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A B S T R A C T

Background: Evidence remains equivocal regarding the association of inflammation, a precursor to cardiovas-
cular disease, and acute exposures to ambient air pollution from traffic-related particulate matter. Though youth
with type 1 diabetes are at higher risk for cardiovascular disease, the relationship of inflammation and ambient
air pollution exposures in this population has received little attention.
Objectives: Using five geographically diverse US sites from the racially- and ethnically-diverse SEARCH for
Diabetes in Youth Cohort, we examined the relationship of acute exposures to PM2.5 mass, Atmospheric
Dispersion Modeling System (ADMS)-Roads traffic-related PM concentrations near roadways, and elemental
carbon (EC) with biomarkers of inflammation including interleukin-6 (IL-6), c-reactive protein (hs-CRP) and
fibrinogen.
Methods: Baseline questionnaires and blood were obtained at a study visit. Using a spatio-temporal modeling
approach, pollutant exposures for 7 days prior to blood draw were assigned to residential addresses. Linear
mixed models for each outcome and exposure were adjusted for demographic and lifestyle factors identified a
priori.
Results: Among the 2566 participants with complete data, fully-adjusted models showed positive associations of
EC average week exposures with IL-6 and hs-CRP, and PM2.5 mass exposures on lag day 3 with IL-6 levels.
Comparing the 25th and 75th percentiles of average week EC exposures resulted in 8.3% higher IL-6 (95%CI:
2.7%,14.3%) and 9.8% higher hs-CRP (95%CI: 2.4%,17.7%). We observed some evidence of effect modification
for the relationships of PM2.5 mass exposures with hs-CRP by gender and with IL-6 by race/ethnicity.
Conclusions: Indicators of inflammation were associated with estimated traffic-related air pollutant exposures in
this study population of youth with type 1 diabetes. Thus youth with type 1 diabetes may be at increased risk of
air pollution-related inflammation. These findings and the racial/ethnic and gender differences observed deserve
further exploration.
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1. Introduction

There is persuasive evidence that exposures to ambient air pollution
are associated with increased risk of cardiovascular disease morbidity
and mortality (Dockery et al., 1993; Laden et al., 2006; Miller et al.,
2007; Pope et al., 2002; Puett et al., 2008). Proposed biological me-
chanisms underlying this relationship include changes in autonomic
function, oxidative stress, and systemic inflammation leading to en-
dothelial dysfunction, thrombosis or atherosclerosis (Gurgueira et al.,
2002; Pope et al., 2004; Pope and Dockery, 2006; Souza et al., 1998;
Utell et al., 2002).

Individuals with diabetes bear a disproportionately greater risk of
cardiovascular disease morbidity and mortality associated with in-
creases in air pollution (Dubowsky et al., 2006; Kan et al., 2007;
Maynard et al., 2007; O'Neill et al., 2005; Ostro et al., 2006; Peel et al.,
2007). Studies have shown that cardiovascular hospitalizations and
emergency department visits associated with ambient air pollution
exposures are higher in persons with diabetes compared to persons
without diabetes (Peel et al., 2007; Pereira Filho et al., 2008; Zanobetti
and Schwartz, 2001, 2002). However, why individuals with diabetes
are particularly vulnerable to the effects of ambient air pollution is
poorly understood. Evidence suggests mechanisms associated with
proinflammatory responses (Jacobs et al., 2010), chronic inflamma-
tion/oxidative stress, chronic autonomic dysfunction resulting in ar-
terial stiffness, or imbalances in arterial vasoactive mediators (Gold,
2008). The vast majority of air pollution-related research in persons
with diabetes has been conducted in adults – who largely have type 2
diabetes (T2D). Among this population, findings have been equivocal,
particularly with respect to size fractions of particulate matter (PM)
(e.g., one study found a relationship with PM0.25 but not with larger size
fractions (Delfino et al., 2009)). Some studies observed an association
of PM exposures with inflammatory biomarkers: interleukin-6 (IL-6), C-
reactive protein (CRP), or fibrinogen; while other studies have reported
no relationship (Rich et al., 2012; Tsai et al., 2012; Williams et al.,
2011; Zeka et al., 2006).

Few published studies have addressed the impact of air pollution on
youth with diabetes, the vast majority of whom have type 1 diabetes
(T1D). This research includes a few studies of air pollution exposures
and diabetes incidence (Di Ciaula, 2016; Hathout et al., 2002, 2002;
Malmqvist et al., 2015; Michalska et al., 2017) or metabolic control
(Lanzinger et al., 2018; Tamayo et al., 2016), and a study of the re-
lationship of air pollution exposures with oxidative stress, insulin re-
sistance, and inflammation (Kelishadi et al., 2009). In a study con-
ducted among Iranian youth aged 10–18 years, Kelishadi et al. (2009)
reported that daily concentrations of PM10 averaged over the week
prior to biomarker assessment were independently associated with in-
creased high-sensitivity CRP (hs-CRP) (β: 1.5 [SE: 0.2], p < 0.0001)
(Kelishadi et al., 2009).

Using data from the SEARCH for Diabetes in Youth Study
(SEARCH), we examined whether inflammatory biomarkers (IL-6, hs-
CRP, and fibrinogen) were associated with acute exposure to traffic-
related air pollution including daily PM2.5 mass, Atmospheric
Dispersion Modeling System (ADMS)-Roads (near roadway) estimated
traffic-related PM concentrations, and PM2.5 elemental carbon (EC)
among youth with T1D.

2. Methods

2.1. Study population

Participants were drawn from five of six original sites (Hawaii ex-
cluded) in the SEARCH for Diabetes in Youth Study (SEARCH), a large
multicenter observational study of youth under aged 20 at the time of
physician-diagnosed nongestational diabetes: South Carolina (state-
wide); eight counties surrounding Cincinnati, Ohio, including Butler,
Clermont, Hamilton, Warren counties in Ohio, Boone, Campbell, and

Kenton counties in Kentucky, and Dearborn, Indiana); Colorado (sta-
tewide); Washington (5 counties surrounding Seattle, King, Kitsap,
Pierce, Snohomish and Thurston) and health plan membership in 7
counties of Southern California (Los Angeles, Orange, Riverside, San
Bernardino, Ventura, Imperial, Kern). Methods for the study are de-
scribed in detail elsewhere (SEARCH Study Group, 2004; Hamman
et al., 2014). Briefly, participants were identified via pediatric en-
docrinologists and health plan membership discharge diagnoses, la-
boratory measures and prescriptions. Data collection, including a
baseline visit and follow-up visits at 12, 24 and 60months, began for
prevalent cases in 2001 and in 2002 for incident cases and is ongoing.
Study visits were conducted under conditions of metabolic stability and
in the absence of recent acute infection (Alman et al., 2014). For the
current study, we used data from baseline visits from 2002 to 2006 for
prevalent and incident cases. Case ascertainment is based on verifica-
tion of a physician diagnosis of diabetes. Diabetes type was based on
clinical type assigned by the health care provider as recorded in med-
ical records. Information from baseline study visits included ascer-
tainment of clinical and family history (parental education, income,
etc.), information on treatment of diabetes, quality of life, health be-
haviors including diet and physical activity, anthropometric, blood
pressure, and laboratory measures.

2.2. Outcomes

Plasma samples from blood drawn at the baseline study visit were
used to analyze IL-6, hs-CRP, and fibrinogen. Participants were asked to
fast for 8 h prior to the visit. Concentration of IL-6 in plasma was
measured by a monoclonal antibody-based, high sensitive solid-phase
ELISA method (R&D System, Inc.). The assay sensitivity is 0.039 pg/mL
and the interassay CVs of the low-, medium-, and high-level quality
control samples are 9.6%, 7.2% and 5.6%, respectively. hs-CRP was
measured immunochemically in plasma using Siemens reagents on a
nephelometer autoanalyzer (BNII). The assay sensitivity is 0.004mg/dL
and the interassay CVs of the low-, medium-, and high-level quality
control samples were consistently< 3%. Fibrinogen was measured
immunochemically in plasma using Siemens reagent on a nephelometer
autoanalyzer (BNII). The assay sensitivity was 3.0 mg/dL and the CV
consistently< 4%.

2.3. Potential confounders and effect modifiers

A Directed Acyclic Graph (DAG) was developed a priori based on
the literature and guided our selection of covariates and model tests.
Our final DAG (Fig. A1 Appendix) and fully-adjusted models included
demographic variables (gender, race/ethnicity, age and socioeconomic
position) and lifestyle variables (smoking, physical activity/sedentary
behavior). In addition, smoking status, race/ethnicity, statin use and
gender were considered as effect modifiers because these variables have
been shown to influence results in studies performed in adults (Bravo
et al., 2016; Lee et al., 2016; Ostro et al., 2014; Tsai et al., 2012). DAG
development also dictated sensitivity analyses in which fasting status
was included as an additional confounder in fully-adjusted models and
examined as an effect modifier.

Data on all potential confounders and effect modifiers were col-
lected at the baseline study visit via interview-administered ques-
tionnaires. For the measure of neighborhood affluence, residential ad-
dress was used to obtain the percentage below poverty for the census
tract of residence using the 2000 Census. For participants aged ten
years and older, information on smoking and physical and sedentary
activity was assessed with questions based on the CDC-Sponsored Youth
Risk Behavior Surveillance System. Questions ascertained whether the
participants had any history of smoking tobacco (“even one or two
puffs”) and among those that did, how many days in the past 30 in
which they smoked tobacco. Physical and sedentary activity were as-
sessed via questions about the average time per week spent watching
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television and playing video/computer games, as well as average
number of days per week spent exercising or participating in physical
activity that made them sweat for at least 20min.

2.4. Exposures

We used spatio-temporal models to provide estimates of 24-hour
average PM2.5 mass and weekly average EC concentrations across the
conterminous US from 1999 to 2011 (Yanosky et al., 2018). In addition,
we used Atmospheric Dispersion Modeling System (ADMS)-Roads
software (CERC; Cambridge, England) to provide estimates of traffic-
related PM exposures near roadways. Residential addresses at the time
of the baseline study visit were geocoded for each participant using
ArcGIS 9.3 software (ESRI 2008) and the TIGER 2000 and 2006 Road
Network Files, using a 30m offset to account for residential distance
from the road. We achieved a street-segment match rate of over 94%.
These geocoded addresses were then used to assign exposure estimates
to each participant's location for PM2.5 mass, EC, and ADMS-Roads
traffic-related PM levels. For ADMS-Roads, traffic-related PM levels
were estimated from all roadways including surface streets (US Census
Feature Class codes A1–A4 and A6 (hereafter ADMS-Roads A1–A6 ex-
posures)) as well as those from only major roadways (US Census Fea-
ture Class codes A1–A3 (hereafter ADMS-Roads A1–A3 exposures)).
Moving averages corresponding to the seven days prior to blood draw
(referred to as weekly averages) were calculated for each exposure
metric. For PM2.5 mass and ADMS-Roads A1–A6, exposures were also
calculated for the day of blood draw (lag 0), for each of the 7 days prior
to blood draw (lag days 1–7), and for moving averages of 2, 3, 4 and
5 days prior to blood draw.

Details of these models, including full results and a description of
cross-validation procedures and reference maps demonstrating spatial
resolution, have been published elsewhere (Yanosky et al., 2018).
Briefly, 24 h average PM2.5 concentration data were obtained from the
US Environmental Protection Agency (USEPA) Air Quality System
(AQS), from the Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) network, and from the Southern Aerosol Research
and Characterization Study (SEARCH) network. EC measurements were
from the AQS (parameter code 88380) and IMPROVE (parameter code
88321) networks for one of every three days and were used to estimate
a weekly average. Predictive accuracy of the PM2.5 EC model ranged
from a cross-validation R2 of 0.6 for a weekly average to 0.8 for an
annual average. Data on meteorological factors influencing air pollu-
tion dispersion including wind speed and direction, sensible heat flux,
planetary boundary layer height, air temperature, total precipitation,
and total snowfall were obtained from the (MERRA) project (Goddard
Earth Sciences Data and Information Services Center, 2010). Data on
traffic counts from Geographic Data Technology, Inc. (Lebanon, NH)
Dynamap Traffic Counts v4.2 were spatially joined to ESRI StreetMap
Pro 2007 to obtain the US Census Feature Class Code (US Census Bu-
reau 2013) road class: A1 (primary roads, typically interstates, with
limited access), A2 (primary major, non-interstate roads), A3 (smaller,
secondary roads, usually with more than two lanes), A4–6 (smaller
roads, traffic circles and vehicle trails for local traffic); the resulting
traffic counts were spatially averaged. Data on county-level population
density (in persons m−2) from the 2000 US Census (US Census Bureau
2013) were obtained from ESRI Data and Maps 10.1, elevation data
from the USGS National Elevation Dataset (USGS 2013). The spatio-
temporal generalized additive mixed models (GAMMs) for PM2.5 mass
and EC had the following generic form (Yanosky et al., 2014):

= + + + + + + +y d X f Z g s g s b e( ) ( ) ( ) ( ) ;i t t
q

q i q
p

p i t p t i i i i t, , , , ,

b N e N~ (0, ); ~ (0, )i b i t e t
2

,
2

where yi, t are monitor measurements for i=1…I sites and t=1…T 24-
hr time periods, si is the projected spatial coordinate pair for the ith

location. Xi, q are GIS-based time-invariant spatial covariates for
q=1…Q, Zi, t, p are spatio-temporal covariates (including ADMS-Roads
traffic-related PM levels) for p=1…P, and αt is an intercept re-
presenting the adjusted mean across all sites on a given day. dqare
penalized spline smooth functions of Q GIS-based time-invariant spatial
covariates, fp are penalized spline smooth functions of P spatio-tem-
poral covariates gt(si) accounts for residual spatial variability in the 24-
hr average values, and g(si) accounts for time-invariant spatial varia-
bility across the conterminous US. The site-specific random effect bi
represents unexplained site-specific variability.

2.5. Statistical analysis

Of the 3530 participants available for the study from five sites of the
SEARCH cohort, we excluded 149 with missing information on all
outcomes; 35 with missing or unknown values for age, gender, site, or
percentage below poverty for the census tract of residence; 587 with
missing or zero values for ADMS-Roads A1–3 exposures due to
living>2 km from the nearest class A1–3 road (though these partici-
pants are included in sensitivity analyses); 6 with missing values for EC
exposures; 21 reporting statin medication use; and 166 with geocode
quality other than street segment match or better resulting in a final
sample size of 2566. Among this population, 386 were missing only IL-6
measures, 108 were missing only hs-CRP, and 100 were missing only
fibrinogen. After the inflammatory biomarkers' distributions were ex-
amined and influential outliers removed, 2179 participants were in-
cluded in the IL-6 analyses, 2458 in hs-CRP analyses, and 2466 in fi-
brinogen analyses. Correlations among exposures are presented in a
supplementary table (A1), and correlations among outcomes were: IL-6
with hs-CRP: 0.11 and fibrinogen: 0.05 and hs-CRP with fibrinogen:
0.05. Based on examinations of exposure and outcome distributions, all
were log-transformed. Separate linear mixed models for each exposure
and each outcome, with study site as a random effect, were considered
in basic models. Models with covariates added one at a time examined
the influence of potential confounders identified through the DAG
process. Models which included all demographic variables (age, gender,
race/ethnicity, and census tract of residence percent below poverty)
were considered, followed by fully-adjusted models which included
demographic variables as well as lifestyle factors identified by the DAG
(ever tried smoking, number of days smoked in past 30, time spent
watching television/playing computer/video games, and days of vig-
orous exercise in past week). All models were evaluated with and
without adjustment for fasting status. Interactions by smoking and
fasting status, race/ethnicity, and gender were examined via interaction
terms in fully-adjusted models, and by stratified models. Due to the
small number of participants reporting statin use (n=21), we did not
examine it as an effect modifier but excluded those on statins from the
analysis. From these models we estimated the percent difference in each
outcome (IL-6, hs-CRP, and fibrinogen) for an IQR change of each ex-
posure (weekly average EC and ADMS Roads A1–3, and weekly average
and 0–7 day lags for ADMS Roads 1-6 and PM2.5 mass). We conducted
sensitivity analyses that included participants with any pollutant ex-
posure data; the majority of whom were missing ADMS Roads A1–3
exposures. All analyses were conducted using SAS 9.4 (Cary, NC).

3. Results

As shown in Table 1, approximately 51% of the 2566 participants
were male, and the majority were White (75.2%). Colorado provided
the greatest number of participants (29.3%) and South Carolina the
least (7.6%). More than half reported never smoking (54.4%). Among
those who tried smoking, most (62.0%) only smoked 1 day in the past
month. Approximately 38% percent of participants reported between 1
and 4 days of vigorous physical activity over the past week, and about
89% reported fasting prior to blood draw. The mean age of participants
was 12.3 years (SD: 4.4) with 73% over age 10 years old, mean days per
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week of television watching was 4 (SD: 1.5), mean days per week of
computer use was 2.7 (SD: 1.5), and the mean percentage of residents
living in poverty in participants' census tract of residence was 8.6% (SD:
8.3%).

For the week prior to the blood draw, the geometric mean for ADMS
Roads A1–6 traffic-related PM exposure was 0.09 μg/m3 (SD: 0.001),
for ADMS Roads A1–3 exposures: 0.02 μg/m3 (SD: 0.001), 2.3 μg/m3

(SD: 0.01) for PM2.5 mass exposures, and 6.6 ng/m3 (SD: 0.01) for ex-
posure to EC. The IQR for weekly average ADMS Roads A1–6 was
0.1 μg/m3, 0.05 μg/m3 for ADMS Roads A1–3, 11.2 μg/m3 for PM2.5

mass exposures, and 617.2 for EC ng/m3. The geometric mean for IL-6
was 0.9 (SD: 0.01), 6.0 for hs-CRP (SD: 0.03), and 5.8 (SD: 0.004) for
fibrinogen. Sensitivity analyses adding participants who were missing
primarily the ADMS Roads A1–3 pollutant exposure (i.e., lived>2 km
from a major road or at a distance where levels reduced to zero) re-
sulted in a higher percentage of non-Hispanic whites (77.6%) and
participants from South Carolina (e.g. 10.3%) and somewhat lower
mean EC week exposures (822.9 [SD: 522.7] ng/m3 vs. 882.8 [SD:
538.1] ng/m3).

3.1. IL-6

In mixed models adjusting only for site (basic models), increased
levels of EC exposures averaged over the week prior to blood draw were
positively associated with higher IL-6 levels. Comparing EC weekly
averages from the 25th to the 75th percentiles, exposure was associated
with an 8.3% higher level of IL-6 (95%CI: 2.7%,14.3%) (Fig. A.2).
Similarly, comparing exposure from the lowest to highest quartile of
PM2.5 mass exposures on lag day 3, exposure was associated with 5.0%
higher IL-6 level (95%CI: −0.01%,10.3%) in basic models. A negative
association was observed with ADMS Roads 1-3 exposures (−4.7% IQR
change; 95%CI: −9.0%, −0.2%), which weakened somewhat after
adjustment for demographic variables. We observed no other consistent
associations in basic models for any of the pollutants we examined.
Further adjustment for smoking, physical activity, sedentary behavior,
and fasting status (lifestyle factors) did not appreciably change model
results. For example, in fully-adjusted models (Fig. 1), comparing ex-
posure from the 25th to 75th percentile of weekly average EC, exposure
was associated with an 8.9% higher IL-6 level (95%CI: 3.2%,14.9%)
(Fig. 1). Likewise, comparing exposure from the 25th to 75th percentile
of PM2.5 mass exposures on lag day 3 was associated with a 5.4% higher
IL-6 level (95%CI: 0.4%,10.7%). Interactions were observed by race/
ethnicity with non-Hispanic Black participants showing higher IL-6 le-
vels with decreasing PM2.5 mass exposures on lag days 4 through 6,
while non-Hispanic White participants showed higher levels of IL-6
with increasing PM2.5 mass exposures on lag days 3 and 4. Participants
of other races also had positive associations for lag days 4 and 7. Par-
ticipants who were of Hispanic ethnicity or White race showed higher
IL-6 levels when exposed to higher levels of EC, as demonstrated in Fig.
A3. With an increase from the lowest to highest quartile, Blacks showed
a 10.0% lower IL-6 level (95%CI: −27.5%,11.6%), while Whites and
Hispanics showed an 8.4% (95%CI: 2.0%,15.1%) and 25.9 (95%CI:
7.0%,48.2%) percent higher IL-6 level, respectively. No other con-
sistent, robust interactions were observed. Results were comparable for
sensitivity analyses that included participants who were missing any of
the individual pollutant exposures or had an equivalent of zero for
ADMS Roads A1–3 pollution, meaning that they lived further than 2 km
from a major road.

Table 1
Descriptive statistics of covariates, inflammatory biomarkers and air pollution
exposures in the search cohort participants included in the primary and sensi-
tivity analyses.

Variable Primary analyses
(N=2566)

Sensitivity analyses
(N=3129)

No. (%) or mean
(SD)

No. (%) or mean (SD)

Gender
Female 1245(48.5) 1518(48.5)

Race
Black 234(9.1) 263(8.4)
Hispanic 329(12.8) 356(11.4)
Other races 74(2.9) 83(2.6)
White 1929(75.2) 2427(77.6)

Site
South Carolina 196(7.6) 322(10.3)
Ohio 543(21.2) 690(22.1)
Colorado 753(29.3) 898(28.7)
California 410(16.0) 445(14.2)
Washington 664(25.9) 774(24.7)

Smoking status
Missing 28 (1.1) 32(1.0)
Not asked (under 10) 715(27.9) 870(27.8)
Never smoker 1397(54.4) 1722(55.0)
Tried smoking 426(16.6) 505(16.2)

Among smokers, days in past 30
1 264 (62.0) 317 (62.8)
2 to 5 78(18.3) 89(17.6)
6 to 7 81(19.0) 96(19.0)
Missing 3(0.7) 3(0.01)

Days in past 7 vigorous exercise
0 235(9.1) 293(9.4)
1–4 988(38.5) 1207(38.6)
5–7 600(23.4) 727(23.2)
Missing 28(1.1)) 870(27.8)
Not asked (under 10) 715(27.0) 32(1.0)

Blood draw was fasting
No 283(11.0) 334(11.0)

Age 12.3(4.4) 12.2(4.4)

Days in past 7 TV watching
(over 9 years)

4.0(1.5) 4.0(1.5)

Days in past 7 computer use
(over 9 years)

2.7(1.5) 2.7(1.5)

Percent below poverty in tract
of residence

8.6(8.3) 8.3(7.9)

Pollutant exposures avg week prior to blood draw
ADMS roads A1–6 μg/m3 0.1(0.1) 0.1(0.1)
ADMS roads A1–6 (geometric) 0.09(0.001) 0.08(0.001)
ADMS roads A1–6 IQR μg/m3 0.1 0.1
ADMS roads A1–3 0.06(0.1)
ADMS roads A1–3 (geometric) 0.02(0.001)
ADMS roads A1–3 IQR 0.05
PM2.5 mass μg/m3 11.2(5.5) 10.9(5.4)
PM2.5 mass (geometric) 2.3(0.01) 2.2(0.01)
PM2.5 mass μg/m3 IQR 11.2 6.5
EC ng/m3 882.8(538.1) 822.9(522.7)
EC (geometric) 6.6(0.01) 6.5(0.01)
EC ng/m3 IQR 617.2 585.9

Outcome variables

N=2179 N=2642
IL-6 μg/L 18.4(24.9) 18.0(24.0)
IL-6 (geometric) 0.9(0.01) 0.9(0.01)

N=2458 N=2991
hs-CRP mg/dl 1695.0(4680.9) 1667.5(4610.9)
hs-CRP (geometric) 6.0(0.03) 6.0(0.03)

Table 1 (continued)

Outcome variables

N=2466 N=3001
Fibrinogen mg/dl 352.5(72.1) 352.1(71.1)
Fibrinogen (geometric) 5.8(0.004) 5.8(0.004)
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3.2. hs-CRP

In basic models, we found positive associations for hs-CRP with
weekly-average EC exposures (9.8% higher hs-CRP comparing exposure
from the 25th to 75th percentile of EC, 95%CI: 2.4%,17.7%), and with
PM2.5 mass exposures on lag days 4 through 6, as well as the weekly-
average (Fig. A4). For example, comparing exposure from the 25th to
75th percentile in weekly-average PM2.5 mass exposure was associated
with an 8.9% higher level of hs-CRP (95%CI: 1.3%, 17.0%). No other
consistent associations were observed with other lags for PM2.5 mass or
with any lags or the weekly average for ADMS Roads 1-6. Moving
average exposures of PM2.5 mass for 2, 3, 4 and 5 days prior to blood
draw were also positively associated with higher levels of hs-CRP,
however no associations were observed with moving average exposures
of ADMS Roads 1-6. Adjusting for demographic variables attenuated the
associations for most exposure models, however strong positive asso-
ciations remained for weekly-average EC. For example, comparing ex-
posure at the 25th to the 75th percentile of EC, exposure was associated
with 7.8% higher hs-CRP level, 95%CI: 1.2%,14.7%. Additional ad-
justment for lifestyle factors resulted in comparable findings for all
exposure models (Fig. 2). Addition of fasting status to any of the basic,
demographic, or fully adjusted models also did not change the results.
Examination of interaction tests showed a strong gender difference for
PM2.5 mass exposures on lag day 7, with stratified results revealing
weak differences but in the same direction for lag days 4–6 and the
weekly average. Higher hs-CRP levels were positively associated with
increased PM2.5 mass exposures on lag day 7 among females (com-
paring exposure in the 25th to the 75th percentile, exposure was as-
sociated with 8.8% higher hs-CRP level; 95%CI: 1.0%, 17.2%) while a
weak inverse relationship was observed among males (comparing ex-
posure at the 25th compared with 75th percentile, exposure was asso-
ciated with a 6.2% lower level of hs-CRP; 95%CI: −12.9%,1.0%) (Fig.
A5). Sensitivity analyses (including 587 subjects with zero ADMS-Roads
A1–3 exposures) showed the same effect modification by gender for the
hs-CRP relationship with PM2.5 mass exposures. In these analyses, the
relationship with weekly-average EC was weaker but in the same di-
rection as for the main analysis.

3.3. Fibrinogen

Basic models showed a strong positive association between ADMS
Roads A1–6 exposure on lag day 1 and higher levels of fibrinogen (Fig.
A6), however no associations were observed for any other lags, the

weekly average or moving averages. Weekly average EC and weekly
average ADMS Roads A1–3 were also not associated with fibrinogen
levels. We observed strong positive associations between PM2.5 mass
exposures for lag days 2 and 3, the weekly-average, and moving
averages of 2, 3, 4 and 5 days prior to blood draw with higher levels of
fibrinogen. Associations were not observed with other daily lags.
Adjustment for demographic and lifestyle variables attenuated these
results, with the findings for PM2.5 mass on lag days 2 and 3 remaining
weakly positive. For example, as shown in Figs. A6 and 3, comparing
the 25th to 75th percentile of exposure to PM2.5 mass on lag day 3,
exposure was associated with a 1.0% higher (95%CI: 0.2%,1.9%) level
of fibrinogen in basic models, which was attenuated to 0.8% (95%CI:
−0.01%, 1.57%) in fully-adjusted models. Adjustment for fasting status
did not change any findings. Interactions were observed by race/eth-
nicity, but not by smoking, gender or fasting status. Participants re-
porting Black race showed lower levels of fibrinogen associated with
increased ADMS Roads 1–6 exposures on lag days 3 and 6 (Fig. A7). For
the same days, White participants showed weak positive relationships.
For example, comparing ADMS Roads 1–6 exposures on day 3 in the
25th to 75th percentile, fully-adjusted models showed fibrinogen levels
were 2.4% lower (95%CI: −4.4%,−0.4%) among Blacks, 0.7% lower

Fig. 1. Percent difference in IL-6 levels with an IQR change in estimated EC,
PM2.5 and ADMS roads exposures in fully-adjusted models.
*Model adjusts for site, age, gender, residential census tract percent below
poverty, physical activity, sedentary behavior and smoking.

Fig. 2. Percent difference in hs-CRP levels with an IQR change in estimated EC,
PM2.5 and ADMS roads exposures in fully-adjusted models.
*Model adjusts for site, age, gender, residential census tract percent below
poverty, physical activity, sedentary behavior and smoking.

Fig. 3. Percent difference in fibrinogen levels with an IQR change in estimated
EC, PM2.5 and ADMS roads exposures in fully-adjusted models
*Model adjusts for site, age, gender, residential census tract percent below
poverty, physical activity, sedentary behavior and smoking.
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(95%CI: −2.4%, 1.1%) among Hispanics, but were 0.4% higher
(95%CI: −0.4%, 1.2%) among Whites and 2.7% higher (95%CI:
−1.1%,6.7%) among participants of other races. Results from sensi-
tivity analyses were similar.

4. Discussion

In a racially and geographically diverse cohort of youth with type 1
diabetes, we observed strong positive associations of EC average week
exposures with IL-6 and hs-CRP in models adjusting for demographic
(gender, race/ethnicity, age and neighborhood affluence) and lifestyle
variables (smoking, physical activity, sedentary behavior). In addition,
higher PM2.5 mass exposures on lag day 3 were positively associated
with higher IL-6 levels in fully adjusted models. The relationship be-
tween higher PM2.5 mass exposures on lag days 2 and 3 with fibrinogen
was suggestive. We observed some evidence of effect modification by
race/ethnicity and gender. Among non-Hispanic White and Hispanic
participants, we found a positive relationship between IL-6 and weekly
EC exposures. Higher PM2.5 mass exposures were strongly related to
lower IL-6 levels among non-Hispanic black participants (lag days 4
through 6), and higher IL-6 levels among non-Hispanic White partici-
pants (lag days 3 and 4) and participants of other race, non-Hispanic
ethnicity (lag days 4 and 7). Increased PM2.5 mass exposures on lag
days 4 through 7, as well as the weekly-average were associated with
higher hs-CRP among females but not among males. Among non-
Hispanic Black participants, we found an inverse relationship between
ADMS Roads 1–6 exposures on lag days 3, 4 and 6 and fibrinogen levels.

Our most robust findings were for EC, a product of primary com-
bustion, with IL-6 and hs-CRP. IL-6 is a proinflammatory cytokine and
leads to CRP production, which in turn can lead to release of glyco-
proteins that impact coagulation (Ridker, 2004). Hs-CRP is often used
as a marker of clinical risk for atherothrombosis and vascular dys-
function (Ridker, 2016). Very few studies to date have examined the
relationship of EC with inflammatory biomarkers, and those have been
mostly conducted among healthy adults. In a study of trucking industry
workers, Chiu et al. (2016) reported a null association of EC exposures
up to 2 days prior to blood draw with IL-6 or hs-CRP (Chiu et al., 2016),
whereas we observed a positive association for the weekly-average.
Also in contrast to our findings, two studies of daily exposures to EC
among healthy adults of working age, reported no associations with hs-
CRP (Mirowsky et al., 2015; Strak et al., 2013). Exposures for all of
these studies were assessed within 48 h or less of blood draw, whereas
EC was averaged over the week prior in the current study. Similar to
our findings, Strak et al. (2013) found no association with fibrinogen, a
plasma protein activated by IL-6 and other cytokines and involved in
coagulation, thrombosis and possibly the development of athero-
sclerotic plaque (Ariëns, 2013). Given the paucity of research with EC
to date, it is unclear whether EC exerts effects with longer time periods
or whether the susceptibility of youth with T1D is greater to EC-related
inflammation as related to IL-6 and hs-CRP markers.

Direct comparisons of our findings with the literature are also lim-
ited because the vast majority of research on the relationship of acute
air pollutant exposures with inflammatory biomarkers has been con-
ducted among adults without diabetes. However, we identified a study
conducted among 374 Iranian youth aged 10–18 without diabetes. The
authors reported an association between weekly average PM10 exposure
and hs-CRP. PM2.5 was not examined (Kelishadi et al., 2009). We did
not find an association between PM2.5 mass exposures and hs-CRP.

The majority of prior research has also focused on PM. We found a
strong positive association only between lag day 3 PM2.5 mass and IL-6
among youth with type 1 diabetes. Several studies of adults have ob-
served weak or no associations between PM2.5 and IL-6 with similar
time periods. In a repeated measures study of 45 healthy adults,
Thompson et al. (2009) found PM2.5 exposures on lag days 0 to 5 was
positively, but weakly, associated with IL-6 (Thompson et al., 2009). A
study of 115 older women with 3 day average PM2.5 exposures

(Williams et al., 2011) and a study of about 6750 adult Multi-Ethnic
Study of Atherosclerosis (MESA) cohort participants using daily
averages up to five days prior to blood draw reported no significant
associations (Hajat et al., 2015). Similar to our findings, several smaller
studies of healthy young adults also found no association of PM2.5 ex-
posures within 24 h of blood draw and CRP (Bräuner et al., 2008;
Mirowsky et al., 2015; Tsai et al., 2012). Two studies of adults with
longer exposure averaging times also found no associations, including a
study of men in the VA Normative Aging Study (Zeka et al., 2006) with
48 h or one week average exposures and moving averages up to 5 days
in the Heinz Nixdorff recall study of adults (Hertel et al., 2010). We
observed weak positive relationships of PM2.5 mass exposures on lag
days 2 and 3 with fibrinogen. These findings may be comparable to a
study of healthy young adults in Beijing during the Olympics which
found a positive but significant association with PM2.5 exposures on lag
days two and three (Rich et al., 2012). Also, a panel study of adults with
type 2 diabetes and impaired glucose tolerance, Ruckerl and colleagues
(2014) found a small positive association between 5 day average PM2.5

exposure and fibrinogen (Rückerl et al., 2014). In contrast, several
other acute exposure studies of healthy adults found no links between
PM2.5 and fibrinogen (Bräuner et al., 2008; Thompson et al., 2009; Zeka
et al., 2006).

Findings differ somewhat for other size fractions of PM. For ex-
ample, in a study of elderly subjects in the Los Angeles area, Delfino and
co-authors (2009) found no association of IL-6 with PM2.5 but sig-
nificant positive associations with acute PM0.25 exposures (Delfino
et al., 2009). No association was observed among adults in the Boston
area between particle number concentration (a proxy for ultrafine PM)
and IL-6 (Fuller et al., 2015). However, higher acute PM10 exposures
were significantly associated with higher IL-6 measures in the CoLaus
study of over 6100 adults in Switzerland (Tsai et al., 2012).

Prior studies of cardiovascular-related impacts of PM2.5 mass have
shown some differences in gender susceptibility (Bell et al., 2015;
Weichenthal et al., 2014). We observed increases of hs-CRP levels with
higher exposures to PM2.5 mass exposures at longer lags among female
youth with T1D, but similar relationships were not observed among
males. However, no effect modification by gender was reported for
PM2.5 and CRP for the MESA or Heinz Nixdorff studies among adults
(Hajat et al., 2015; Hertel et al., 2010). Further investigation into these
potential gender differences is needed.

Though some research has adjusted for confounding by race (gen-
erally White versus non-White), most studies have not been able to
examine modification by race/ethnicity. We observed some evidence of
modification by race/ethnicity for PM2.5 mass and EC with IL-6. We
found inverse relationships for PM2.5 mass (lags 4–6) among Black
participants. However, positive relationships were observed for EC with
IL-6 among White participants and Hispanic participants, and with
PM2.5 mass among participants of White (lags 3 and 4) and other races/
ethnicities (lags 4 and 7). In contrast, a study of about 6750 MESA
cohort participants using daily averages up to five days prior to blood
draw study found results were comparable among Whites and non-
Whites. Chiu et al. (2016) trucking study of mostly male Caucasians did
not observe an association between EC and IL-6. Among our unexpected
findings, were inverse associations of ADMS Roads A1–6 exposures and
fibrinogen among Black and Hispanic youth, while children who were
White or of other race/ethnicities showed positive but weak relation-
ships. Most prior research did not present results stratified by race/
ethnicity due to more homogeneous or smaller populations. Whether
differences in these findings are due to susceptibility for persons with
type 1 diabetes; disparities in age, race/ethnicity, socioeconomic posi-
tion (SEP) (which are difficult to disentangle in the US); or other fac-
tors, should be addressed in further research.

Though the current study takes an important step to address the gap
of information regarding the impacts of acute air pollution exposures
among youth with type 1 diabetes, the study has limitations. As in much
of the previous air pollution research, we were unable to consider
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exposure to second-hand smoke or exposure to noise, which has been
linked with diabetes in recent research and which can be correlated
with air pollution exposures (Münzel et al., 2017). In addition, we
cannot rule out that some of our findings were due to chance. Our
hypotheses and the models we identified for testing via development of
a DAG were determined a priori. In this initial step to address an un-
derstudied topic, we used a qualitative approach to examine and pre-
sent the overall direction and magnitude of results, and we did not
otherwise address multiple comparisons. Thus additional research is
needed to confirm our findings, particularly with respect to differences
in results by race/ethnicity and gender. Though a strength of this study
was the diversity of participant race/ethnicities and SEP levels, residual
confounding by SEP and disentangling the contributions of SEP and
race/ethnicity presents a challenge for this and other US studies. We
addressed potential area-level SEP confounding by including the per-
cent of population living in poverty in each participant's residential
census tract. In addition, we conducted a post-hoc analysis adjusting for
insurance status and type as a proxy for individual-level SEP and found
results were unchanged. We were able to adjust for SEP and a number
of important potential confounders identified through our DAG process,
however data on physical activity and sedentary behavior were un-
available for participants under age 10. Although, a post-hoc analysis
revealed that results did not change with or without this confounder
included in the fully-adjusted models. We also had limited information
regarding locations of daily activities and thus estimated air pollution
exposures only at the residence. However, given the young age of the
study population, school and after school activities are likely more
proximal to residential addresses than with adult populations. Our air
pollution models also enabled us to assess EC, a combustion-related
constituent of PM2.5, which few prior studies have been able to ex-
amine. Our spatio-temporal statistical exposure modeling process was
able to capture the local spatial variation of EC, which has been noted
as a potential weakness for other studies that have not observed posi-
tive associations between EC and inflammatory biomarkers (Marques-
Vidal et al., 2013).

5. Conclusions

In summary, while prior studies have shown increased air pollution-
related cardiovascular risks among elderly populations and adults with
diabetes (Alexeeff et al., 2011; Devlin et al., 2014; Dubowsky et al.,
2006), this is among the first studies to show that a young population,
more vulnerable to cardiovascular disease due to T1D, may be at risk
for ambient air pollution-related inflammation. Additional research is
needed to investigate racial/ethnic and gender differences.
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