = -1.3071 \times 10^{-3}x - 3.8470 \times 10^{-1} \]
 \(R^2 = 8.8381 \times 10^{-1} \)

- \[y = -1.1264 \times 10^{-3}x - 4.9905 \times 10^{-1} \]
 \(R^2 = 6.7216 \times 10^{-1} \)
Point 10 $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$

![Graph of $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$ vs. Time(s)](image)

Point 10 $\ln(\text{S}/\text{S}_0)$

![Graph of $\ln(\text{S}/\text{S}_0)$ vs. Time(s)](image)

- $y = -8.0674 \times 10^{-4}x - 5.4871 \times 10^{-1}$
 $R^2 = 9.8074 \times 10^{-1}$

- $y = -5.2947 \times 10^{-4}x - 6.2368 \times 10^{-1}$
 $R^2 = 9.6099 \times 10^{-1}$

- $y = -1.3887 \times 10^{-3}x - 3.0462 \times 10^{-1}$
 $R^2 = 9.7638 \times 10^{-1}$
Point 11 $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$

$y = -1.1656E-03x - 9.5954E-01$

$R^2 = 9.5748E-01$

Point 11 $\ln(S/S_0)$

$y = -6.7797E-04x - 8.0152E-01$

$R^2 = 5.4948E-01$

$y = -6.7518E-04x - 7.9088E-01$

$R^2 = 2.9043E-01$
Point 12 $\ln(\text{Fe(II)} / \text{Fe(II)}_0)$

Point 12 $\ln(S / S_0)$

Equations:

- $y = -9.8604E-04x - 5.7228E-01$
 $R^2 = 9.0109E-01$

- $y = -6.1142E-04x - 1.2791E+00$
 $R^2 = 4.5771E-01$

- $y = -8.5558E-04x - 3.6157E-01$
 $R^2 = 6.3341E-01$
Point 13 \(\ln(\frac{\text{Fe(II)}}{\text{Fe(II)}_0}) \)

\[y = -8.3190 \times 10^{-04}x - 5.2842 \times 10^{-01} \]
\[R^2 = 8.5913 \times 10^{-01} \]

Point 13 \(\ln(\frac{S}{S_0}) \)

\[y = -1.1028 \times 10^{-03}x - 6.6489 \times 10^{-01} \]
\[R^2 = 7.8456 \times 10^{-01} \]
Point 14 \(\ln(\text{Fe(II)}/\text{Fe(II)}_0) \)

\[y = -5.6256 \times 10^{-4} x - 3.9099 \times 10^{-1} \]
\[R^2 = 9.1566 \times 10^{-1} \]

Point 14 \(\ln(\text{S}/\text{S}_0) \)

\[y = -9.2535 \times 10^{-4} x - 7.8236 \times 10^{-1} \]
\[R^2 = 6.3940 \times 10^{-1} \]

\[y = -1.7748 \times 10^{-3} x - 4.9733 \times 10^{-1} \]
\[R^2 = 9.0786 \times 10^{-1} \]
Point 16 $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$

![Graph of $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$ vs. Time(s)](image)

Equations:
- $y = -1.3448E-03x - 8.0590E-01$ (R² = 7.5341E-01)
- $y = -2.4856E-03x - 8.6181E-01$ (R² = 8.4883E-01)

Point 16 $\ln(S/S_0)$

![Graph of $\ln(S/S_0)$ vs. Time(s)](image)

Equations:
- $y = -1.4622E-03x - 5.9671E-01$ (R² = 6.9885E-01)
- $y = -1.3448E-03x - 8.0590E-01$ (R² = 7.5341E-01)
- $y = -2.4856E-03x - 8.6181E-01$ (R² = 8.4883E-01)
Point 17 $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$

![Graph showing $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$ vs. Time(s)]

Point 17 $\ln(S/S_0)$

![Graph showing $\ln(S/S_0)$ vs. Time(s)]

- $y = -1.5477E-03x - 9.3204E-01$
 - $R^2 = 8.2690E-01$
- $y = -1.9446E-03x - 2.5435E-01$
 - $R^2 = 9.7186E-01$
- $y = -1.5310E-03x - 4.9880E-01$
 - $R^2 = 8.4013E-01$
Point 18 $\ln(\text{Fe(II)/Fe(II)}_0)$

$y = -5.0443E-03x - 1.2778E+00$
$R^2 = 9.9039E-01$

Point 18 $\ln(S/S_0)$

$y = -1.1835E-03x - 1.0920E+00$
$R^2 = 7.6689E-01$

$y = -1.3437E-03x - 7.5186E-01$
$R^2 = 8.6494E-01$
Point 20 $\ln(\text{Fe(II)/Fe(II)}_0)$

![Graph of $\ln(\text{Fe(II)/Fe(II)}_0)$ vs. Time(s)]

Point 20 $\ln(S/S_0)$

![Graph of $\ln(S/S_0)$ vs. Time(s)]

Equations:

- $y = -7.6946E-04x - 8.0104E-01$
 $R^2 = 6.5812E-01$

- $y = -6.0192E-04x - 7.9777E-01$
 $R^2 = 4.3921E-01$

- $y = -8.1473E-04x - 7.8398E-01$
 $R^2 = 6.5180E-01$
Point 23 \(\ln(\text{Fe(II)/Fe(II)}_0)\)

\[
y = -2.8442E-04x - 1.1190E+00
R^2 = 5.6848E-02
\]

\[
y = -1.5948E-03x - 3.4953E-01
R^2 = 9.5240E-01
\]

\[
y = -1.0440E-03x - 8.1591E-01
R^2 = 8.0971E-01
\]

Point 23 \(\ln(S/S_0)\)

\[
y = -2.8442E-04x - 1.1190E+00
R^2 = 5.6848E-02
\]

\[
y = -1.5948E-03x - 3.4953E-01
R^2 = 9.5240E-01
\]

\[
y = -1.0440E-03x - 8.1591E-01
R^2 = 8.0971E-01
\]
Point 24 $\ln(\text{Fe(II)}/\text{Fe(II)}_0)$

$$y = -1.0936 \times 10^{-3} x - 1.2070 \times 10^0$$
$$R^2 = 6.1904 \times 10^{-1}$$

Point 24 $\ln(\text{S}/\text{S}_0)$

$$y = -1.5241 \times 10^{-3} x - 1.7956 \times 10^{-1}$$
$$R^2 = 9.0695 \times 10^{-1}$$

$$y = -2.2827 \times 10^{-3} x - 4.2503 \times 10^{-1}$$
$$R^2 = 7.3781 \times 10^{-1}$$
Appendix 4: Design Expert© Input

<table>
<thead>
<tr>
<th>Run</th>
<th>ln(Fe(II)/Fe(II)_0) = -1</th>
<th>ln(Fe(II)/Fe(II)_0) = -0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Moles of S oxidized</td>
</tr>
<tr>
<td>1</td>
<td>5437</td>
<td>0.00051</td>
</tr>
<tr>
<td>2</td>
<td>3098</td>
<td>0.000508</td>
</tr>
<tr>
<td>3</td>
<td>1883</td>
<td>0.000672</td>
</tr>
<tr>
<td>4</td>
<td>2544</td>
<td>0.00074</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>0.000229</td>
</tr>
<tr>
<td>6</td>
<td>4286</td>
<td>0.000725</td>
</tr>
<tr>
<td>7</td>
<td>2212</td>
<td>0.000491</td>
</tr>
<tr>
<td>8</td>
<td>3522</td>
<td>0.000971</td>
</tr>
<tr>
<td>9</td>
<td>1953</td>
<td>0.000247</td>
</tr>
<tr>
<td>10</td>
<td>3637</td>
<td>0.000504</td>
</tr>
<tr>
<td>11</td>
<td>1601</td>
<td>0.000242</td>
</tr>
<tr>
<td>12</td>
<td>3703</td>
<td>0.000484</td>
</tr>
<tr>
<td>13</td>
<td>1358</td>
<td>0.000241</td>
</tr>
<tr>
<td>14</td>
<td>1994</td>
<td>0.000251</td>
</tr>
<tr>
<td>15</td>
<td>3496</td>
<td>0.000487</td>
</tr>
<tr>
<td>16</td>
<td>103</td>
<td>9.57E-06</td>
</tr>
<tr>
<td>17</td>
<td>2276</td>
<td>0.000492</td>
</tr>
<tr>
<td>18</td>
<td>2151</td>
<td>0.000241</td>
</tr>
<tr>
<td>19</td>
<td>1239</td>
<td>0.000239</td>
</tr>
<tr>
<td>20</td>
<td>1859</td>
<td>0.000697</td>
</tr>
<tr>
<td>21</td>
<td>1685</td>
<td>0.00024</td>
</tr>
<tr>
<td>22</td>
<td>5316</td>
<td>0.000745</td>
</tr>
<tr>
<td>23</td>
<td>3783</td>
<td>0.00051</td>
</tr>
<tr>
<td>24</td>
<td>108</td>
<td>1.01E-05</td>
</tr>
<tr>
<td>25</td>
<td>1859</td>
<td>0.000697</td>
</tr>
<tr>
<td>26</td>
<td>1126</td>
<td>0.000229</td>
</tr>
<tr>
<td>27</td>
<td>2918</td>
<td>0.00051</td>
</tr>
<tr>
<td>28</td>
<td>997</td>
<td>0.000243</td>
</tr>
<tr>
<td>29</td>
<td>3698</td>
<td>0.000248</td>
</tr>
<tr>
<td>30</td>
<td>7058</td>
<td>0.000755</td>
</tr>
<tr>
<td>31</td>
<td>1912</td>
<td>0.000246</td>
</tr>
<tr>
<td>32</td>
<td>2195</td>
<td>0.000235</td>
</tr>
<tr>
<td>33</td>
<td>7203</td>
<td>0.000755</td>
</tr>
<tr>
<td>34</td>
<td>7884</td>
<td>0.000753</td>
</tr>
<tr>
<td>35</td>
<td>4798</td>
<td>0.000494</td>
</tr>
<tr>
<td>36</td>
<td>3283</td>
<td>0.000493</td>
</tr>
<tr>
<td>37</td>
<td>5179</td>
<td>0.000503</td>
</tr>
<tr>
<td>38</td>
<td>5802</td>
<td>0.00075</td>
</tr>
<tr>
<td>39</td>
<td>1835</td>
<td>0.000722</td>
</tr>
<tr>
<td>40</td>
<td>1863</td>
<td>0.000244</td>
</tr>
<tr>
<td>41</td>
<td>6102</td>
<td>0.00051</td>
</tr>
<tr>
<td>42</td>
<td>1556</td>
<td>0.000245</td>
</tr>
<tr>
<td>43</td>
<td>4255</td>
<td>0.000743</td>
</tr>
<tr>
<td>44</td>
<td>2793</td>
<td>0.000249</td>
</tr>
<tr>
<td>45</td>
<td>3059</td>
<td>0.000495</td>
</tr>
<tr>
<td>46</td>
<td>3392</td>
<td>0.000488</td>
</tr>
<tr>
<td>47</td>
<td>7748</td>
<td>0.00051</td>
</tr>
<tr>
<td>48</td>
<td>81</td>
<td>7.14E-06</td>
</tr>
<tr>
<td>49</td>
<td>2105</td>
<td>0.000247</td>
</tr>
<tr>
<td>50</td>
<td>5489</td>
<td>0.000501</td>
</tr>
<tr>
<td>51</td>
<td>7120</td>
<td>0.000755</td>
</tr>
<tr>
<td>52</td>
<td>2176</td>
<td>0.000233</td>
</tr>
<tr>
<td>53</td>
<td>2941</td>
<td>0.000496</td>
</tr>
<tr>
<td>54</td>
<td>2114</td>
<td>0.000252</td>
</tr>
<tr>
<td>55</td>
<td>2554</td>
<td>0.000253</td>
</tr>
<tr>
<td>56</td>
<td>3719</td>
<td>0.00049</td>
</tr>
<tr>
<td>57</td>
<td>5895</td>
<td>0.000742</td>
</tr>
<tr>
<td>58</td>
<td>2110</td>
<td>0.000242</td>
</tr>
<tr>
<td>59</td>
<td>4190</td>
<td>0.000497</td>
</tr>
<tr>
<td>60</td>
<td>3491</td>
<td>0.000497</td>
</tr>
<tr>
<td>61</td>
<td>7468</td>
<td>0.000755</td>
</tr>
<tr>
<td>62</td>
<td>5988</td>
<td>0.000755</td>
</tr>
<tr>
<td>63</td>
<td>4754</td>
<td>0.000736</td>
</tr>
<tr>
<td>64</td>
<td>4908</td>
<td>0.000498</td>
</tr>
<tr>
<td>65</td>
<td>4299</td>
<td>0.000737</td>
</tr>
<tr>
<td>66</td>
<td>3847</td>
<td>0.000741</td>
</tr>
<tr>
<td>67</td>
<td>3512</td>
<td>0.000254</td>
</tr>
<tr>
<td>68</td>
<td>4774</td>
<td>0.000736</td>
</tr>
<tr>
<td>69</td>
<td>2007</td>
<td>0.000244</td>
</tr>
<tr>
<td>70</td>
<td>8845</td>
<td>0.000755</td>
</tr>
<tr>
<td>71</td>
<td>2334</td>
<td>0.000244</td>
</tr>
<tr>
<td>72</td>
<td>6288</td>
<td>0.000755</td>
</tr>
<tr>
<td>73</td>
<td>5146</td>
<td>0.000974</td>
</tr>
<tr>
<td>74</td>
<td>1066</td>
<td>0.000755</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>75</td>
<td>5495</td>
<td>0.00074</td>
</tr>
<tr>
<td>76</td>
<td>3039</td>
<td>0.000488</td>
</tr>
<tr>
<td>77</td>
<td>5877</td>
<td>0.000982</td>
</tr>
<tr>
<td>78</td>
<td>3587</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Where cells are highlighted, an average of two of the replicates replaced the third due to the third being an outlier. The averaged data has only one cell in the row highlighted, whereas the replaced data has the entire row highlighted.
Appendix 5: Box-Cox Plots, Response Surfaces, and Model Coefficients

Square root(mole S oxidized at the time when \(\ln(\text{Fe(II)}/\text{Fe(II)}_0) = -0.5 \))

Design-Expert® Software
Sqrt(R1)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7.87E-03</td>
<td>1.410E+02</td>
<td>< 0.0001</td>
<td>50.64%</td>
<td>yes</td>
</tr>
<tr>
<td>A-Iron</td>
<td>-1.14E-04</td>
<td>3.954E-01</td>
<td>0.5317</td>
<td>0.01%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>4.12E-05</td>
<td>1.831E+03</td>
<td>< 0.0001</td>
<td>46.98%</td>
<td>yes</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-1.50E-04</td>
<td>3.464E+00</td>
<td>0.0674</td>
<td>0.09%</td>
<td>no</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>2.04E-05</td>
<td>5.290E-01</td>
<td>0.4697</td>
<td>0.01%</td>
<td>no</td>
</tr>
<tr>
<td>AB</td>
<td>1.39E-07</td>
<td>7.501E+00</td>
<td>0.0080</td>
<td>0.19%</td>
<td>yes</td>
</tr>
<tr>
<td>AC</td>
<td>1.24E-06</td>
<td>2.493E-01</td>
<td>0.6193</td>
<td>0.01%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>-1.00E-06</td>
<td>1.013E+00</td>
<td>0.3180</td>
<td>0.03%</td>
<td>no</td>
</tr>
<tr>
<td>BC</td>
<td>-9.64E-09</td>
<td>4.781E-03</td>
<td>0.9451</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>5.83E-08</td>
<td>1.093E+00</td>
<td>0.2999</td>
<td>0.03%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>-2.85E-06</td>
<td>1.085E+00</td>
<td>0.3016</td>
<td>0.03%</td>
<td>no</td>
</tr>
<tr>
<td>A²</td>
<td>7.31E-07</td>
<td>7.143E-01</td>
<td>0.4012</td>
<td>0.02%</td>
<td>no</td>
</tr>
<tr>
<td>B²</td>
<td>-2.37E-08</td>
<td>7.545E+01</td>
<td>< 0.0001</td>
<td>1.94%</td>
<td>yes</td>
</tr>
</tbody>
</table>
Square root(Time when ln(Fe(II)/Fe(II)₀) = -0.5)

Design-Expert® Software
Sqrt(R1)

Lambda
Current = 0.5
Best = 0.6
Low C.I. = 0.42
High C.I. = 0.78

Recommend transform:
Square root
(Lambda = 0.5)

Box-Cox Plot for Power Transforms

Square root(Time when ln(Fe(II)/Fe(II)₀) = -0.5)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.51E+01</td>
<td>5.678E+00</td>
<td>< 0.0001</td>
<td>52.48%</td>
<td>yes</td>
</tr>
<tr>
<td>A-Iron</td>
<td>-1.85E+00</td>
<td>5.072E-03</td>
<td>0.9435</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>3.30E-02</td>
<td>3.962E+01</td>
<td>< 0.0001</td>
<td>26.16%</td>
<td>yes</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-3.54E+00</td>
<td>3.186E+00</td>
<td>0.0791</td>
<td>2.10%</td>
<td>no</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>-2.80E-01</td>
<td>5.433E+00</td>
<td>0.0230</td>
<td>3.59%</td>
<td>yes</td>
</tr>
<tr>
<td>AB</td>
<td>2.02E-03</td>
<td>1.021E+01</td>
<td>0.0022</td>
<td>6.74%</td>
<td>yes</td>
</tr>
<tr>
<td>AC</td>
<td>3.89E-02</td>
<td>1.574E+00</td>
<td>0.2142</td>
<td>1.04%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>5.62E-03</td>
<td>2.050E-01</td>
<td>0.6523</td>
<td>0.14%</td>
<td>no</td>
</tr>
<tr>
<td>BC</td>
<td>-3.88E-04</td>
<td>4.962E-02</td>
<td>0.8245</td>
<td>0.03%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>9.04E-04</td>
<td>1.685E+00</td>
<td>0.1990</td>
<td>1.11%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>-3.03E-02</td>
<td>7.898E-01</td>
<td>0.3775</td>
<td>0.52%</td>
<td>no</td>
</tr>
<tr>
<td>A²</td>
<td>3.23E-03</td>
<td>8.966E-02</td>
<td>0.7656</td>
<td>0.06%</td>
<td>no</td>
</tr>
<tr>
<td>B²</td>
<td>-9.12E-05</td>
<td>7.185E+00</td>
<td>0.0094</td>
<td>4.74%</td>
<td>yes</td>
</tr>
<tr>
<td>C²</td>
<td>1.11E-01</td>
<td>1.845E+00</td>
<td>0.1792</td>
<td>1.22%</td>
<td>no</td>
</tr>
<tr>
<td>D²</td>
<td>4.16E-03</td>
<td>1.014E-01</td>
<td>0.7512</td>
<td>0.07%</td>
<td>no</td>
</tr>
<tr>
<td>R²</td>
<td>0.5579</td>
<td>Adjusted R²</td>
<td>0.4596</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power ($\lambda=0.88$) transform of moles of sulfide oxidized at time when

$$\ln(\text{Fe(II)}/\text{Fe(II)}_0) = -1$$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7.64E-05</td>
<td>2.900E+03</td>
<td>< 0.0001</td>
<td>50.02%</td>
<td>yes</td>
</tr>
<tr>
<td>A-Iron</td>
<td>-1.58E-06</td>
<td>3.341E-02</td>
<td>0.8556</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>2.53E-06</td>
<td>4.046E+04</td>
<td>< 0.0001</td>
<td>49.85%</td>
<td>yes</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-4.69E-06</td>
<td>1.157E+01</td>
<td>0.0012</td>
<td>0.01%</td>
<td>yes</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>-5.95E-08</td>
<td>1.062E+01</td>
<td>0.0018</td>
<td>0.01%</td>
<td>yes</td>
</tr>
<tr>
<td>AB</td>
<td>3.01E-09</td>
<td>9.203E+00</td>
<td>0.0035</td>
<td>0.01%</td>
<td>yes</td>
</tr>
<tr>
<td>AC</td>
<td>5.11E-08</td>
<td>1.100E+00</td>
<td>0.2982</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>-2.87E-08</td>
<td>2.179E+00</td>
<td>0.1449</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>BC</td>
<td>-3.33E-09</td>
<td>1.489E+00</td>
<td>0.2269</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>1.93E-09</td>
<td>3.122E+00</td>
<td>0.0821</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>5.91E-08</td>
<td>1.217E+00</td>
<td>0.2741</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>A2</td>
<td>2.50E-09</td>
<td>2.176E-02</td>
<td>0.8832</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>B2</td>
<td>-4.17E-10</td>
<td>6.113E+01</td>
<td>< 0.0001</td>
<td>0.08%</td>
<td>yes</td>
</tr>
<tr>
<td>C2</td>
<td>4.42E-08</td>
<td>1.189E-01</td>
<td>0.7314</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>D2</td>
<td>8.36E-09</td>
<td>1.661E-01</td>
<td>0.6850</td>
<td>0.00%</td>
<td>no</td>
</tr>
</tbody>
</table>
Square root (time when ln(Fe(II)/Fe(II)_0) = -1)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.02E+02</td>
<td>1.969E+01</td>
<td>< 0.0001</td>
<td>51.40%</td>
<td>yes</td>
</tr>
<tr>
<td>A-Iron</td>
<td>-1.99E+00</td>
<td>3.569E-01</td>
<td>0.5524</td>
<td>0.07%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>4.64E-02</td>
<td>1.828E+02</td>
<td>< 0.0001</td>
<td>34.09%</td>
<td>yes</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-3.15E+00</td>
<td>1.685E+01</td>
<td>0.0001</td>
<td>3.14%</td>
<td>yes</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>-1.25E+00</td>
<td>9.800E+00</td>
<td>0.0026</td>
<td>1.83%</td>
<td>yes</td>
</tr>
<tr>
<td>AB</td>
<td>1.98E-03</td>
<td>2.545E+01</td>
<td>< 0.0001</td>
<td>4.75%</td>
<td>yes</td>
</tr>
<tr>
<td>AC</td>
<td>9.01E-03</td>
<td>2.202E-01</td>
<td>0.6405</td>
<td>0.04%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>5.72E-03</td>
<td>5.543E-01</td>
<td>0.4593</td>
<td>0.10%</td>
<td>no</td>
</tr>
<tr>
<td>BC</td>
<td>-1.49E-03</td>
<td>1.905E+00</td>
<td>0.1724</td>
<td>0.36%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>4.69E-04</td>
<td>1.183E+00</td>
<td>0.2810</td>
<td>0.22%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>2.15E-02</td>
<td>1.033E+00</td>
<td>0.3134</td>
<td>0.19%</td>
<td>no</td>
</tr>
<tr>
<td>A²</td>
<td>9.39E-03</td>
<td>1.972E+00</td>
<td>0.1651</td>
<td>0.37%</td>
<td>no</td>
</tr>
<tr>
<td>B²</td>
<td>-6.65E-05</td>
<td>9.970E+00</td>
<td>0.0024</td>
<td>1.86%</td>
<td>yes</td>
</tr>
<tr>
<td>C²</td>
<td>1.05E-01</td>
<td>4.334E+00</td>
<td>0.0414</td>
<td>0.81%</td>
<td>yes</td>
</tr>
<tr>
<td>D²</td>
<td>1.66E-02</td>
<td>4.190E+00</td>
<td>0.0448</td>
<td>0.78%</td>
<td>yes</td>
</tr>
</tbody>
</table>

R²

| R² | 0.9985 | Adjusted R² | 0.9981 |

Design-Expert® Software

- **Sqrt(R1)**
- **Lambda**
 - Current = 0.5
 - Best = 0.47
 - Low C.I. = 0.33
 - High C.I. = 0.61
- **Recommend transform:**
 - Square root
 - (Lambda = 0.5)

Box-Cox Plot for Power Transforms

- Lambda vs. Ln(ResidualSS)
- Values: 17.90, 22.59, 27.28, 31.97, 36.66
- Lambda range: -3 to 3

87
Square root([time to phase change] + 30)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.78E+01</td>
<td>1.888E+01</td>
<td>< 0.0001</td>
<td>51.43%</td>
<td>yes</td>
</tr>
<tr>
<td>A-Iron</td>
<td>-5.12E-01</td>
<td>1.194E-01</td>
<td>0.7309</td>
<td>0.02%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>6.30E-02</td>
<td>1.718E+02</td>
<td>< 0.0001</td>
<td>33.42%</td>
<td>yes</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-1.30E+00</td>
<td>5.923E+00</td>
<td>0.0178</td>
<td>1.15%</td>
<td>no</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>-3.68E-01</td>
<td>1.252E+01</td>
<td>0.0008</td>
<td>2.44%</td>
<td>yes</td>
</tr>
<tr>
<td>AB</td>
<td>5.95E-05</td>
<td>7.464E+00</td>
<td>0.0082</td>
<td>1.45%</td>
<td>yes</td>
</tr>
<tr>
<td>AC</td>
<td>1.05E-02</td>
<td>9.631E-01</td>
<td>0.3302</td>
<td>0.19%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>1.88E-02</td>
<td>1.944E+01</td>
<td>< 0.0001</td>
<td>3.78%</td>
<td>yes</td>
</tr>
<tr>
<td>BC</td>
<td>2.40E-04</td>
<td>1.600E-01</td>
<td>0.6905</td>
<td>0.03%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>4.97E-05</td>
<td>4.308E-02</td>
<td>0.8363</td>
<td>0.01%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>-1.65E-02</td>
<td>1.977E+00</td>
<td>0.1646</td>
<td>0.38%</td>
<td>no</td>
</tr>
<tr>
<td>A^2</td>
<td>-4.49E-03</td>
<td>1.459E+00</td>
<td>0.2316</td>
<td>0.28%</td>
<td>no</td>
</tr>
<tr>
<td>B^2</td>
<td>-5.87E-05</td>
<td>2.516E+01</td>
<td>< 0.0001</td>
<td>4.90%</td>
<td>yes</td>
</tr>
<tr>
<td>C^2</td>
<td>4.29E-02</td>
<td>2.337E+00</td>
<td>0.1314</td>
<td>0.45%</td>
<td>no</td>
</tr>
<tr>
<td>D^2</td>
<td>-2.44E-03</td>
<td>2.953E-01</td>
<td>0.5888</td>
<td>0.06%</td>
<td>no</td>
</tr>
<tr>
<td>R^2</td>
<td>0.8075</td>
<td>Adjusted R^2</td>
<td>0.7648</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
k_{obs} HS[−] oxidized

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.30E-04</td>
<td>6.799E-01</td>
<td>0.7850</td>
<td>51.03%</td>
<td>no</td>
</tr>
<tr>
<td>A-Iron</td>
<td>1.40E-05</td>
<td>7.587E-02</td>
<td>0.7839</td>
<td>0.41%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>3.51E-07</td>
<td>3.747E-01</td>
<td>0.5427</td>
<td>2.01%</td>
<td>no</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-3.52E-06</td>
<td>1.354E+00</td>
<td>0.2489</td>
<td>7.26%</td>
<td>no</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>9.53E-06</td>
<td>1.409E+00</td>
<td>0.2397</td>
<td>7.55%</td>
<td>no</td>
</tr>
<tr>
<td>AB</td>
<td>-9.24E-09</td>
<td>1.131E+00</td>
<td>0.2916</td>
<td>6.07%</td>
<td>no</td>
</tr>
<tr>
<td>AC</td>
<td>2.79E-09</td>
<td>4.304E-05</td>
<td>0.9948</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>-1.60E-07</td>
<td>8.785E-01</td>
<td>0.3522</td>
<td>4.71%</td>
<td>no</td>
</tr>
<tr>
<td>BC</td>
<td>-2.59E-08</td>
<td>1.178E+00</td>
<td>0.2819</td>
<td>6.31%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>5.96E-09</td>
<td>3.891E-01</td>
<td>0.5350</td>
<td>2.09%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>5.07E-07</td>
<td>1.173E+00</td>
<td>0.2829</td>
<td>6.29%</td>
<td>no</td>
</tr>
<tr>
<td>A<sup>2</sup></td>
<td>-6.80E-08</td>
<td>2.101E-01</td>
<td>0.6483</td>
<td>1.13%</td>
<td>no</td>
</tr>
<tr>
<td>B<sup>2</sup></td>
<td>9.07E-11</td>
<td>3.775E-02</td>
<td>0.8466</td>
<td>0.20%</td>
<td>no</td>
</tr>
<tr>
<td>C<sup>2</sup></td>
<td>-8.11E-08</td>
<td>5.233E-03</td>
<td>0.9426</td>
<td>0.03%</td>
<td>no</td>
</tr>
<tr>
<td>D<sup>2</sup></td>
<td>-1.72E-07</td>
<td>9.169E-01</td>
<td>0.3420</td>
<td>4.92%</td>
<td>no</td>
</tr>
</tbody>
</table>

R² | 0.1313 | Adjusted R² | -0.0618 |
%HS oxidized at time when ln(Fe(II)/Fe(II)_0) = -0.5

%HS oxidized at time when ln(Fe(II)/Fe(II)_0) = -0.5

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.99E+01</td>
<td>9.467E+00</td>
<td>< 0.0001</td>
<td>56.55%</td>
<td>yes</td>
</tr>
<tr>
<td>A-Iron</td>
<td>-9.55E-01</td>
<td>1.073E-02</td>
<td>0.9178</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>8.48E-02</td>
<td>4.026E+01</td>
<td>< 0.0001</td>
<td>17.18%</td>
<td>yes</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-1.28E+00</td>
<td>5.192E+00</td>
<td>0.0261</td>
<td>2.22%</td>
<td>yes</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>1.61E-01</td>
<td>4.635E-01</td>
<td>0.4985</td>
<td>0.20%</td>
<td>no</td>
</tr>
<tr>
<td>AB</td>
<td>1.12E-03</td>
<td>9.719E+00</td>
<td>0.0027</td>
<td>4.15%</td>
<td>yes</td>
</tr>
<tr>
<td>AC</td>
<td>4.36E-03</td>
<td>6.123E-02</td>
<td>0.8054</td>
<td>0.03%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>-7.71E-03</td>
<td>1.196E+00</td>
<td>0.2783</td>
<td>0.51%</td>
<td>no</td>
</tr>
<tr>
<td>BC</td>
<td>4.70E-04</td>
<td>2.253E-01</td>
<td>0.6367</td>
<td>0.10%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>4.48E-04</td>
<td>1.280E+00</td>
<td>0.2621</td>
<td>0.55%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>-2.62E-02</td>
<td>1.820E+00</td>
<td>0.1822</td>
<td>0.78%</td>
<td>no</td>
</tr>
<tr>
<td>A²</td>
<td>6.35E-03</td>
<td>1.071E+00</td>
<td>0.3046</td>
<td>0.46%</td>
<td>no</td>
</tr>
<tr>
<td>B²</td>
<td>-1.20E-04</td>
<td>3.877E+01</td>
<td>< 0.0001</td>
<td>16.54%</td>
<td>yes</td>
</tr>
<tr>
<td>C²</td>
<td>5.31E-02</td>
<td>1.308E+00</td>
<td>0.2570</td>
<td>0.56%</td>
<td>no</td>
</tr>
<tr>
<td>D²</td>
<td>5.07E-03</td>
<td>4.661E-01</td>
<td>0.4973</td>
<td>0.20%</td>
<td>no</td>
</tr>
<tr>
<td>R²</td>
<td>0.6778</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design-Expert® Software
R1
Lambda
Current = 1
Best = 3
Low C.I. =
High C.I. =
Recommend transform:
None
(Lambda = 1)
%HS⁻ oxidized at time when $\ln(\text{Fe(II)/Fe(II)}_0) = -1$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>F-Value</th>
<th>p-Value</th>
<th>% Contribution</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.06E+01</td>
<td>1.324E+01</td>
<td>< 0.0001</td>
<td>55.96%</td>
<td>yes</td>
</tr>
<tr>
<td>A-Iron</td>
<td>-5.05E-01</td>
<td>2.105E-01</td>
<td>0.6480</td>
<td>0.06%</td>
<td>no</td>
</tr>
<tr>
<td>B-Sulfide</td>
<td>1.12E-01</td>
<td>8.677E+01</td>
<td>< 0.0001</td>
<td>26.19%</td>
<td>yes</td>
</tr>
<tr>
<td>C-Phosphate</td>
<td>-1.03E+00</td>
<td>1.567E+00</td>
<td>0.2153</td>
<td>0.47%</td>
<td>no</td>
</tr>
<tr>
<td>D-Carbonate</td>
<td>-1.95E-01</td>
<td>1.270E+00</td>
<td>0.2641</td>
<td>0.38%</td>
<td>no</td>
</tr>
<tr>
<td>AB</td>
<td>2.87E-04</td>
<td>1.287E+00</td>
<td>0.2609</td>
<td>0.39%</td>
<td>no</td>
</tr>
<tr>
<td>AC</td>
<td>1.67E-03</td>
<td>1.817E-02</td>
<td>0.8932</td>
<td>0.01%</td>
<td>no</td>
</tr>
<tr>
<td>AD</td>
<td>-1.29E-03</td>
<td>6.753E-02</td>
<td>0.7958</td>
<td>0.02%</td>
<td>no</td>
</tr>
<tr>
<td>BC</td>
<td>9.63E-05</td>
<td>1.914E-02</td>
<td>0.8904</td>
<td>0.01%</td>
<td>no</td>
</tr>
<tr>
<td>BD</td>
<td>2.14E-05</td>
<td>5.882E-03</td>
<td>0.9391</td>
<td>0.00%</td>
<td>no</td>
</tr>
<tr>
<td>CD</td>
<td>2.76E-03</td>
<td>4.092E-02</td>
<td>0.8403</td>
<td>0.01%</td>
<td>no</td>
</tr>
<tr>
<td>A<sup>2</sup></td>
<td>4.13E-03</td>
<td>9.147E-01</td>
<td>0.3425</td>
<td>0.28%</td>
<td>no</td>
</tr>
<tr>
<td>B<sup>2</sup></td>
<td>-9.77E-05</td>
<td>5.158E+01</td>
<td>< 0.0001</td>
<td>15.57%</td>
<td>yes</td>
</tr>
<tr>
<td>C<sup>2</sup></td>
<td>3.35E-02</td>
<td>1.052E+00</td>
<td>0.3090</td>
<td>0.32%</td>
<td>no</td>
</tr>
<tr>
<td>D<sup>2</sup></td>
<td>5.47E-03</td>
<td>1.098E+00</td>
<td>0.2988</td>
<td>0.33%</td>
<td>no</td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>0.7463</td>
<td>Adjusted R<sup>2</sup></td>
<td>0.6900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>