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A Comprehensive Survey on Rare Event Prediction

CHATHURANGI SHYALIKA, Artiicial Intelligence Institute, University of South Carolina, Columbia, United

States

RUWAN WICKRAMARACHCHI, Artiicial Intelligence Institute, University of South Carolina, Columbia,

United States

AMIT P. SHETH, Artiicial Intelligence Institute, University of South Carolina, Columbia, United States

Rare event prediction involves identifying and forecasting events with a low probability using machine learning (ML) and
data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare
events, it requires using specialized methods within each step of the ML pipeline, i.e., from data processing to algorithms to
evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0,
and is an active research area in statistical and ML. This paper comprehensively reviews the current approaches for rare
event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches.
Speciically, we consider 73 datasets from diferent modalities (i.e., numerical, image, text, and audio), four major categories of
data processing, ive major algorithmic groupings, and two broader evaluation approaches. This paper aims to identify gaps
in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions,
which can help guide practitioners and researchers.

CCS Concepts: · Computing methodologies→ Artiicial intelligence.

Additional Key Words and Phrases: event-prediction, rare-events, time-series, anomaly prediction, forecasting

1 Introduction

Events are incidents that are associated with speciic locations (spatial), time periods (temporal), and contexts
(semantics). Rare events are a subset of events that stand out due to their infrequency. The degree of infrequency
of rare events is typically inluenced by the speciic ield of application [81, 92]. Rare event learning is considered
an NP-hard problem [193], as it requires analyzing a large amount of data to identify rare events, which can be
computationally intensive and time-consuming, especially in high-dimensional spaces. The size and complexity
of rare event data lead to the challenge of handling this problem, resulting in complicated issues in data mining
and ML. Imbalanced event datasets exhibit a prevalence of rare occurrences, wherein the quantity of instances
associated with one class is signiicantly lower than the quantity of instances pertaining to the other. These
datasets present challenges for learning algorithms since they may result in biased outcomes in downstream
tasks such as classiication, clustering, forecasting, and simulation. Algorithms necessitate tailoring to efectively
address rare events, as these occurrences often give rise to challenges stemming from their uncommon nature.
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Considering the signiicance of rare events across various domains, extensive research has been conducted in
diverse knowledge areas, leading to a conlation of terms and issues within the literature. While terms like rare
events, anomalies, novelties, and outliers may appear similar, it is crucial to note their distinct diferences. Rare
events and anomalies share characteristics such as an imbalanced class distribution and representation of all
classes in the training set [56]. However, rare events primarily relate to temporal data, contrasting with anomalies
that typically involve static data distributions. Novelties, on the other hand, involve the identiication of new
or unknown data patterns. Static novelties are characterized by supervised classiication with a single class for
training, whereas dynamic novelties entail supervised classiication with an indeterminate number of labels
[56, 68, 153]. Outliers, distinguished from the aforementioned categories, are observations signiicantly deviating
from the majority in the dataset [56, 126]. They often manifest in temporal data and are addressed through
unsupervised classiication methodologies. The primary focus of our investigation in this paper is exclusively
directed towards rare events. Hence, we speciically selected studies that include the term ‘rare events’ in the
paper title and abstract.
In real-life, rare events can be observed ubiquitously in various domains, including medical diagnosis, fraud

detection, and natural disaster prediction. In any ield or area of study, rare events can be regarded as occurrences
that possess valuable and meaningful information [147]. Rare events can be weighted by ‘rarity’, a measure
of being rare, uncommon, or scarce. Liu and Feng [124] formulate this as the "Curse of Rarity" (CoR). The
fundamental idea behind CoR is that the events of interest are exceptionally rare, resulting in limited information
in the available data. CoR leads to many underlying issues, including decision-making, modeling, veriication,
and validation. For instance, detecting rare diseases or medical conditions is challenging but crucial for efective
diagnosis and treatment. Similarly, detecting fraud in inancial transactions can help prevent inancial losses
and ensure the security of transactions. In the case of natural disaster prediction, identifying rare events such as
earthquakes or tsunamis can help in efective disaster management and response. In manufacturing, these events
lead to unplanned downtime or shutdowns, which are particularly detrimental for industries regarding equipment
life and power consumption. Thus, exploring rare events in advance allows industries to implement mitigation
procedures to reduce defects so that equipment downtime can be lowered, optimizing energy consumption and
ensuring optimization, quality, and safety standards in processes.

The signiicance of rare events resides in their capacity to yield a disproportionate inluence, surpassing that of
more typical events. For instance, a disease that afects a minor percentage of the population can enormously afect
public health. Similarly, large-scale fraudulent activities can result in substantial inancial losses for individuals
and organizations. Hence, it is evident that rare occurrences require specialized attention and analysis. Therefore,
developing efective methodologies and algorithms that can handle the uniqueness and mitigate the biases and
limitations inherent in rare events is essential. The problem of imbalanced datasets and rare events is not new,
and researchers have developed several techniques to address this issue. These techniques range from data-level
approaches, such as oversampling and undersampling [40, 104, 160, 170, 196, 209], to algorithm-level approaches,
such as cost-sensitive learning [113, 120, 145, 209] and ensemble methods [65]. In recent years, deep learning
methods [41, 45, 51, 97, 133, 146, 159, 200] have also been applied to address the problem of rare events.

This survey paper aims to provide a comparative review of the existing literature on rare event prediction. We
have developed a taxonomy that summarizes the research on rare event prediction into four categories: rare event
data, data processing, algorithmic approaches, and evaluation approaches. The rare event data section identiies
datasets containing rare events, while the data processing section emphasizes the vital role of data processing in
handling rare event datasets, reining data quality to enhance predictive model performance. The algorithmic
approaches present mathematical models applicable to diverse scenarios encompassing various use cases, and
the evaluation section delves into the multifaceted evaluation criteria utilized in rare event prediction studies.
Then, we explore the existing literature pertaining to these four categories. The extended review involves the
reviewing of each of these four categories with levels of rarity that we introduce, established industries, types of
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datasets, data modalities, applications, and downstream tasks. Finally, we highlight some open research questions
and future directions identiied in this area.

1.1 The Contributions of this paper

The main contributions of this paper include:

(1) Comparatively review the existing literature on rare event prediction in four approaches; rare event data,
data processing, algorithmic and evaluation approaches.

(2) Analyze the literature by examining multiple avenues: dataset types, modalities, and downstream tasks.
(3) Identify gaps, challenges, and special concerns in the current research landscape while discussing potential

emerging trends in the realm.

1.2 Organization

This study distinguishes a four-fold summarized categorization of approaches to learning from imbalanced event
data for rare event prediction that have been implemented within related work. As shown in Figure 1, the main
groupings include I) Rare event data, II) Data processing approaches, III) Algorithm level techniques, and IV)
Evaluation approaches.

2 Rare event data

Approaches to learning from
rare-event data

Data Processing
Approaches

2

            

1) Data cleaning

2) Feature 
     selection
 
3) Sampling

4) Feature 
     engineering

Algorithmic
Approaches

3

1. Supervised classification 
    & regression
2. Semi-supervised &                 
    Unsupervised methods
3. Statistical/Time series           
    modelling
4. Meta-heuristic 
    optimization
5. Advanced 
    learning

1

Approaches to learning from
Rare-Event Data

Evaluation Approaches

Rare Event Data

4

1. Evaluation Methodologies
i) General evaluation methods
ii) Rare event-based evaluation methods

2. Performance Metrics

Metrics for downstream tasks
Classification 
Forecasting
Clustering
Regression
Simulation

   
1) Levels of rarity
2) Industries & real-world 

applications
3) Types of rare event datasets
4) Rare event metadata
5) Characteristics of rare events

datasets & associated challenges
6) Factors that cause rarity in a dataset

Fig. 1. Approaches to handling from rare event data

This section analyzes datasets with
rare events. Considering a wide range
of datasets from multiple industries
and diferent modalities we irst cat-
egorize them by the rarity percent-
age. We then explore real-world ap-
plications of the data and examine
data acquisition methods. Next, we
present an analysis considering types
of datasets, metadata, and modality.
Finally, we discuss the characteristics
and challenges of handling such data
and the factors contributing to their
rarity.

2.1 Datasets

with rare events – Analysis of

existing datasets with rare events

2.1.1 Levels of rarity. In any domain,
the rarity of events is inversely cor-
related with the maturity of that industry. At the same time, rarity is correlated with event frequency or the
probability of occurrence. For better understanding and analysis, we introduce the notion of łlevels of rarity",
which categorizes rarity into four levels as depicted in Figure 2. These rarity levels will be used throughout all the
review sections in this paper. We have established the boundaries for the levels based on several factors, such as
the distribution of data, signiicant diferences in rarity levels, and context. The R1 category comprises datasets
with events that have a frequency of 0-1%, which are considered extremely rare. On the other hand, events with a
rarity of 1-5% are classiied as very rare and fall under the R2 category. The R3 category includes events with a
rarity of 5-10%, which are considered moderately rare. Finally, the rest of the events with a frequency greater
than 10% belong to the frequently-rare (R4) category. It is apparent that when moving up in levels, the percentage
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of rarity and the event frequency tend to decrease, necessitating more sophisticated approaches for identifying
and analyzing. The datasets in the studies we reviewed utilized diverse data types, including numeric (N), textual
(TX), image (I), and audio (A). A special property of these ‘rare event’ datasets is their adherence to the temporal
nature (T) of ‘events‘ and/or adaptation of time-dependent features. We have encountered a limited number of
datasets (2) that deviate from the typical time series data used in rare event studies, which we have excluded
from our analysis. Consequently, we delineate the scope of rare events as occurrences within a time series, where
an entire or part of a time series may constitute a rare event evolving over an extended duration.

Ev
en
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fr
eq
ue
nc
y

R2

R3

R4

R1
EXTREMELY-RARE

VERY-RARE

MODERATELY-RARE

FREQUENTLY-RARE

0-1%

1-5 %

5-10%

10+%

EVENT-FREQUENCYRARITY GROUP

Fig. 2. Levels of rarity

2.1.2 Industries and real-world applications. The diferent industries
that have been identiied in this review include eight main sectors:
economy, healthcare, transportation, telecommunications, manufac-
turing, energy, earth science, and others. It should be noted that the
primary industries include several application domains that we merged
into a general main industry, as shown in Table 1. In Table 1, we have
compiled a list of real-world applications of rare events categorized by
industry, application domain, and rarity based on the literature. No-
tably, these applications have predominantly concentrated on use cases
such as detection, diagnosis, prediction, and downstream tasks like
classiication (CF), clustering (CL), forecasting (FT), regression (RG), and simulation (SM).

Table 1. List of selected rare event applications

Industry Applications Domains Examples from literature

Earth Sciences
Environment management, Disaster management,
Geology

Detection of changes in buildings from aerial images taken before and after
a tsunami disaster ([77, 89] ś R1)
�3 state prediction, Prediction of hazardous seismic bumps in coal mines ([120] ś R3)
Detection of oil spills in satellite-borne radar images ([113, 132] ś R2)
Prediction of landslides, undesirable events in ofshore oil wells ([29] ś R4)

Manufacturing Machinery fault diagnosis, Anomaly detection
Prediction of paper breaks in the paper manufacturing industry ([160, 161] ś R1)
Prediction of which parts will fail at the end of the production line ([96] ś R1)

Telecommunication
Network monitoring, Telecommunication
failure diagnosis

Prediction of telecommunications equipment failures ([33, 193] ś R1)
Prediction and classiication of rare events in power grids ([6, 14] ś R1, R2, R3, R4)

Transportation
Traic monitoring, Autonomous driving,
Aircraft health management

Degradation detection and trending,
and failure discrimination based on the classiication of aircraft systems ([41] ś R1)
Prediction of wrong-way driving in highways ([45] śR1)

Economy Market trend forecasting, Fraud detection
Prediction of black-swan events in the Indian stock market ([51] śR1)
Predicting credit card frauds ([145] ś R1)

Healthcare
Disease diagnosis, Emergent incidents identiication,
Detecting microcalciications

Post-Traumatic Seizure Detection ([162] ś R1)
Detection of LASA cases and rare events’ classiication in imbalanced
healthcare data ([209] śR4)
Detection of microcalciications in mammography ([59] ś R2)

Energy Energy forecasting Prediction of when to expect a high KWh cost ([49] śR3)

Others
Scene understanding, Computer vision, Remote sensing,
Classiication, Criminological investigation

Detection of scene changes from street view panorama images ([89] ś R1)
Detection of recidivists from criminological events ([98] ś R4)
Classiication of types of glass in criminological events ([114, 189] ś R4)
Detection of a change of digit from a pair of samples in MNIST ([89] ś R1, R4)

2.1.3 Types of rare events datasets. The study identiied three types of rare event datasets: naturally rare event
datasets, derived datasets, and simulated/synthetic datasets.

i) Naturally rare event datasets (RE): These refer to datasets that inherently exhibit a low occurrence
rate of speciic events or phenomena. Table 3 (Appendix A.1) summarizes naturally rare event datasets used
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in rare event literature. It was noticed that approximately 41% of the naturally rare datasets used fall into the
extremely-rare category. Naturally rare event datasets can be sourced from various industries and domains,
such as manufacturing, healthcare, earth sciences, and economy. For instance, data on environmental disasters
such as oil spills [113] and tsunamis [77] can be gathered using satellite, ariel, or drone imagery via remote
sensing technologies, while machine faults and anomalies can be tracked through data collection from sensors
attached to diferent parts of the machines in manufacturing plants [23, 160]. Similarly, sources for predicting
rare economic events may include inancial market data, economic indicators, government reports, transaction
data, consumer behavior data, social media data, and other relevant sources speciic to the economic domain [51].
Data collected from such sources can be obtained from public databases. Repositories like University of California
Irvine (UCI) [2], Knowledge Extraction based on Evolutionary Learning (KEEL) [7], Outlier Detection DataSets
(ODDS) [164], Kaggle [12], research-speciic data storages [11, 14, 20, 23, 29, 80], industry-speciic databases
[1, 10, 26, 27, 30, 33, 35, 141, 142], Application Programming Interfaces (APIs) [8, 31, 75], social media platforms
[34, 99], and news outlets [34, 99] would be such databases. Data extraction from them can involve manually
accessing public datasets, querying databases, web scraping, or using web services.

ii) Derived datasets (DE): A derived dataset is a dataset that is not initially rare, results from transformation
of an existing dataset, and includes a new insight, ‘derived rarity’. For this, the original dataset should ideally
possess suicient information and features related to multiple events of interest and should initially be not rare.
The availability of such data enables performing operations, calculations, or algorithms on the raw dataset to
transform it into a derived dataset that captures the ‘derived rarity’ aspect [41, 67, 120]. One example of derived
datasets is the ABCD (AIST Building Change Detection) dataset [15, 16, 77], which was initially not designed
to include rare events but has been manipulated in certain studies to create rare event scenarios by altering
event percentages [40, 60, 89]. MNIST dataset [85], originally an image dataset, has been repurposed in studies to
detect letter changes, creating an imbalanced dataset by reducing the frequency of certain letters [40]. Table 4
(Appendix A.2) summarizes derived datasets used in rare event research in the studied literature. The analysis
indings indicate that a substantial portion (34%) of the derived datasets we considered in this review belong to
the extremely rare category.
iii) Simulated / Synthetic (SIY) datasets: A simulated (also termed synthetic) dataset is an artiicially

generated dataset that mimics the characteristics and patterns of real-world rare events. They are typically created
based on known models, distributions, or algorithms to replicate the statistical properties and relationships
observed in the original data. These data can be generated in cases where collecting direct data on rare events
is challenging and impractical. They are beneicial for predicting rare events that have not yet occurred or for
testing the accuracy of predictive models in a controlled environment [29, 60, 114, 132, 146]. In the literature,
SIY datasets have been generated in controlled environments using tools such as MATLAB, OLGA Dynamic
Multiphase Flow Simulator [32], Signal Fragment Assembler (SFA), Variational Autoencoder (VAE), Data Picker
(DP), Quality Classiier (QC) [57, 58, 107], and frameworks like Massive Online Analysis (MOA) [52, 120], as
presented in Table 5 (Appendix A.3). While most studies focus on naturally rare and derived datasets, considerably
less research is based on simulated / synthetic datasets.

2.1.4 Rare event metadata. Metadata refers to the descriptive information that provides additional context about
a dataset. It includes information about the structure, format, quality, source, and other data characteristics. In
rare event data acquisition, metadata acquisition involves extracting relevant information from the data that
contributes to a better understanding of the rare events. While metadata may be applicable to both rare and
majority classes, its importance for rare events stems from the need to capture additional attributes speciic
to these events. This can include attributes such as timestamps, geographical location, variables related to the
event’s occurrence, data sources, data collection methods, and any other contextual information that aids in
analyzing and interpreting the rare events. The following methods were revealed as ways of acquiring metadata.
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i Data collection: Metadata can be collected during data acquisition. This includes capturing information such as
the source of the data, timestamps, geographical coordinates, sensor settings, or any other relevant contextual
details that help describe the data [48, 51, 67, 109].

ii Expert opinions: Engaging domain experts or subject matter specialists can provide valuable metadata.
Experts can contribute their knowledge about rare events, their causes-efects, associated variables of interest,
equations, hypotheses, or factors that inluence their occurrence [29, 60, 67, 132, 146, 185]. This knowledge
can assist in identifying appropriate metadata to enhance the analysis and prediction of rare events.

iii Data annotation: Adding annotations or labels to the data can serve as metadata. This requires manually
categorizing data instances as rare events or non-rare events, assigning event severity or damage levels,
utilizing standard metrics and indexes, and providing additional descriptive labels that capture speciic
attributes or characteristics of the rare events [38, 49, 51, 146, 185, 204].

iv External sources: Documents, technical reports, publications, and websites ofer insights, statistical data, or
contextual details that contribute to the understanding and analysis of rare events. For example, clinical
reports, insurance claims data, state mortality records from government websites, outpatient visit details from
electronic health records, and responses to patient-reported measures like the Patient Health Questionnaire
(PHQ-9) have provided valuable information in predicting rare medical incidents [63, 174].

2.1.5 Characteristics of rare event datasets and associated challenges. Rare event datasets exhibit distinct charac-
teristics that lead to various related issues, some outlined below.

i Skewed class distribution and lack of data: A skewed class distribution is a distribution of classes that is not
symmetrical or evenly distributed. Class imbalance is a speciic case of skewed class distribution featuring
a substantial disparity in the number of instances between classes [137, 190]. In rare events datasets, the
minority class has a signiicantly smaller number of samples than the majority class. This skewness in class
distribution makes it diicult for ML algorithms to learn patterns and classify the minority class accurately
[113]. Lack of data can take two forms. Absolute rarity occurs where the number of samples associated
with the minority class is small in the absolute sense, whereas relative rarity happens where the minority
class samples are less relative to the other classes [192]. These rarity forms pose consequential challenges
for classiiers in identifying patterns and regularities within these rare occurrences to learn a robust model
[113, 146].

ii Temporal property: An inherent characteristic of rare event datasets is the temporal aspect, which refers to the
occurrence or sequencing of events over time. Temporal property is essential in analyzing and understanding
rare event data, as it provides insights into the timing, duration, order, and interdependencies of rare events and
normal events [56]. However, due to the imbalanced class distribution and data sparsity in a temporal context,
capturing the time-dependent patterns and correlations in data can be a major challenge. Thus, handling
these issues in a temporal context adds complexity to the analysis, necessitating specialized techniques for
accurate prediction.

iii Class overlap: In some cases, there may be overlapping patterns or similarities between the rare event(minority
class) and the non-rare events(majority class) [140, 175]. This can lead to misclassifying rare events as more
common, resulting in false negatives.

iv Uncertainty: Uncertainty, in the context of rare event datasets, refers to the lack of precise knowledge and
conidence in the observed data. This arises from the limited sample size, data sparsity, high-class imbalance,
and lack of information, and it becomes a challenging issue in generalizing the indings of any downstream
task [51, 70].

v High dimensionality: Rare event datasets can include many features or dimensions, including numerical,
categorical, or textual variables [82, 157]. Including multiple features complicates the modeling process and
requires careful feature selection or dimensionality reduction techniques.
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vi Event complexity: Rare events involve intricate relationships between multiple variables, which generate
complex patterns and interactions in real-world systems [109]. This often makes modeling rare events diicult,
necessitating sophisticated modeling approaches to capture the underlying complexity.

2.1.6 Factors that cause rarity in a dataset. Several factors can cause rarity in a dataset, including:
i Natural occurrences: Some events simply occur less frequently in nature than others. For example, diseases
that afect a small percentage of the population will naturally result in highly imbalanced datasets. Natural
hazards like landslides, tsunamis, and seismic bumps or climate catastrophes like heavy looding that may
occur once in a century are also rare occurrences [120, 184, 204, 208]. Black-swan events, unpredictable events
with severe global economic consequences, are extremely rare natural events in the economic sector. Events
like the 9/11 attack and the Chinese economic downturn are examples of these [51].

ii Class deinition: The deinition of a class can also impact its rarity. If a class is deined narrowly or speciically,
it may contain fewer instances than if deined broadly [140]. For instance, when estimating the likelihood
of stroke based on varied input parameters like demographic data, additional illnesses, and smoking status,
the deinitions of "having a stroke" and "not having a stroke" may be narrowly deined. Due to these speciic
criteria used in classiication, stroke events within the dataset may be deemed rare.

iii Sampling bias: If data are collected from a biased sample, they may not precisely relect the true distribution
of the population. In particular, if a rare event dataset only contains events occurring in certain geographic
regions or in certain types of people, this can cause rarity. For instance, while HIV (Human Immunodeiciency
Virus) is not classiied as rare due to its global prevalence [148], there are speciic regions and subpopulations
where HIV is relatively rare, indicating variations in its incidence and prevalence.

iv Cost and measurement errors: Data collection and labeling can be expensive, and in some cases, collecting
large amounts of data for a rare event may not be feasible. Evidently, the generation of simulated data and
synthetic data may be costly. It may be challenging to accurately observe and measure rare events in natural
and controlled environments, resulting in fewer labeled instances. Similarly, rare events that involve complex
interactions among their dimensions may not always be observable and measurable accurately. For example,
rare events like Wrong-Way Driving (WWD) are inluenced by multiple variables like roadway geometry and
conigurations, traic volume, lighting conditions, weather conditions, and driver’s age and medical conditions.
However, the impact of these complex interactions is not always readily observable and measurable, giving
rise to various complications [45].

v Subjective decisions: Curators can selectively include instances of a rare event based on speciic criteria by
selecting features and classes that impact the rarity of that class within the dataset. The decision to include
only such instances can afect the rarity of the class within the dataset. This is apparent when creating
new datasets by generating derived, simulated, or synthetic data based on the original rare event datasets.
For example, in predicting rare events like extreme heat waves, curators have used subjective decisions by
selecting temperature and humidity thresholds and time periods based on their understanding of heat wave
severity [49]. These decisions can be made to categorize the data into classes and identify patterns related to
moderate, severe, or extreme heat waves.

The relationship between rare event data, acquisition methods, rarity factors, characteristics, and challenges of
rare event datasets is multifaceted and interconnected, as summarized in Figure 3. The factors contributing to a
dataset’s rarity inherently result in rare event data and their characteristics. Rare event data constitute rare event
datasets, which can be acquired through various methods. The characteristics of these data, in turn, give rise to
various challenges in analyzing and predicting rare events, as discussed in the previous section.

In conclusion, this section examined four signiicant subsections in depth: rare event datasets, data acquisition
methods, factors of rarity, characteristics, and challenges of dealing with rare event data. We devised a rarity
hierarchy that provided a systematic method for summing data pertinent to rare events for the purposes of
analysis. While most datasets and studies fall under the extremely-rare category in the hierarchy of rarity, many
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research projects are based on naturally rare and derived datasets. Textual and audio data-based research on rare
events has received less attention than time series, image, and numerical data-based datasets. It is worth revealing
that rare event-related problems and research are not restricted to a speciic domain, industry, or sector, as we
investigated research eforts across multiple sectors. Finally, the relationship between rare event data, acquisition
methods, rarity factors, characteristics, and challenges of rare event datasets are drawn to summarize the overall
scope of review in this section.

3 Data Processing Approaches

This section focuses on the importance of data processing methods in enhancing data quality for improved pre-
dictive model performance when dealing with rare event datasets. It explores various data processing approaches
used in rare event prediction research, emphasizing their speciic objectives. The subsequent discussion provides
a detailed examination of each objective, including an analysis of how these approaches intersect with data
modality, rarity groups, and downstream tasks.

3.1 Objectives of Data Processing Approaches

In the literature, we identiied that data processing approaches aim to achieve four main objectives. Firstly, it’s
responsible for data cleaning, which improves the quality, consistency, and reliability of data analysis results.
Secondly, it caters to feature selection by selecting the optimal variables by limiting the input variables to the
model and utilizing only relevant features. Thirdly, it aids in sampling by modifying the data samples to balance
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the distribution and/or eliminating undesirable samples at the data level. Finally, data processing methods are
applied in feature engineering to transform raw series data into a stable format suitable for modeling. In Figure
4, we classify the data processing approaches in rare event research that adhere to the aforementioned four
objectives into four main categories. The approaches to data processing in rare event studies are summarized in
Table 6 (Appendix B.5), along with their primary categories, rarity groups, data modalities, and subsequent tasks.

Data Cleaning

Data sifting
Data filtering
Imputation
Noise removal
Data framing
Text-based cleaning techniques
Image processing techniques

Feature Selection

Unsupervised methods
Correlation-based feature selection

Supervised methods
Wrapper-based methods
Filter-based methods

Statistical measures
Feature importance methods

Intrinsic-based methods

Feature Engineering

Data augmentation
Data discretization
Encoding
Feature Scaling
Dimensionality reduction
Fourier transform

Sampling
Basic sampling

Random oversampling  
Random undersampling

Advanced sampling
SMOTE        Timeseries subsampling
ADASYN.      Stratified sampling
SMUTE         Audio data sampling
ENN              Uncertainty sampling
NCL             Choice-based or 
NearMiss              endogenous sampling
OSS
CBO            
              
        

Data Processing Approaches

Fig. 4. Data processing approaches in rare event research
3.2 Data Cleaning (DC)

Data cleaning focuses on the important task of preparing and reining the data. This involves various techniques
and processes to improve the dataset’s quality, consistency, and reliability. This subsection examines various
data cleaning approaches and discusses the application of them in various data modalities, rarity levels, and
downstream tasks (See Figure 7 and discussion in Appendix B.1).

3.2.1 Approaches to data cleaning. Various approaches address data cleaning tasks, often depending on the
speciic data modalities. Some common data cleaning methods used in rare event-based data mining include data
sifting, iltering, imputation, noise removal, audio-based preprocessing, text-based preprocessing, and image
processing techniques.

i) Data siting: Refers to reining large volumes of data to identify the most relevant and important information.
In rare event literature, sifting has been used to systematically sort through the data to identify and extract
speciic subsets of data. There are two types of data sifting: heuristic data sifting and statistical data sifting.
Heuristic data sifting relies on expert knowledge and intuition, while statistical data sifting relies on quantitative
measures and algorithms to identify relevant features [60, 88, 117, 134]. In [60], important knowledge about
Ozone (�3) concentration (i.e., time periods where �3 is high) has been used as a heuristic, and several statistical
measures were undertaken to identify relationships between diferent �3 states and related components.

ii) Data iltering: Involves segregating and removing unwanted, irrelevant data or information from a large
dataset. This includes techniques like removing duplicate data [97], removing records containing very small
number of records per group [199, 200], removing rows containing irrelevant types [134], and removing rows
that meet speciic conditions [198]. For instance, in [134], only the connected calls were used, discarding the
unconnected calls from VoIP traic data in unsupervised rare event detection in spatiotemporal environments.
[198] used a cut-of time to deine an event of interest and excluded subjects censored before the cut-of time.

iii) Imputation: Imputation or value approximation techniques estimate and represent missing and incorrect
values in a dataset with reasonable approximations based on the available data. These techniques are vital for
addressing the sparse, incomplete, and imbalanced nature of the rare event data, requiring careful considera-
tion to avoid skewed results. Simple methods like mean and median imputation, though commonly used, can
introduce bias in rare event scenarios due to the skewed nature of the data [17, 20, 73, 82, 157, 198]. Advanced
techniques such as Interpolation techniques [40, 156], Iterative Imputation [38, 147, 176], Multiple Imputation by
Chained Equation(MICE)[157], Soft Impute [205], Expectation maximization (EM) [71, 147], and Singular Value
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Decomposition (SVD) [182, 191] are better suited for rare-event datasets, as they account for complex patterns
and correlations [38, 191, 205]. These methods help maintain the integrity of rare events during the imputation
process, making them signiicant for accurate predictions.

iv) Noise removal: Involves eliminating random and irrelevant data variations that don’t contribute meaningful
information to patterns and relationships. The Brooks-Iyengar algorithm is a fault-tolerant method for sensor
fusion, handling faulty sensor readings efectively [54]. Iyer et al. [100] utilized Brooks-Iyengar along with
ensemble data cleaning trees to handle random noise and missing data. Sampling methods like Tomek-links
(TL) and Edited Nearest Neighbors (ENN) are used for noise removal. TL removes noise and boundary points in
the majority class during rare events [45, 111, 113, 120], while ENN eliminates noisy data samples, resulting in
smoother decision boundaries [45].
v) Text-based cleaning techniques: Standard text preprocessing techniques, such as converting text to

lowercase, removing stop-words, and employing stemming and lemmatization, have been used in rare event
prediction studies involving textual data. This standardization improves the reliability of predictions by addressing
textual inconsistencies, reducing noise and data variability in rare events involving textual data [195, 209]. For
instance, in healthcare, R packages such as ’tm’, ’snowball’, and ’Rstem’ have been used to standardize text data
by normalizing word variations through stemming and lemmatization, thereby enhancing the prediction of rare
medical incidents [195].
vi) Image processing techniques: In rare event prediction using images, image processing techniques have

been employed to clean and normalize the images. These techniques aim to detect suspicious regions and extract
relevant features that diferentiate rare regions from similar ones. Kubat et al. [113] used various image processing
methods to correct for radar beam incidence angle, identify dark regions, and extract speciic features like the
size of oil spills and average brightness. The output of the image processing is a ixed-length feature vector for
each suspicious region, facilitating further analysis and prediction.

3.3 Feature Selection (FS)

Feature selection aims to identify a subset of input features from a dataset to extract the most pertinent informa-
tion and improve the model’s predictive capacities by reducing complexity. This subsection examines various
approaches for feature selection in rare event studies and discusses the application of these techniques to various
data modalities, rarity levels, and downstream tasks (See Figure 8 and discussion in Appendix B.2 ).

3.3.1 Approaches to feature selection. Feature selection in rare event prediction is crucial due to the imbalance
and sparsity of the data, requiring careful adaptation to identify the most relevant features while preserving
critical information related to rare events. The techniques can be categorized into unsupervised and supervised
methods.
I) Unsupervised methods: Unsupervised feature selection methods are applied without considering the response
or target variable, focusing on the relationships and patterns within the independent variables. For example,
Correlation-based feature selection, frequently used in rare-event studies, evaluates the relationships between
features using correlation coeicients like Pearson correlation, Analysis of Variance (ANOVA), and chi-squared
tests. However, given the rarity of the events, thresholds for eliminating features must be set carefully to preserve
variables that may appear redundant in general datasets but are critical in rare-event contexts [67, 120, 136, 146].
II) Supervised methods: These methods use the response/target variable in the feature selection process
and eliminate irrelevant variables in making a prediction. The supervised methods can be categorized into
wrapper-based, ilter-based, and intrinsic-based. Wrapper-based methods search for well-performing subsets
of input features. They wrap or embed an ML algorithm within their core to perform feature selection. In
rare-event scenarios, wrapper-based methods like Recursive Feature Elimination (RFE) can be adapted to preserve
features critical for identifying rare events, even if these features do not show strong signiicance in a broader
dataset. For instance, RFE has been combined with Hidden Markov Models (HMMs) to predict rare events, as
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it is sensitive to the subtle temporal patterns that may indicate these uncommon occurrences [165]. Standard
ilter-based methods extract or select features based on their statistical relationship with the target variable.
Given their rarity, traditional statistical measures can be misleading or insuicient to identify rare events. For
instance, sliding window techniques and wavelet transforms can be adjusted to focus on detecting rare spikes
or patterns that could be easily overshadowed by more frequent but less relevant data [201]. The adaptation
of methods like wavelet analysis [201], Discrete Wavelet Transform (DWT) [165] and Gumbel copula function
[204], Minimum Redundancy Maximum Relevance (mRMR) [136], Term Frequency-Inverse Document Frequency
(TF-IDF) [195, 209] as seen in rare-event studies involves ine-tuning these techniques to capture the unique,
low-frequency signals that often characterize rare events. Furthermore, statistical methods ranging from simple
calculations like mean, median, variance, skewness, kurtosis, and standard deviation to more advanced measures
like spectral energy and frequency entropy derived from time and frequency domain analyses have been used in
rare event prediction in the inancial domain [51, 144]. In rare-event prediction, feature importance methods
require special attention to ensure that features relevant to rare occurrences are not overlooked. Methods like Gini
importance [82, 96, 147] or XGBoost’s accuracy and cover measurements [96] have been adapted to emphasize
features that, while they might contribute minimally to overall model accuracy, are critical in predicting rare
events. For example, the application of Mel-frequency Cepstral Coeicients (MFCC) in rare-event contexts goes
beyond traditional audio signal processing, aiming to capture subtle acoustic variations that could signify the
occurrence of an event, as demonstrated in studies focusing on audio-based rare-event prediction [36, 173].
Intrinsic methods, such as attention mechanisms, are particularly valuable in rare-event prediction due to their
ability to dynamically focus on the most relevant features across diferent scales and dimensions. For instance,
multi-variate and multi-scale attention methods have been speciically adapted to enhance the prediction of rare
events by focusing on spatial-temporal features that are often subtle and dispersed [162]. Additionally, decision
trees, which are intrinsically capable of feature selection, have been adapted to handle the unique distributional
characteristics of rare-event datasets, ensuring that the rare but critical branches of the tree are not pruned away
during model training [113, 120].

3.4 Sampling (SL)

Sampling techniques in ML are essential methods for selecting a subset of data from larger datasets and are often
used to tackle challenges like class imbalance and large data sizes while enhancing computational eiciency. The
application of rare event data showcases their efectiveness in signiicantly improving performance in mining rare
events, highlighting their importance in research contributions. This subsection examines various approaches for
sampling and discusses their application to various data modalities, rarity levels, and downstream tasks (See
Figure 9 and discussion in Appendix B.3) ).

3.4.1 Approaches to sampling. Sampling techniques used in rare event prediction can be categorized into basic
and advanced methods based on the complexity and sophistication of the sampling approaches utilized.
I) Basic sampling techniques: These techniques seek to address the issue of class imbalance by eliminating
instances from the majority class or increasing the minority class by duplicating minority class samples. Random
minority oversampling (ROS) and random majority undersampling (RUS) are the most frequent basic sampling
strategies. In ROS, instances of the minority class are replicated randomly in the dataset, while in RUS, occurrences
of the majority class are randomly eliminated from the dataset. In rare event-based research, many studies have
used ROS and RUS methods to achieve a more balanced class distribution [40, 104, 160, 170, 196, 209]. Some
researchers have combined sampling techniques with clustering models [145, 196] and ensemble learning methods
[59] to improve predictive performance. Some others have applied randomly over/under-sampling in conjunction
with advanced architectures, such as the Siamese CNN [89], to enhance rare event detection. Additionally,
statistical sampling methods, like Hoefding bounds, have been employed in rare event learning using associative
rules and higher-order statistics [100]. Even though basic sampling has been extensively used, it has several
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limitations. The drawback of the oversampling method is that it leads to overitting since the model learns from
the same duplicated samples repeatedly. Undersampling eliminates lots of data that could have been utilized to
train the model and improve its accuracy.
II) Advanced sampling techniques: Going beyond basic random adjustments, advanced sampling techniques
utilize intelligent mechanisms that consider the distribution of data points and the nuance of learning speciic
examples, resulting in greater efectiveness for handling complex, imbalanced datasets.

1) Synthetic minority oversampling technique (SMOTE): SMOTE is a popular advanced sampling technique
used in ML to address class imbalances. It generates new synthetic minority cases by extrapolating from existing
minority instances, and it considers the diference between a sample and its closest neighbor to create synthetic
examples. SMOTE has been adopted in various rare event-related use cases implementing diferent modeling
techniques [42, 45, 73, 121, 209]. It has been observed that logistic regression combined with SMOTE produces
good results in detecting Look-Alike-Sound-Alike (LASA) cases in textual data [209], but it can be computationally
expensive. Adaptive swarm balancing algorithms [121] and dynamic churn prediction frameworks [42] have also
utilized SMOTE for rare event prediction in imbalanced datasets. Additionally, Borderline-SMOTE is a variation
that selectively applies SMOTE to minority instances on the border of the minority decision region, yielding
efective results in mining tasks [170]. While SMOTE has been adopted in various rare event use cases, it has a
signiicant drawback due to the arbitrary generation of synthetic data. As a result, the class boundaries between
the majority class and the minority class in the synthetic data may appear signiicantly diferent from those in
the original dataset, potentially deviating from the actual distribution of the minority class.

2) Adaptive synthetic sampling (ADASYN): ADASYN [94] is a method that solves the issue with SMOTE by
following a weighted distribution for minority classes according to their level of diiculty in learning. It generates
synthetic observations of the harder-to-learn minority samples compared to the easier-to-learn minority samples
and adaptively shifts the decision boundary towards the harder-to-learn samples. Asraf et al. [45] have used
ADASYN with the XGBoost model in rare event modeling in highrisk WWD roadway segment identiication.

3) Similarity majority undersampling (SMUTE): SMUTE [120] is an undersampling technique that distin-
guishes between the majority and minority class samples by considering the cosine similarity between each and
its neighboring minority class samples. SMUTE works by calculating similarity scores between each majority
class sample and a given number of minority class samples, then selecting a subset of majority class samples
with the highest percentage of high similarity scores based on a speciied undersampling rate.

4) Edited nearest neighbor (ENN): ENN [181] is an undersampling method that reduces noise and reines
decision boundaries in imbalanced datasets. ENN eliminates samples whose class labels difer from most of their
nearest neighbors, resulting in a dataset with smoother decision boundaries and reduced noise. It has been applied
with SMOTE oversampling to create a balanced, noise-free training dataset for improved rare event prediction
[45, 120].

5) Neighborhood cleaning rule (NCL): NCL is an undersampling technique that removes redundant, noisy, or
ambiguous samples. NCL employs the ENN technique to remove the data samples [47]. However, compared with
ENN, NCL has the additional beneit of removing redundant instances based on feature space similarity [120].

6) NearMiss (NM): NM [130] is a technique that uses distance measures of majority class samples to minority
class samples in selecting samples. When two points from diferent classes are located very close to one another
in a distribution, this algorithm eliminates the data point from the larger class to balance the distribution.
NearMiss-2(NM2), a variation of NM, has been used in rare event prediction data processing [45, 120].
7) One-sided selection (OSS): OSS is an undersampling technique that balances imbalanced datasets by

removing redundant and noisy majority-class instances. It combines the use of Tomek Links to identify ambiguous
points on the class boundary with the Condensed Nearest Neighbor (CNN) rule [93] to eliminate distant redundant
examples from the majority class, resulting in a minimally consistent subset without compromising model
performance. OSS has the advantage over other methods of intelligently locating and removing redundant and
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noisy majority class instances by utilizing Tomek Links and the CNN rule. This makes a more reined and
representative subset of the majority class. OSS has been employed in various rare event studies to address the
high imbalance in learning tasks [59, 113, 114, 170].
8) Cluster-based oversampling (CBO): CBO employs resampling by clustering each class’s training data

separately and then performing random oversampling, cluster by cluster [104, 170]. CBO employs separate
clustering of each class’s training data followed by random oversampling within each cluster, enhancing the
representation of rare classes in a balanced manner. The advantage of this method is that it considers both between-
class and within-class imbalances and then oversamples the data to correct both imbalances simultaneously.

9) Time series subsampling: This involves selecting a subset of time points from the original to create a new,
shorter, and more balanced time series [64, 78]. The diference between subsampling and time series subsampling
is that subsampling is a general term that refers to selecting a random subset of data points, while time series
subsampling is a speciic type of subsampling used for time series data involving the selection of a subset of
time points from a time series. In industrial-based research on machinery fault diagnosis [123], subsampling of
time series has been performed to consider the balanced time series length of normal and diferent bearing fault
types. Further, time series subsampling reduces the computational cost of analyzing long time series and aids in
training ML models.
10) Stratiied sampling: It is a general sampling technique that divides the dataset into subgroups (strata)

based on the target variable’s classes and then randomly samples from each stratum to ensure representation of
all classes. To sample normal and diferent bearing fault failure types, [123] uses stratiied techniques to represent
these subgroups in the inal dataset properly.

11) Audio data sampling: Data framing has been used as a data sampling technique for audio data [36] that
involves converting the audio data into a machine-readable format to ix the audio ile sampling (frame) rate. In
this method, the audio data is divided into frames, each representing a segment of the audio signal sampled at a
speciic rate. The total number of frames can be calculated by multiplying the sampling rate by the audio ile’s
duration.

12) Uncertainty sampling: It is a data sampling technique widely used in active learning, particularly relevant
to rare event prediction research. It entails selecting instances from a dataset based on the uncertainty or low
conidence of their predicted labels by a ML model. The goal is to prioritize sampling data points for which the
model lacks certainty in its predictions. This approach is valuable in scenarios where labeling data is resource-
intensive, such as in rare event prediction [152], as it allows researchers to actively select the most informative
instances for annotation, thereby improving the model’s performance with limited labeled data.
13) Choice-based or endogenous sampling: Endogenous sampling is a rare event prediction method that

selects samples based on the dependent variable (y) rather than the independent variable (X). It aims to obtain
a representative sample that accurately relects the distribution of rare events in the dataset, addressing the
imbalance issue and improving predictive performance. Choice-based or endogenous stratiied sampling has
been used in various applications, such as Light Detection and Ranging (LIDAR) maps, where non-landslide
cells are sampled one to ive times more than landslide cells to achieve better representation [184]. Variations of
regression models have been experimented with in endogenous sampling approaches [127].
3.5 Feature Engineering (FE)

Feature engineering involves converting raw data into a relevant feature set for modeling. It aims to extract
meaningful information from the dataset and present it in a format suitable for the learning algorithm. This
subsection examines various approaches to feature engineering in rare-event contexts. Then, it discusses their
application to various data modalities, rarity levels, and downstream tasks (See Figure 10 and discussion in
Appendix B.4).
3.5.1 Approaches to Feature engineering. Investigating rare events, we will review commonly utilized techniques
in feature engineering as outlined below.
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I) Data augmentation: In rare event prediction, data augmentation has been important in addressing the
scarcity of event samples and the challenges of imbalanced datasets. Unlike general applications, where aug-
mentation primarily boosts generalization, in rare events, it must be tailored to enhance model sensitivity to
infrequent patterns. For instance, in the pulp-and-paper industry, a tailored augmentation method combined
with Fast Fourier Transform (FFT) has been used to enrich time series data with synthetic rare event examples,
improving fault detection [160, 161]. Wasserstein GANs (WGANs) have been adapted for rare event prediction by
generating high-quality synthetic data to address data scarcity and improve training stability, while Conditional
GANs (CGANs) are used in creating targeted samples based on speciic attributes or conditions [73]. Apart from
those, standard image-based augmentation techniques, like cropping, have been applied to create additional
training samples while preserving the critical spatial features necessary for detecting rare mineral deposits,
predicting mineral prospectivity, and identifying scene changes [89, 150, 203]. These targeted approaches ensure
that models remain sensitive to rare events, improving their prediction accuracy.

II) Data discretization: Data discretization can manage the unique challenges of skewed class distributions
and high-dimensional data. Converting continuous data into discrete categories can help highlight the rare event
patterns that might otherwise be overshadowed in continuous data [147], simplifying the model’s ability to detect
and learn from rare occurrences. Standard techniques like optimal binning have allowed supervised discretization
that preserves essential characteristics of rare event data, ensuring that the model captures the subtle distinctions
necessary for accurate prediction [49, 144].

III) Feature scaling: In rare event research, standardization has been used to align feature distributions with
a standard normal distribution, which helps in mitigating the efect of class imbalance by ensuring that features
do not disproportionately inluence the model based on their scale [36, 119, 123, 200]. Normalization rescales
values to a uniform range, preventing features with larger ranges from dominating the model’s learning process
[132]. Both techniques ensure the model’s sensitivity to minority class features.
IV) Dimensionality reduction: Dimensionality reduction is more than a standard preprocessing step; it is

essential for rare event prediction as it addresses the high dimensionality and complexity inherent in rare event
datasets. Principal Component Analysis (PCA) reduces the feature space by preserving the most informative
components that distinguish rare events from normal occurrences [36, 36, 41, 51, 73, 132, 147, 162, 165, 200, 201].
Focusing on the principal components, PCA ilters out noise and highlights subtle signals, which aids models in
learning from imbalanced data.
V) Fourier transform: This is widely used in signal processing and image processing. It transforms a time-

domain signal into its frequency-domain representation, allowing for analyzing and manipulating the signal’s
frequency components. In rare event prediction, it can be used to uncover frequency-domain characteristics
that reveal rare occurrences often hidden by time-domain noise. In audio-based rare event research, [36], fourier
transform is applied to convert audio waveforms into the frequency domain for further analysis.
In this section, we explored four primary techniques, data cleaning, feature selection, sampling, and feature

engineering, as approaches to data processing. Data cleaning methods help to ensure data quality and remove
noise, while feature selection techniques aim to identify the most relevant features for rare event prediction.
Sampling approaches assist in selecting a subset of datasets and address issues with class imbalance and large
dataset sizes. Feature engineering methods efectively extract meaningful information and represent the data more
discriminatively. We also examined their application in various data modalities, rarity levels, and downstream
tasks (See Figure 7 and discussion in Appendix B.1). It is observed that many studies utilize standard data
processing techniques common to general ML research. This highlights the need to investigate standardized
approaches adapted to rare events to assist the unique challenges of classiication, clustering, regression, and
forecasting. Notably, numerical data cleaning techniques like data sifting, iltering, imputation, and noise removal
are commonly used, while feature selection methods such as correlation-based, wrapper-based, and ilter-based
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techniques are applied across diferent rarity groups, with classiication tasks being the primary focus across all
methodologies.

4 Algorithmic Approaches
Supervised

Classification & Regression

Threshold methods
Tree-based classification methods
Cost-sensitive methods
Non-parametric classification algorithms
Kernel-based methods
Inference/Rule-based methods

Semi-Supervised &
Unsupervised Methods

Clustering
One-class learning 

Meta-Heuristic
Optimization

Particle-swarm optimization
Bat algorithm
Genetic algorithms

Advanced Learning

Attention-based learning
Markov methods
Active learning
Meta-learning

Algorithmic
Approaches

Statistical Modeling

ARIMA
VAR
Gumbel copula

Fig. 5. Algorithmic approaches used in rare event prediction

Algorithmic approaches are pivotal in any
ML pipeline and contribute signiicantly in
making informed and efective decisions.
They provide mathematical models for var-
ied use cases centered around downstream
tasks like classiication, clustering, fore-
casting, regression, and simulation. Firstly,
this section analyzes a subset of algorith-
mic approaches utilized in the literature on
rare events. Then, each approach would be
examined concerning several algorithmic
indicators. Finally, each approach would
be analyzed with the data modality, rar-
ity groups, data processing techniques, and
downstream tasks.

4.1 Significance

of algorithmic approaches

Algorithmic approaches provide tools andmodeling techniques to analyze and interpret complex datasets, enabling
the identiication of patterns, relationships, and key factors and predicting events of signiicant importance. We
categorize algorithmic approaches in rare event research into ive major groups: Supervised classiication and
regression, Clustering, Statistical modeling, Meta-heuristic optimization, and Advanced learning methods as
shown in Figure 5.

4.2 Supervised Classification and Regression

Classiication and regression are two fundamental supervised learning tasks in ML aimed at predicting the
output of a target variable based on input features. The key diference lies in the type of target variable they
handle. Classiication algorithms are used to predict discrete values such as gender, binary labels (true/false), or
categories like spam or not spam, while regression algorithms are employed for predicting continuous values like
price, salary, or age. In rare event prediction, various techniques have been used, including threshold methods,
tree-based classiication, one-class learning, cost-sensitive methods, non-parametric classiication algorithms,
kernel-based methods, and inference/rule-based methods.

4.2.1 Threshold methods. These approaches set a speciic threshold for classifying data instances into rare or
non-rare classes based on a pre-deined criterion, rendering them well-suited for modeling rare events. Instances
above the threshold are considered rare, while those below it are classiied as non-rare. Existing research has
employed probabilistic statistical methods such as Logistic Regression (LR), Naive Bayes classiiers (NB), and
Neural Networks (NN) that generate a score or probability threshold. If the categorization is binary, this probability
is subsequently transferred and mapped to a binary mapping, like malignant or benign, spam or not spam, normal
or abnormal. In rare event prediction, certain researchers have utilized LR as a fundamental base classiier
[184, 209], while others have explored various adaptations and variations, including incorporating regularization
techniques [41, 45] and utilizing weighting methods [127]. It was observed that the conventional LR encountered
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convergence challenges in scenarios with limited sample sizes or rare events in the data. To address this issue, an
alternative approach known as Firth’s logistic regression [154] has been employed, wherein a penalty is added to
the log-likelihood function of the LR model. Several studies that include rare events [45, 146] have demonstrated
improved performance using Firth’s logistic regression. LR methods are easy to implement, interpretable, and
suitable for rare event prediction with small sample sizes.

Bayes classiiers and neural networks are also threshold-based models utilized in rare event prediction research.
Bayes classiiers have been used in rare event prediction by [120, 157]. Studies have explored the application
of neural networks, including Deep neural networks [38, 46, 120], Convolutional Neural Networks (CNN)
[46, 51, 119, 150, 203], Multi-Layer Perceptron (MLP) [36], Autoencoders [45, 133, 200], CNN-based autoencoders
[51, 97, 133, 159, 200], Long Short-Term Memory (LSTM) autoencoders [97, 159] in various applications such as
mineral prospectivity prediction [150, 203], black-swan event prediction [51], rare sound classiication in audio
forensics [36] and manufacturing failure prediction [97, 159]. LSTMs can preserve temporal properties of rare
events by capturing sequential dependencies and managing long-term relationships through gating mechanisms.
NB ofers robustness, probabilistic inference, and lexibility compared to LR, while NN excels in representation
learning and scalability. But, both risks being afected by the insuicient sample size in rare events [146].

4.2.2 Tree-based classification methods. These are supervised ML methods that partition the training data into
subsets using a series of conditional statements. These splits create a tree-like structure, each representing a
logical test on a speciic feature. The inal model comprises multiple such trees, enabling predictions and ofering
insights into the relationships within the data. Tree-based classiication methods are widely used in rare event
prediction due to their ability to handle complex and non-linear relationships in the data. Random Forest (RF)
[46, 63, 73, 82, 96, 132, 157] and Boosted Classiication Trees, such as XGBoost [45, 73, 96, 157], are popular choices
in this group. In rare event prediction, researchers have applied these models to estimate the probability of rare
events like suicide attempts [63], APS failures [82, 157], and manufacturing faults [73, 96]. Data augmentation
techniques have been used to enhance the performance of tree-based models further, optimizing parameters to
avoid overitting [45]. Tree-based methods also beneit from handling overitting using random subsets during
model training. However, they can be challenging to interpret due to the large number of trees in the model,
making it diicult to understand the combined efect of all trees. Despite this limitation, tree-based classiication
methods are valuable tools for capturing complex relationships and making accurate predictions in rare event
prediction tasks.

4.2.3 Cost-sensitive learning. These methods consider the costs associated with prediction errors and other
potential costs during the training of a ML model. Instead of maximizing accuracy, the focus shifts to minimizing
overall misclassiication costs, where each class or instance is assigned a speciic misclassiication cost. False
negatives (misses) are assigned higher costs than false positives (false alarms). Two main approaches to cost-
sensitive learning are decision trees and weighting. Decision trees employ a parameterized threshold mechanism
to dynamically adjust the decision boundary of the classiier, making them suitable for modeling rare events in a
manner that is nuanced and contextually adaptable [113, 120, 145, 209]. On the other hand, weighting assigns
higher weights to the minority class to penalize misclassiications of the rare class [59, 95]. Researchers have
explored cost-sensitive learning methods with various classiiers such as Logistic Regression, Random Forest,
and Support Vector Machines. Weighted Random Forest and AdaClassWeight are examples of algorithms that
adaptively adjust the weights of the rare class to address the imbalanced data problem [59, 95]. Overall, it’s
observed that cost-sensitive learning methods ofer efective solutions for handling imbalanced datasets and
predicting rare events in various real-world applications.
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4.2.4 Non-parametric classification algorithms. They are ML algorithms that do not make explicit assumptions
about the data’s underlying probability distribution or functional form. Unlike parametric classiication algo-
rithms, which assume a speciic functional form (linear or polynomial) and estimate parameters, non-parametric
algorithms learn directly from the data without assuming any speciic model structure. K-nearest neighbors
(k-NN) is an instance adopted by [157] in APS failure prediction. They are often more lexible and can capture
complex relationships in the data, which becomes more advantageous in rare event prediction [119, 157].

4.2.5 Kernal-Based Methods. They are ML algorithms that transform data into a higher-dimensional space using
kernel functions, enabling them to capture non-linear relationships and solve downstream tasks like classiication
and regression. Support Vector Machines (SVMs) are a well-known kernel technique that outperforms neural
networks in some rare event research, particularly for small to medium datasets demanding explainable outcomes.
SVM-based kernels can disambiguate hard-to-classify rare event datasets using soft-margins [40, 100, 157]. One-
class SVM has been used in evaluating large sample sizes in unsupervised learning environments [41, 100]. In
imbalanced healthcare data, L.SVM (Support Vector Machine with Linear kernel) and R.SVM (Support Vector
Machine with Radial kernel) have been used as base classiiers for incident detection [209]. SVMs have also been
applied in importance sampling for rare event detection to identify multiple failure regions and estimate the
structural failure probability of rare events [122]. Granular SVM (GSVM) is a variation of SVM that combines
statistical learning theory and granular computing theory [178]. In [179], GSVM has been used with under-
sampling techniques to improve eicacy by locally reducing redundant data through parallel processing. Rare
event weighted kernel logistic regression (RE-WKLR) [129] is an algorithmic SVM enhancement optimized for
unbalanced and rare event data. It ofers the advantages of weighing, bias correction, and the strength of kernel
approaches, especially when datasets are imbalanced or not linearly separable.

4.2.6 Inference/Rule-Based Methods. This class of algorithms focuses on deriving knowledge and insights
from data through explicit if-then rules. In rare event literature, these methods can be Bayesian methods,
Inductive algorithms, Two-phase rule induction, Knowledge-based and human interaction-based approaches, and
Association rule mining. These methods are applicable to rare event prediction due to their ability to leverage
expert domain knowledge, create human-readable rules, and provide interpretable outputs, which are crucial for
understanding the decision-making process in scenarios where data scarcity and complexity make traditional
modeling approaches challenging.

i) Bayesian methods: These are statistical techniques that use prior information on a certain population, and
they rely on Bayes’ theorem to update the probability of a hypothesis based on new evidence. Bayesian methods
ofer multiple beneits, including handling incomplete and noisy data, understanding causal relationships between
variables, and integrating domain expertise and data through Bayesian networks. Utilizing Bayesian methods, as
demonstrated in [60], along with Bayesian networks, results in superior performance in forecasting daily ozone
states by incorporating expert knowledge and historical data. Bayesian networks also prove useful for extreme
rare event identiication, as shown in [144], where the Jaynes inferential approach is used for feature engineering
and optimal binning, leading to reduced features and improved identiication of relevant diagnostic features.
ii) Inductive algorithms: In rare event prediction, some researchers have proposed various inductive bias

methods such as Maximum Speciicity Bias (MSB) and Instance-Based Learning (IBL). MSB aims to discover
speciic rules for individual training examples, enhancing the performance of small disjuncts but leading to worse
overall performance. IBL, also known as lazy learning, is a ML approach that focuses on the local generalization
of instances based on similarity measures. 1-NN (1-Nearest Neighbor) algorithm is a type of IBL used in [113]
along with one-sided selection in detecting oil spills. This study shows promising results for improving accuracy
in small disjuncts, but even this method has not been able to provide conclusive evidence.
iii) Two-phase rule induction: Is a ML technique that involves a two-step process for inducing rules from

data and is commonly used in data mining and knowledge discovery. The PNrule algorithm [39] is a two-phase

ACM Comput. Surv.



18 • C. Shyalika et al.

rule induction approach that involves the discovery of positive rules (P-rules) to predict the presence of a class
and negative rules (N-rules) to predict its absence. P-rules are learned in the irst phase to capture the most
positive cases while maintaining a respectable false positive rate. N-rules are discovered in the second phase to
reduce false positives introduced by the union of P-rules while maintaining an acceptable detection rate. The
study by [105] uses the PNRule method to address the challenge of maximizing recall and precision in rare event
prediction. By creating rules with great accuracy, the initial phase concentrates on recall. The second phase
concentrates on precision by utilizing rules that eliminate false positives from the records covered by the irst
phase.

iv) Knowledge-based and human interaction-based approaches: Knowledge and human interactions have
been researched and explored in predicting rare events like international conlicts, wars, coups, revolutions,
massive economic depressions, and economic crises [110]. Knowledge-driven models are particularly useful
in areas with limited exploration data or that have not been extensively studied. They rely on the expertise of
professionals to make decisions, but they can be subjected to limitations due to their subjective nature. Some
instances of using knowledge include modeling knowledge from geological experts in mineral prospectivity
prediction [150, 203] and using expert knowledge like chemical equations and hypotheses in solar lare forecasting
[60]. Nevertheless, while these approaches may demonstrate eicacy when applied to small and straightforward
systems, their efectiveness might be low when dealing with more complex and diverse systems [67].

v) Association rulemining: These utilize basic If/Then statements to reveal relationships between independent
relational or other data repositories. [187] adopts an association rule mining approach to identify frequently
occurring patterns preceding target rare events, which are subsequently integrated into a rule-based predictive
model. ‘PREVENT’ is a general purpose inter-transaction association rules mining algorithm that uses inter-
transactional patterns to predict rare events in transactional databases [49]. FP-Growth, a state-of-the-art algorithm
for classical association rule mining, is utilized there. The algorithm’s computational cost is minimal as it involves
limited scans of the database, making it well-suited for the requirements of rare event prediction.

4.3 Semi-supervised and Unsupervised methods

Semi-supervised methods for rare event prediction leverage a combination of labeled data from the rare event
class and unlabeled data from normal instances, aiming to improve predictive accuracy and generalization. In
contrast, unsupervised methods rely solely on unlabeled data, focusing on identifying patterns or anomalies that
deviate signiicantly from the norm, which can be indicative of rare events.

4.3.1 Clustering methods. Clustering is a type of unsupervised learning where samples are categorized based
on their resemblance to neighboring data points. Several clustering-based methods have been employed in the
literature on rare events. Distance-based unsupervised methods such as Random Forest (RF) clustering, Partition
Around Medoids (PAM), K-means, and hierarchical clustering are commonly used [118, 200]. For instance,
hierarchical clustering has been used to detect abnormal production behaviors in the paper manufacturing
industry [200]. K-means clustering has been utilized to identify rare change events based on the distance
between common features [89]. Additionally, clustering-based undersampling techniques, like Clustering Large
Applications (CLARA) [145] and Classiication using lOcal clusterinG (COG) algorithms [196], have aimed to
generate balanced sub-classes for classiication. In some cases, ensembles of clustering methods, such as RF
Clustering and PAM, are been combined to optimize the clustering process [147]. Moreover, the combination of
nearest neighbor and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) clustering with
dynamic markov chains has shown promise in detecting rare events in spatiotemporal environments using sensor
and traic data [134].
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4.3.2 One-class learning. One-class learning is an unsupervised learning strategy used for extremely skewed
class distributions, with the classiier being trained exclusively on data from one class. It can be considered a
semi-supervised or unsupervised approach, depending on how it is implemented and the speciic context of its
application. Adaptation of one-class classiication algorithms for imbalanced classiication has been researched
in early studies, and they have also been employed in rare event prediction. HIPPO (i.e.,a classiication method
based on Hippocampus functioning) [103] is a standard method where only the rare class is learned, and Repeated
Incremental Pruning to Produce Error Reduction (RIPPER) [62] is a standard method where the algorithm selects
the majority class as its default class and learns the rules for detecting the minority class. Hamaguchi et al. [89]
have proposed a variational autoencoder-based method to learn disentangled representations on only low-cost
negative samples of image data. As a result, rare events were detected as outliers. Some autoencoder models
we presented under threshold methods also do intersect with this group, such as [159], which was trained only
on normal samples, and [45] where samples of rare events were used for training. The advantages of one-class
classiiers come at the cost of ignoring all available information about one class; consequently, this solution
should be approached cautiously, as it may not be suitable for all circumstances.

4.4 Statistical Modeling

Statistical models are algorithms that apply statistics and mathematics concepts to generate a representation
of data, which is then analyzed to determine any relationships or discover insights. Statistical approaches like
Autoregressive Integrated Moving Average (ARIMA) modeling and Vector Autoregression (VAR) have been
used in rare event prediction [41, 97]. ARIMA is an autoregressive statistical model that predicts future values
based on past values. Alestra et al. have utilized ARIMA modeling separately for each aircraft to predict the
degradation behavior over time [41]. Vector Autoregression follows a stochastic process model that captures
linear interdependencies among multiple time series using a linear function of past values of each variable.
[97] explored VAR in evaluating the LSTM-Autoencoder model developed. ARIMA and VAR models efectively
capture time-based dependencies and sequential (temporal) data patterns, which enhances prediction accuracy
and addresses challenges in predicting rare events based on past observations. The Gumbel copula function is a
statistical modeling technique in copula-based algorithms utilized in rare event research. Copulas are mathematical
functions used to model the dependence structure between random variables. They describe the joint distribution
of variables by connecting their marginal distributions. The Gumbel copula function, speciically, is a type of
copula that is based on the Gumbel distribution. It is commonly used to model extreme-value dependence, making
it suitable for applications involving rare events or extremes. It captures the tail dependence between variables,
which is vital in scenarios where the behavior of variables in the extreme tails is of interest [204].

4.5 Meta-Heuristic Optimization

Meta-heuristic algorithms are optimization techniques for solving complex problems by iteratively exploring
and exploiting the search space to ind near-optimal solutions [37]. These algorithms, such as particle swarm
optimization and the bat algorithm, have been applied to improve eiciency and scalability on large imbalanced
healthcare data, [121], and genetic algorithms have been utilized for learning to predict rare events in categorical
time series data [193]. Additionally, evolutionary ensemble algorithms have shown promise in enhancing the
identiication rate of minority classes in rare event-based imbalanced datasets [112]. These algorithms would
excel in rare event prediction due to their ability to eiciently explore complex search spaces and adaptively
exploit the underlying patterns and structures in imbalanced datasets.
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4.6 Advanced Learning Methods

Recently, advanced learning methods like Attention-based mechanisms, Markov methods, Active learning, and
Meta-learning have emerged to tackle the challenges posed by rare event datasets. These approaches strive
to enhance rare event predictive capability by leveraging temporal dependencies, probabilistic modeling, and
selective data labeling.

4.6.1 Atention-based mechanisms. Attention mechanisms enable the model to selectively concentrate on impor-
tant input elements for accurate predictions while disregarding less relevant parts. This has gained attention in
rare event research as well. For instance, Liu et al. proposed a fault diagnosis approach using one-dimensional
CNN, Gated Recurrent Unit (GRU), and attention mechanisms, combined with knowledge graphs, to achieve more
precise predictions in bearing fault detection [123]. Xu et al. have utilized attention-based-LSTM and Extra-Tree
models for fault mode and severity prediction based on bearing datasets, while Ravindranath et al. introduced
the M2NN architecture with an attention mechanism for post-traumatic seizure detection, demonstrating its
efectiveness in inding unusual seizures in EEG data [162, 201]. Kulkarni and team utilized soft-attention CNN for
rare marker event detection and localization in well-logs [115]. Attention-based mechanisms preserve temporal
properties by selectively focusing on important time steps, capturing both short- and long-term dependencies
in sequential data. These methods have proven useful in handling rare event detection tasks, such as anomaly
detection in manufacturing, rare disease diagnosis, and identifying speciic rare occurrences in multiple domains.

4.6.2 Markov methods. Markov models represent the Markov property, which asserts that the prediction of an
outcome depends only on information about the current state and is independent of the previous sequence of
events. Extensible Markov Models (EMM) and Monte Carlo methods are among the markov methods adopted in
rare event literature. These models capture the time-dependent behavior by modeling transitions between states
over time and, hence, can address the temporal properties inherent in rare events.

I) Extensible markov models (EMM): Extensible Markov Models (EMM) are a dynamic variation of traditional
static Markov models. They excel in modeling spatiotemporal data and have proven to help predict spatiotemporal
events, including rare occurrences, by capturing spatial, temporal, and unusual event transitions [72]. Meng et al.
[134] introduced an approach that combines clustering and EMM for rare event detection in spatiotemporal data,
particularly sensor and traic data. Their contribution lies in modeling the transitions between rare and typical
events using EMM, efectively detecting rare occurrences.

II) Monte carlo methods: Monte carlo methods, also called Monte carlo simulations, are probabilistic mathe-
matical techniques that estimate the possible outcomes of uncertain events. In rare event estimation, Monte Carlo
methods have been applied to estimate model uncertainty, such as using Monte Carlo Dropout to create multiple
predictions and measuring the standard deviation of detection depths as a proxy for uncertainty [115]. Addi-
tionally, they have been used to predict rare events using trajectory data and unscheduled aircraft maintenance
actions [28, 46, 66, 67, 122, 146, 177, 194].

4.6.3 Active learning. Active learning is a learning strategy that iteratively chooses the most instructive or
uncertain instances from a pool of unlabeled data and asks an oracle (such as a human expert or a pre-existing
labeled dataset) to annotate their labels [171]. Recent research eforts have been to predict rare events using
active learning, exempliied by studies like [70, 152]. Dhulipala et al. [70] proposed a methodology for rare event
simulation by combining active learning and multi-idelity modeling, which leverages multiple levels of models’
idelity (accuracy or complexity) to predict outcomes eiciently. Deep Neural Operators (DNOs), like DeepONet
[125], are nonlinear operators created to handle systems with ininite dimensions, making them highly efective
surrogate models for precisely representing extreme events. Pickering et al. [152] introduced a Bayesian-inspired
framework based on active learning for DNOs, speciically designed for discovering and quantifying extreme
events, focusing on uncertainty quantiication.

ACM Comput. Surv.



A Comprehensive Survey on Rare Event Prediction • 21

4.6.4 Meta learning. Meta-learning, or "learning to learn", is a ML approach focusing on training models to
efectively adapt and generalize to new tasks or domains with minimal data. It can be applied to rare event
prediction by training a model on various rare event scenarios. With limited data, it can rapidly adapt and
accurately predict new and infrequent events. The advantage of meta-learning over other advanced learning
approaches lies in its ability to dynamically adapt and integrate diferent predictive techniques, a faster and
cheaper training process, thus enhancing the model’s generalization capability and performance across varied
scenarios. Several studies [88, 117, 173] have looked at how meta-learning techniques can be used to improve
failure prediction in diferent areas, such as large-scale computing systems and acoustic event detection, by
dynamically combining base methods and improving accuracy in situations with few labeled data. While this
existing research primarily focuses on failure prediction, it is worth noting that no prior studies have speciically
addressed the prediction of rare events using meta-learning techniques.

4.7 Comparison of algorithmic approaches

Table 2 ofers a comparative analysis of the approaches discussed in the preceding section. We use 12 algorithmic
indicators based on four major factors: computational eiciency, model analysis and understanding, data availabil-
ity, and model performance, as deined in Appendix C.1. Table 7 (Appendix C.2) analyses algorithmic approaches
with rarity groups, downstream tasks, modalities, dataset types, and data processing tasks based on our reviewed
papers. Predominantly, research has centered on classifying numeric rarity within real datasets, showcasing a
blend of various data processing methodologies. Limited research is dedicated to alternative downstream tasks
such as clustering, forecasting, simulation, and diverse modalities encompassing text, images, and audio.

Table 2. Comparison of algorithmic approaches

Major Factor Algorithmic Indicator
Supervised

Classif. & Regress.

Semi-Sup.

& Un-Sup.

Statistical

Modeling

Meta-Heuristic

Optimization

Advanced Learning

Methods

Computational

Eiciency
Training Time ✓* ✓ ✓ ✓ ✓*

Memory Usage ✓* ✓ ✓ ✓ ✓*
Model Size ✓* ✓ ✓ ✓ ✓*
Model Complexity ✓* ✓* ✓* ✓* ✓*

Model Analysis

& Understanding
Feature Importance ✓ - ✓ - ✓

Model Explainability ✓ - ✓ - ✓

Interpretability ✓ - - - ✓

Data

Availability
Labeled Data ✓ ✓ ✓ ✓ ✓

Unlabeled Data - ✓ - - ✓

Model

Performance
Performance on Large Data ✓ - ✓ ✓* ✓

Ability to Handle Noise ✓ - ✓ ✓* ✓

Generalization ✓ ✓ ✓ ✓ ✓

∗includes variability- depends on speciic factors such as the problem domain, dataset, or implementation

This section extensively examined diferent algorithmic approaches applied in rare event prediction. The
indings contribute to a better understanding of the diverse strategies employed in rare event prediction research
and highlight the importance of selecting appropriate algorithms based on speciic downstream tasks and modality
requirements.

ACM Comput. Surv.



22 • C. Shyalika et al.

5 Evaluation Approaches

AsMLmodels are developed, measuring the performance of every model is critical. Multiple evaluation metrics are
employed in ML depending on the model and the results produced. This section focuses on the varied evaluation
aspects used in rare event prediction. Firstly, we will highlight the signiicance of evaluation concerning rare
event studies, followed by the evaluation methodologies and performance metrics used in related studies.

5.1 Significance of evaluation
Evaluation 

Methodologies
Performance 

Metrics

General evaluation
methods

Rare-event-based
evaluation methods

Ahead of time
prediction

Cost benefit
analysis

Root cause
analysis

Downstream task:
Classification &

Forecasting Downstream task:
Clustering

Downstream task:
Simulation

Downstream task:
Regression

Hopkins statistics test,
Silhouette coefficient,

Elbow method,
True skill statistic,

Sum of squared errors

Mean absolute error,
Root mean squared error,

Mean absolute 
percentage error

Probability evaluation of rare
event,

Rare event detection metrics,
Statistical robustness,
Confidence intervals

Evaluation
Approaches

Cross validation,
Hold-out evaluation,

Cost & error analysis,
Baseline comparison,

Training time evaluation,
Ablation studies

Accuracy, Confusion matrix,
Sensitivity, Specificity,
Precision, F1 score,
G-Mean, Cohen’s kappa, 
Balanced Error Rate,
Matthews’s correlation
coefficient etc. ...

Fig. 6. Evaluation approaches in rare event prediction

Evaluation in rare event prediction re-
search plays an integral role as it allows the
assessment of the model’s performance in
accurately identifying and predicting rare
events. Due to the imbalanced nature of
rare events, traditional evaluation metrics
might not provide a comprehensive assess-
ment, making it vital to employ specialized
evaluation techniques that focus on both
overall performance and the ability to de-
tect rare occurrences. Figure 6 depicts the
evaluation approaches we identiied in rare
event literature grouped into their evalua-
tion categories.

5.2 Evaluation Methodologies

Evaluation methodologies in rare event prediction research involve general and rare event-speciic approaches.
General methods ind widespread application in diverse ML tasks, while rare event-speciic metrics are tailored
to address the unique challenges and requirements of predicting rare events.

5.2.1 General evaluation methods. In rare event prediction research, various general evaluation methods are
employed to assess the performance of algorithmic approaches (Table 8 in Appendix D). Cross-validation
techniques, such as K-Fold, Stratiied K-Fold, and Leave-One-Out are commonly used for performance estimation
[40, 42, 59, 63, 73, 82, 96, 113, 119, 161, 209]. Holdout evaluation through random splitting [63, 96, 123, 160]
and time-based splitting [60, 63, 67] is utilized to create distinct train-test datasets, facilitating the process of
model training and evaluation. Analysis with standard baselines, cost and error analysis, training time evaluation
[51, 51], and ablation studies [89] for understanding individual components’ contributions are among the general
evaluation approaches employed in this ield.

5.2.2 Rare event-specific evaluation methods. Evaluation methods that are speciic to rare events emphasize
early prediction, proactive decision-making, and economic feasibility in the prediction task. We identiied several
methods below as speciic to rare events as presented in Table 9 (Appendix D).
I) Ahead-of-time prediction evaluation: Ahead-of-time prediction evaluation assesses a model’s predictive
capability for events or outcomes occurring multiple time steps into the future. This approach contrasts with the
usual prediction evaluation, which focuses on predicting the immediate next event or outcome. Evaluating models
"ahead of time" is particularly important in scenarios where early detection and proactive decision-making are
critical. In the studies by [51, 67, 159], the performance of the proposed models has been evaluated over various
lead times, ranging from one to many units of time. It was observed that while the accuracy of the models might
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decrease as the lead time increases, their performance has remained stable, demonstrating their potential utility in
providing valuable insights well before the occurrence of rare events, such as black-swan or equipment failures.
II) Cost-beneit analysis: Cost-beneit analysis has been used to assess rare event prediction’s economic
feasibility and potential advantages. Methods like assessing potential inancial loss reduction, optimizing resource
allocation, and evaluating the potential mitigation of losses or damages are utilized to quantify and compare the
costs and beneits linked to early prediction of rare events, as explored in [119] and [144].
III) Root cause analysis: This could be viewed as a problem-solving approach focused on discerning the
fundamental elements contributing to rare occurrences. It involves investigating and tracing the chain of events
to determine the fundamental causes [119].

5.3 Performance metrics

Performance metrics aid in monitoring and optimizing algorithmic approaches, facilitating comparison of algo-
rithms, determining optimal thresholds, supporting data-driven decision-making and conducting risk assessments.
We categorize these performance metrics used in rare event research, which difer based on the downstream
tasks involved. The detailed analysis of performance metrics and rarity groups, algorithmic approaches, modality,
and dataset types is included in Table 10 (Appendix D).
I) Downstream tasks: Classiication and Forecasting
i) Accuracy: Evaluating model accuracy is essential, particularly in imbalanced scenarios, where relying

solely on accuracy can be deceptive. Since accuracy only assigns overall class weights rather than weights for
unusual classes or minorities. Zhao et al. [209] highlight that standard classiiers like LR and SVM assume equal
class distribution, which leads to poor sensitivity for rare events. To address this, variants of accuracy such as
Faulty-Normal Accuracy (FNACC) and Real Faulty-Normal Accuracy (RFNACC) are introduced [41, 132]. FNACC
assesses how well the model identiies normal samples preceding faults, while RFNACC evaluates the accuracy
in predicting actual faults, ofering a more nuanced view of model performance on rare events.

ii) Geometric mean (G-Mean): G-Mean combines sensitivity and speciicity to measure the balance between
classiication performance for the majority and minority classes. It is particularly useful in rare event prediction
as a low G-Mean indicates poor prediction of rare events, despite good performance on the majority class
[59, 179, 189].
iii) Cohen’s kappa index: It is a metric that has been used in earth science and healthcare-based rare

event prediction evaluation for use cases like landslide prediction[184], hazardous seismic bumps in coal mines,
detecting changes in geospatial trajectories [100], [120], mineral prospectivity prediction [203] and thoracic events
prediction [121]. [120] has selected Kappa as the primary evaluation metric since it indicates the generalizability
of the classiier’s predictive ability on the supplementary datasets. However, some research attempts have proven
that the Kappa metric produces unreliable results due to its high sensitivity to the distribution of the marginal
totals [61].
iv) Balanced error rate (BER): BER measures the average of the errors for each class in a classiication

problem, which has been used by [100, 120] in rare event model evaluation.
v) Mathews’s correlation coeicient (MCC): MCC is a more accurate statistical metric that provides a

reliable measure of a model’s performance by considering all four confusion matrix categories (TP, FN, TN,
and FP) and balancing the impact of both positive and negative class sizes [61, 120, 202]. Hence, this metric is
beneicial when dealing with highly imbalanced rare event datasets.
vi) Cost matrix: A cost matrix speciies the relative importance of accuracy for diferent classiication

predictions by assigning costs or weights to various classiication predictions. In a cost matrix, positive numbers
(costs) inluence negative outcomes, whereas negative numbers (beneits) inluence positive outcomes. An
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instance is [73], which tries to minimize the cost matrix for binary misclassiication using threshold and tree-
based classiication models. This approach helps prioritize detecting rare events by adjusting the cost of false
positives and false negatives.
vii) Top-decile lit (TDL): TDL is a metric used in the economic domain that compares the incidence in the

top 10% samples with the highest model predictions to the incidence of the entire sample [50]. [42] used TDL and
assumed it returned the customers predicted to be most likely to churn rather than a random selection. In rare
event scenarios, TDL helps the model identify the most promising cases by highlighting its ability to distinguish
rare events from non-rare ones, thus providing insights beyond overall accuracy.

viii) Reconstruction error: Thismeasures the discrepancy between the original input data and its reconstructed
version generated by a model by quantifying how well the model can reproduce the input data. In models like
autoencoders, the model is trained to reconstruct its input data from a compressed latent representation [97].
Reconstruction error identiies signiicant deviations from normal patterns, aiding in efective rare event prediction
and enhancing the model’s ability to prioritize and identify rare events.
ix) Moran index: Used in spatial analysis and statistics and measures a variable’s spatial autocorrelation or

clustering within a geographic space. It calculates the degree of similarity or dissimilarity between neighboring
locations based on the values of the analyzed variable. It provides a measure of spatial dependence, indicating
whether similar values tend to cluster together (positive spatial autocorrelation) or are dispersed (negative spatial
autocorrelation) [204]. Moran index has been used to detect spatial clustering of rare events, and it gives insights
into spatial locations where these events are more likely to occur [168, 204].

II) Downstream task: Clustering
i) Elbow method: The Elbow method, typically used to identify the optimal number of clusters, is beneicial

in rare event prediction tasks where the majority class can dominate the clustering process. This also ensures
that minority class clusters are not merged into larger majority class clusters, thereby preserving the distinct
characteristics of rare events. This approach is helpful in studies focusing on class imbalance, where detecting
minority classes with high speciicity and sensitivity is vital for model performance [145].
ii) Silhouete coeicient: It is another metric used for internal cluster validation. This metric is particularly

important in rare event prediction as it helps to determine whether rare event clusters are well-deined and
distinct from non-rare event clusters. A small silhouette width may indicate that rare events are being inaccurately
grouped with non-rare events, which can signiicantly impact the model’s ability to identify and predict rare
occurrences [147].
iii) Hopkins statistics test The Hopkins statistics test is used to assess the clustering tendency of a dataset.

Omar et al. [147] used it to evaluate the clustering tendency in a rare event dataset. This revealed well-deined
and meaningful clusters that standard clustering evaluation methods might miss due to the high data imbalance
and the distinct patterns often exhibited by the minority class.

iv) True skill statistic (TSS): TSS combines sensitivity and speciicity into a single measure, ofering a more
balanced model performance evaluation in rare event prediction. Unlike accuracy, which can be misleading in
imbalanced datasets, TSS provides a robust assessment of a model’s positive and negative predictive abilities
[43, 206]. This makes it particularly useful in scenarios like species distribution modeling or solar lare forecasting,
where both false positives and false negatives carry signiicant consequences [40].

v) Sum of squared errors (SSE): SSE measures the variation within clusters by calculating the sum of
the squared diferences between each observation and the group mean and is often used to evaluate cluster
compactness [180]. In rare event prediction, minimizing SSE ensures that rare event clusters are as distinct and
well-deined as possible [165]. High SSE values may indicate that the model fails to accurately capture the unique
characteristics of rare events, leading to poor prediction performance [165].

III) Downstream task: Regression
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i) Mean absolute error (MAE) and root mean squared error (RMSE), mean absolute percentage error
(MAPE):

MAE or Mean Absolute Deviation (MAD), RMSE, and MAPE or Mean Absolute Percentage Deviation (MAPD)
are popular scale-dependent metrics used in evaluation. MAE provides a straightforward measure of prediction
error, highlighting performance on underrepresented rare events. RMSE penalizes more signiicant errors, making
it ideal for assessing precision in datasets where rare occurrences have high variance. Though sensitive to small
actual values, MAPE ofers insights into percentage accuracy, which is essential for comparing model performance
across diferent events. These metrics have been employed in rare event studies, with Xu et al. [201] selecting
MAE and RMSE as regression loss functions and Ravindranath et al. [162] using these metrics in multivariate
multiscale attention research.

IV) Downstream task: Simulation
i) Probability evaluation of rare event: This metric directly measures the likelihood of the rare event

occurring. It provides a quantitative assessment in a simulation of the occurrence of the event of interest
[46, 70, 146].

ii) Rare event detection metrics: The standard metrics that evaluate the performance of algorithms designed
to predict rare events like precision, recall, F1 score, and Area Under the Receiver Operating Characteristic Curve
(AUC-ROC), RMSE, have also been utilized in simulation evaluations [46, 146].

iii) Statistical robustness: Statistical robustness refers to the ability of statistical models to produce reliable
and consistent results under varying sample sizes, distributional assumptions, or data perturbations [46].

iv) Conidence intervals: This metric provides a range of values within which the actual value of a performance
metric is expected to fall and quantiies the uncertainty associated with the estimated performance metric [146].
In conclusion, we presented a comprehensive analysis of various evaluation approaches used in rare event

prediction. From our analysis, we identiied most studies rely on standard evaluation metrics, highlighting the
need for tailored metrics explicitly designed for rare events. This is particularly important given the limited
availability of rare event-speciic evaluation techniques, especially in datasets comprising numerical, textual, and
image data across diverse tasks such as classiication, forecasting, clustering, regression, and simulation. Through
this examination, we also gained valuable insights into the suitability and limitations of diferent evaluation
methodologies and performance metrics for handling rare events. The indings underscore the signiicance of
choosing appropriate metrics tailored to speciic downstream tasks and modalities.

6 Research Findings and Discussion

This section provides an overview of the research indings, emphasizing identiied gaps, and open challenges in
the ield. It also explores emerging research trends and novel approaches, aiming to address the complexities of
rare event prediction and drive advancements in the ield.

6.1 The gaps in current literature

(1) Lack of standardized benchmark datasets: “Standardized datasetž represents real-world scenarios that
include an ideal rarity percentage, annotated ground truth, scalability, temporal and spatial association,
feature diversity, noise, and outliers. They should also adhere to privacy and ethical standards to enable fair
and comprehensive comparisons of algorithms and advance the state-of-the-art in the ield. The absence of
such widely accepted benchmark datasets for rare event prediction makes it challenging to compare the
performance of diferent algorithms and approaches consistently.
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(2) Imbalanced data processing techniques: While many studies explore standard methods for addressing
imbalanced data, there is a necessity for in-depth investigation of standardized techniques for data process-
ing, especially for handling extreme rarity, since general data imbalance techniques may inadequate and
underperform.

(3) Scalability issues: Current research has not addressed scalability challenges in handling large-scale rare
event datasets, such as computational complexity, memory constraints, and algorithmic eiciency.

(4) Limited focus on Uncertainty Quantiication (UQ): UQ involves quantifying and characterizing uncertainties
associated with predictions, ofering insights into the reliability and conidence of estimates. The lack of
comprehensive studies on UQ for rare event prediction undermines conidence in model predictions, which
is essential for making informed decisions when dealing with infrequent and high-impact events.

(5) Real-world applicability: More research is needed to assess the practical usability and robustness of
prediction models in critical real-world applications, particularly in domains such as healthcare, inance,
and earth sciences.

(6) Limited focus on rare event-speciic evaluation techniques: Many studies still rely on standard and general
evaluation metrics designed for balanced datasets, which is challenging because these metrics fail to
accurately relect model performance in rare events, leading to misleading assessments and suboptimal
model improvements.

(7) Measuring data quality: The absence of standardized methods for measuring data quality in data sampling
and augmentation for rare event data is a research gap.

6.2 Open challenges of rare event prediction

Based on our study, below are some open issues and challenges in the ield of rare event prediction that we
identiied.

(1) Lack of annotated data: Collecting and annotating data about rare events proves complex and time-intensive,
posing an inherent obstacle in developing proicient rare event prediction models.

(2) Interdependence between rare events: Identifying complex relationships and dependencies among rare
events (when more than one rare event occurs) remains elusive.

(3) Bias in data: Bias refers to systematic errors or prejudices in data collection, sampling, or labeling that can
skew the results of prediction models. This bias is especially challenging in rare events since it can lead to
signiicant misrepresentations of the events, resulting in highly inaccurate and unreliable predictions.

(4) Generalization and real-world applicability: Achieving generalizability in rare event prediction models
presents challenges due to the potentially signiicant diferences in variability and distribution of new,
unseen, or real-world data compared with the training data.

(5) Interpretability: The infrequency and high stakes of rare events necessitate clear and understandable
explanations to ensure trust and accurate decision-making in critical domains like healthcare or inance.

6.3 Research trends in rare event prediction

Research in rare event prediction has surged in recent years due to the increasing importance of rare events in
many ields. Some of the research trends in this area include:

(1) Incorporation of domain knowledge: Domain knowledge, expert opinions, and human insights Human-in-
the-Loop Systems) can aid in rare event prediction. They have led in emerging applications that combine
data-driven and algorithmic approaches with qualitative knowledge, knowledge graphs, expert systems,
and rule-based models to improve the robustness and reliability of predictions [79, 135, 169, 186, 197].
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(2) Explainability: The growing emphasis on transparency and comprehension in model predictions has led to
the rise of explainability as a prospective future trend in rare event prediction research [74, 166, 166]. This
development aims to enhance decision-making processes and foster trust in the accuracy of models.

(3) Ensemble learning: This involves combining multiple algorithms to improve prediction performance, which
is particularly efective in handling imbalanced datasets and has recently gained attention [69, 76, 131, 138].

(4) Meta-learning, few-shot learning, and transfer learning: Meta-learning [151] and few-shot learning [207]
have proven to enhance rare event prediction recently by enabling model learning from related events
and generalization to new and infrequent events with limited labeled data, thus improving adaptability
and accuracy. Transfer learning is a meta-learning technique that involves using knowledge from one
domain to improve learning in another. This approach is promising in rare event prediction, where data
from diferent domains can be leveraged to improve predictive performance [69, 101].

(5) Using multi-modal data: Integrating information from multiple data sources and modalities has improved
rare event predictive power, generalization, and robustness while uncovering hidden patterns [44, 163].
However, it also presents challenges related to data integration, feature engineering, and model complexity.

(6) Uncertainty quantiication with rarity: Recently, UQ has gained prominence within rare event prediction.
Using UQ, decision-makers can make more informed choices, assess risk, optimize resource allocation, and
enhance the robustness to mitigate the impacts of rare events. These can incorporate advancements using
probabilistic modeling [197], Bayesian inference [83], Monte Carlo methods [86], and Deep Ensembles
[86, 108].

(7) Privacy-preserving techniques: Rare event research on techniques like federated learning, diferential
privacy, encrypted data processing [55, 102], and privacy-preserving data mining [87] can be prioritized
for sensitive rare event data to ensure conidentiality .

(8) Leveraging edge devices and neuromorphic computing techniques: Incorporating edge devices and advanced
neuromorphic computing techniques has emerged as a trend in rare event prediction [158, 172], enabling
eicient real-time processing, low-latency analytics, and enhanced model adaptability at the edge while
leveraging eicient computing paradigms for improved pattern recognition and prediction accuracy.

We have also formulated a forward-looking vision to assist researchers in navigating future initiatives within
this ield, emphasizing three pivotal areas of interest: causality, process knowledge worklows and automated
planning (See description and Figure 11 in Appendix E.

7 Conclusion

This paper presents a detailed analysis of rare event prediction, encompassing rare event data, data processing,
algorithmic and evaluation approaches. Through our examination of the current literature, we identiied several
gaps and challenges in the ield, highlighting the need for specialized evaluation techniques and their integration.
As rare events continue to play a vital role in diverse domains, like manufacturing, healthcare, inance, and
earth sciences, addressing these challenges will foster the development of more robust and accurate prediction
models. By embracing emerging research trends and leveraging advanced learning methods, we can unlock new
opportunities to enhance the prediction and management of rare events, ultimately contributing to safer and
more eicient decision-making processes. As the ield evolves, interdisciplinary collaboration and innovative
solutions will pave the way for transformative advancements in rare event prediction.

8 Acronyms

Table 11 under the Appendix F includes the acronyms used in the paper.
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