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Abstract

Virtual health agents (VHAs) have received consid-

erable attention, but the early focus has been on

collecting data, helping patients follow generic health

guidelines, and providing reminders for clinical ap-

pointments. While presenting the collected data and

frequency of visits to the clinician is useful, further

context and personalization are needed for a VHA

to interpret and understand what the data means

in clinical terms. This has made their use in man-

aging health limited. Such understanding enables

patient empowerment and self-appraisal – i.e., aiding

the patient in interpreting the data to understand the

changes in the patient’s health conditions, and self-

management – i.e., to help a patient better manage

their health through better adherence to the clini-

cian guidelines and clinician recommended care plan.

Crisis conditions such as the current pandemic have

further stressed our healthcare system and have made

the need for such advanced support more attractive

and in demand. Consider the rapid growth in mental

health because the patients who already had mental

health conditions worsen, and many develop such con-

ditions due to the challenges arising from lockdown,

isolation, and economic hardships. The severe lack

of timely availability of clinical expertise to meet the

rapidly growing demand provides the motivation for

advancing this research in developing more advanced

VHAs and evaluating it in the context of mental health

management.

1 Intellectual Contributions of

this tutorial

This tutorial seeks to showcase AI strategies that pro-

vide medical context to patient data with the help

of a knowledge graph. This supports personalization

through a personalized knowledge graph that captures

the patient’s personalized health management objec-

tives within the context of the clinical guidelines and

care plan. The continuous capture of this information

through the analysis of patient-VHA interactions, and

the strategy of creating engaging interactions (conver-

sations) can further augment the personalized knowl-

edge graph. These operations are required to support

self-appraisal and self-management, and when neces-

sary perform fail-safe tasks such as connecting the

patient to a crisis help-line or professional help. The

core innovation is the use of a novel knowledge-infused

reinforcement learning method. The by-product of

this approach leads to transparency in decision-making

with the ability to offer a user understandable expla-

nation.

2 Tutorial Focus

We combine the qualities of Knowledge infused Learn-

ing [1], Reinforcement Learning [2, 3], and advanced

use of Knowledge Graphs [4, 5, 6, 7] (e.g., through the

incorporation of the process knowledge) to develop a

VHA which will have transparency in decision making

due to the use of knowledge and generate explanations

in terms that the user can understand. The trans-
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Figure 1: Modular Architecture of Constructing KG (credit: Joey Yip, a Ph.D. student at AIISC)

parency of the system will also allow component-wise

understanding of the model which the model devel-

opers can benefit from as well [8]. Finally, explicitly

using the users’ feedback to reiterate and revise the

user-level personalized knowledge graph, the model

and quality of explanations can deliver a VHA that

clinicians and patients can use in practice to help their

healthcare needs. Following two tutorial’s focus mod-

ules define a cohesive component-level architecture of

VHA:

2.1 Personalized Knowledge Graph

(PKG) construction

Figure 1 is a component-level modular architecture for

constructing knowledge graphs. During the tutorial,

we will provide details on constructing a knowledge

graph (KG), which we acquired from our extensive

body of research at the intersection of KG, natural

language processing/understanding, and artificial in-

telligence. This tutorial will adapt the flow of infor-

mation illustrated in the following architecture for

constructing PKG.

2.2 Knowledge-infused Reinforcement

Learning using PKG:

Knowledge-infused Reinforcement Learning is used to

predict the next high-level action, such as determin-

ing the appropriate question for interacting with a

specific patient (e.g., getting a mental health status

check, measuring the safety of information in PKG

and interactions, asking clinical validation questions,

etc) while incorporating patient feedback and domain

(clinical) knowledge (Figure 2).

3 Tutorial Organization

3.1 Knowledge-infused Learning (KiL)

KiL a form of neuro-symbolic AI is a novel paradigm

that seeks to incorporate a variety of explicit (sym-

bolic) knowledge into a data-driven statistical AI

framework that supports advancement in machine

2.2 Knowledge-infused Reinforcement Learning using PKG: Page 2



Figure 2: Illustration of Knowledge-infused Reinforcement Learning using knowledge graph and process knowledge
in clinical guidelines to support patients in their goal management.

intelligence. Utilizing knowledge and data in deep

learning models to enable learning from lower-level

syntactic and lexical features from data through sta-

tistical (deep) learning as well as higher-level concepts

from knowledge. Using knowledge also allows greater

transparency in the decision-making, and enables ex-

planations that users need for informed decision mak-

ing.

3.1.1 Anatomy of KiL

Shallow Infusion: The knowledge is converted to

an embedding vector and is concatenated to the data

vector before being passed into the traditional deep

learning pipeline. This method is fast and scalable

and while it shows improvements over only using the

data, the compression of knowledge in a vector-based

embedding loses a lot of the semantic and relational

level information.

Semi-Deep Infusion: This technique guides the

parameter learning process of the deep learning model

using the knowledge. Such a process ensures the pa-

rameters that govern data patterns are somewhat in

alignment with the knowledge being infused. How-

ever, parametric models are layers and layers deep,

representing different levels of abstraction, Therefore

what kind of knowledge to guide the parameters of

which specific layers remains an open question.

Deep Infusion: This technique guides the parame-

ters of each layer of the deep learning model utilizing

stratified layers of abstraction in the knowledge graph,

thus providing the optimal level of knowledge infusion.

3.2 KiL for End User-level Explainabil-

ity

Several methods to explain the outcomes of deep learn-

ing models have been proposed through the years,

broadly classified as explainable AI (XAI). Similar to

how a debugger understands the exceptions thrown by

the program errors, XAI explanations can be thought

of as a stack trace that the developer of the sys-

tem can understand by not the end-user and applica-

tion/domain expert. XAI explanations make sense to

deep learning model debuggers and computer scien-

tists that develop the models. However, to end-users

like the clinicians, explanations that are meaningful

at the application or domain levels (e.g., compliance

with clinical guidelines) are required. As an example,

visualization attention models to predict suicidality

tells the computer scientist that the model and its

components are functioning seemingly well. To the

clinician, it still doesn’t explain it through a line of

reasoning that they can comprehend. For instance,

considering the decision making based on Columbia

Suicide Severity Rating Scale (C-SSRS), it is impor-

tant for a model to explain its outcome based on the

3.2 KiL for End User-level Explainability Page 3



flow of questions in C-SSRS. This would help clini-

cians assimilate model outcomes and help them make

a conscious decision.

3.3 Knowledge-infused Reinforcement

learning (KiRL)

Reinforcement Learning trains the VHA to understand

the patient through trial and error based correction

using directly the patient feedback. This adds a signif-

icant level of personalization based on the continuous

user-feedback-based correction that is not present in

supervised learning methods.

3.3.1 Why Reinforcement learning is an alter-

native way for Human-AI collaboration

Reinforcement Learning trains the VHA to under-

stand the patient through trial and error based correc-

tion using directly the patient feedback. This adds a

significant level of personalization based on the user-

feedback-based correction that is not present in super-

vised learning methods.

3.3.2 KiRL

We combine the qualities of the aforementioned Knowl-

edge infused Learning, Reinforcement Learning, to

develop a VHA which will have transparency in deci-

sion making due to the use of knowledge and generate

explanations in terms that the user can understand

i.e. User level explanations as an upgrade from the

traditional XAI based explanations. The transparency

of the system will also allow component-wise under-

standing of the model which the model developers

can benefit from as well. Finally, explicitly using the

user’s feedback to reiterate and revise the user-level

personalized knowledge graph, the model and quality

of explanations can deliver a VHA that clinicians and

patients can use in practice to help their healthcare

needs.

4 Length of the Tutorial

We plan a 1-hour lecture-style tutorial with 1 break

(5-10 mins for Questions and Answers). Following

it, we plan to have 30 minutes of hands-on practice.

(Total: 1 hour 30 minutes)

5 Presenter’s biographies and

Related Papers

Kaushik Roy is a Ph.D. student at the Artificial Intel-

ligence Institute South Carolina (AIISC), Qi Zhang

is an assistant professor at the AIISC, Manas Gaur

is an assistant professor at the University of Mary-

land Baltimore County, and Amit Sheth is the di-

rector at AIISC. The authors have published several

related papers at premier conferences such as AAAI

[9, 10, 11, 12, 13, 14], IEEE [15, 16, 17], ACL [18, 19],

KGC [20], NeurIPS [4], and ICLR [21]. The author’s

have also given several related talks and tutorials

[22, 23, 24, 25, 26].

6 Expected background and

prerequisite of audience

The tutorial would be a mix of lecture-style and hands-

on in the python programming language. The audi-

ence is expected to have a basic understanding of

deep/machine learning, natural language processing,

and semantic technologies (e.g., linked open data).

We aim to guide attendees through a high-level tour

of the most recent approaches proposed by researchers.

Also, we expect basic familiarity with social media

platforms such as Twitter and Reddit. We expect

participants to bring their laptops with all the re-

quired tools installed. Details on tools needed and

the background material will be provided upon ac-

ceptance of the tutorial proposal. We expect that by

the end of the tutorial, the attendees will understand

the use of knowledge graphs to enhance the perfor-

mance (quality of results), utility, interpretability, and

explainability of deep learning and be prepared to
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apply knowledge-infused deep learning to real-world

applications.
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