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Thesis Summary

This thesis begins with a selective overview of problems in geometric
graph theory, a rapidly evolving subfield of discrete mathematics. We then
narrow our focus to the study of unit-distance graphs, Euclidean coloring
problems, rigidity theory and the interplay among these topics. After ex-
pounding on the limitations we face when attempting to characterize finite,
separable edge-maximal unit-distance graphs, we engage an interesting Dio-
phantine problem arising in this endeavor. Finally, we present a novel sub-
class of finite, separable edge-maximal unit distance graphs obtained as part
of the author’s undergraduate research experience.

Author’s Note

This thesis was composed in hope that the majority of the text would
be accessible to an undergraduate with similar background to the author
when she first began this project (that is, with almost no background). By
necessity, Sections 4, 5 and 6 are more technical. If anything in this thesis
excluding the aforementioned sections is communicated as less than beautiful,
accessible, and exciting, the fault is the author’s alone.
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2 Introduction

In discrete math, a graph G = (V,E) is a collection of vertices V and a set
E of edges between them. Non-mathematicians and many applied mathe-
maticians might call this object a network. While we often conceptualize
graphs visually, a graph is an abstract object with multiple visual represen-
tations. For example, the graph defined as G = (V,E), V = {1, 2, 3, 4},
E = {12, 23, 34, 14} can be visualized in the plane as shown below, and in
countless other ways.

Figure 1: Three Depictions of a 4-cycle

We call the number of vertices in a graph the order of the graph. Given
a vertex v, if uv is an edge of the graph for some other vertex u, then we
say u is a neighbor of v. The degree of a vertex of a graph is the number of
neighbors it has. A complete graph on n vertices is a graph in which every
vertex is adjacent to every other vertex. That is, the edge set of a complete
graph consists of all possible pairs of vertices and therefore has

(
n
2

)
elements.

A graph H = (V ′, E ′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and
E ′ ⊆ E.

Figure 2: A Depiction of the Complete Graph on 7 Vertices

In the following section, we give an array of open problems in extremal
graph theory, an active area of research in the study of graphs.
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3 Context

3.1 Selected Extremal Problems in Geometric Graph
Theory

Following the convention of Janós Pach in [56], we use the term geometric
graph to refer to a graph drawn in the Euclidean plane with straight-line
edges. Anyone who has used an atlas has intuition for geometric graphs, as
the network of cities and distances between them often provided on a back
page gives a familiar example of a such a graph (ignoring the fact that these
distances are often based on non-straight line paths). Through the shift from
atlases to GPS navigation, geometric graphs have only become more relevant:
current interest in geometric graphs, or spatial networks, is driven in part
by Vehicle Routing Problems, including efforts to develop efficient routes for
mail delivery (see [47]).

Demand for efficient optimization algorithms on spatial networks has led
to increased interest in geometric graphs. Solutions to extremal problems
give insight into the best- and worst-case scenarios which these algorithms
may face. In the following subsections, we explore areas of recent interest
in extremal problems in geometric graph theory. Ultimately, the aim of this
section is to contextualize the study of unit distance graphs, which we engage
more directly in Section 3.2.

3.1.1 Forbidden Subgraph Characterizations

Given a graph G = (V,E), we call a graph G′ = (V ′, E ′) a subgraph of G if
V ′ ⊆ V and E ′ ⊆ E. A graph G[V ′] is an induced subgraph of G if it is a
subgraph of G with vertex set V ′ ⊆ V and an edge between two vertices of
G[V ′] if and only if there is an edge between them in G.

A forbidden subgraph characterization of a family of graphs G is a defini-
tion of G in terms of subgraphs which are not permitted in members of G. If
the characterization is complete, we can say that a graph G is a member of
G if and only if G does not have one of the forbidden graphs as a subgraph.

Consider the bipartite graphs as a purely graph-theoretic example of a
class with a forbidden subgraph configuration. It is straightforward to see
that bipartite graphs have no K3 subgraph, and in fact, a graph is bipartite
if and only if it has no odd cycle as a subgraph (see Theorem 4 of [9]).

A clique is a complete graph, and an independent set is a set of vertices
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Figure 3: Example of Graph, Subgraph, and Induced Subgraph

which does not induce an edge. The following longstanding conjecture of
Erdős and Hajnal has inspired significant study in the area of forbidden
subgraphs:

Conjecture 1. (Erdős-Hajnal, [14]) For every graph H, there exists a δ(H) >
0 such that every graph G with no induced subgraph isomorphic to H has
either a clique or an independent set of size at least |V (G)|δ(H).

Broadly, this conjecture suggests that graph classes defined in terms of a
forbidden subgraph behave differently from almost all other classes of graphs,
as there exist graphs on n vertices with no clique or independent set of size
larger than O(log n) [14],[23]. The perhaps more famous result below proves
the conjecture for complete graphs Kn:

Theorem 1. (Ramsey’s Theorem) For N sufficiently large, there exists c
such that all Kr-free graphs on N vertices have an independent set of size
cN1/(r−1).

We give an alternative statement with the more standard language of
edge coloring:

Theorem 2. (Erdős-Szekeres Version of Ramsey’s Theorem [16]) Every two-
coloring of the edges of Kn has a monochromatic clique of order (1/2) log2(n).

In this context, a two-coloring is an assignment of two colors to the edges
of a graph. Observe that by taking any graph G on n vertices, coloring
all edges of G blue, and constructing a red edge between any non-adjacent
pair of vertices, we obtain a two-coloring of Kn. By Theorem 2, G has a
monochromatic clique of order (1/2) log2(n). That is, this graph has either a
large enough red clique or a large enough blue clique, which implies that G

3



has either a large independent set (red clique in the coloring of Kn) or clique
(blue clique in the coloring of Kn).

Just recently, it was shown that for N ≥ (4 − 2−7)k, any two-coloring of
the edges of KN has a monochromatic copy of Kk (see [11]. Equivalently,
any Kk-free graph on N ≥ (4 − 2−7)k vertices has an independent set of size
k. This result represents an upper bound on the Ramsey number R(k, k),
which is the minimum number of vertices N for which any two coloring of
the edges of KN has a monochromatic Kk.

Lower bounds on R(k, k) are proven by showing that there exist graphs on
N vertices whose edges can be two-colored without a monochromatic Kk. All
known lower bounds have been obtained probabilistically, that is, by showing
that with high probability such graphs exist, without actually constructing
one. See [23] for the first proof of a lower bound.

Developing a polynomial-time algorithm to construct graphs on N ver-
tices with the property that for all two-colorings of the edges, there are no
monochromatic Kc logN for c some constant is an open problem of significant
interest (see [5]). Alternatively, we could state this problem as the task of
finding a polynomial time algorithm to construct N -vertex graphs which are
Kc logN -free.

Forbidden subgraph characterizations are of interest in geometric graph
theory, as well, because it is often more computationally taxing to verify
that a graph is a member of a geometrically defined class than to check for
the presence of a finite set of small subgraphs. For example, it is NP-hard
to determine that a given graph is a unit distance graph, or a graph which
can be drawn in the plane with all edges of length one (see 3.2 for formal
definition). It is possible to determine slightly more quickly that a graph is
not a unit distance graph by showing that it contains one of the forbidden
subgraphs of the class of unit distance graphs.

Finding forbidden subgraphs of unit distance graphs is itself no easy task,
however. For unit distance graphs on seven or fewer vertices, there are six for-
bidden subgraphs (see [13]). The authors of [30] obtain a forbidden subgraph
characterization for unit distance graphs on up to 9 vertices, using SageMath,
rigidity theory (see 3.4), and elementary geometry. Their characterization
includes 74 minimal forbidden subgraphs; a forbidden subgraph characteri-
zation of unit distance graphs on 10 or more vertices may be prohibitively
computationally taxing.

There are many similar characterizations in terms of substructures other
than subgraphs. For example, Kuratowski’s characterization of planar graphs
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Figure 4: The Six Forbidden Subgraphs of Unit Distance Graphs on 7 or
Fewer Vertices ([30], [13])

is stated in terms of forbidding subgraphs which are homeomorphic to two
given subgraphs, rather than forbidding specific subgraphs themselves. We
say a graph G is homeomorphic to a graph H if H is obtained from G by a
sequence of edge subdivisions.

Theorem 3. (Kuratowski’s Theorem, [6]) A graph G is non-planar if and
only if it may be obtained from K5 or K3,3 by a sequence of edge subdivisions
and edge/vertex additions.

Out of research on planar graphs, or graphs with no crossings, came
questions about the minimum number of crossings in drawings of non-planar
graphs. We give an overview of these problems in the next subsection.

3.1.2 Crossing Number Problems

Crossing number problems have their roots in sociometric research of the
1930s and 1940s. Seeking a visually communicative method for illustrating
social networks, Moreno ([55],1934) and Bronfenbrenner ([10], 1944) aimed to
find drawings of graphs which minimized edge crossings. Turán is credited
with the first mathematical expression of this type of problem. His Brick
Factory Problem asks for the minimum number of crossings possible in a
drawing of a complete bipartite graph. Current best-known upper bounds are
due to Zarankiewicz and Urbanik, who independently obtained the following
result in 1955:

Proposition 1. (Zarankiewicz and Urbanik, 1955) The minimum number
of crossings in a complete bipartite graph Kn,m is at most⌊

n

2

⌋⌊
n− 1

2

⌋⌊
m

2

⌋⌊
m− 1

2

⌋
.
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This bound is demonstrated by drawing the vertices of complete bipartite
graph on the x and y axes of R2, with one class distributed as evenly as
possible on either side of the origin on x-axis and the other class distributed
as evenly as possible on either side of the origin on the y-axis.

Figure 5: Zarankiewicz’s Construction for Minimizing Bipartite Graph Cross-
ings, shown for K4,5

Work in this area has been generalized far beyond bipartite graphs, lead-
ing to the following definition and theorem:

Definition 1. (Crossing Number, [6]) The crossing number cr(G) of a graph
G is the minimum number of edge crossings in any drawing of G in the plane.

Theorem 4. (Crossing Number Lemma, [6]) Let G be a simple graph with n
vertices and e edges. Then for some positive constant c (where we can take
c = 1/64),

cr(G) ≥ c
e3

n2
− n.

The proof of this result in [6] gives a valuable introduction to probabilistic
proofs in geometric graph theory. Improvements on the bound given above
typically involve increasing the constant c without significantly increasing
lower bounds on the number of edges in a graph for which the inequality
holds.
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The Crossing Number Lemma is a critical piece of Székely’s proof (see
[66]) of the Szemerédi-Trotter Theorem, stated below. The Szemerédi-Trotter
Theorem itself is a key fact in the study of the number of unit distances
possible in a configuration of n points in the plane (see Section 3.2). The
Szemerédi-Trotter Theorem is phrased in terms of incidences; we say a point
is incident to a line if it lies on that line.

Theorem 5. (Szemerédi-Trotter Theorem, 1983) Given a set of n ≥ 1
points and m ≥ 1 lines in the plane, the maximum number of incidences
I(n,m) is O(n2/3m2/3 + n + m).

Equivalently, there exists some positive constant c so that I(n,m) ≤
c(n2/3m2/3 + n + m). Székely’s proof defines a graph having as its vertex
set the given n points and as its edge set the pairs of vertices which are
incident to the same line and have no other point between them on that line.
Counting the edges of this graph, upper bounding the number of crossings,
and applying the Crossing Number Lemma yields the result.

We briefly present three variants of the crossing number problem, along
with current bounds which may allow improvement.

I. Rectilinear Crossing Number Problem ([58]): The rectilinear crossing
number of a graph is the minimum number of crossings in any drawing
with each edge represented by a straight line segment.

Although requiring edges to be straight lines often increases the number
of crossings, the construction of Zarankiewicz for bipartite graphs has
the same minimum number of crossings when we restrict to straight line
edges. Therefore, if the associated upper bound is the true minimum
number of crossings for bipartite graphs, the rectilinear crossing number
of bipartite graphs is equal to the crossing number of bipartite graphs.

As part of the Rectilinear Crossing Number Project ([63]), the rectilin-
ear crossing number of all complete graphs Kn for n ≤ 17 have been
determined.

II. Odd-Crossing Number Problem ([58]): The odd crossing number of a
graph is the minimum number of pairs of edges which cross each other
an odd number of times in any drawing in the plane.

By the following result, the odd crossing number of any non-planar
graph is at least one.

7



Theorem 6. (Hanani-Tutte Theorem, 1970) Every drawing in the
plane of a non-planar graph contains a pair of disjoint edges (no shared
endvertices) that cross each other an odd number of times.

The authors of [41] show that the maximum number of edges modd
k (n)

in a graph on n vertices which can be drawn so that any edge is crossed
an odd number of times by at most k other edges is

√
32kn. This article

was published just this year, and both the limitations of the result and
the renown of the mathematicians working on it should indicate how
difficult results on this problem can be.

III. Crossing Number on the Torus ([24]): Given a graph G, the toroidal
crossing number cr1(G) is the minimum number of crossings among all
drawings of G on the surface of the torus. We see that the toroidal
crossing number is at most the (planar) crossing number.

Early work, including bounds on the toroidal crossing number of Kn

and Km,n are obtained in [33] and [32]. Exact toroidal crossing numbers
for Km,n for m,n > 6 remain unknown ([72]).

Links between different crossing number variants and the torioidal
crossing number are also of interest. Pach and Tòth established the
following correspondence between the toroidal crossing number and
planar crossing number:

Proposition 2. (Theorem 1 in [57]) Let G be a graph of n vertices
with maximum degree ∆, and suppose G has a crossing-free drawing
on the torus. Then cr(G) ≤ cdn for some constant c.

This bound is tight for all d ≥ 3.

Broadly, questions stated in terms of graphs of a given genus are com-
mon in topological graph theory; we say a graph is of genus g if it can be
embedded with no crossings on a sphere with g “handles” added. For
example, graphs with toroidal crossing number 0 are of genus 1, since
the torus is topologically equivalent to a sphere with one handle added
(see Figure 6). For more problems dealing with graphs embedded in
spaces other than Rd, see 3.1.3.

A very thorough, regularly updated survey of variants of the crossing
number problem is provided in [62].

8



Figure 6: The torus is topologically equivalent to the sphere with an added
handle

3.1.3 Edge-Maximal Graphs on Surfaces

After briefly sparking interest in the 1970s, the topic of edge-maximal graphs
on surfaces has seen a resurgence of interest in the past decade. Given a graph
class G, a member G is edge-maximal if adding any edge to G would cause
it to exit the class G. A graph G is embeddable in a surface Σ if it can be
represented so that the vertices of G are distinct points on Σ and no two
edges intersect other than at shared endvertices ([69]).

Euler’s formula relates the number of vertices v, edges e, and faces f of
a graph embedded on a surface of genus g, or onto a surface with g “holes.”

Theorem 7. (Euler’s Formula, [61]) Let G be a connected graph drawn on
a genus g surface with every face 2-dimensional. Then v − e + f = 2 − 2g.

The plane has genus 0, so the number of edges in a graph on v vertices
which is embeddable in the plane is e = v + f − 2, which is maximized
when f is as large as possible. That is, the edge-maximal graphs in the
plane are triangulations. Many of the edge-maximal graphs in higher-genus
surfaces are triangulations, as well. On the Klein bottle and the torus, the
edge-maximal graphs are almost entirely accounted for by triangulations and
complete graphs:

Theorem 8. ([19]) With the exception of K7− e, every edge-maximal graph
embeddable on the Klein botle either triangulates the surface or is complete.

Theorem 9. ([19]) With the exception of K8 − E(C5), every edge-maximal
graph embeddable on the torus either triangulates the surface or is complete.

It is worth noting that determining whether a graph G triangulates a
surface is NP-complete ([69]).

We say a graph class G is pure if all edge-maximal graphs in G on n
vertices have the same number of edges ([54]). Theorem 9 above shows that

9



Figure 7: K7 − e and K8 − E(C5)

the class of graphs which are embeddable on the torus is not pure, since
K8 − E(C5) does not have the same number of edges as a triangulation on
the torus. This discrepancy occurs for other graph classes as well, and much
of the research in this area is directed toward studying the “impurity” of
certain graph classes.

Following the convention of [54], say a graph class G is k-impure if for any
pair of edge-maximal graphs G,H in G with the same number of vertices, the
number of edges in G and H differ by at most k. The impurity of a graph
class is tied to the genus of the surface being studied:

Theorem 10. [54] The class of graphs embeddable in a surface of genus g
has impurity at most cg for some constant c.

As we noted in Section 3.1.1, graph classes defined in terms of forbid-
den substructures often behave strangely; we observe this phenomenon when
studying impurity, too. Define GH as the class of graphs not having H as a
minor.

Definition 2. A graph H is a minor of a graph G if H can be obtained from
G by removing edges and vertices and contracting edges.

Figure 8: An example of an edge contraction

10



In their sweeping result provided in [53], McDiarmid and Przykucki prove
that that the only connected graphs H such that GH is pure are K2, K3, K4,
and P4. That is, for any other connected graph H, GH is impure.

There remain open problems in the area of determining just how impure
these graph classes are on various surfaces. Additionally, the conjecture
below remains open, and would prove the more famous Cycle Double Cover
Conjecture if true (see [61] and [12]). The conjectures below refers to 2-
connected (biconnected) graphs; these graphs require the removal of at least
2 vertices in order to disconnect them.

Conjecture 2. (Strong Embedding Conjecture, as in [61]) Let G be a 2-
connected graph. Then there exists an embedding of G onto a genus g
surface for some g so that the boundary of every face in the embedding is a
cycle in G.

Conjecture 3. (Cycle Double Cover Conjecture, as in [61]) Let G be a 2-
connected graph. Then there exists a collection of cycles in G such that every
edge of G is used in the set of cycles exactly twice.

11



3.2 Unit Distance Graphs

One of the most natural restrictions to place on a geometric graph is the
requirement that all edges have the same length. We call a graph with this
property a unit distance graph. To avoid degeneracy arising from multiple
vertices being placed at the same location in the plane, we define unit distance
graph as follows:

Definition 3. (Unit Distance Graph) A graph G is a unit distance graph in
the plane if there exists an injective homomorphism f : V (G) → R2 so that
|f(v) − f(u)| = 1 for all uv ∈ E(G) under the usual Euclidean metric.

For ease of notation, denote by Γ the unit distance graph in R2. We
say a unit distance graph G is edge-maximal if for any u, v ∈ V (G), G′ =
(V (G), E(G) ∪ uv) has no injective homomorphism into Γ.

3.2.1 Foundational Results

When faced with a new class of graphs, a standard question to ask is “how
many edges do its most dense members have?” The following version of this
question for unit distance graphs is due to Erdős: “What is the maximum
number of times that a unit distance can occur among n points in R2?” The
result below is an asymptotic answer to this question whose proof hinges on
the Szemerédi-Trotter Theorem (see Theorem 5).

Theorem 11. (Spencer-Szemerédi-Trotter Upper Bound, 1984) [65] A set
of n points in the plane induces O(n4/3) unit distances, or ≤ cn4/3 for some
constant c.

Since the publication of this seminal result, the upper bound on the num-
ber of unit distances on n points has been improved only in the constant term.
However, it is widely conjectured that this bound is not best possible, espe-
cially in light of the size of the gap between this upper bound and known
lower bounds.

Theorem 12. (Erdős Lower Bound, 1946) It is possible to construct a set
of n points which induce n1+c/(log logn) unit distances for some constant c.

To incentivize work on this problem, Erdős offered $500 for a proof that
the true upper bound is equal to his proposed lower bound. This prize has
yet to be claimed.
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The work presented above and the work it inspired nearly answers the
following question: “Given d = 2, what are the (dense) unit distance graphs
in Rd?” A dual problem has also been studied: “Given a graph, what is the
smallest d for which it can be represented as a unit distance graph in Rd?”
Maehara and Rödl give an upper bound for this quantity:

Theorem 13. (Maehara & Rödl, 1990) If a graph has maximum degree d,
then it can be represented as a unit distance graph in R2d.

In the following subsection, we return to unit distance graphs in R2, ex-
ploring a few classes of these graphs and variations on the standard definition
of unit distance graphs.

3.2.2 Interesting Classes & Variants

Classes

I. Generalized Petersen Graphs were introduced as early as 1950. In [18],
they are presented as an unnamed class of graphs defined as the union
of a cycle graph and a star cycle graph with each vertex of the cycle
adjacent to one vertex of the star cycle, and vice versa. As defined
formally in [71], for integers n, k such that 1 ≤ k ≤ n− 1 and 2k ̸= n,
a Generalized Petersen Graph G(n, k) has vertex set

V (G(n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge set

{u1ui+1, uivi, vivi+k|i ∈ Z, ui, vi ∈ V (G(n, k))}

where all subscripts are considered modulo n. We write the canonical
Petersen Graph as G(5, 2) using this notation.

In [76], it is shown that all Generalized Petersen Graphs are unit dis-
tance graphs. Named examples of Generalized Petersen Graphs include
the Nauru Graph and Desargues Graph, pictured below as unit distance
graphs:

Recent work on these graphs has included undergraduate projects games
on Generalized Petersen Graphs [52], master’s thesis work on Hamil-
ton paths of Generalized Petersen Graphs [60], and journal papers on
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Figure 9: The Petersen Graph, G(5, 2)

Figure 10: Nauru Graph G(12, 5) (adapted from [20]), Desargues Graph
G(10, 3)

colorings [46], spectral properties [29], and the underlying groups [27]
of Generalized Petersen Graphs.

II. Cartesian Products of Unit Distance Graphs :

The Cartesian product of two graphs G,H is defined as V (G□H) :=
V (G) × V (H) and E(G□H) :=

{(u, u′)(v, v′)|u = v and u′v′ ∈ E(H) or u′ = v′ and uv ∈ E(G)}.

The Cartesian product of two unit distance graphs is a unit distance
graph, both in the plane and in higher-dimensional space (see [35]).
This fact yields an algorithm for constructing an infinite class of unit
distance graphs. Several named classes of graphs are confirmed as unit
distance graphs by virtue of being Cartesian products of unit distance
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graphs, as well. For example, all Hamming graphs H(d, 3) are unit
distance graphs, as the Cartesian products of d copies of K3. Similarly,
the Hypercube Graphs can be written as the Cartesian products of
graphs composed of disjoint edges.

Figure 11: The Hamming Graph H(3, 3) [68]

III. Lower Bound Construction for the Erdős Unit Distance Problem

Erdős proved the lower bound in Theorem 12 using a construction
informed by a Diophantine problem. Beginning with an

√
n ×

√
n

subset of the integer lattice, we find m so that the graph with an edge
between any two lattice points at distance

√
m from each other has

the maximum number of edges. Näıvely, we would seek to maximize
the number of points incident to the circle of radius

√
m about any

given point. However, this approach does not necessarily maximize the
number of edges on the

√
n×

√
n lattice, since distance

√
m neighbors

of a lattice point may not be included in the chosen
√
n ×

√
n subset

of the lattice.

In [22], Erdős considers this m as a solution to the Diophantine equation
u2 + v2 = m. To find the value of m which maximizes the number of
edges on the

√
n×

√
n integer lattice, we rewrite m as m = pf11 . . . pfrr m′

where each pi is prime and pi ≡ 1 (mod 4). Such pi factor as pi =
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Figure 12: The Hypercube Graph Q4

(ai + jbi)(ai − jbi) in the Gaussian integers, so we have the following:

m =

( t∏
k=1

(aik + jbik)

)( t∏
k=1

(aik − jbik)

)
m′

= (a + jb)(a− jb)m′

= a2(m′)2 + b2(m′)2

= (±am′)2 + (±bm′)2.

We observe that for every prime pi ∈ {p1, . . . , pr}, we have a unique
pair ai, bi which correspond to eight points on the circle of radius

√
m,

unless one of ai, bi is 0. To maximize the number of edges in G, we seek
m so that m has as many prime factors of the form 4k + 1 as possible,
while requiring that

√
m ≤

√
n.

For
√
n ∈ [2, 9], m = 1 is best. For

√
n ∈ [10, 49], choosing m = 25

yields the greatest number of edges. We note that for n = 225 m = 25
gives a graph with more edges than m = 65, even though 65 has more
prime factors of the form 4k + 1. With a smaller distance of

√
m = 5,

more lattice points in the 15 × 15 lattice have all of their distance-5
neighbors included in the grid.

Asymptotically, without this additional consideration of points whose
distance

√
m neighbors fall outside the lattice still attains the bound.
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Whenever
√
m <

√
n/10, the majority of the neighbors of any lattice

point are contained within the
√
n×

√
n lattice.

Variants

Definition 4. (Strict Unit Distance Graph) A faithful unit distance graph or
strict unit distance graph is a unit distance graph in which a pair of vertices
are adjacent if and only if the Euclidean distance between them is 1.

In their beautiful paper “Two Notions of Unit Distance Graphs” ([4]),
Alon and Kupavskii give an introduction to this class of graphs along with
several criteria for determining whether a graph is realizable as a strict unit
distance graph. The following results give a sense of what is being proven on
this topic:

Theorem 14. (Theorem 1.1.3 in [4]) Any bipartite graph with maximum
degree at most d in one of its parts so that no three vertices of degree d in
this part have exactly the same set of neighbors is realizable as a strict unit
distance graph in Rd.

Theorem 15. (Theorem 1.4 in [4]) For any d ≥ 4, the minimum number
of edges in a bipartite graph which is not realizable as a strict unit distance
graph in Rd is at least

(
d+2
2

)
and at most

(
d+3
2

)
− 6.

Theorem 16. (Proposition 1.8 in [4]) For any g ∈ N, there exists a sequence
of strict unit distance graphs in Rd with girth greater than g such that the
chromatic number of the sequence grows as Ω(d/(log d)), where the constant
depends on g.

The extremal problems below remain open:

Question 1. (Problem 1 in [4]) What is the minimum number of edges g(d)
of a graph which is not realizable as a strict unit distance graph in Rd?

Question 2. (Problem 4 in [4]) Define the strict unit distance Ramsey num-
ber RSUD(v, t, d) as the minimum integer such that for every graph G on
RSUD(v, t, d) vertices, either G contains an induced v-vertex subgraph iso-
morphic to a strict unit distance graph in Rd or G contains an induced
t-vertex subgraph isomorphic to a strict unit distance graph in Rd. What
are the best possible bounds on RSUD(v, t, d)?

Partial results on Question 2 can be found in [43].
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Figure 13: Example of a Penny Graph

Definition 5. (Matchstick Graph) A matchstick graph is a planar unit dis-
tance graph, that is, a unit distance graph which can be drawn in R2 with
no crossing edges.

As recently as 2022, the maximum number of edges in a matchstick graph
on n vertices was proven to be ⌊3n−

√
12n− 3⌋ (see [45]). Their proof relies

on Euler’s Formula and the Isoperimetric Inequality, stated below:

Proposition 3. (The Isoperimetric Inequality) For any simple polygon (no
self-crossings, no holes) of perimeter b and area A, 4πA < b2.

Alluding to the property that edge-maximal planar general graphs are
triangulations, the authors introduce the term “lattice component” to refer
to maximal biconnected subgraphs which can be embedded on a triangular
lattice. The authors of [45] reach their result by proving results about the
number of edges in lattice components.

Definition 6. (Penny Graphs) A penny graph has vertices corresponding
to the centers of a set of non-overlapping circles of unit radius and edges
between the centers of any two circles which are tangent to each other.

Question 3. Are all planar unit distance graphs penny graphs (where we
define planar unit distance graphs as having a unit distance representation
with no crossing edges)? If not, what is the minimum number of distinct coin
diameters needed so that all planar unit distance graphs can be represented
by a set of coins?
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Theorem 17. (Koebe Representation Theorem, 1935) Every planar graph
can be represented as the tangency graph of a family of nonoverlapping cir-
cular discs.

In the following generalization of Penny Graphs, we exit the class of
unit distance graphs, but gain many applications to so-called “real-world
problems”.

Definition 7. (Unit Disk Graphs) A unit disk graph has vertices correspond-
ing to the centers of circles of unit radius and edges between the centers of
any two circles whose intersection is nonempty.

An early mention of this class of graphs is found in the 1980 Proceedings
of the Institute for Electrical and Electronics Engineers ([34]), evidencing the
importance of these graphs in engineering. At the time, research in unit disk
graphs contributed to the optimization of radio frequency assignment; the
problem of minimizing interference between stations is easy to translate into
the language of unit disk graphs. Broadly, this type of optimization remains
an active area of research, as engineers aim to both minimize interference and
maximize coverage when dealing with cellular networks (see [1] for a recent
overview of this).

The earliest publicly available work on this class in a mathematical journal
is due to Clark, Colbourn, and Johnson ([15]) and is highly cited. In [15],
the authors provide three conceptualizations of unit disk graphs:

I. Intersection Model: Given a family of sets Si
n
i=1 where n may be infinite,

we define the vertex set of an intersection graph as {vi}ni=1 and edge
set as

{vivj|i ̸= j, Si ∩ Sj ̸= ∅}.
We define the intersection graph of a set of circles as G = (V,E) where
V is the set of circles, and two distinct vertices are adjacent when the
corresponding circles intersect or are tangent to each other. Unit disk
graphs are the intersection graphs of unit circles.

II. Containment Model: Given n unit circles in the plane, an n-vertex
graph with an edge between two vertices if one of the corresponding
circles contains the center of the other is a unit disk graph.

III. Proximity Model: Given a set of n points in the plane, a graph ob-
tained by constructing an edge between any two points whose pairwise
distance is at most 1 is a unit disk graph.
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In [7], Atminas and Zamarev find infinitely many forbidden subgraphs of
unit disk graphs, including K2 ∪ C2k+1 for integers k ≥ 1 and C2k for integers
k ≥ 4. As shown in Figure 14, the complement of K2 ∪ C3 is K2,3, also a
well-known forbidden subgraph of unit distance graphs (see the second graph
from left in Figure 4).

Figure 14: K2 ∪ C3 (black) and K2 ∪ C3 (gray)

In Section 6, we introduce an original class of highly symmetric, separable
edge-maximal unit distance graphs.

20



3.3 Euclidean Coloring Problems

As said by Fields Medalist Tim Gowers, “Combinatorics is the field of easy-
to-ask questions.” This is especially true in Euclidean Ramsey Theory, where
problems are often stated without reference to any formal definitions, but
rather in terms of coloring. The Four Color Theorem is a popular result in
this area, known even among the general public. Informally, it shows that
any map can be colored so that no two territories which share a border are
the same color. We include a formal statement below.

Theorem 18. (Four Color Theorem) Any planar graph has a 4-coloring.

More challenging results are equally easy to state. For example, the
venerable Hadwiger-Nelson problem, first published in 1950, asks for the
number of colors required to color the plane so that no two points at unit
distance from each other have the same color. This quantity is known as the
Chromatic Number of the Plane. Even after several decades, this question
remains open.

Until 2018, the state of the problem was that at least four and at most
seven colors are needed. Lower bounds on the chromatic number of the plane
are proven by constructing a finite subset of R2, specifically a unit distance
graph, which requires at least k colors to avoid having two vertices of the
same color at unit distance from each other. We call this number k the
chromatic number of a unit distance graph G and define chromatic number
for general graphs below:

Definition 8. A graph G has chromatic number k if there exists a function
f : V (G) → [k] so that for all uv ∈ E(G), f(u) ̸= f(v).

Interest in the Chromatic Number of the Plane was rekindled in 2018,
when an amateur mathematician published an example of a unit distance
graph of chromatic number 5. His graph and non-human verifiable proof can
be found in Geombinatorics, a primary venue for results in Euclidean Ramsey
Theory. Composed of many copies of the two graphs initially used to show
that the Chromatic number of the plane is at least 4 (figure 15), this graph
has 1581 vertices. As the saying goes, “seven is already infinite;” it is nearly
impossible to obtain a human-verifiable proof that such a large graph is, in
fact, of chromatic number 5. Since this initial result, considerable effort has
been devoted to finding both a smaller 5-chromatic unit distance graph and
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Figure 15: The Moser Spindle and Golomb Graph

ultimately a human-verifiable proof that the chromatic number of the plane
is at least 5.

Substantial progress toward this end has been made in the Polymath
16 project, one of many highly collaborative online forums composing the
ever-growing body of Polymath projects. A top contributor to Polymath 16,
Jaan Parts, published a human-verifiable proof that the chromatic number
of the plane is at least 5 in 2020 (see [59]). The accompanying graph has 481
vertices.

Perhaps more clearly reflecting the connection between Euclidean Ramsey
Theory and Classical Ramsey Theory, the study of red-blue colorings (2-
colorings) of Euclidean space which forbid blue unit distances and copies of
a chosen graph with all vertices red are also of interest. Problems of this
type are thoroughly introduced in [21]. Intricate connections between red-
blue coloring problems and k-coloring problems (k > 2) were illuminated by
an undergraduate researcher in 1999 in the following:

Proposition 4. (Szlam, 1999, [67]) If A ⊆ Rd, a set closed under vector
addition, can be colored with red and blue so that no two points of A are
at unit distance from each other and for some k-element subset K of A, no
translate of K in A has all its vertices red, then A can be k-colored so that
no two points of A at unit distance are the same color.

This result was generalized in [3], which extends the connections between
Szlam’s Lemma and the Chromatic Number of the Plane. Specifically, thanks
to the aforementioned result, showing that for any four-coloring of the plane
which forbids unit distances for three colors and some two-point set which is
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not monochromatic in the fourth color is equivalent to showing the chromatic
number of the plane is at least 6. For more details on this, see [38].

A seemingly endless set of problems in this area can be obtained by gen-
eralizing to higher dimensions or working with a non-Euclidean metric. The
ε-chromatic number of the plane problem, is an interesting open question,
too, asking for the number of colors necessary to color the plane so that
monochromatic distances d ∈ [d − ε, d + ε] for some small ε > 0. This
quantity is known to be either 6 (see [2]) or 7 (see [26]).
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3.4 Combinatorial Rigidity

Combinatorial Rigidity Theory encompasses questions relating to the “struc-
tural soundness” of graphs. More formally, we say a graph is rigid if it admits
no continuous deformation in a chosen space. Intuitively, we are concerned
with whether we can “push” on a graph, changing the location of one or more
of its vertices, while maintaining the lengths of all edges in some geometric
environment. The chosen space is most commonly the 2-dimensional Eu-
clidean plane R2, and Laman’s Theorem offers a characterization of minimal
rigidity in R2. Currently, problems concerning rigidity properties of graphs in
R3 are of great interest, with promising avenues of research offered to brave
explorers.

Advances in rigidity theory contribute to applied mathematics, partic-
ularly in the study of rigid graphs which remain rigid even when “under
attack”. The study of k-vertex rigid graphs, or graphs which maintain rigid-
ity upon the removal of any set of k−1 vertices, is relevant to sensor network
localization. It is advantageous to guarantee that even if k sensors are lost,
the relative distances of each to the other can still be interpolated. More
details can be found in [25]. Often, so-called “applications” of mathematics
are applications to other branches of pure mathematics, and rigidity theory
has plenty of this type of application, as well.

Figure 16: An edge-transitive redundantly rigid graph G (left) and G − e
(right)

Two foundational results in Rigidity Theory are Laman’s characterization
of minimal rigidity [44] and Hendrickson’s characterization of global rigidity.

Theorem 19. (Laman’s Theorem, 1970) A graph G = (V,E) is minimally
rigid in R2 dimensions if and only if |E| = 2|V | − 3 and iG(X) ≤ 2|X| − 3
for every X ⊆ V of order at least 2.

We say a graph is redundantly rigid if for all e ∈ E(G), G − e is rigid.
Generalizing this, we say a graph G is k-edge rigid if for any set S of at most
k − 1 edges in E(G), G′ := (V (G), E(G) \ S) is rigid.
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Theorem 20. (Hendrickson’s Characterization, 1992) If G is a globally rigid
graph in Rd, then either G is a complete graph on at most d + 1 vertices, or
G is (d + 1)-connected and redundantly rigid in Rd.

As is the case above, characterizations of rigidity properties are often
given in terms of edge counts or connectivity. Connectivity and size are
much easier to check computationally than rigidity properties, so these re-
sults contribute to fast algorithms for checking rigidity properties. For more
examples of this type of characterization, see [40], [39], and [42].

There are copious open problems in this area. The author would be
particularly interested in answers to the following:

Question 4. What are the rigid graphs whose complement is also rigid?

Note that by Laman’s Theorem, such a graph must have at least 8 ver-
tices. It may be advantageous to consider minimally rigid graphs. Variants
of this problem can be created by replacing “rigid” with k-vertex (globally)
rigid or k-edge (globally) rigid.

Question 5. What are the minimally rigid graphs in R3 for which the dele-
tion of a single vertex yields a minimally rigid graph in R2? Do such graphs
exist?

Other open problems are nested in Technical Reports of the Egerváry
Research Group on Combinatorial Optimization and in various journals.

3.4.1 Rigidity and Unit Distance Graphs

Moments of coalescence of the study of unit distance graphs and rigidity the-
ory have lead to interesting results. The Beckman-Quarles Theorem, stated
below in both discrete and continuous forms, represents a fundamental ex-
ample of a result at the intersection of these areas.

Theorem 21. (Continuous Beckman-Quarles, 1953) For 2 ≤ d < ∞, any
transformation f : Rd → Rd which preserves all unit distances must be a
rigid motion of Rd onto Rd.

Proof. See [8] for a relatively elementary proof.

Theorem 22. (Discrete Beckman-Quarles, Maehara [50]) For any two points
p and q at an algebraic distance α from each other, there exists a finite rigid
unit distance graph G so that in any unit distance embedding of G into R2,
the distance between p and q is α.
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Rigid unit distance graphs are easy to obtain by connecting copies of K3

so that each copy shares an edge with at least one other copy. Triangle-free
rigid unit distance graphs are more elusive, but a few have been discovered in
[48] and [49]. Within the last five years, Solymosi and White [64] have found
a general construction for triangle-free (infinitesimally, see [36] for definition)
rigid unit distance graphs in Rd. Their proof relies on computations involving
the rigidity matrix, which is defined clearly in [36]. As is often the case in
problems at the intersection of graph theory and geometry, lemmas making
use of geometric constraints decrease the complexity of the problem and
enable a highly computational proof.

Figure 17: Example of an infinitesimally rigid K3-free unit distance graph
[64]

The following question is left as an open problem:

Question 6. [64] What is the minimum number of edges in an infinitesimally
rigid unit-bar graph of girth g ≥ 4?

3.4.2 Rigidity and Edge-Maximality

In the study of edge-maximal distance graphs, notions of rigidity are ever-
present. Consider the cycle graph C4. Is it an edge-maximal unit distance
graph? In the embedding into R2 represented below, it appears to be, as
there is no pair of vertices at unit distance from each other which do not also
have an edge between them.
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Yet C4 is not rigid; it admits a continuous deformation (push on the two
black vertices) into the representation below:

Because there exists an embedding of C4 with a pair of vertices at unit
distance having no edge between them, C4 is not an edge-maximal unit dis-
tance graph. Had C4 been rigid, we would not have been concerned with
missing edges in some other embedding of the graph. Especially when the
graph of interest is much larger than C4, non-rigidity can greatly complicate
the study of edge-maximality.

In this light, global rigidity may also yield insight into the study of edge-
maximal distance graphs. A graph is globally rigid if the edge lengths de-
termine the distance between all vertices, not just between adjacent vertices.
That is, G is globally rigid in R2 if, given all edge lengths, there is a unique
representation of G up to isometries of the plane (translations, rotations,
reflections).

Observe that a graph may be rigid but not globally rigid, so that if given a
representation of a supposedly edge-maximal rigid graph, one must still check
that there is not some alternative embedding in which another edge could
be constructed. On the other hand, if G is globally rigid and there does not
exist a pair of vertices which could but do not have an edge between them
under the given geometric definition of G, then G is edge-maximal in the
given context.

In Section 4.1, we prove that the smallest of four parent graphs of a highly
symmetric class of edge-maximal unit distance graphs is globally rigid in the
plane.

Note: Questions about edge-minimality of rigid unit distance graphs have
also generated recent interest, especially in recreational mathematics. For
example, the study of braced polygons (see [28], [73], [51]) hinges on questions
like the following: given a regular polygon in R2, what is the minimum

27



number of vertices and unit distance edges which must be added to the
polygon to obtain a rigid graph? This question is interesting both when asked
in terms of planar unit distance graphs and in terms of graphs with crossings
allowed. Current best known solutions of the latter variant are reported as
sequence A218537 in the Online Encyclopedia of Integer Sequences ([74]).
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4 Early Work

Motivated by the areas of research described above and the search for unit
distance graphs of high chromatic number in particular, the author and advi-
sor of this thesis set out to characterize separable, edge-maximal unit distance
graphs. After obtaining initial results relatively quickly, it seemed surprising
that such a characterization had not yet been obtained. The geometric con-
straints implied by these results led to an interesting Diophantine Problem,
solved by the second reader and presented in Section 5.

Once the second reader observed an error in the early arguments leading
to the aforementioned results, it became clear that characterizing separable
edge-maximal unit distance graphs was a more formidable task than we had
believed. In the following subsections, we explore the boundaries of this
problem, expounding on several approaches which ultimately did not lead
to our desired graph class, but may still prove useful to the study of unit
distance graphs. We also introduce a highly symmetric subclass of finite
separable edge-maximal unit distance graphs around which we center our
results in Section 6.

4.1 Finite, Separable, Edge-Maximal Unit Distance
Graphs

We say a graph is separable if there is some vertex whose removal disconnects
the graph. Such a vertex is called a cutvertex. A graph is biconnected if
we must remove at least two vertices to disconnect the graph. Given a
finite separable edge-maximal unit distance graph G, consider two distinct
nonempty biconnected components Gi, Gj and select some shared cutvertex
v. Both Gi and Gj must have a vertex at Euclidean distance 1 from v, simply
by virtue of being non-empty connected unit distance graphs which share v.

Rotate Gi relative to Gj so that the distance between vi, the vertex of
Gi satisfying |v − vi| = 1 and vj, the vertex of Gj satisfying |v − vj| = 1, are
at unit distance from each other. Denote by tθ the homomorphism which
rotates Gi by θ. We rotate Gi by an angle θ so that |tθ(vi) − v| = 1.

Under the assumption that G is an edge-maximal unit distance graph, the
edge vivj should be present in E(G), or we arrive at a contradiction. However,
if this edge is present in E(G), then we contradict the assumption that Gi and
Gj are distinct biconnected components with a cutvertex v shared between
them. Therefore, adding the edge vivj must cause G to exit the class of unit
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distance graphs. That is, G+{vivj} must not be a unit distance graph. Recall
the nuanced definition of unit distance graph provided in 3.2; a graph is a
unit distance graph if it has a drawing in the plane so that all edges are unit
length and no two vertices are drawn at the same location. We (wrongly)
conclude that there must have been another vertex v′j of Gj at the location
of tθ(vi) and the accompanying edge vjv

′
j. This statement is incorrect, since

under the given assumptions, there needs to be a vertex of Gj at the same
location as some vertex of tθ(Gi), not necessarily at the location of tθ(vi).

Definition 9. A real number r ≥ 0 is gonal if it is 0 or has the form
r = csc(θ)/2 for θ some rational multiple of π.

Definition 10. Real numbers r ≥ 0 and q ≥ 0 are co-gonal if they satisfy
r2 + q2 − 2rq cos θ = 1 for θ some nonzero rational multiple of π.

Definition 11. Define Γ′ as the unit distance graph in R2 with all points at
distance d ∈ (0, 1/2) from the origin removed.

Requiring that the necessary failure of injectivity occurs at the location of
tθ(vi) implies certain geometric constraints, namely, that within an annulus
about a cutvertex, all radii are gonal, and pairs of radii within 1 of each
other are co-gonal. We translate these properties into a Diophantine problem
which we solve in Section 5. With these results in hand, we obtain that the
biconnected components induced on Γ′ of finite, separable, edge-maximal
unit distance graphs with our additional injectivity rule are subgraphs of
graphs defined as follows on just four sets S1, S2, S3, S4.

Definition 12. For a finite set S of reals greater than 1 and R = {csc(π/s)/2 :
s ∈ S} ∪ {0}, define Q(S) = (V,E) as the graph on V ⊂ R2 with (0, 0) ∈ V
and V and E minimal with respect to the following properties:

I. For all ρ ∈ R, there is some x ∈ V so that |x| = ρ.

II. For all x ∈ V , y ∈ R2 so that |x− y| = 1 and |y| ∈ R, y ∈ V .

III. For all x, y ∈ V so that |x− y| = 1, xy ∈ E.

The full argument for this is presented in Section 6, where we indirectly
require that the failure of injectivity occurs at tθ(vi), the location of the vertex
that participated in the proposed unit distance. In the following sections,
we explain some early routes we explored in an effort to accomplish that
goal–namely, to find a set of graph properties which together bring us back
to our class of edge-maximal separable graphs from Definition 12.
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4.2 Finite Separable Nested Edge-Maximal Unit Dis-
tance Graphs

Definition 13. A graph G is nested if the biconnected components of G are
linearly ordered by the (unlabeled) subgraph relation.

Initially, this additional graph-theoretic constraint appeared to have po-
tential to imply gonality and co-gonality of the radii achievied by G. How-
ever, the following graph (Figure 18) is a finite separable nested edge-maximal
unit distance graph, but achieves radius

√
3, which is not gonal.

Figure 18: An example of a finite, separable, nested edge-maximal UDG
which is not in our class.

Notably, the non-gonal radius occurs outside the largest shared radius
τ(G) of the two biconnected components, or the largest radius achieved by
both components. As a result, this counterexample shows only that there
may exist non-gonal radii in a finite separable nested edge-maximal unit-
distance graph, not that there may exist a non-gonal radius < τ(G).

Examples like the above can also be easily avoided by requiring that
there exists an isomorphism between any two biconnected components which
sends the cutvertices to each other. Even this requirement is not sufficient to
recover gonality and co-gonality, however. We still cannot determine where
the failure of injectivity occurs.

Definition 14. Given a unit distance graph G with a vertex v ∈ V (G), a
homomorphism f : G → Γ′, and a set X ⊂ V (G), we say that “X achieves
the v-radius r” if there exists an x ∈ X with |f(x)− f(v)| = r. If v = (0, 0),
we simply say “X achieves r”. We often denote the radius of a vertex x
under a homomorphism f as |f(x)| and suppress the f when doing so does
not cause ambiguity.
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Furthermore, using the convention set in the definition above, |f(v′j)| =
|f(v′i)| may be distinct from |f(vi)| = |f(vj)|, so we cannot guarantee the
existence of another vertex achieving the radius of f(vi). By all arguments
currently known to the authors, “nestedness” is insufficient to recover the
geometric properties of the graphs in Definition 12, because the pair (vi, vj)
which corresponds to a failure of injectivity under f is relatively unrestricted.

As a somewhat more restricted subcase, consider finite separable edge-
maximal unit distance graphs with isomorphic biconnected components. In
this setting, the vertex pair (vi, vj) ∈ V (Gi) × V (Gj) for which f(vi) =
f(vj) must have that the neighborhood of vi is identical to the neighborhood
of some vertex of Gj and that the neighborhood of vj is identical to the
neighborhood of some vertex of Gi. For similar reasons to the above, this
constraint is still not strong enough to guarantee multiple vertices at a given
radius.

4.3 Critically Separable Subcovers

Let G and H be arbitrary graphs and Γ′ the subset of the unit distance graph
defined previously.

Definition 15. A graph G is critically separable with respect to a property
P if for any edge e not in E(G), if G + e is in P then G + e has fewer
biconnected components than G.

Definition 16. Given a function f : V (G) → V (H), write f ∗ for the function
E(G) →

(
V (H)

2

)
defined by f ∗(xy) = f(x)f(y) for each xy ∈ E(G).

Definition 17. A function f : V (G) → V (H) is a homomorphism from G
to H if f ∗(E(G)) ⊆ f ∗(E(H)).

Often, we simply write f : G → H for homomorphisms.

Definition 18. A homomorphism f : V (G) → V (H) is a cover of H if
f ∗(E(G)) ⊇ E(H). (Equivalently: f ∗(E(G)) = E(H).)

Definition 19. A graph G is a subcover of H if there exist f : V (G) → V (H)
and a set S ⊆ V (H) so that f is a cover of H[S].

Definition 20. Given a function f : V (G) → V (H), write Gf for the graph
with vertex set V (G) and an edge between x, y ∈ V (G) whenever f(x)f(y) ∈
E(H).

32



Figure 19: A finite critically separable subcover of Γ′ which is not a unit
distance graph

By requiring that for any edge uv of H there must exist an edge of G
whose endvertices are sent to the same location as u, v under f , critically
separable subcovers more closely approach a geometric definition. However,
the class of critically separable subcovers of the unit distance graph includes
graphs which we would not typically consider unit distance graphs, including
the structure pictured in Figure 19 below:

The homomorphism sending white vertices to white vertices, black ver-
tices to black vertices, and the gray vertex to itself is a cover, and the graph
above is a subcover of Γ′, on the vertices of the unit triangle. In this case
and especially for larger graphs, the cover could be defined in various ways,
reducing the strength of the claims we can make about subcovers of Γ′.

We conclude that finite critically separable subcovers are not the class of
objects we seek, as they include graphs which do not satisfy our geometric
conditions.

4.4 Finite Edge-Maximal Non-Rigid Unit Distance
Graphs

As discussed in Section 3.4, rigidity and edge-maximality of geometric graphs
are connected. Separable edge-maximal graphs exhibit an interesting type of
non-rigidity, allowing full rotation about a cutvertex and possibly continuous
deformations in a biconnected component.

To avoid dealing with deformations within a biconnected component, con-
sider non-rigid edge-maximal unit distance graphs with globally rigid bicon-
nected components. In the following result, we show that one of the four
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Figure 20: The Graph Q(12/5, 6, 12)

Q(S) graphs is, in fact, globally rigid.

Proposition 5. The graph Q(12/5, 6, 12) as defined earlier in this subsection
is globally rigid.

Proof. As defined by Jackson, Servatius, and Servatius in [37] a graph G is
essentially 6-connected if

I. G is 4-connected

II. for all pairs of subgraphs G1, G2 of G so that G = G1 ∪ G2, |V (G1) −
V (G2)| ≥ 3, and |V (G2) − V (G1)| ≥ 3, we have |V (G1) ∩ V (G2)| ≥ 5,
and

III. for all pairs of subgraphs G1, G2 of G such that G = G1∪G2, |V (G1)−
V (G2)| ≥ 4 and |V (G2) − V (G1)| ≥ 4, we have |V (G1) ∩ V (G2)| ≥ 6.

It is proven in [37] if a graph is essentially 6-connected then it is redun-
dantly rigid. Furthermore, we have that Q(12/5, 6, 12) is 4-connected and
by a result of Hendrickson, Jackson, and Jordán that any 3-connected, re-
dundantly rigid graph is globally rigid. We therefore set out to show that
Q(12/5, 6, 12), hereafter referred to as Q(S), is essentially 6-connected.
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Suppose toward a contradiction that Q(S) is not essentially 6-connected.
Then Q(S) must contradict one of the requirements of essential 6-connectedness.
We verified computationally using SageMath (see 8) that Q(S) is 4-connected,
so Q(S) must violate either the second or third requirement of essential 6
connectedness in one of the following ways:

I. There exist a pair of subgraphs G1, G2 of G such that while G = G1∪G2,
|V (G1) − V (G2)| ≥ 3, and |V (G2) − V (G1)| ≥ 3, we have |V (G1) ∩
V (G2)| < 5.

II. There is a pair of subgraphs G1, G2 of G such that while G = G1 ∪G2,
|V (G1) − V (G2)| ≥ 4, and |V (G2) − V (G1)| ≥ 4, we have |V (G1) ∩
V (G2)| < 6.

For ease of discussion, we say vertices of G1 are colored red and vertices of
G2 are colored blue, where a vertex may be colored both red and blue. The
vertices of G1 ∩ G2 are precisely the vertices which are both red and blue.
By the requirement that G1 ∪ G2 = G, we also require that the endvertices
of any edge of G have the same color in any partition. (One may be red and
blue while the other is only red; this counts as two vertices having the same
color.)

We fail to satisfy the requirements of essential 6-connectedness if (1) it
is possible to color a set X of at most 4 vertices both red and blue so that
G−X is disconnected and both connected components have size at least 3 or
(2) it is possible to color a set Y of order at most 5 both red and blue so that
G − Y is disconnected and both connected components have order at least
4. These conditions are equivalent to the conditions given in the definition
of essential 6-connectedness: if G−X or G−Y is connected, then G1, G2 do
not satisfy G1∪G2 = G, as G1∪G2 must omit at least one edge of G, namely
an edge with one end-vertex blue and the other red. Furthermore, both of
the disconnected components must have size at least 3 or 4 (respectively) to
ensure that the requirement on the number of vertices in exclusively one of
G1, G2 is satisfied.

Thus, it suffices to show that upon the removal of any set of 4 (resp.
5) vertices of Q(S), there do not exist two disconnected components each
having order at least 3 (resp. 4). If this were the case, then there would exist
a choice of red-and-blue set which would contradict that Q(S) is essentially
6-connected.
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Using SageMath, we check this computationally, removing all possible sets
of 4 vertices (there are

(
37
4

)
) and, separately, all possible sets of 5 vertices and

examining them, flagging any which have two sufficiently large disconnected
components. Among the few choices which disconnect the graph, none have
sufficiently large disconnected components. We conclude that there are no
pairs G1, G2 of subgraphs which contradict the requirements of essential 6-
connectedness, so Q(S) is essentially 6-connected.

By the reasoning given at the outset of this proof, we may now conclude
that Q(S) is redundantly rigid and 3-connected, and therefore globally rigid.

Ultimately, the class of finite edge-maximal non-rigid unit distance graphs
includes far too many elements beyond those composed from our Q(S) graphs.
The graph below, composed of a triangulated annulus and a non-rigid path,
is also another variety of finite edge-maximal non-rigid unit distance graph.

Figure 21: A graph which is a finite, separable, nested, edge-maximal unit
distance graph but not in our class.

Even if we require that the graph be sufficiently nonrigid to permit a full
revolution of one vertex of a component about a vertex of another component,
we obtain graphs outside of our desired class. For example, a graph composed
of two edge-maximal components and a set of parallel “struts” between them
is finite edge-maximal and non-rigid. We conclude that non-rigidity and edge-
maximality are not stringent enough constraints to eliminate strange graphs
which are not members of the class we seek.
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5 A Related Diophantine Problem

The work in this section is due to this thesis’ second reader, Professor Michael
Filaseta, who has graciously given his permission to include it here.

In this section, for each s ∈ {6, 10, 12, 15}, we determine all rational x > 1
and z > 1 satisfying

r2 + q2 − 2rqt = 1,

where r = csc(π/x)/2, q = csc(π/s)/2, and t = cos(2π/z). Note that nec-
essarily x is not the reciprocal of an integer so that r is defined. We set
u = sin(π/x) and still use the notation for q and t above. Then we obtain

1

4u2
+ q2 − qt

u
= 1,

or, equivalently,
4u2(q2 − 1) − 4qut + 1 = 0. (1)

Before proceeding, we note that the computations throughout this section
were done using Maple 2019.2. Where numerical estimates are preformed,
we set the computations to 100 digit accuracy.

We will be interested in the exact value of q for each s ∈ {6, 10, 12, 15}.
The value of cos(2π/5) can be determined by noting that it is a root of
T5(x)− 1 where T5(x) is the fifth Chebyshev polynomial of the first kind. To
clarify, we have

T5(x) − 1 = (x− 1)(4x2 + 2x− 1)2,

so cos(2π/5) is the only positive real root, namely (
√

5−1)/4, of the quadratic
shown. The remaining trigonometric values required to evaluate q for s ∈
{6, 10, 12, 15} can be obtained using classical trigonometric identities. For
s = 6, 10, 12 and 15, we have respectively

q = 1, q =
1 +

√
5

2
, q =

√
2 +

√
6

2
,

and

q =
2√

7 −
√

30 − 6
√

5 −
√

5

.

Now, we return to (1) using the above values of q for each s. For s =
6, 10, 12 and 15, respectively, we obtain from (1) that

−4ut + 1 = 0, (2)
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2
(√

5 + 1
)
u2 − 2

(√
5 + 1

)
ut + 1 = 0, (3)

4
(√

3 + 1
)
u2 − 2

(√
2 +

√
6
)
ut + 1 = 0, (4)

4β
(
α +

√
5 − 3

)
u2 + 8

(
α +

√
5 − 7

)
ut + β

(
7 − α−

√
5
)

= 0 (5)

where, in the last equation above, we have set

α =

√
30 − 6

√
5 and β =

√
7 − α−

√
5

and multiplied through by β3/2 = β
(
7 − α−

√
5
)
.

As it will be more convenient to work with polynomials in u and t which
have integer coefficients, we adjust the equations for each s ∈ {10, 12, 15}.
The basic idea is to replace each of the equations for these values of s with
a “norm” taken over some number field. For example, for (3), we take the
product of the expression on the left of the equation with the same expression
but with

√
5 replaced by −

√
5. In other words, we multiply both sides of (3)

by
2
(
−
√

5 + 1
)
u2 − 2

(
−
√

5 + 1
)
ut + 1.

We obtain for s = 10 that

−16u4 + 32u3t− 16u2t2 + 4u2 − 4ut + 1 = 0. (6)

For s = 12, let L12 denote the left-hand side of (4). We write
√

6 =
√

2
√

3
in L12 and multiply both sides of (4) by three expressions, the first the same
as L12 but with

√
2 replaced by −

√
2, the second L12 with

√
3 replaced by

−
√

3, and the third L12 with both
√

2 replaced by −
√

2 and
√

3 replaced by
−
√

3. This gives for s = 12 the equation

1024u8−1024u6t2+256u4t4−512u6+256u4t2−64u2t2+16u2+1 = 0. (7)

For s = 15, let L15 denote the left-hand side of (5). We first multiply both
sides of (5) by the expression one gets by replacing β by −β in L15. The
resulting expression on the left, say L′

15, only has coefficients which are linear
combinations of 1, α and

√
5 over Q. Then we multiply both sides of the

resulting equation by the expression one gets by replacing α by −α in L′
15.

The new resulting expression on the left, say L′′
15, only has coefficients which

are linear combinations of 1 and
√

5 over Q. Then we multiply both sides
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of this last equation by the expression one gets by replacing
√

5 by −
√

5 in
L′′
15. After dividing both sides by 224, we obtain

65536u16 − 524288u14t2 + 917504u12t4 − 458752u10t6

+ 65536u8t8 − 32768u14 + 524288u12t2 − 557056u10t4

+ 98304u8t6 − 28672u12 − 245760u10t2 + 139264u8t4 − 28672u6t6

+ 16384u10 + 61440u8t2 − 14336u6t4 + 2560u8 − 3840u6t2

+ 3584u4t4 − 2176u6 − 512u4t2 + 128u4 − 128u2t2 + 32u2 + 1 = 0.

(8)

We denote the left-hand sides of equations (2), (6), (7) and (8) by f6(u, t),
f10(u, t), f12(u, t) and f15(u, t), respectively. Thus, for s ∈ {6, 10, 12, 15},
we have deduced from (1) that fs(u, t) = 0 where u = sin(π/x) and t =
cos(2π/z) for rational numbers x and z to be determined.

A significant piece of information that we will use is that for each s ∈
{6, 10, 12, 15}, we have fs(0, t) = 1 ̸= 0. As t = cos(2π/z), we know |t| ≤ 1,
so we can deduce for each such s that |u| cannot be too small. We seek then
to obtain a lower bound on |u| given fs(u, t) = 0 and |t| ≤ 1. Such a bound
is possible by considering the Lagrange multiplier problem of minimizing
the value of u ∈ [0, 1] and maximizing the value of u ∈ [−1, 0] given the
constraints fs(u, t) = 0 and −1 ≤ t ≤ 1. We first estimated such a lower
bound on |u|, and then proceeded with providing an argument which uses
exact arithmetic based on this estimate to establish the bound we want. In
the way of an example, we consider f15(u, t). The estimate we obtained
from looking at a Lagrange multiplier argument is a lower bound on u of
0.1468486 . . . where we restrict to 0 ≤ u ≤ 1 and −1 ≤ t ≤ 1. To clarify, this
lower bound occurs at t = ±1. Note that f15(u, t) is an even function in both
u and t, so this estimate also serves as a lower bound on |u| for −1 ≤ u ≤ 1.
For what follows, we will use the lower bound on |u| to obtain an upper
bound on n, and the slightly smaller bound of 7/48 = 0.1458333 . . ., which
we will use next, will give us the same bound on n.

For the lower bound of 7/48 on |u| satisfying fs(u, t) = 0 with |t| ≤ 1, we
define the rectangular region

R = {(u, t) : 0 ≤ u ≤ 7/48, 0 ≤ t ≤ 1},

noting again that fs(u, t) is a polynomial in u2 and t2. It suffices then to show
that the minimum value of fs(u, t) is greater than 0 on R. So we compute
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Fu(u, t) = ∂fs/∂u and Ft(u, t) = ∂fs/∂t. We want to know the points (u, t)
inside R where both these partial derivatives are 0. If (u0, t0) is such a point,
we can fix u = u0 and view the partial derivates Fu(u0, t) and Ft(u0, t) as
polynomials in t that have a common root at t = t0. As such, the resultant
of these polynomials, Res (Fu(u0, t), Ft(u0, t)), as polynomials in t must be
0. To obtain possible u0, we therefore can compute Res (Fu(u, t), Ft(u, t))
with respect to the variable t to obtain a polynomial in u, say R(u), and
determine its roots. However, we have chosen R conveniently so that R(u)
has no roots in the interval (0, 7/48). This can be verified by using a Sturm
sequence using exact arithmetic; in fact, one can verify R(u) has no roots in
the larger interval (0, 1/4). We deduce that the minimum value of fs(u, t) on
R occurs on an edge of R. As fs(0, t) = 1 for all t, the minimum value along
the edge u = 0 and 0 ≤ t ≤ 1 is 1. We proceed by looking at each of the
other edges where either u = 7/48, t = 0 or t = 1 and fs(u, t) is a polynomial
in only one unknown. For these, we merely need to look at the resulting
polynomial in one variable, either u or t, and use a Sturm sequence to check
that there are no roots in the interval 0 < u < 7/48 or 0 < t < 1, whichever
applies. Given that the value of fs(u, t) is positive at each of the four corners
of R, we deduce that fs(u, t) is positive on the boundary of R where the
minimum occurs. Thus, fs(u, t) is positive on all of R and fs(u, t) = 0 for
|t| ≤ 1 implies |u| > 7/48.

Very similar calculations can be performed with fs(u, t) and s = 12 with
0 ≤ u ≤ 15/88 and 0 ≤ t ≤ 1. The lower bound of 1/4 on |u| in the case
that s = 6 is more straightforward. For s = 10, a modified argument from
the case s = 15 can be done. Note that f10(u, t) is not an even function of u
or t. We take

R1 = {(u, t) : 0 ≤ u ≤ 4/21,−1 ≤ t ≤ 1}

and
R2 = {(u, t) : −4/21 ≤ u ≤ 0,−1 ≤ t ≤ 1}.

For a lower bound on |u|, we are interested in finding the minimum value
of u for points (u, t) in R1 given the constraint fs(u, t) = 0 and finding the
maximum value of u for points (u, t) in R2 given the constraint fs(u, t) = 0.
This can be viewed as two Lagrange multiplier problems, one for each Rj.
Even ignoring ∂fs/∂u, we see that in both cases, if fs(u0, t0) is a minimum
or maximum with (u0, v0) inside but not on the boundary of Rj, then we
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must have both

fs(u0, t0) = 0 and
∂fs
∂t

(u0, t0) = −4u0(8t0u0 − 8u0
2 + 1) = 0.

Thus, the number u0 is a common root of fs(u, t0) and (∂fs/∂t)(u, t0), and
hence u0 is a root of the polynomial

Res

(
fs(u, t),

∂fs
∂t

(u, t)

)
= 1280u4,

where the resultant is taken with respect to t. Thus, the only possibility for
u0 is 0, so there are no maximum nor minimum values of fs at points (u0, v0)
inside but not on the boundary of Rj. Thus, the maximum and minimum
values of fs(u, t) on R1 and R2 occur on the boundaries of these rectangles.
Using Sturm sequences, one can verify that there are no zeroes of fs(u, t)
on the boundaries of R1 and R2, and furthermore, fs(u, t) is positive at the
corners of R1 and R2. Thus, fs(u, t) has positive values for the maxima
and minima for (u, t) on R1 and R2, and hence fs(u, t) cannot be 0 in these
rectangles, implying what we wanted. Table 1 indicates the bounds obtained
on |u| through this analysis.

s lower bound on |u| with fs(u, t) = 0 given |t| ≤ 1

6 1/4 = 0.25

10 4/21 = 0.1904761 . . .

12 15/88 = 0.1704545 . . .

15 7/48 = 0.1458333 . . .

Table 1: Lower bounds on the absolute value of u

Recall that u = sin(π/x) and t = cos(2π/z) where x > 1 and z > 1 are
rational numbers. We write 1/x = a/n and 2/z = b/m with n, m, a and
b are positive integers and gcd(a, n) = gcd(b,m) = 1. Since x and z are
> 1, we have that a < n and b < 2m. Let ζ = ζ4nm = e2πi/(4nm). Recall
cos(θ) = (eiθ + e−iθ)/2 and sin(θ) = (eiθ − e−iθ)/(2i). Also, i = ζ4 = ζnm.
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Thus,

u = sin(π/x) =
eiπa/n − e−iπa/n

2i

=
e2πi·2ma/(4nm) − e−2πi·2ma/(4nm)

2i
=

ζ2ma − ζ−2ma

2 ζnm

and

t = cos(2π/z) =
eiπb/m + e−iπb/m

2

=
e2πi·2nb/(4nm) + e−2πi·2nb/(4nm)

2
=

ζ2nb + ζ−2nb

2
.

Substituting these expressions for u and t into fs(u, t) for s ∈ {6, 10, 12, 15}
and multiplying by an appropriate power of ζ, we see that we may view each
fs(u, t) times a power of ζ as a polynomial in ζ and, hence, as a vanishing
sum of roots of unity. There is a standard idea given by J. H. Conway and
A. J. Jones [17] for determining all solutions to such an equation (see [31]
for more details). However, a bit of work is involved to manage such an
approach, particularly on the resulting expression in ζ for f15(u, t). Never-
theless, realizing that fs(u, t) times a power of ζ is a polynomial in a root
of unity plays a valuable role in determining the solutions of fs(u, t) = 0 in
rational x and z in what follows.

Our next goal is to determine an upper bound on n. Set

a′ = a + 2k

(∏
p|m
p ∤a

p

)
n, where k ∈ {1, 2}.

Observe that a and a′ differ by a multiple of 2n so that

u = sin(π/x) = sin(aπ/n) = sin(a′π/n).

Thus, we may replace a with a′ above, noting however that we may have
a′ > n.

We consider different possibilities for a prime q dividing 4nm to determine
whether such q can divide a′. If a prime q divides n, then since gcd(a, n) = 1,
we see that q ∤ a′. If a prime q satisfies q | m and q ∤ a, then q divides the
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product above and not a so that again q ∤ a′. If an odd prime q satisfies q ∤ n,
q | m and q | a, then q does not divide the second term in the expression for
a′ and so again q ∤ a′. This leaves us with the case that q = 2, n is odd, and
m and a are even. If 2∥a (that is, 2 | a but 4 ∤ a), then we take k = 2 in our
expression for a′ and see that a′ ≡ 2 (mod 4) so that 2∥a′. If 4 | a, then we
take k = 1 in our expression for a′ and see again that a′ ≡ 2 (mod 4) so that
2∥a′. We deduce then that d = gcd(a′, 4nm) ∈ {1, 2} provided we choose
k ∈ {1, 2} appropriately.

Since gcd(a′, 4nm) = d, there exist integers v and w such that a′v +
4nmw = d. With v and w so chosen, we see that a′v ≡ d (mod 4nm). We
claim that gcd(v, 4nm) = 1. If q is an odd prime dividing v and 4nm, then
q | (a′v + 4nmw) contradicting that a′v + 4nmw = d ∈ {1, 2}. On the
other hand, if 2 | v, then a′v + 4nmw = d ∈ {1, 2} implies d = 2. Since
d = gcd(a′, 4nm), we deduce a′ is even and then that a′v + 4nmw is divisible
by 4, contradicting that a′v + 4nmw = d ∈ {1, 2}. We deduce that v is odd
and gcd(v, 4nm) = 1.

We now consider our equations fy(u, t) = 0 times a power of ζ (depending
on s) as polynomial equations in ζ. Since gcd(v, 4nm) = 1 and ζ = ζ4nm, the
mapping ϕv(ζ) = ζv is an automorphism of the field Q(ζ) that fixes Q (see
[70]). Observe that

ϕv(u) = ϕv

(
sin(π/x)

)
= ϕv

(
ζ2ma′ − ζ−2ma′

2 ζnm

)
=

ζ2ma′v − ζ−2ma′v

2 ζvnm
.

Since a′v ≡ d (mod 4nm) and ζ4nm = 1, we see that ζ2ma′v = ζ2md = ζd2n
and ζ−2ma′v = ζ−d

2n . Also, v is odd, so ζvnm = ζv4 = ± i, where here and in
what follows the ± sign indicates that what holds is for one of + and − and
not for both. Therefore,

ϕv(u) = ±ζd2n − ζ−d
2n

2i
= ±e2πid/(2n) − e−2πid/(2n)

2i
= ± sin(πd/n).

Similarly,

ϕv(t) = ϕv

(
cos(2π/z)

)
= ϕv

(
ζ2nb + ζ−2nb

2

)
=

ζ2nbv + ζ−2nbv

2
= cos(πbv/m).

We deduce that

fs
(
± sin(πd/n), cos(πbv/m)

)
= fs

(
ϕv(u), ϕv(t)

)
= ϕv

(
f(u, t)

)
= ϕv(0) = 0.

(9)
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We are now ready to use our information from Table 1, applied to (9).
Note that | cos(πbv/m)| ≤ 1. Recall that d ∈ {1, 2}. We therefore see that if
n ≥ 3, then

| ± sin(πd/n)| ≤ | sin(2π/n)|.

On the other hand, for each s ∈ {6, 10, 12, 15}, Table 1 provides a lower
bound on the value of | ± sin(πd/n)|. We deduce that

| sin(2π/n)| ≥


1/4 = 0.25 if s = 6

4/21 = 0.1904761 . . . if s = 10

15/88 = 0.1704545 . . . if s = 12

7/48 = 0.1458333 . . . if s = 15.

As | sin(2π/n)| decreases as n increases on [4,∞), we obtain with a calculation
that

n ≤


24 if s = 6

32 if s = 10

36 if s = 12

43 if s = 15.

(10)

Now that we have an upper bound on n, we will obtain information on
the value of m. We will make use of the following (see [75, p. 13]).

Lemma 1. Let n and m be positive integers. Then Q(ζn, ζm) = Q(ζlcm(n,m)).

Writing u = (ζa2n − ζ−a
2n )/(2i), we see that u ∈ Q(ζ2n, i) ⊆ Q(ζ4n), where

the containment follows since ζn4n = i. We can therefore view fs(u, t) as a
polynomial in t with coefficients from Q(ζ4n). Let δs be the degree of the
polynomial fs(u, t) viewed as a polynomial in t. Since t = cos(πb/m) =
(ζb2m + ζ−b

2m)/2, the polynomial

hs(η) = ηδyfy
(
u, (η + η−1)/2

)
.

satisfies hs(ζ
b
2m) = 0. Also, hs(η) ∈ Q(ζ4n)[η]. Furthermore the degree of

hs(η) in η is 2δs. Since ζb2m is a root of hs(η), we see that ζb2m is in an
extension of degree ≤ 2δs over Q(ζ4n). Since gcd(b,m) = 1, if b is odd, then
Q(ζb2m) = Q(ζ2m). On the other hand, if b is even, then Q(ζb2m) = Q(ζm).
But in this case gcd(b,m) = 1 implies m is odd and, hence, Q(ζm) = Q(ζ2m)
(the former field is contained in the latter and they both have the same
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degree over Q since m odd implies φ(2m) = φ(m)). Thus, in either case,
Q(ζb2m) = Q(ζ2m). By Lemma 1, we have

Q(ζb2m, ζ4n) = Q(ζlcm(2m,4n)).

Thus, we can write Q(ζb2m, ζ4n) = Q(ζ4nm′), where m′ = lcm(2m, 4n)/(4n) =
lcm(m, 2n)/(2n). We use that Euler’s totient function φ satisfies the inequal-
ity φ(4nm′) ≥ φ(4n)φ(m′) regardless of the positive integer values of n and
m′, as can be seen by writing φ(4nm′), φ(4n) and φ(m′) in terms of the
prime factorizations of 4n and m′. Since [Q(ζ4nm′) : Q(ζ4n)] = [Q(ζb2m, ζ4n) :
Q(ζ4n)] ≤ 2δs and

[Q(ζ4nm′) : Q(ζ4n)] =
[Q(ζ4nm′) : Q]

[Q(ζ4n) : Q]
=

φ(4nm′)

φ(4n)
≥ φ(4n)φ(m′)

φ(4n)
= φ(m′),

we see that φ(m′) ≤ 2δs. The definition of m′ now implies that m divides
2nm′, for some m′ satisfying φ(m′) ≤ 2δs. For each s ∈ {6, 10, 12, 15},
Table 2 indicates the information we use for obtaining choices for n and m.

s δs = degt fs upper bound on n condition of m

6 1 n ≤ 24 m | (2nm′) where φ(m′) ≤ 2

10 2 n ≤ 32 m | (2nm′) where φ(m′) ≤ 4

12 4 n ≤ 36 m | (2nm′) where φ(m′) ≤ 8

15 8 n ≤ 43 m | (2nm′) where φ(m′) ≤ 16

Table 2: Conditions on n and m

For each s ∈ {6, 10, 12, 15}, we use the InverseTotient function in Maple
to determine the possible choices for m′ as in the last column of Table 2. With
such an m′ fixed, we consider each positive integer n satisfying the upper
bound in the third column of Table 2. Then we determine the possibilities
for m dividing 2nm′. We further need only consider choices for m for which
2nm′ = lcm(m, 2n). With now s, n, m′ and m fixed we proceed as follows.
With δ = δs equal to the degree of the polynomial fs(u, t) as a polynomial
in t as before and with δ′ = δ′s equal to the degree of the polynomial fs(u, t)
as a polynomial in u, we define

Hs(ξ, η) = ξδ
′
ηδfs

(
(ξ − ξ−1)/(2i), (η + η−1)/2

)
.
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Note that Hs

(
ζa2n, ζ

b
2m

)
= 0. For y ∈ {12, 15}, the degree in u of the terms

in fs(u, t) are all even, so Hs(ξ, η) is a polynomial in ξ and η with rational
coefficients. For s ∈ {6, 10}, there are terms in fs(u, t) having odd degree in
u, so Hs(ξ, η) is a polynomial in ξ and η with coefficients from Q(i). Define
Hs(ξ, η) in this case to be the polynomial Hs(ξ, η) with every occurrence of
i replaced by −i. For s ∈ {6, 10, 12, 15}, define

Gs(ξ, η) =

{
Hs(ξ, η) if s ∈ {12, 15}
Hs(ξ, η)Hs(ξ, η) if s ∈ {6, 10}.

Recall 2nm′ = lcm(m, 2n). Then Gs(ξ, η) is a polynomial in ξ and η with
rational coefficients satisfying

Gs

(
ζ2m

′a
4nm′ , ζ

2nm′b/m
4nm′

)
= Gs

(
ζa2n, ζ

b
2m

)
= 0.

In other words, ζ4nm′ is a root of the polynomial Gs

(
γ2m′a, γ2nm′b/m

)
in γ

with coefficients in Q.
With now s, n, m′ and m fixed, we consider all integers a ∈ [1, n) and

b ∈ [1, 2m), with gcd(a, n) = gcd(b,m) = 1. We want to check whether
the polynomial Gs

(
γ2m′a, γ2nm′b/m

)
in γ is divisible by Φ4nm′(γ). However,

we note first that the expression ξ − ξ−1 in Hs(ξ, η) has the same value for
ξ = ζa2n and for ξ = ζn−a

2n since ζn2n = ζ2 = −1. Thus, it suffices to consider
a ∈ [1, n/2]. Similarly, Hs(ξ, η) has the same value for η = ζb2m and for
η = ζ2m−b

2m since ζ2m2m = 1. Thus, it suffices to consider b ∈ [1,m]. This
corresponds to restricting our solutions to x = n/a ≥ 2 and z = 2m/b ≥ 2.
For solutions to x > 1 and s > 1, one can then replace each x ≥ 2 with
x/(x− 1) and each z with z/(z − 1).

If Gs

(
γ2m′a, γ2nm′b/m

)
is divisible by Φ4nm′(γ), then we have possible x =

n/a and z = 2m/b giving rise to a solution to (1). As the n, a, m and b
which occur leading to Φ4nm′(γ) dividing Gs

(
γ2m′a, γ2nm′b/m

)
are fairly small,

Maple is able to verify directly whether (1) holds. Thus, throughout the
computations, only exact arithmetic is used. In this way, we were able to
determine a complete list of rational solutions in x > 1 and z > 1 to (1).
The solutions with x ≥ 2 and z ≥ 2 are provided in Table 3.
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s x ≥ 2 z ≥ 2

6 6 6

6 10 10

6 10/3 5

6 12 24

6 12/5 24/5

s x ≥ 2 z ≥ 2

10 6 10

10 10 10

10 15 20

10 15/4 20

s x ≥ 2 z ≥ 2

12 6 24

12 12 12

15 10 20

15 15 15

Table 3: All solutions to (1) with x ≥ 2 and z ≥ 2

6 Relative Rigidity

6.1 Gonality and Co-gonality in Gn−1

A key problem arising in the study of finite, separable, edge-maximal unit
distance graphs is that while our argument implies that if there exist u ∈
Gi, v ∈ Gj so that for some embedding f , |f(u) − f(v)| = 1, then there
must exist a pair of vertices u0 ∈ Gi, v0 ∈ Gj so that f(u0) = f(v0), it does
not allow us to determine any significant further information about u, v. For
example, we know that f(u0) = f(v0), but we do not know the coordinate
location of f(u0) = f(v0) ∈ R2.

To circumvent this issue, we coined the term “relatively rigid,” defined
below:

Definition 21. A finite, edge-maximal unit distance graph G is relatively rigid
if 1) G is separable, 2) the set of biconnected components can be linearly or-
dered G1 ⊆ G2 ⊆ . . . and 3) if f(v0) = f(u0) for any u0 ∈ Gi, v0 ∈ Gj,
i < j, and homomorphism f : G → Γ′ which is injective on each Gi (but not
necessarily on G), then for all u ∈ Gi, there exists v ∈ Gj so that f(v) = f(u).

Before proceeding, we present and reintroduce a few important defini-
tions, including Γ′ as used above:

Definition 22. We call a graph G a unit distance graph if it admits an
injective homomorphism into Γ = (R2, {xy : |x− y| = 1}).

Definition 23. Define Γ′ as the unit distance graph in R2 with all points at
distance d ∈ (0, 1/2) from the origin removed.
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Definition 24. Given a unit distance graph G with a vertex v ∈ V (G), a
homomorphism f : G → Γ′, and a set X ⊂ V (G), we say that “X achieves
the v-radius r” if there exists an x ∈ X with |f(x)− f(v)| = r. If v = (0, 0),
we simply say “X achieves r”. We often denote the radius of a vertex x
under a homomorphism f as |f(x)| and suppress the f when doing so does
not cause ambiguity.

Definition 25. We denote by τ(G) the largest value of |f(v′)| for any
v′ ∈ V (Gn−1) under any f : G → Γ′ which is injective on the biconnected
components of G. For any separable unit distance graph, τ(G) ≥ 1.

We turn our attention to finite, relatively rigid edge-maximal unit dis-
tance graphs and show that if a graph G falls in this class, nearly all the
biconnected components of G are subgraphs of Q(S).

Throughout this section, we assume that G is a relatively rigid, edge-
maximal finite unit distance graph with a cut-vertex v which separates the
graph into subgraphs G1, . . . , Gk all containing v, and v is fixed at the ori-
gin by every homomorphism into R2 we consider. Furthermore, for such a
homomorphism f of a graph G, a subset X ⊂ V (G) and a real number θ,
write fθ to agree with f on V (G) \X and fθ(u) = tθ(f(u)) for u ∈ X. Then
an injective fθ is also a unit distance embedding of G if X is a biconnected
component of G.

In the following lemmas, we assemble the results necessary to prove the
theorem(s) below.

Theorem 1. If G is a relatively rigid, edge-maximal finite unit distance graph
on Γ′ with biconnected components G1 ⊆ · · · ⊆ Gn, then all radii achieved by
one of G1, . . . Gn−1 are gonal, and any two radii achieved by some element(s)
of {G1, . . . Gn−1} which differ by at most 1 are co-gonal.

From this point forward, we fix an arbitrary homomorphism f : G → Γ′,
which is injective on the biconnected components of G. For ease of notation,
set G := f(G) and Gi := f(Gi) for i ∈ [n]. For a vertex vi ∈ V (Gi) and
vi ∈ V (Gj), we say vi = vj if f(vi) = f(vj).

Lemma 2. For Gi, Gi biconnected components of G with Gi ⊆ Gj, any radius
achieved by Gi is also achieved by Gj.

Proof. Both Gi and Gj have at least one vertex achieving radius 1. Therefore,
there must exist an angle θ so that tθ(x) = y where x ∈ Gi, y ∈ Gj are vertices
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which achieve radius 1. By relative rigidity, for any other vertex v ∈ Gi

achieving radius r, there must exist a vertex u ∈ Gj so that tθ(v) = u. That
is, r = |tθ(v)| = |u|, so Gj achieves radius r.

Lemma 3. For any ri achieved by vi ∈ V (Gi) and rj achieved by vj ∈ V (Gj)
satisfying |ri − rj| ≤ 1, there exists an angle θ so that |vj − tθ(vi)| = 1.

Proof. Consider the angle ϕ for which v, tϕ(vi) and vj fall along a ray ex-
tending from v = (0, 0). Then |tϕ(vi) − vj| = |r − r′| ≤ 1. Furthermore,
|tϕ+π(vi) − vj| = |r + r′| ≥ 1/2 + 1/2 = 1, since we exclude points at dis-
tance less than 1/2 from v in our definition of Γ (22). Because the dis-
tance between tϕ+qπ(vi) and vj is continuous as we increase q along R from
0 to 1, by the Intermediate Value Theorem there must be some q at which
|tϕ+qπ(vi) − vj| = 1.

Definition 26. A real number r ≥ 0 is gonal if it is 0 or has the form
r = csc(θ)/2 for θ some rational multiple of π.

Definition 27. A p/q-gon is a graph (V,E) with V = Z/pZ and E =
{uv|u ≡ v + q (mod p)}.

Lemma 4. For any pair of biconnected components Gi, Gj with Gi ⊆ Gj, all
radii achieved by Gi are gonal.

Proof. Take a pair Gi, Gj where i < j, and an arbitrary vertex vi of Gi. By
Lemma 2, there exists vj ∈ Gj so that |vi| = |vj|. Furthermore, by Lemma 3
there exists some angle θ so that |tθ(vi) − vj| = 1.

Since G is an edge-maximal unit distance graph, the edge vivj should
be in E(G), contradicting that Gi, Gj are distinct biconnected components,
unless (G \Gi) ∪ tθ(Gi) has two vertices at the same location in R2.

That is, a pair xi ∈ Gi, yj ∈ Gj satisfying tθ(xi) = yi must exist. By
the relative rigidity of G, for all vertices x ∈ Gi, there must be a vertex y of
Gj so that tθ(x) = y. Specifically, there exists v′j ∈ Gj so that v′j = tθ(vi),
|v′j − vj| = 1, and vjv

′
j ∈ E(G).

Equipped with the same reasoning, we have that |t2θ(vi) − v′j| = 1, so as
before, we must have x′

i ∈ V (Gi), y
′
i ∈ V (Gj) so that t2θ(x

′
i) = y′j. Then,

by the relative rigidity of G, there exists v′′j ∈ Gj so that t2θ(vi) = v′′j ,
|v′′j − v′j| = 1, and v′′j v

′
j ∈ E(G).

Since |V (G)| < ∞, this process must terminate. That is, there must be
some sufficiently large α so that the vertex vα−1

j satisfying |tαθ(vi)−vα−1
j | = 1

is equal to vβ−1
j β < α, implying that for all k ∈ Z+, vα+k

j = vβ+k
j .
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Figure 22: The 12
5

-gon and 10
3

-gon

Equivalently, we must be able to take finitely many unit-chord steps about
the circle of radius r and return to our initial vertex. To satisfy this require-
ment, r must be the circumradius of a polygon of unit side length, where
we generalize the notion of “polygon” to include “p/q-gons”. That is, there
exists m ∈ Q so that r = csc(mπ)/2.

Lemma 5. For any radius r ≤ τ(G) achieved by Gi, there exists a vertex
vj ∈ V (Gj), i ̸= j achieving radius r′ such that 0 < |r − r′| ≤ 1.

Proof. Take a vertex vi ∈ V (Gi) achieving some radius r ≤ τ(G). As before,
we call the cutvertex v. By definition of τ(G), there exists a vertex vj ∈
V (Gj) which achieves radius τ(G).

Given that Gj is a connected unit distance graph, there must be a path
P composed of unit-length steps from v to vj. As a result, there must be
some vertex of P in the annulus about v with radii |vj| − 1, |vi|, or else P is
not a connected unit distance path. That is, there must be a point v′j ∈ Gj

satisfying 0 < |v′j|−|vi| ≤ 1. That is, for any vertex vi ∈ Gi with |vi| ≤ τ(G),
there exists a vertex v′j ∈ Gj achieving radius r′ where 0 < |r − r′| ≤ 1.

Definition 28. Real numbers r ≥ 0 and q ≥ 0 are co-gonal if they satisfy
r2 + q2 − 2rq cos θ = 1 for θ some nonzero rational multiple of π.

Lemma 6. Any two radii r, r′ achieved by Gn−1 satisfying |r − r′| ≤ 1 are
co-gonal.

Proof. Suppose G is a finite relatively rigid edge-maximal unit distance graph
with biconnected components G1 ⊆ · · · ⊆ Gn.
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By Lemma 2 and the assumptions above, Gn achieves r. Take vn to be
a vertex of Gn achieving radius r and vn−1 to be a vertex of Gn−1 achieving
radius r′. Consider the representation of G in which vn, vn−1, and the origin
are collinear. By lemma 3, there exists θ so that |vn − tθ(vn−1)| = 1. Then,
edge-maximality requires that vnvn−1 ∈ E(G), contradicting that Gn and
Gn−1 are distinct biconnected components, unless there exist xn ∈ Gn, yn−1 ∈
Gn−1 so that tθ(yn−1) = x.

Given yn ∈ Gn, xn−1 ∈ Gn−1 so that tθ(xn−1) = yn, by the relative rigidity
of G there exists y ∈ Gn so that tθ(x) = y for each x ∈ Gn−1. Specifically,
there exists v′n so that v′n = tθ(vn−1), |v′n − vn| = 1, and v′nvn ∈ E(Gn).

Now, |t−θ(vn−1)−vn| = 1, and by the previous argument there must exist
y′n ∈ Gn, x

′
n−1 ∈ Gn−1 such that t−θ(x

′
n−1) = y′n). Again by relative rigidity,

this implies that there exists v′′n so that v′′n = t−θ(vn−1), |vn − v′′n| = 1, and
v′′nvn ∈ E(Gn).

By assumption, Gn−1 also achieves radius r′. Denote some such vertex
by v′n−1. By Lemma 3, there exists some angle ϕ so that |v′n − tϕ(v′n−1)| = 1.
Edge-maximality requires that v′nv

′
n−1 ∈ E(G), contradicting that Gn and

Gn−1 are distinct biconnected components, unless there exist x′
n ∈ Gn, y

′
n−1 ∈

Gn−1 so that tθ(y
′
n−1) = x′

n.
Given y′n ∈ Gn, x

′
n−1 ∈ Gn−1 so that tθ(x

′
n−1) = y′n, by the relative rigidity

of G there exists y ∈ Gn so that tθ(x) = y for each x ∈ Gn−1. Specifically,
there exists v′′′n so that f(v′′′n ) = tθ(v

′
n−1), |v′′′n − v′′n| = 1, and v′′′n v

′′
n ∈ E(Gn).

This process must terminate, since |V (G)| < ∞. That is, it must be
possible to take finitely many unit-length steps between vertices at radius
|f(vn)| = r and |f(vn−1)| = r′ alternatingly and obtain a cycle. To satisfy
this requirement, triangle with side lengths r, r′, 1 must have that the angle
θ formed by the sides of length r and r′ is a rational multiple of π. By the
Law of Cosines, r and r′ satisfy

1 = r2 + r′2 − 2rr′ cos(θ) where θ ∈ πQ.

Note: It is not possible to have a path between the cutvertex and any
other vertex composed entirely of vertices achieving radii which are not co-
gonal to each other, because any path must admit a vertex at radius 1, which
is gonal.
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6.2 Failure of Gonality and Co-gonality in Gn

In a finite relatively rigid edge-maximal unit distance graph G with bicon-
nected components G1 ⊆ · · · ⊆ Gn, the radii achieved by Gn need not be
gonal or co-gonal to each other. The proof that radii of Gn−1 are gonal (see
Lemma 4) requires that all radii achieved by Gn−1 are achieved by at least
two components, as proven in Lemma 2. The largest component, Gn, may
have radii which are not achieved by any other component of G. For ex-
ample, the graph consisting of the two biconnected components represented
below admits a non-gonal radius in the larger component.

Figure 23: Example of a Finite Relatively Rigid Edge-Maximal Graph with
Largest Component Achieving a Non-Gonal Radius

The white vertices achieve radius
√

2, which is not gonal but is co-gonal
to 1/(2 sin(π/12)) and 1. The proposed graph is finite and edge-maximal;
adding any edge would cause the graph to have no unit distance embedding.
It is also relatively rigid; we have that for any angle θ with vi ∈ V (Gi), vj ∈
(Gj) so that tθ(vi) = vj, , there exists a y ∈ V (Gj) for every x ∈ (Gj) so that
tθ(x) = y.

Furthermore, Gn may achieve radii which are neither gonal nor co-gonal
to the nearby radii also achieved by Gn−1. With high probability, any choice
of radius r in (1/2, τ(G)) has θ1, θ2 irrational in the following equations,
where r0 is a nearby radius achieved by Gn−1:
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1 = r2 + r20 − 2rr0 cos(θ1)

1 = 2r sin(θ2)

We claim that the largest biconnected component Gn of a finite relatively
rigid edge-maximal unit distance graph G may achieve such a radius. Choose
such an r, and add copies of Gn−1 rotated relative to each other at irrational
multiples of π so that r has two neighbors achieving each radius of Gn−1

which differ from r by at most 1. To maintain that Gn is biconnected, we
require at least two vertices achieving radius r, each with at least one neighbor
in each copy of Gn−1. A graph constructed this way is edge-maximal and
finite. Under any rotation θ satisfying tθ(x0) = y0 for some y0 ∈ V (Gn) and
x0 ∈ V (G \ Gn), there also exists a y ∈ V (Gn) for every x ∈ V (G \ Gn) so
that tθ(x) = y. Therefore, a graph constructed as described above is also
relatively rigid.

We conclude that a finite relatively rigid edge-maximal unit distance
graph may admit vertices outside of gonal radii and pairs of radii which
are not co-gonal, but such radii are restricted to the largest biconnected
component, Gn.
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7 Results

In this section, we utilize elementary geometry, the number theoretic results
of Section 5, and the results of Section 6 to prove the theorem below.

Theorem 1. If G is a relatively rigid edge-maximal finite unit distance graph
on Γ′ with biconnected components G1 ⊆ · · · ⊆ Gn, then Gn−1 is contained
in Q(S) for

S ∈ {{12/5, 6, 12}, {10/3, 6, 10, 15}, {12/5, 6, 10, 15}, {10/3, 6, 12}}.

Proof. Suppose G is a relatively rigid edge-maximal finite unit distance graph
on Γ′ with nonempty biconnected components G1 ⊆ · · · ⊆ Gn. By virtue of
being a nonempty connected unit distance graph, any biconnected component
Gi, i < n achieves radius 1. By the result of 6, any other radius r ∈ (1/2, 2)
achieved by Gi must be gonal and co-gonal to 1.

As given in Section 5, there are six gonal radii co-gonal to 1, namely the
radius of the unit p/q-gon for p/q ∈ {12/5, 10/3, 6, 10, 12}. Yet, we claim
that there are only four graphs whose constituent polygons are compatible
for coexistence in a finite, relatively rigid edge-maximal unit distance graph.

For ease of notation, we use rp/q to refer to the radius of the unit p/q-
gon. Assume that Gi achieves r12. Since r12/5 is more than one less than
r12, we allow Gi to achieve r12/5, as well, without concerns regarding co-
gonality. As shown in Section 5, the only rational number co-gonal to r12/5
is 1. Likewise, no rational number greater than r12 is co-gonal to r12, so we
obtain S1 = {12/5, 6, 12}.

Now assume that Gi achieves r10, instead. The radius of the 10/3-gon
is exactly one less than the radius of the 10-gon, so it is also possible for S
to contain both 10 and 10/3 in a finite graph Q(S). In this scenario, Q(S),
being edge-maximal, has each vertex at r10 adjacent to one vertex at r10/3.
Furthermore, the radius r10 is co-gonal to the radius r15, and r15 is co-gonal
only to itself and r10, yielding S2 = {10/3, 6, 10, 15}.

Since r12 is not co-gonal to r10, no G achieving r12 in any component
may achieve r10, Similarly, since r10/3 is not co-gonal to r12/5, no G achieving
r10/3 may achieve r12/5. However, G could achieve r12/5 and r10 or r10/3 and
r12 simultaneously, since these radii differ by more than 1 and are there-
fore not subject to co-gonality. We thus obtain S3 = {10/3, 6, 12}, S4 =
{12/5, 6, 10, 15}.
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In the argument below, we determine the number of vertices at each
radius in Q(Si), i ∈ [4] . That is, we find the multiplicity of of each polygon
in the four graphs.

Consider a component Gi 1 < i < n achieving r12/5 and r6. By the
arguments of Section 6, any vertex of Gi achieving radius r12/5 must have
two neighbors achieving radius 1. Denote by v12/5 a chosen vertex of Gi

achieving radius r12/5. There are two vertices v, v′ achieving radius 1 which
are at unit distance from v12/5. The angle ∠vv12/5v′ is 5π/6, which is not an
integer multiple of π/3, the smallest angle between any two points of the unit
hexagon. We therefore require two copies of the hexagon in any biconnected
component Gi which achieves radius r12/5.

As shown in Figure 20, two copies of the hexagon rotated at an angle of
π/6 relative to each other are sufficient to ensure that each point of a unit 12-
gon has two neighbors at radius 1. We conclude that the graph Q(12/5, 6, 12)
has one 12/5-gon, two 6-gons, and one 12-gon.

For S2 = {10/3, 6, 10, 15}, we consider the graph Gi achieving only r10/3
and r6. The angle witnessing co-gonality between r6 and r10/3 is 2π/5. That
is, there must be points at radius 1 differing by an angle measure of 4π/5. To
achieve increments of π/5 with hexagons, we need 5 copies of the hexagon.
We thus obtain 30 vertices at radius 1, corresponding to 30 vertices at radius
r10/3, obtained from 3 copies of the 10/3-gon. Now consider the case in which
Gi achieves r10/3, r1, and r10. Because |r10/3 − r10| = 1, we need only one
neighbor at radius r10 for each vertex achieving radius r10/3. Furthermore,
the angle witnessing co-gonality between r6 and r10 is π/5, which is accounted
for by our 5 copies of the unit hexagon. Similarly, given two copies of the
15-gon, each vertex of the 10-gons has two neighbors achieving radius r15,
and vice versa. We conclude that the biconnected graph Q(10/3, 6, 10, 15)
has 3 copies of the 10/3-gon, 5 copies of the 6-gon, 3 copies of the 10-gon,
and 2 copies of the 15-gon.

Likewise in the case of Q(12/5, 6, 10, 15), we see that in a component
Gi achieving only 12/5 and 6, we require two copies of the 6-gon. The
angle witnessing co-gonality between r6 and r10 is π/5. The minimum angle
between points we currently have at radius 1 is π/6, so we require enough
polygons to give that the angle between points at radius 1 is π/(lcm(6, 5) =
30). That is, we require 60 points achieving radius 1, corresponding to 5
copies of the graph we obtained considering only 12/5 and 6. The 60 evenly
spaced points at radius r10 are sufficient to ensure that given four copies of
the 15-gon rotated so that the 60 corresponding points are evenly spaced,
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each vertex has two neighbors achieving radius r10. We conclude that the
graph Q(12/5, 6, 10, 15) has 5 copies of the 12/5-gon, 10 copies of the 6-gon,
6 copies of the 10-gon, and 4 copies of the 15-gon.

Finally, we consider Q(10/3, 6, 12). Given only r10/3 and r6, we see by the
argument for Q(10/3, 6, 10, 15) that there must be 3 copies of the 10/3-gon
and 5 copies of the 6-gon. However, the smallest angle by which two points
of these 6-gons differ is π/15, while the co-gonal angle between r6 and r12 is
π/12. The least common multiple of 12 and 15 is 60, so there must be 10
copies of the 6-gon, along with 6 copies of the 10/3-gon and 5 copies of the
12-gon.

56



8 Appendix A: Sage Code

# 5-checker

verts=[]

for i in range(0,37):

verts.append(i)

S = Subsets(verts, 5, submultiset=False);

fivesets=S.list()

badgraphs=[]

for i in range(0, len(fivesets)):

C=Q1.copy()

C.delete_vertices(fivesets[i])

#if C.is_connected()==True:

#print (’Q1 is connected.’)

if C.is_connected()==False:

#print(’this is graph number’, i)

badgraphs.append(i)

conncomps=C.connected_components()

if (len(conncomps)==2 and len(conncomps[0])<4

or len(conncomps[1])<4):

badgraphs.remove(i)

if len(conncomps)>2:

print(’Graph’, i, ’has more than two

connected components after removal of 5-set.’)

print(’___________________________________’)

print(badgraphs)

#4-Checker

verts=[]

for i in range(0,37):

verts.append(i)

S = Subsets(verts, 4, submultiset=False);
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foursets=S.list()

badgraphs=[]

for i in range(0, len(foursets)):

C=Q1.copy()

C.delete_vertices(foursets[i])

#if C.is_connected()==True:

#print (’Q1 is connected.’)

if C.is_connected()==False:

#print(’this is graph number’, i)

badgraphs.append(i)

conncomps=C.connected_components()

if (len(conncomps)==2 and len(conncomps[0])<3

or len(conncomps[1])<3):

badgraphs.remove(i)

if len(conncomps)>2:

print(’Graph’, i, ’has more than two

connected components after removal of 5-set.’)

print(’___________________________________’)

print(badgraphs)
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[66] László A Székely. “Crossing numbers and hard Erdős problems in dis-
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