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Exploring Alternative Approaches to Language Modeling for Learning from Data
and Knowledge

Yuxin Zi1, Kaushik Roy1, Vignesh Narayanan1, Amit Sheth1

1Artificial Intelligence Institute, University of South Carolina

Abstract

Despite their wide applications to language understanding
tasks, large language models (LLMs) still face challenges
such as hallucinations - the occasional fabrication of in-
formation, and alignment issues - the lack of associations
with human-curated world models (e.g., intuitive physics or
common-sense knowledge). Additionally, the black-box na-
ture of LLMs makes it highly challenging to train them mean-
ingfully in order to achieve a desired behavior. Specifically,
the attempt to adjust LLMs’ concept embedding spaces can
be highly intractable, which involves analyzing the implicit
impact on LLMs’ numerous parameters and the resulting in-
ductive biases. This paper proposes a novel architecture that
wraps powerful function approximation architectures within
an outer, interpretable read-out layer, which can be scruti-
nized to explicitly observe the effects of concept modeling
during the training of the LLM. This is in contrast with the
gradient-based implicit mechanisms, which solely rely on
modifications to the LLM parameters which, therefore, do not
lend themselves to scrutiny. Through extensive experiments
across both generative and discriminative language modeling
tasks, we analyze the abilities of our proposed architecture in
comparison to the state-of-the-art LLMs of comparable size.
We further provide a qualitative analysis of the interpretable
read-out layer, and visualize the concepts captured by this
layer. Our findings show the potential of our approach for
robust LLM hallucination control and enhanced alignment of
LLMs with human expectations.

1 Introduction
Language modeling involves extracting extensive patterns
from vast amounts of data and representing these patterns
in high-dimensional vector spaces [1]. These vector spaces
enable us to gauge the similarity or dissimilarity between
various concepts by calculating the distances between their
embedded vectors. For instance, the embeddings of differ-
ent fruits, like apples, grapes, and watermelons, will be lo-
cated within a small distance (e.g., ε) from each other. Con-
sequently, the shared (such as being fruits) or distinct (such
as the nutrition value) characteristics of these concepts are
implicitly captured by the parameters of the language mod-
els that embed them. This implicit representation of con-
cept features by language model parameters, such as fruits
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providing natural sugars, makes it challenging to align the
model’s parameter space to achieve desired outcomes [2].

For instance, a knowledge graph (KG) provides informa-
tion about the nutritional properties of fruits such as apples,
grapes, and watermelons explicitly. Now, let us consider the
scenario where we train an LLM to capture the concepts of
apples, grapes, and watermelons for a specific task, e.g., de-
signing a diet plan emphasizing high levels of antioxidants.
Since watermelons do not possess significant levels of an-
tioxidants, the LLM should learn the concept watermelon
distinctly from fruits with high antioxidants. Instead of re-
lying on implicit representations by the LLM’s parameters,
we can theoretically, explicitly enforce this categorization
within the LLM’s concept embedding space using the KG,
to separate the concept fruits into fruits with antioxidants vs.
fruits with natural sugars by training on a corpus that con-
tains these distinctions from different contexts [3]. However,
in this paper we propose an approach that does not rely on
vector space modifications and the resulting parameter-level
changes, in order to allow for interpretable modifications.
Therefore, we introduce an outer interpretable read-out layer
to enable the explicit observation of modifications to a lan-
guage model’s concept embedding space. This layer is added
as a last layer after the LLM’s parametric architectural lay-
ers. In the subsequent sections, we develop and formalize the
proposed approach. We then discuss the experiments where
we evaluate our approach on benchmark language modeling
and understanding tasks. We show that our method performs
comparably with state-of-the-art LLMs of comparable size
while allowing a cleaner and more interpretable way to un-
derstand the LLM’s concept representations.

2 The Interpretable Read-Out Layer
Let gθ(x) : x → Rd be a function parameterized by θ which
embeds a concept x as a d dimensional embedding vector.
Let fβ : gθ(x) → y, y ∈ RC be a linear function βT gθ(x)
which maps the embedding for x to a set of C target out-
comes (e.g., C target classes for sentiment classification or
C possible next concepts (words or tokens) for language
generation).

The similarity of concepts in an embedding space depends
on the target task. That is, after fβ is trained for a target
task, we say two concepts xi and xj are similar if ||gθ(xi)−
gθ(xj)|| ≤ ε, where ε is some small number, and ||.|| is an



appropriate distance metric.
We introduce a non-parametric interpretable read-out

layer over gθ(x), denoted by Φ(x), which characterizes the
concept x using gθ(x) and other “support” concepts before
computing fβ . In the next section, we will define such “sup-
port” concepts in the interpretable read-out layer and explain
their roles for explicit concept modeling. Specifically, we
will discuss the core underpinnings of language modeling
and subsequently examine how the fundamental operations
of state-of-the-art language models, i.e., transformers, for-
malize those underpinnings [4]. Then, we generalize those
operations to reveal that adding the interpretable read-out
layer is a natural thing to do to endow the model with inter-
pretability.

2.1 A Closer Look at Language Modeling, the
Transformer Architecture and Defining the
Interpretable Read-Out Layer Φ(x)

Although so far we have only talked about concept embed-
dings of single words, e.g., apple, a language model also
embeds concept-phrases of arbitrary length, e.g., a red ap-
ple with vitamin C. The key idea in an LLM is that a set
of co-occurring concepts that form a concept phrase act as
each other’s “support” in the LLM’s concept embedding
space during the computation of the concept embedding.
Intuitively, the co-occurring concepts apple, and vitamin C
“support” the interpretation of the individual tokens (apple,
vitamin and C) as belonging together, i.e., being close in the
LLM’s embedding space. If the concept of apple were co-
occurring with Steve Jobs in the concept phrase, the concept
Steve Jobs would support a different interpretation of apple
(i.e., embeddings for apple, vitamin, and C would not be
close in this case). The core operation in a transformer, the

self-attention operator, leverages this idea of “support” dur-
ing the computation of embeddings for concepts and concept
phrases.

Let T be the set of all possible concepts in a language.
Let X = [x1, x2, . . . , xN ] denote a concept phrase, which
is an ordered list of concepts such that each xn ∈ X is
an element in the set T . Thus the self-attention for the con-
cept xi, denoted by SAxi

is computed as
∑

j σ(
qTi kj√

d
)vj =∑

j

(
exp(

qTi kj√
d

)∑
j exp(

qT
i

kj√
d

)

)
vj . The qi, kj , and vj are vectors com-

puted using Wqgθ(xi), Wkgθ(xj), and Wvgθ(xj), respec-
tively (gθ is as defined in Section 2). The matrices Wq, Wk,
and Wv are square matrices of dimension d×d. Notice that
the self-attention computation for xi depends on j other co-
occurring “support” concepts. We will now generalize this
idea to obtain the interpretable read-out layer.

SAxi
=

∑
j

σ(
qTi kj√

d
)vj =

∑
j

( exp(
qTi kj√

d
)∑

j exp(
qTi kj√

d
)

)
vj

=
∑
j

( exp(
||qi||2−||qi−kj ||2+||kj ||2

2
√
d

)∑
j exp(

||qi||2−||qi−kj ||2+||kj ||2
2
√
d

)

)
vj

(1)

Now, we substitute qi = −q′i = −Wqgθ(xi),
kj = −k′j = −Wkgθ(xj), and vj = Wvgθ(xj).

We also observe that exp(−||l−m||2√
d

) is the Gaussian

kernel with bandwidth
√
d, which we will denote us-

ing the inner product ϕ(l), ϕ(m), where ϕ(.) is the
infinite-dimensional map (gaussian kernel is the infinite-
dimensional inner product). Thus, we rewrite Eq (1) as:

SAxi
=

∑
j

(
ϕ(0)Tϕ(Wqgθ(xi))ϕ(Wkgθ(xj))

Tϕ(Wqgθ(xi))ϕ(0)
Tϕ(Wkgθ(xj))∑

j ϕ(0)
T , ϕ(Wqgθ(xi))ϕ(Wkgθ(xj))Tϕ(Wqgθ(xi))ϕ(0)Tϕ(Wkgθ(xj))

)
Wvgθ(xj)

=
∑
j

(
C||ϕ(Wqgθ(xi))

Tϕ(Wkgθ(xj))||2

C
∑

j ||ϕ(Wqgθ(xi))Tϕ(Wkgθ(xj))||2

)
Wvgθ(xj), C = ϕ(0)Tϕ(0)

(2)

=
∑
j

(
Φ(Wqgθ(xi))

TΦ(Wkgθ(xj))∑
j Φ(Wqgθ(xi))TΦ(Wkgθ(xj))

)
Wvgθ(xj) Φ(.)TΦ(.) = ||ϕ(.)Tϕ(.)||2 (3)

We replace ||ϕ(.)Tϕ(.)||2 with a new inner product (kernel)
Φ(.)TΦ(.) as the product of two kernels is still a kernel. In
this way, we have introduced a read-out layer over gθ and the
notion of “support” concepts xj for characterizing the con-
cept xi. In the next section, we will explain how we enable
the explicit observation of language modeling outcomes by
incorporating the interpretable read-out layer Φ(.) and the
“support” concepts. It’s important to note that although ear-
lier methods have demonstrated the feasibility of construct-
ing a kernel to instantiate the self-attention operation, they
have yet to explicitly derive the specific form containing the
Gaussian kernel that we have [5, 6]. Furthermore, our objec-

tive is not to offer an alternative kernel re-formulation but to
achieve a formulation through which we can explicitly in-
terpret the LLM’s concept embeddings using “support” con-
cepts, as we will detail in the following sections.

2.2 Language Modeling by Leveraging the
Interpretable Read-Out Layer

Support Concepts Recall the target task of designing a
diet plan rich in antioxidants from Section 1, using just
the fruits - apples, grapes, and watermelons. We can obtain
“support” concepts as paths from external KGs. For exam-
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Figure 1: Process for deriving supportive concepts from data and an external KG. Initially, the data undergoes tokenization.
Subsequently, token spans of length K are identified as potential concept candidates for retrieving graph paths from the KG
(where K is set to 2 in the illustration). Graph paths are extracted by evaluating vector distances between concepts and graph
nodes. These graph paths then serve as the resulting supportive concepts.

ple, the KGs can have the triples Apple is a Fruit, and Apple
has Antioxidants, which can be reformulated as the path An-
tioxidants has-1 Apple is a Fruit using inverse relationships.
Similarly, for grape, we could have the path Antioxidants
has-1 Grape is a Fruit. Thus, we can characterize the con-
cepts Apple and Grape as being fruits rich in antioxidants,
an appropriate description of a fruit category for the target
task. Thus in this example, xi in Eq (3) is the concept ap-
ple and the xj are the KG paths, Antioxidants has-1 Apple
is a Fruit, and Antioxidants has-1 Grape is a Fruit. Figure 1
depicts this process.

Layering the Interpretable Read-Out Layer over Differ-
ent Parametric Function Approximation Architectures
for Language Modeling In traditional parametric lan-
guage modeling, the self-attention operations such as de-
scribed in Eq (1) are layered on top of one another (e.g., 12
layers in BERT [7]). In our approach, we instead layer the
read-out layer Φ(.) over the parametric architecture gθ (e.g.,
could be a 12-layer transformer architecture). This allows
us to leverage the high-capacity function approximation ca-
pabilities of complex parametric architectures in gθ while
still retaining the explicit interpretation of the description of
concepts using “support” concepts, as explained in the previ-
ous section (Section 2.2). Also, we can now experiment with
different parametric architectures for gθ to achieve even bet-
ter language modeling performance. Figure 2 illustrates the
idea of layering the interpretable read-out layer on top of
parametric architectures and how the layer’s output can be
interpreted.

3 Definitions
In the following sections, we introduce some definitions
needed to explain our method and experiments and elaborate
on the choices for the parametric function approximation gθ
and the interpretable read-out layer Φ(.) that we experiment
with.

3.1 Data Structure Definitions
Knowledge Graphs We formally define a KG and its
paths (paths in the next section), as we use KG paths as
“support” concepts in our experiments. A KG is denoted by
KG(V,E,L), where the sets V and E are the vertices and
edges of the graph, respectively. The set L consists of rela-
tionships represented by the edges e(v1, v2) ∈ E, v1, v2 ∈
V. The relationships represented by the edges e(v1, v2) ∈ E
are given by a set of N boolean-valued functions given by,

L = {re(v1,v2) : ye ∈ {0, 1}N | e ∈ E} (4)
Here 1 and 0 denotes whether the relationship re(v1,v2) be-
tween vertices v1, v2 ∈ V holds or not. We will use L(e) to
denote the value ye associated with the relationship re(v1,v2).
We will use subject(e) and object(e) to denote the incident
vertices v1, v2 for the edge e(v1, v2). Figure 1 (bottom-left)
shows an example of a KG where the vertices V is the set
{apple, watermelon, grape, antioxidants, natural sugar},
the edges E is the set
{has(apple, antioxidants), has(apple, natural sugar), . . .},
and L is the set {apple has antioxidants :
1, apple has natural sugar : 1, . . .}. Note that the
set L is not completely specified, i.e., only the relationships
that hold (L(e) = 1) are stored, and the ones that are not in
L are assumed not to hold (L(e) = 0).



The Interpretable Read-Out Layer 𝚽(x) allows us to 
explicitly interpret and align the support concepts 

related to the data, against the appropriate 
relational context, which is learned through 

iterations of training the model.

(QKT)V (QKT)V(QKT)V ……

Feed-Forward Neural 
Network-based
Approximation

Polynomial 
Approximation

Multi-headed 
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Figure 2: Shows different possible parametric function choices for gθ under the interpretable read-out layer Φ(x), all of which
have universal approximation properties. The figure also illustrates how the read-out layer can be interpreted as defining the
appropriate relational context for the target task of designing a diet plan rich in antioxidants from Section 1, using just the fruits
- apples, grapes, and watermelons. The relevant data-specific context is captured in Φ(.) throughout the training iterations of the
model. This is depicted as an adjacency matrix (formed by utilizing thresholded dot product values calculated using Equation
(2)).

Knowledge Graph Paths Given a KG denoted by
KG(V,E,L), a K length path pK(vl, vm) between two
vertices vl, vm ∈ V, is a sequence of edges e1, e2, .., eK ∈
E, such that L(ek) = 1∧ subject(e1) = vl ∧ object(eK) =
vm ∧ object(ek) = subject(ek+1), k ∈ {1, 2, . . . ,K}. We
have already covered examples of KG paths in Section 2.2.

3.2 Task Definitions
We experiment with generative (text generation) and dis-
criminative (classification) modeling tasks. We describe
these tasks and how a KG is used to solve the tasks formally
in the following subsections.

Generative Modeling In generative modeling, given a
context sequence of H previous concepts [x1, . . . , xH ], the
task is next-concept prediction, i.e., predicting the concept
xH+1 from among a predefined vocabulary of C concepts.
The forward pass for this computation is written using a
modification to fβ (introduced in Section 2) and Eq 3 as:

fβ(xH+1 | [x1, . . . , xH ])

= β
∑
j

(
(Wqgθ(xi))

T (Wkgθ(xj))∑
j(Wqgθ(xi))T (Wkgθ(xj))

)
Wvgθ(xj),

xj ∈ {x1, . . . , xH}
(5)

Here the “support” concepts are the set of concepts in con-
text sequence [x1, . . . , xH ]. Note here that we set Φ(.) to be
the identity function, thus reducing the inner product in Eq
(3) to the standard scalar product in Eq (5), as this is what
we experiment with. Crucially, this change still retains the

explicit interpretation described in Section 2.2 as the inner-
product is still the outermost layer over gθ. We leave the
exploration of different Φ(.) for future work.

Generative Modeling using Knowledge Graph paths as
“support” concepts xj in Eq (5) For a concept x and KG
denoted by KG(V,E,L), we define all KG paths of up to
length K corresponding to concept x as

PK(x)

= {pK(vl, vm) | k ≤ K vl, vm ∈ V,

||gKGE(x)− gKGE(vm)|| ≤ ε}
(6)

, where ||gKGE(x) − gKGE(vm)|| ≤ ε denotes if embed-
dings for vm and concept x are “close enough” using a KG
embedding (KGE) model gKGE . Let IKG(x, xj) be an in-
dicator function that returns 1 or 0 indicating whether the
“support” concept xj ∈ Φ(x) or not, i.e., if the “support”
concept is a path in the KG or not. Thus, to incorporate KG
paths, we make a slight modification to Eq (5) as follows:

fβ(xH+1 | [x1, . . . , xH ])

= β
∑
j

(
(Wqg

′
θ(xi))

T (Wkg
′
θ(xj))∑

j(Wqg′θ(xi))T (Wkg′θ(xj))

)
Wvg

′
θ(xj)

g′θ =

{
gθ if IKG(xH+1, xj) = 0

gKGE if IKG(xH+1, xj) = 1,

xj ∈ {x1, . . . , xH} ∪ PK(xH+1)
(7)

Here the “support” concepts include both the set of concepts
[x1, . . . , xH ] and the KG paths in PK(xi).



Figure 3: Example text generation output using the Multi-head Attention in Table 2

Discriminative Modeling In discriminative modeling,
given a dataset of D data points, i.e., concept set and label
pairs (ld = {x1, x2, . . . , xH},md = c), where the labels c
are from among a predefined set of labels C, the task is to
predict the label c using fβ . Let y denote the predicted vari-
able for the class label c. The forward pass computation for
the logit corresponding to label c ∈ C is as follows:
fβ(y = c | {x1, . . . , xH})

= β
∑
j

(
(Wqgθ(xi))

T (Wkgθ(xj))∑
j(Wqgθ(xi))T (Wkgθ(xj))

)
Wvgθ(xj),

xj ∈ {l1 ∪ l2 ∪ . . . ∪ lD} \ {x1, . . . , xH}
(8)

Thus the “support” concepts for a datapoint during discrim-
inative learning are concepts from all the other D − 1 data-
points in the dataset. Extending the “support” concepts to the
discriminative modeling case involves including the union of
all the KG paths PK(xj) corresponding to the support xj .

3.3 Defining Approximation Architectures for gθ
As illustrated in Figure 2, we experiment with different ap-
proximation architectures, all of which have universal ap-
proximation properties. They are feed-forward neural net-
works, polynomial approximations, and the multi-headed
self-attention architecture.

Feed-Forward Neural Network First, we experiment
with a Z layer feed-forward neural network described by
the equations:
ex = Ex, E ∈ Rd

px = ex +Pex, Pe ∈ Rd

zx = max(Wz
T px, 0), W1 ∈ Rd×d1 , Wz\{1,Z} ∈ Rdz×dz+1 ,

WZ ∈ RdZ−1×d, z ∈ {1, 2, . . . , Z}
(9)

The matrices E, Pe, and the Wz are the trainable weights
in the network (the embedding matrix, the position encod-
ing matrix, and the network weights and biases). We layer
multiple feed-forward structures as described in Eq (9) (12
layers in our experiments, each layer with its own trainable
weights) to obtain deeper approximation architectures. From
each lower layer to the upper layer, we extract the last d di-
mensional column of zx output at that lower layer. Finally,
to obtain the d dimensional vector corresponding to gθ(x),
we extract the last column of zx from the final layer.

Polynomial Approximation Next, we experiment with a
polynomial approximation where we compute powers of x
up to order J . This is described by the equations

ex = Ex, E ∈ Rd

px = ex +Pex, Pe ∈ Rd

zx = {p1x, p2x, . . . , pJx}
(10)

Each of the {p1x, p2x, . . . pJx} is computed dimension-wise
(i.e., each of the d dimensions of x is raised to the power j).
The matrices E and Pe are the trainable weights in the net-
work (the embedding and position encoding matrices). Once
again, we layer multiple such structures to obtain deeper ap-
proximation architectures. From each lower layer, we take
the average of the polynomial powers at that layer to obtain a
d dimensional vector to pass to the layer above it. Finally, to
obtain the d dimensional vector corresponding to gθ(x), we
take the average of the polynomial powers at the last layer.



Multiheaded Self-Attention

ex = Ex, E ∈ Rd

px = ex +Pex, Pe ∈ Rd

qax, k
a
x, v

a
x = {Wa

qx,W
a
kx,W

a
vx | a ∈ {1, 2, . . . , A}}

zx = {σ
(
(qax)

T kax√
d

)
vax | a ∈ {1, 2, . . . , A}}

(11)

The matrices E, Pe, and the Wa
q, Wa

k, and Wa
v are the

trainable weights of the network. A denotes the number
of attention heads. Again, multiple self-attention blocks are
layered, as in the other two cases. From each lower layer, we
take the average of the elements of zx at that layer to obtain
a d dimensional vector to pass to the layer above it. The fi-
nal d dimensional vector corresponding to gθ(x) is obtained
from the average of the elements in zx from the last layer.

4 Experiments
In this section, we describe our hyperparameter configu-
rations and experiments for generative and discriminative
modeling in Sections 4.1, 4.2 and 4.3, respectively. Due to
space concerns, the table and figure captions contain the dis-
cussion about all the experiments. We provide the GLUE
leaderboard result for context for the numbers in the re-
sults tables. However, it should be noted that the leader-
board models are up to 10 times larger than the models
implemented in this paper. We will compare larger models
in future work when the models have finished training.

4.1 Hyperparameter Configurations
For all our experiments, we use a single A100 GPU.
For the feed-forward neural network described in Section
3.3, we set d = 384 (chosen by tuning from the set
{200, 384, 768}), and dz = 4000 (chosen by tuning from the
set {500, 1000, 2000, 4000}). For the polynomial approx-
imation described in Section 3.3, we set d = 384 (cho-
sen by tuning from the set {200, 384, 768}), and J = 5
(chosen by tuning from the set {2, 3, 4, 5}). Finally, for
the multi-headed-self-attention-based network described in
Section 3.3, we set d = 384 (chosen by tuning from the
set {200, 384, 768}), and A = 12 (chosen by tuning from
the set {4, 8, 12}). These form the basic units, and to get
deep architectures, we layer them 4, 4, and 6 times for
the feed-forward approximation, polynomial approximation,
and self-attention-based approximation, respectively (cho-
sen by tuning from the set {4, 6, 12}). We also include layer
normalization between the layers. We use a train-validation
split of 80-20 for all our experiments, and all reported results
are evaluation loss scores.

4.2 Generative Modeling
Context Size, Tokenization, and Batch Size: For all the mod-
els, the context size is set to 1024 (chosen by tuning from
the set {256, 512, 1024}). Batch size is set to 32 (chosen by
tuning from the set {8, 16, 32}). For tokenization, we use

the GPT-2 tokenizer 1, which consists of 50, 257 tokens (C
in Section 3.2). Embeddings for the gKGE from Eq (7): We
use the ConceptNet Numberbatch Embeddings2 and EWISE
WordNet Embeddings3 for ConceptNet and WordNet, re-
spectively.

Parameter Initializations: All the parameter matrices for
all three methods are randomly initialized. Tables 1 and 2
show the results.

Datasets and Knowledge Graphs We experiment with
two text generation tasks. One, we train models for text
generation in the style of Shakespeare by using the tiny-
Shakespeare dataset4, which consists of 338, 025 tokens. We
use a train-evaluation split of 80% and 20%, respectively.
Second, we train models for autocomplete (next-word pre-
diction) using the OpenWebText dataset5, which consists
of ∼9 Billion (9, 040, 017, 095) tokens. For the first task,
we used the KGs WordNet6 and ConceptNet7, respectively.
The relationships across both include: Antonym, Distinct-
From, EtymologicallyRelatedTo, LocatedNear, RelatedTo,
SimilarTo, Synonym, AtLocation, CapableOf, Causes, Caus-
esDesire, CreatedBy, DefinedAs, DerivedFrom, Desires, En-
tails, ExternalURL, FormOf, HasA, HasContext, HasFirst-
Subevent, HasLastSubevent, HasPrerequisite, HasProperty,
InstanceOf, IsA, MadeOf, MannerOf, MotivatedByGoal,
ObstructedBy, PartOf, ReceivesAction, SenseOf, SymbolOf,
and UsedFor [8].

Model w/o
KG

/w
KG

#Ep Mins

Feed-forward Network 3.2 7.1 300 10
Polynomial Approximation 2.5 4.2 100 22

Multi-head Attention 1.55 6.8 200 5
GPT-2-Large-Fine-Tuned 2.2 6.7 250 4

Table 1: Results on the tiny-Shakespeare dataset. We
see that multi-headed-self-attention architecture takes only
5 minutes and converges to the least evaluation loss. Across
the board, including KGs results in worse performance. The
polynomial fit converges the fastest in terms of the number
of epochs but the slowest in terms of the number of minutes.
Finally, we see that the difference in the evaluation losses
with and without KG is significantly smaller using the poly-
nomial approximation method.

Results
1https://huggingface.co/docs/transformers/

model_doc/gpt2
2https://github.com/commonsense/

conceptnet-numberbatch
3https://github.com/malllabiisc/EWISE
4https://raw.githubusercontent.

com/karpathy/char-rnn/master/data/
tinyshakespeare/input.txt

5https://skylion007.github.io/
OpenWebTextCorpus/

6https://wordnet.princeton.edu/
7https://conceptnet.io/
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Figure 4: Interpretability results on a sentence similarity example. Since the read-out layer includes explicit inner products,
we visualize and highlight in bold, the inner products from different models for a test example comparing sentence similarities
against an anchor text (center). The squares green boxes represent the OLMpf model, the green oval boxes represent the OLMmha
models, and the pink oval boxes represent the OLMnn model. A significant advantage to using language modeling using our
method is that we can directly use it to visualize the quality of the outputs. We find here also that a lot of the highlights
correspond to relationships from ConceptNet (e.g., austria, 1914, austro-hungarian, great war, etc.), showing explicitly that
KGs benefit performance in the discriminative modeling case.

Model w/o
KG

/w
KG

#Ep Days

Feed-forward Network 5.2 10.3 300 45
Polynomial Approximation 3.5 6.2 200 60

Multi-head Attention 2.8 9.5 300 32
GPT-2-Large-Fine-Tuned 3.2 8.7 250 2

Table 2: Results on the OpenWebText dataset. We see
similar trends as in the tiny-Shakespeare dataset. The multi-
headed-self-attention architecture takes the least amount of
days and achieves the least evaluation loss. Once again,
including KGs consistently results in worse performance.
The polynomial fit converges the fastest in terms of the
number of epochs but the slowest in terms of the number
of days. The polynomial approximation also again shows
the least difference in the evaluation losses with and with-
out KGs compared to the other two methods. Figure 3
shows an example of text generation using the Multi-head
Attention model. Note that GPT-2 is fine-tuned, and our
models are trained from scratch. Additional outputs can
be found here: https://github.com/kauroy1994/
OLM/blob/main/README.md

4.3 Discriminative Modeling

We experiment with the General Language Understand-
ing Evaluation (GLUE) benchmark Tasks - STS (Semantic
Textual Similarity Benchmark), MNLI (Multi-genre Natu-
ral Language Inference), QNLI (Question Answering Nat-
ural Language Inference), WNLI (Winograd Natural Lan-

guage Inference), RTE (Recognizing Textual Entailment),
and QQP (Quora Question Pairs) [9]. Table 3 shows the re-
sults.

Model STS QQP QNLI WNLIMNLIRTE
(GLUELEADER) 93.5 90.9 96.7 97.9 92.5 93.6
OLMnn w/o KG 85.71 86.11 89.9 89.5 75.3 85.1
OLMnn /w KG 89.2 90.2 90.5 90.2 82.1 90.3
OLMpf w/o KG 90.89 86.41 92.3 90.11 88.53 90.4
OLMpf /w KG 93.55 90.51 95.56 98.7 92.08 92.3

OLMmha w/o KG 88.7 86.2 90.3 91.2 86.3 87.3
OLMmha /w KG 90.5 88.8 93.6 97.9 90.8 90.56

Table 3: Results on the GLUE Benchmark tasks. Here,
OLM denotes our language model with the neural net-
work (nn), polynomial-fit (pf), and multiheaded (mha) self-
attention architecture, respectively. We find that across the
board, adding “support” concepts from the KGs improves
scores significantly. Interestingly also, the polynomial fit
performs the best among the choices for gθ.

4.4 Interpretability
We perform interpretability analysis for a few examples
from the test set, specifically for the task of sentence
similarity. Figure 4 shows an example comparing differ-
ent sentences talking about World War 1, World War 2,
and the American Civil War. Additional examples can
be found here: https://github.com/kauroy1994/
OLM/blob/main/README.md



5 Future Work
5.1 Additional Forms of Support Concepts
In Section 2.2, we explored the application of KGs in re-
lation to support concepts. Moving forward, we will incor-
porate support concepts from Instructing Tuning datasets as
described in the subsequent two paragraphs.

Support Concepts from Instruction Tuning Datasets
Consider the (Prompt, Instruction) pair, (Prompt:
Given information <data>, give me a food item rich in
antioxidants containing apples, Instruction: Here is a
food item rich in antioxidants containing apples - A fruit
salad with the fruits apples and grapes), where an example
of <data> is shown in Figure 2. xi is the concept apple and
the xj can be the “support” concepts in the Instruction,
that affects the distribution of LLM’s generated output given
xi.

A Note on Instruction-based Fine-Tuning of LLMs
Instruction-based fine-tuning of LLMs using Reinforcement
Learning with Human Feedback updates a policy function
that uses proximal policy gradient-based methods to mod-
ify the LLM’s output distribution[10]. The policy func-
tion that is used to modify the LLM can be seen as an
interpretable read-out layer over the LLM in the case of
RLHF. More formally, let π : (xi, xj) → [0, 1] denote
a distribution over the different “support” concepts xj’s in
the Instruction given concept xi in the Prompt. The

quantity
(

Φ(Wqgθ(xi))
TΦ(Wkgθ(xj))∑

j Φ(Wqgθ(xi))TΦ(Wkgθ(xj))

)
in Eq (2) also de-

fines such a distribution. Thus RLHF achieves the objec-
tive of reducing the divergence between the distributions

π and
(

Φ(Wqgθ(xi))
TΦ(Wkgθ(xj))∑

j Φ(Wqgθ(xi))TΦ(Wkgθ(xj))

)
(e.g., reducing KL-

divergence in RLHF using proximal policy gradient-based
methods).

5.2 Efficient Inner Product Implementations
Since we derive an explicit inner product or kernel formula-
tion in the interpretable read-out layer, we can exploit high-
quality sub-quadratic approximations to kernels to signifi-
cantly speed up learning and inference [11, 12]

6 Conclusion
In this paper, we explore alternative perspectives to language
modeling and show that it is just as effective as parametric
approaches to language modeling. Moreover, we show that
it adds the benefit of easy visualization and interpretation.
Thus, the methods described in this paper have the poten-
tial for implementing mitigation strategies with respect to
observed negative effects in language models, such as hallu-
cination and alignment issues

Reproducibility All the code and data will be made pub-
licly available upon acceptance.
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