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Relational Sequential Decision Making

Kaushik Roy

Abstract

Markov Decision Processes(MDPs) are the standard for se-
quential decision making. Comprehensive theory and meth-
ods have been developed to deal with solving MDPs in the
propositional setting. Real world domains however are natu-
rally represented using objects and relationships. To this ef-
fect, relational adaptations of algorithms to solve MDPs have
been proposed in recent years. This paper presents a study
of these techniques both in the model based and model free
setting.

Background
Markov Decision Process
Markov Decision Processes(MDPs) are described by a set
of discrete states S, a set of actions A, a reward function
R(s, a) that describes the expected immediate reward in
state s when executing an action a, and a state transition
function pass′ that describes the transition probability from
state s to state s′ under action a. For infinite horizon prob-
lems a discount factor γ is specified to trade-off between
current and future reward. A policy π is a mapping from
states to actions. Value functions evaluate a policy that is
determines the value of executing actions with respect to
that policy. The optimal value can be obtained by solving
the bellman optimality equation as shown in Equation 1. Q-
values are values defined over state and action pairs and the
value can be obtained by maximizing over Q-values corre-
sponding to each action i.e V ∗(s) = maxa(Q(s, a)) for a
state s and all actions a executable in state s.

V ∗(si) = maxa{R(si, a) + γ
∑
j

pasi,sj · V
∗(sj)} (1)

Model based methods
Model based approaches in classical RL assume full knowl-
edge of the transition model and immediate reward function.
Let’s consider first a unified view of two fundamental rep-
resentation ideas, i.e propositional representations and rep-
resentations that group sets of states together. This grouping
can be done by factoring the states into state variables and
grouping together sets of states that have common variable
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assignments. The grouping can also be performed by pro-
viding a logical description of states and grouping together
states that are logically equivalent in terms of the objects
and relationships over which they are defined. For the uni-
fied view however, the manner of grouping is abstracted out.
This is to show that the algorithmic details of solving MDPs
do not change across different representations. Adapting to
the relational setting simply requires model definitions to be
provided using logical formalisms.

Representing value functions and policies over sets
of states
Consider an MDP with states S, actions A, transition model
T and immediate reward model R,
Value function: The value function over sets of states is de-
fined as a list V = [Si : vi, ..., Sn : vn], where each Si is a
group of states s ∈ S. It follows that the value for all states
s ∈ Si is vi.
Q-Value function: The Q-value function over sets of states
and actions is defined as a list Q = [Si, ai : qi, ..., Sn, an :
qn], where qi is the value of taking action ai in the states
s ∈ Si and each ai ∈ A.
Policy: A policy over sets of states is defined as a list
π = [Si : ai, ..., Sn : an]. It is a mapping from sets of
states s ∈ Si to action ai.

Operations over value structures
For any two value functions V1 and V2, the Sum, Difference
and Product operations are defined
Sum:It is defined as a list V1 + V2 = [Si ∩ Sj : vi + vj ],
where Si, vi ∈ V1 and Sj , vj ∈ V2.
Difference: It is defined as a list V1−V2 = [Si∩Sj : vi−vj ],
where Si, vi ∈ V1 and Sj , vj ∈ V2.
Product: It is defined as a list V1 ∗ V2 = [Si ∩ Sj : vi ∗ vj ],
where Si, vi ∈ V1 and Sj , vj ∈ V2.
Reduce: For a single value function V it is defined as a list
Reduce(V ) that merges Sj , Sk ∈ V that contain the same
values (vj = vk). For Q-Value structures, the actions aj and
ak also need to match.
Maximization: For a Q-value function Q and a set of states
S, action a and q-value q, where S, a : q ∈ Q, Let H be a
list that collects all sets of states S′, action b and q-value q′,
where S′, b : q′ ∈ Q, such that S ∩ S′ 6= ∅ and q′ > q. Let



H ′ be the list Reduce(H). The maximization is defined as
the list maxQ = [S −H ′].

Example Let V1 = [{s1, s2, s3} : 1, {s4, s5, s6} : 2] and
V2 = [{s1, s6} : 8, {s2, s3, s4, s5} : 9]. The Sum V1+V2 =
[{s1} : 9, {s6} : 10, {s4, s5} : 11, {s2, s3} : 10]. The oper-
ations Difference and Product are carried out similarly. The
Reduce operator applied on V1 +V2 is Reduce(V1 +V2) =
[{s1} : 9, {s2, s3, s6} : 10, {s4, s5} : 11].
Let Q = [{s1, s2, s3}, a : 10, {s1}, b : 5, {s2, s3}, b :
15, {s1}, c : 15, {s2}, c : 15, {s3}, c : 7] and S =
{s1, s2, s3}, a : 10. Therefore, H = [{s2, s3}, b :
15, {s1}, c : 15, {s2}, c : 15]. Applying Reduce on H the
list H ′ = [{s2, s3}, b : 15, {s1, s2}, c : 15] is obtained. Fi-
nally, Maximization is carried out by performing S − H ′

resulting in maxQ = [{s2, s3}, b : 15, {s1, s2}, c : 15].

Example world
Described now is an example world that will help illustrate
the algorithmic details similar across all representations and
show how computation is carried out over sets of states in-
stead of over all possible states. Let the set of states in the
world S = {s1, s2, s3, s4, s5} and let the actions allowed be
A = {a}. Let the discount factor γ = 0.9. Action a can lead
to two outcomes, aS representing success with probability
0.3 and aF representing failure with probability 0.7 denoted
as p[aS] = 0.3 and p[aF ] = 0.7. State s1 executing action
aS leads to state s4, represented as T (s1, aS) = s4. Simi-
larly, T (s1, aF ) = s5, T (s2, aS) = s4, T (s2, aF ) = s2,
T (s3, aS) = s3 and T (s3, aF ) = s5. Let the initial value
function reward being in state s4 with a value of 10, and be-
ing in state s5 with a value of 5, represented as V 0 = [{s4} :
10, {s5} : 5].

The Regression Operator
The regression operator applied to a state s and action a re-
sults in all possible states s′ that can lead to the current state
s upon execution of action a, denoted by Regr(s, a) = s′.
For the example in consideration, Regr(s4, aS) = {s1, s2}
as both s1 and s2 can lead to transition to s4 upon successful
execution of action a (action aS).

Some additional Notations
Let outcomes(a) denote the set of action outcomes aj of
action a. Qs,a outputs the q-value q of taking action a in
state s, where s, a : q ∈ Q. Similarly V s outputs the value
v of state s, where s : v ∈ V . The operator AddQ adds
all the Qs,aj lists using the Sum operator while ignoring the
actions such that the result is the Q-value Qs,a of action a,
where each aj ∈ outcomes(a).

Computation of Qk+1 and Vk+1 from Vk

Computation of Qk+1 from Vk is carried out using the steps
in algorithm 1.

Example The Q1 value for action aS can be computed
using these definitions as the value of states that can lead
to s4, multiplied by the probability of selecting action aS

from outcomes(a). This probability is 0.3 as already men-
tioned for the example in point. Thus, theQ1 value for action
aS is over states {s1, s2} as these states can lead to state
s4 in the value function V 0 (since aS cannot lead to state
s5, this outcome is ignored). Therefore, Q1 for action aS is
[{s1, s2}, aS : γ∗0.3∗10 = 2.7] and similarlyQ1 for action
aF is [{s1, s3}, aF : γ ∗0.7∗5 = 3.15]. The expected value
of executing action a with probailistic outcomes aS and aF
is the sum over the Q1 values of aS and aF . Combining Q1

for aS andQ1 for aF usingAddQ1, we haveQ1 for action a
as [{s1, s2}∩{s1, s3} : 2.7+3.15] = [{s1}, a : 5.85]. Now
consider Q1 for another action b has already been computed
as [{s1}, b : 6]. The maximization over actions a and b is
given by maxQ1 = [{s1}, b : 6]. Let maxV1 = [{s1} : 6]
i.e. the same as the maxQ1 list with the action dropped .
V1 is obtained as V1 = R + maxV1, where R is the initial
reward model and is always set to the list V0. Thus, Vk+1 is
easily obtained from Qk+1 and the initial reward model V0.

Result: Computing Qk+1 from Vk
forall Si : vi ∈ Vk do

forall a ∈ A do
forall aj ∈ outcomes(a) do

Q
Regr(Si),aj
k+1 = γ ∗ p[aj ] ∗ V Si

k

end
Q
Regr(si),a
k+1 = AddQk+1

end
end
Qk+1 = maxQk+1

Algorithm 1: Computing Qk+1 from Vk

Value Iteration and Policy Iteration
Computing Vk+1 from Vk by successive approximation as
detailed in the previous subsection until convergence (or un-
til the max difference is less than ε) is the value iteration
algorithm. Policy iteration can also be carried out by evalu-
ating Qk+1 for the actions described by a policy π and then
taking the action given by maxQk+1.

The propositional case If every state s ∈ S in the
MDP model was in its own set and every action aj ∈
outcomes(a) was treated as an individual action , it is
easy to see that the above algorithmic procedure reduces
to computation of the bellman optimally equation given by
V ∗(s) = maxaj{R(s, aj) + γ

∑
j p[aj ] · V ∗(s′)}, where

s ∈ Regr(s′, aj).

The Relational case
Adapting the algorithmic procedure to the relational case
simply involves representing sets of states using logical for-
malisms. For example, instead of representing the set of
birds that can’t fly as {penguins, ostriches, ...} of which
there could be too many, a more compact representation
would be to use a logical statement such as ”All birds
that cannot fly”. This can be written in first order logic as,
∀x ∈ B · bird(x)∧¬fly(x), where B is the set of all birds.



First Order dynamic programming algorithms
The first method that was published on exact solving of
Relational MDPs is the Symbolic Dynamic Programming
(SDP) approach (Boutilier, Reiter, and Price 2001). The
parts of algorithm 1 that need elaboration to deal with the
logical framework used in SDP, which is the Situation Cal-
culus (SC) framework (Levesque, Pirri, and Reiter 1998) is
how to perform Regr over logical descriptions of sets of
states. The full framework can be found in the original pa-
per. Here, a simple example is illustrated. The domain used
for illustration is called the box world or logisitics domain.
This domain consists of boxes and trucks in various cities
and the goal is to make sure there is at least one box in the
city of Paris.

The initial value function V0 is a list [∃b ·
BoxIn(b, Paris, s) : 10,¬∃b · BoxIn(b, Paris, s) : 0],
where s is a situation term that can be thought of as the
state. The logical formula assigned the value 10 is a set
of all states s where there is at least one box in Paris and
similarly, the set of states where there isn’t a box in Paris is
assigned the value 0.

Regression operator Let’s say the action Unload(b∗, t∗)
is performed, which means to unload box b∗ from
truck t∗. This action can result in probabilistic out-
comes UnloadS(b∗, t∗) denoting successful execu-
tion and UnloadF (b∗, t∗) denoting unsuccessful ex-
ecution with probabilities 0.9 and 0.1 respectively.
Regr(∃b · BoxIn(b, Paris, s), UnloadS(b∗, t∗)) =
BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, Paris, s) ∨ ∃b ·
BoxIn(b, Paris, s). This means that the regression
over states in which there is at least one box in Paris upon
unloading box b∗ from t∗ is all states where either box b∗ is
on the truck t∗ in Paris or there already is at least one box
in Paris.

Q-Value computation Thus, the Q-value of the set of
states BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, Paris, s) ∨ ∃b ·
BoxIn(b, Paris, s) and action outcome UnloadS(b∗, t∗)
is calculated using the procedure outlined in algorithm 1
as γ ∗ p[UnloadS(b∗, t∗)] ∗ V ∃b·BoxIn(b,Paris,s)

0 = 0.9 ∗
0.9 ∗ 10 = 8.1. Similarly, action outcome UnloadF (b∗, t∗)
regresses to set of states ∃b · BoxIn(b, Paris, s) whose
value is given by 0.9 ∗ 0.1 ∗ 10 = 0.9. Q-value for action
Unload(b∗, t∗) is computed using the AddQ operator
in algorithm 1 to obtain the list [BoxOn(b∗, t∗, s) ∧
TruckIn(t∗, Paris, s), unload(b∗, t∗) : 8.1,∃b ·
BoxIn(b, Paris, s), unload(b∗, t∗) : 9].

Value Iteration It should now be clear that the procedure
to obtain Qk+1(which is maximized over all actions) from
Vk for First Order descriptions is carried out using the same
algorithmic procedure outlined in algorithm 1. The only dif-
ference being that sets of states are now represented using
first-order logical formulas. Hence, value iteration and pol-
icy iteration can be performed in a similar manner as already
described before.

Other logical formalisms Holldobler et al., developed
value iteration using fluent calculus as their represen-

tation(Hölldobler and Skvortsova 2004). The most effi-
cient implementation of first-order dynamic programming
is REBEL by Kersting et al. It uses a simpler logical lan-
guage, the probabilistic strips language(Kersting, Otterlo,
and De Raedt 2004).

Tree structured definitions Tree structured definitions
such as the tree in Figure 1 (left). can be used to represent
value functions that can exploit context specific indepen-
dence (CSI). The nodes of the trees are propositions that map
to first order formula and the leaves are values (?). For exam-
ple, Consider the value structure V = [∃x·[A(x)∨∀y·A(x)∧
B(x)∧¬A(y) : 1,¬(∃x·[A(x)∨∀y·A(x)∧B(x)∧¬A(y)) :
0]. Pushing down quantifiers in the formula ∃x · [A(x)∨∀y ·
A(x)∧B(x)∧¬A(y) over relevant variables, the equivalent
formula [∃x ·A(x)]∨ ([∃x ·A(x)∧B(x)]∧ [∀y · ¬A(y)]) is
obtained. Mapping a to ∃x ·A(x) and b to ∃x ·A(x)∧B(x),
the value structure expressed using these proposition map-
pings is V = [a ∨ (b ∧ ¬a) : 1,¬(a ∨ (b ∧ ¬a)) : 0]. This
can be represented using a tree structure as shown in Figure
1 (left). In the tree, the left child represents the true branch
and right child represents the false branch. Figure 1 (right)
shows CSI, when the value of the proposition b in known.

a

1 b

1 0

a

1 0

Figure 1: Left represents the tree structured value function
and right illustrates CSI when the value of b is known.

Regression over tree structured definitions Regression
over tree structured definitions is carried out by a proce-
dure known as block replacement (Boutilier et al. 1995).
The value tree induces an ordering over the propositions
in the tree. Block replacement is carried out by appending
the transition probability tree structures(PTs) of propositions
appearing later in the ordering to the leaves of PTs for propo-
sitions appearing before in the ordering. Consider the PTs
for propositions a, b under action A and the initial value
function V0 shown in Figure 2. The Regr operator returns
the states that can reach a state given by a logical formula
defined over a and b under the action A. The way to read
the PT in Figure 2.(left) is, if a is true, then it remains true
with probability 1.0 upon execution of A. If a is false then
the probability of a being true upon execution of A is 0.0.
As already stated before, the value function imposes an or-
dering over the propositions which in this case is the order
a ≺ b. Respecting the proposition ordering imposed by V0,
the PT for proposition a is appended to the leaves of the
PT for proposition b to obtain the tree in Figure 3 (the full
tree i.e. the sub-tree rooted at d is not shown for brevity).



To compute the Q-Value over the regressed state b ∧ a rep-
resented by the left most branch of the tree in Figure 3,
upon execution of action A the state b ∧ a stays unchanged
(persists with probability 1.0) and therefore the Q-value is
γ ∗ 1.0 ∗ V b∧a0 = 0.9 ∗ 1.0 ∗ 0.9 = 0.81 and the value is
obtained by adding immediate reward V b∧a0 which results in
0.81 + 0.9 = 1.71. The same kind of computation is carried
out for other states. Maximization over actions is performed
by selecting the max value assigned per action to each re-
gressed state under that action. Wang et al., employ block
replacement, which operationally is regression over another
kind of tree structured definition known as First order deci-
sion diagrams(Wang, Joshi, and Khardon 2008). Exposing
propositional structure is useful because efficient proposi-
tional solvers on decision diagrams like SPUDD(Hoey et al.
1999) can be leveraged for computation.

a

1.0 0.0

b

1.0 c

d

0.8 0.0

0.0

b

a

0.9 1.0

a

0.0 0.1

Figure 2: Left represents the PT for action A for proposition
a, middle represents the PT for proposition b and right rep-
resents the tree structured value function over propositions
a and b.

b

a

1.71 1.9

c

d a

0.0 .19

Figure 3: The states obtained after regression of the states
in V0 under action A i.e. Regr(s,A), where each s is a
branch of the tree V0. The Q-values computed are shown
at the leaves (The entire tree is not shown for brevity)

Approximate methods
Approximate methods mainly rely on approximate repre-
sentations of the value functions when performing dynamic
programming. Sanner et al., use a set of basis functions
that partition the state space, expanded using the regression
step to represent the value function(Sanner and Boutilier
2012). Gretton et al., don’t fully perform the regression step
(that is they don’t perform maximization) and instead induce
policy from the partially regressed state partitions(Gretton

and Thiébaux 2004). Wu et al., follow a distinctly differ-
ent approach by performing dynamic programming over a
set of basis functions learned by fitting the bellman error of
the current approximation(Wu 2007). Value functions repre-
sented using tree structures can maintain ranges of values
at the leaves and provide approximation bounds in doing
so(Boutilier et al. 1995).

Model free methods
Model free methods are not provided the transition and the
reward model. These methods work on simulations and learn
Q-values from simulation data. In the relational setting, Q-
values are first-order data structures. States during simu-
lation contain objects and relationships that hold between
these objects and their attributes. Also, the actions are more
complex and are over objects in the current state.

Parameter estimation - Estimating the parameters
of first-order structures provided upfront
In these methods, the first-order states and actions are pro-
vided and their values are updated based on simulation data.

first-order states and actions Consider unload(b∗, t∗)
in the logistics domain, which means unload box b∗
from truck t∗. The key observation in this action descrip-
tion is that it contains no variables and is over specific
objects b∗ and t∗. A first-order action is of the form
A = action(var1, var2, ..., varn) which can have multiple
substitutions θA subject to state admissibility and integrity
constraints. For example, unload(B, T ) is a first-order
action to unload a box from a truck. Again, this is subject
to state admissibility and integrity constraints. For instance,
You cannot unload a box from a truck in a state where no
truck has any boxes on it (state admissibility) and B has
to be of type box and T has to be of type truck (integrity
constraints). Now, consider a state (herbrand interpre-
tation) s = [On(b1, t1), On(b2, t1), T in(t1, Paris)].
A first-order state is a list of predicates S =
[pred1(var1, ..., varn), ..., predN(var1, ..., varn)], that
represents the set of all substitutions θS that satisfy the
state description. For example, the first-order state for s is
[On(B, T ), T in(T, Paris)].

States and action structures S is a set of all first-order
states and A is a set of all first-order actions. Let a list
L containing first-order states and actions admissible over
those states be defined as L = [S1 : {A11, A12, ..}, S2 :
{A21, A22, ...}, ..., Sn, {An1, An2, ...}], where each Si ∈ S
and each Aij ∈ A is a first-order action admissible in state
Si denoted by admissible(Si). Also, for any two states Si
and Sj , Si ∩ Sj = ∅. For example, in the logistics domain
the first-order state action pair On(B, T ), T in(T, Paris) :
unload(B, T ) is a member of L for the logisitcs domain.

Transition model and Reward function For two first-
order states Si ∈ S and Sj ∈ S, let ΘSi be a list of all
substitutions (also known as ground states) θSi

k for state
Si denoted as ΘSi = [θSi

1 , θSi
2 , ..]. Let ΘSi,A for a first-

order action A, be a list of all substitutions θSi,A
k of the



first-order action A admissible in some state substitution
θSi

l ∈ ΘSi . T (θSi

k , θ
Sj

l , θ
Si,A
p ) is a ground transition and

represents the transition probability of executing a substi-
tute action θSi,A∈ΘSi,A

p in ground state θSi

k ∈ ΘSi and
transitioning to ground state θ

Sj

l ∈ ΘSj , then the prob-
ability of transition from first-order state Si to first-order
states Sj upon execution of first-order action A is an ag-
gregate over all possible ground transitions. More formally
it is β(θSi

p ) ∗
∑
θ
Si,A
p

∑
θ
Sj
l

T (θSi

k , θ
Sj

l , θ
Si,A
p ), where beta

is a weight to ensure the aggregation probabilities are well-
defined (sum to a total of 1). Similarly, the reward model
is β(θSi

p ) ∗
∑
θ
Si,A
p

∑
θ
Sj
l

R(θSi

k , θ
Sj

l , θ
Si,A
p ), where R is the

immediate reward function over ground states and actions.
These models are used to simulate the domain.

Q-Value The Q-value for the list L is a function that
gives a value over a first-order state,action pair S,A ∈
admissible(S) given by QL(S,A). This can be calculated
using the standard procedure of Q-learning (Watkins and
Dayan 1992), over generating samples and updating the cor-
responding first-order state action pair using the Q-learning
update. Of course, other methods such as TD(λ) (Tesauro
1995) can also be used for learning. The key observation
is that these methods chose the best first-order action for
each first-order state. Therefore, the true optimal policy for
any ground instantiating of the first-order states and actions
may not be the one suggested by the first-order action. Intu-
itively, this makes sense as aggregate transition probabilities
and rewards are used for learning updates, leading to a fo-
cus on getting average case best performance over the family
of ground Relational MDPs. Otterlo et al., use a logical ab-
straction to represent first-order states and actions known as
CARCASS (Van Otterlo 2004). It requires fixed first-order
states and actions provided upfront and performs learning
over these structures. They demonstrate learning using Q-
learning and the Prioritized Sweeping algorithm (Moore and
Atkeson 1993) adapted to use logical representations. Sim-
ilar approaches include the Logical Markov Decision Pro-
grams (LOMDP) by Kersting et al.,(Kersting and De Raedt
2003) the difference being the language employed for the
specification for the first-order structures. In the CARCASS
approach, a full PROLOG style language is used where
as in LOMDPs, probabilistic strips is used. Learning was
performed for LOMDPs, using logical adaptations of Q-
Learning and the TD(λ) algorithm. The expressive power of
the language used trades of complexity of implementation
and speed versus accuracy and range of queries that can be
provided to the system (Probabilistic strips being a simpler
less expressive representation). A third approach that is sim-
ilar is the relational Q-learning(RQ) approach by Morales et
al(Morales 2003). The difference in this approach is that the
actions applicable is specified globally instead of for every
first-order state. They use first-order relations to describe a
partition over the state space into first-order states known
as r-states. Every r-action is a first-order action that can be
executed in an r-state if a specified precondition is met.

Learning structure
Q-RRL(Džeroski, De Raedt, and Driessens 2001) proposed
by Dzeroski et al., employ a combination of Q-learning and
TILDE tree(Blockeel and De Raedt 1998) learning using In-
ductive Logic Program to learn the Q-value as a first-order
logical decision tree known as a Q-tree. At every step (af-
ter every episode), samples are generated using the current
Q-tree values and a logical decision tree is induced from the
samples. An example of a Q-tree can be seen in Figure 4.
Walker et al., learn first-order state and actions from sam-

Bin(b,Paris)

19.0 On(b,t)

Tin(t,Paris) ...

Figure 4: An example of a Q-tree for the logistics domain,
left representing the true branch and right the false branch.

ples by backward induction(Walker et al. 2007). They start
from the goal in the episode, the idea being to start from
high reward states and generalize using Inductive Logic Pro-
gramming over states with k-steps to go, known as preim-
ages. The appeal in this approach suffers from a heuristic
based calculation of Q-values of the preimages and the lack
of evaluation for relational domains such as blocks world,
wumpus world or the logistics domain. Learning structure
can also be done by treating the value function as being
probabilistically dependent on relational features. Of course,
fitting regression functions is also on the basis of prob-
ability theory - however, probabilistic approaches use di-
rect reasoning over the probabilities of dependent variables
to compute agent behavior. Sanner et al., perform struc-
ture and parameter learning over an imposed naive bayes
net structure and employ two methods of feature discov-
ery - feature attribute augmentation(FAA) and feature con-
junction(FC)(Sanner 2005). Attribute augmentation is car-
ried out where the feature contains a relation of high arity,
in which case the information provided by ground structures
using this feature is very little (because of too many potential
ground attribute instantiations). Feature conjunction is per-
formed to check for whether or not combining to features
could provide additional information about the high value
states. Traditional bayes net parameter estimation and struc-
ture learning algorithms can be leveraged making this ap-
proach attractive. In relational domains however, an exhaus-
tive search often doesn’t lead to exploration of frequently
visited parts of the state space (or takes prohibitively long).
To address this problem, Sanner incorporates frequent item
set mining to discover sets of features in frequently visited
parts of the state space(Sanner 2006). Croonenborghs et al.,
propose a reinforcement learning agent that learns features



to predict the probability of rewards and the truth value of
features in the next transition(Croonenborghs, Ramon, and
Bruynooghe 2004). It can be thought of as estimating struc-
ture and parameters of a two slice dynamic bayes net.

Value function approximation using first-order
features
When smooth estimates of the value function are required,
the success of propositional function approximation can be
extended to the relational domain by using relational fea-
tures. One way to do this is to provide a set of first-order
features (possibly hand-crafted) and learn the value of a state
as a function of the design features using some combination
of utilities assigned per feature (A linear combination for
instance). Walker et al., induces a set of first-order features
by sampling from a large space of features and using these
as basis functions to a regression algorithm to estimate the
Q-values(Walker, Shavlik, and Maclin 2004). Asgharbeygi
et al., propose the Relational Temporal Difference learning
algorithm that encodes the value of first-order states as a lin-
ear combination of utilities attached to each first-order fea-
ture weighted by the number of states that it applies to. Each
feature is a concept predicate (for example HasO to rep-
resent if there is an ’O’ in a square in Tic-tac-toe) that is
supplied by a designer(Asgharbeygi, Stracuzzi, and Langley
2006). For instance, the value could be a linear combination
of the number of O’s and X’s. Dynamic induction of first-
order features could be carried out using a process similar
to Q-RRL. Driessens et al., performs incremental learning
of TILDE trees instead of inducing the entire tree from ex-
amples created after every sample(Ramon, Driessens, and
Croonenborghs 2007). A bottleneck however, is the compu-
tation costs of incremental induction. A possible solution to
this was proposed by Goetschalckx et al., where during the
induction of predicates, a cost is assigned to the predicate as
a function of the probability of the states that it generalizes
over and their utilities(Goetschalckx and Driessens 2007).

Searching in policy space and policy gradient
methods
These methods directly learn policies by starting with a pol-
icy, generating samples suggested by the policy and gen-
erating new policies subsequently until convergence. Poli-
cies are more amenable to generalization and transfer - an
important part of relational learning. Muller et al., propose
a policy search algorithm based on genetic algorithms that
start with a population of policies and learn the right poli-
cies by evaluation against a fitness function through subse-
quent generations(Muller and Van Otterlo 2005). Mellor et
al., perform genetic modifications over individual rules in-
stead over the entire policy structure(Mellor 2006). Policy
learning can also be performed by a sequence of functions
that perform supervised learning based on Inductive Logic
Programming from sampled states and actions. Fern et al.,
propose an approach that performs approximate policy itera-
tion by inducing a policy structure from samples, generating
new samples from the policy structure learned and induce
an improved policy until convergence(Fern, Yoon, and Gi-
van 2006). The key feature of this approach is to solve the

issue of sampling to learn effectively in relational domains.
They use policy rollout over a fixed horizon length instead
of just a one step rollout. They avoid sampling instances of
low value by performing random walks over the Relational
MDP structure (which is a markov chain that can be un-
rolled into a graphical model)(Fern, Yoon, and Givan 2004).
Policy gradient techniques optimize parametrized policies,
which in the relational case pertains to parametrized log-
ical structures. The perform gradient descent with respect
to the policy parameters. The advantage of this approach
is to chose a policy representation that is meaningful and
can incorporate domain knowledge, thus reducing the prob-
lem to parameter estimation. Kersting et al., propose an ap-
proach that learns both the structure and parameters of the
policy using gradient descent in functional space using Re-
lational Functional Gradient Boosting, as often times fixing
the logical structure beforehand may not be easy (Kersting
and Driessens 2008). Domain knowledge can be incorpo-
rated into this learning paradigm as well as has been demon-
strated recently by Natarajan et al.(Natarajan et al. 2012;
Odom et al. 2015; Roy et al. 2021b; 2022; 2021a; Das et
al. 2020).
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