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Abstract: Modeling is essential to better understand the generative mechanisms responsible for
experimental observations gathered from complex systems. In this work, we are using such an
approach to analyze the electrocardiogram (ECG). We present a systematic framework to decompose
ECG signals into sums of overlapping lognormal components. We use reinforcement learning to
train a deep neural network to estimate the modeling parameters from an ECG recorded in babies
from 1 to 24 months of age. We demonstrate this model-driven approach by showing how the
extracted parameters vary with age. From the 751,510 PQRST complexes modeled, 82.7% provided
a signal-to-noise ratio that was sufficient for further analysis (>5 dB). After correction for multiple
tests, 10 of the 24 modeling parameters exhibited statistical significance below the 0.01 threshold,
with absolute Kendall rank correlation coefficients in the [0.27, 0.51] range. These results confirm
that this model-driven approach can capture sensitive ECG parameters. Due to its physiological
interpretability, this approach can provide a window into latent variables which are important for
understanding the heart-beating process and its control by the autonomous nervous system.

Keywords: ECG; modeling; reinforcement learning; lognormal; autonomic nervous system;
model-driven analysis

1. Introduction

Heart disease is the leading cause of mortality in the United States and was responsible
for 597,689 deaths in 2010, according to the US Centers for Disease Control and Preven-
tion [1]. This number further increased to 693,021 in 2021 [2]. For that reason, tracking how
the heart performs is crucial. The electrocardiogram (ECG) is a simple and non-invasive
way to record the electrical activity of the heart due to the depolarization and repolariza-
tion of its membrane of muscle fibers during the cardiac cycle [3]. It captures the cardiac
electrical activity through electrodes placed in direct contact with the skin. The ECG is one
of the primary tools to check for irregular heart rhythms (arrhythmia) and help diagnose
heart diseases, poor blood flow, and other health issues. Furthermore, ECG activity and
its interaction with the respiratory rhythm, a phenomenon known as respiratory sinus
arrhythmia, provide a window into the autonomic nervous system (ANS) with potential
applications for multiple conditions associated with dysregulated ANS control. In neonatal
care, due to the relationship between the immune system and the control of the heart
rhythm by the ANS, the ECG is also used to monitor the health of newborns and predict
the occurrence of sepsis [4,5].

Over the years, many researchers have developed models to better understand cardiac
physiology and its assessment through the ECG, including approaches based on reaction–
diffusion, oscillators, and transforms [6–8]. The models have specific advantages and
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disadvantages, so it is important to understand their properties before deploying them in
specific applications.

Methods based on reaction–diffusion and oscillators are similar. Although they adopt
different perspectives, both involve dynamical models expressed as systems of ordinary
differential equations (ODEs). The main drawback of these dynamical models is that
their parameters must be limited within a specific range of values to produce realistic
ECG signals [6]. These models can exhibit chaotic behavior when their parameters are
outside of these ranges. Furthermore, ranges that generate ECG signals with a particular
rhythm can be incredibly narrow. The subspace of acceptable parameters can describe a
complex manifold in a high-dimensional space (depending on the number of modeling
parameters), so simple box constraints are generally insufficient for such applications.
Our initial attempts at dynamically estimating parameters for such ODEs to track the
modifications of ECG recordings (i.e., inverse modeling) without causing these models to
enter a chaotic regime have revealed this problem to be thorny (unpublished results). Thus,
although such models can be insightful for forward modeling (i.e., simulating realistic ECG
signals), they are difficult to deploy for inverse modeling and inference (i.e., estimating
modeling parameter values based on a recorded ECG).

Transform-based modeling has also been proposed to study ECG signals. In this
approach, each ECG cycle is decomposed into P, Q, R, S, and T waves, each modeled using
elementary functions and represented by their corresponding Fourier series [8,9]. Such an
approach may perform well on a stable ECG (i.e., signals displaying no variation from one
cycle to the next). However, because it relies on the Fourier series and its decomposition
into infinite sinusoidal waves, it is limited for studying temporal (as opposed to spectral)
variations in the ECG signal from beat to beat.

Similarly, the individual waves of the PQRST complex can be decomposed and mod-
eled directly in their native space (i.e., as time series). For example, such an approach has
been implemented using pairs of normal components [10]. However, a significant body of
literature demonstrated the practical and theoretical advantages of using lognormal rather
than normal equations for decomposing biosignals. This approach has been pioneered in
the context of human movement analysis [11]. In this paper, we build on that literature to
develop a novel model of ECG using lognormal decomposition and reinforcement learn-
ing. This work paves the way for the analysis of ECGs based on generative, mechanistic
models. We aim to use this framework to gain further insights into latent variables in-
volved in normal and abnormal ECG rhythms and better understand how the ANS controls
cardiac activity.

In the following sections, we introduce our modeling approach by reviewing (1) the
biological process generating ECG signals and (2) the decomposition of biosignals into
the sums of lognormals. We then provide further details on our methods, including a
description of the participant samples, the ECG preprocessing steps, the PQRST lognor-
mal prototype used to constrain inverse modeling, and the deep reinforcement learning
framework used to find optimal lognormal parameters. We then present results for an
example use-case, showing how we can use this lognormal decomposition of ECG signal to
study the developmental effect of ECG in infants from 1 to 24 months of age. We conclude
this paper by discussing the current limitations and future opportunities offered by this
novel approach.

2. The Generation of ECG
2.1. The Cardiac Rhythm and Its Modulation

Understanding the process leading to the generation of biosignals is essential for
conducting powerful and meaningful analyses. ECG signals collected by surface leads
positioned on the chest are due to the volume conduction of bioelectrical currents in the
body. Thus, first, we need to understand how heartbeats lead to current dipoles to properly
analyze ECG signals.
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The sinoatrial node (SA)—a small region of the upper right atrium made of cells
naturally exhibiting cyclic activity—drives the generation of the heart rhythm. The rhyth-
mogenicity of these cells is due to the constant depolarizing effect of leaky sodium channels.
However, the time required for these cells to depolarize enough to reach their firing thresh-
old can be increased or decreased by the opening or closing of calcium channels. By
regulating the state of these calcium channels through neuromodulation, the autonomic
nervous system can control the interval between two beats. This inter-beat interval is also
known as the RR interval since it is generally defined as the duration between the peaks of
two subsequent R waves (see Figure 1 for the explanation of what R waves are). The balance
between the sympathetic and the parasympathetic systems controls the opening/closing of
these channels through a molecular cascade involving second messengers. The sympathetic
system acts through norepinephrine (neural origin) or epinephrine (distributed through
blood circulation). This neuromodulator triggers the phosphorylation of calcium channels,
thereby increasing the calcium inflow and causing the earlier depolarization of SA cells
(faster cardiac rhythm). The parasympathetic system acts in the opposite way through
acetylcholine, which inhibits this process, reducing calcium inflow and prolonging the
inter-beat interval. Thus, the central control of the heart and its modulation by various
physiological processes (e.g., respiratory sinus arrhythmia) can be captured by modeling
the modulation of the calcium current in SA cells.

Figure 1. Generation of the ECG PQRST complex. The left–right image shows the positioning of ECG
electrodes. Seven smaller representations of the heart illustrate the direction and polarity of electrical
dipoles generated at each heartbeat phase. The bottom of the figure displays the resulting PQRST
waveform. Red (blue) arrows indicate the direction of depolarization (repolarization) waves.

2.2. PQRST Waves

The ECG signal is composed of the repetition of a stereotypical waveform, referred
to as the PQRST complex (see Figure 1 for a visual representation). Each heartbeat is
responsible for the generation of one such complex. As previously mentioned, cells in
the SA node, located on the top-right portion of the right atrium, initiate this process by
firing an action potential. This action potential propagates outwardly from one cell to its
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neighboring atrial myocardial cells through gap junctions, generating a depolarization
wave. We can model the far field caused by this wave as coming from an equivalent electric
dipole that points toward the lower left side of the heart. This process is responsible for
the positive P-wave on a traditional ECG with electrodes placed as shown in Figure 1.
This propagation mediated by gap-junction is of moderate speed, causing a relatively
low-amplitude, wide-spread positive deflection. A resistive fibrous membrane separates
the myocardial cells from the atrial and the ventricular part of the heart, stopping the
depolarization wave in the atria from propagating to the ventricles. The atrioventricular
(AV) node provides the only window for this depolarization to travel toward the ventricles.
The cells of the AV node are specialized for slow conduction, allowing for the delay between
atrial and ventricular contraction required to support efficient pumping. Due to the fact
that the propagation through the AV node involves a relatively small number of cells, their
contribution to electrical currents at distant locations (i.e., at the site of the electrodes) is
insufficient to generate an equivalent dipole visible on the ECG. Thus, this phase of the
cardiac rhythms results in the flat line characteristic of the PQ segment (also sometimes
referred to as the PR segment since the Q component is not always visible on the ECG).

As the depolarization slowly crosses the AV node, it reaches the fast-conducting His–
Purkinje network and triggers the depolarization of the lower-left section of the ventricular
septum. The resulting wave travels toward the upper part of the septum, causing an
equivalent depolarization dipole pointing toward the negative ECG lead and reflected as
the fast and low-amplitude negative Q wave. This component is immediately followed
by the main depolarization of the ventricles, causing a short-lived and large-amplitude
equivalent dipole pointing toward the positive lead and visible on the ECG as the R
wave. This wave then propagates to the basal region of the ventricle, generating an
upward-pointing dipole identifiable as the negative S wave. Then, the repolarizing effect
of potassium currents in myocardial cells becomes counteracted by the opening of calcium
channels, maintaining the depolarization in these cells for a prolonged duration. This
depolarization plateau is visible on the ECG as the electrical silence during the ST segment.
At the end of this segment, the calcium channels close, and the outward potassium currents
repolarize the myocardial cells. This repolarization starts with the cells on the outer layer
of the ventricular tissues. It propagates inward and generates a negative equivalent dipole
pointing toward the negative lead. This last dipole is responsible for the T component of
the ECG. This sequence of events is depicted in Figure 1.

Furthermore, we should note that atrial repolarization happens as the ventricle de-
polarizes. Since the ventricles contain many more cells than the atrium, it is responsible
for a much larger equivalent dipole. This simultaneous activity obfuscates the effect of the
atrium repolarization on the ECG.

The description of this process shows that ECG events offer a direct window into latent
neural and ionic properties, as illustrated by the direct relationship between the width of
the ST segments and the dynamics of the calcium channels generating the depolarization
plateau in myocardial cells. We can exploit this relation when inferring from an ECG the
properties of the cardiac process and its autonomic control.

3. Materials and Methods
3.1. Lognormal Modeling

For this work, we used an approach similar to [10] but adopting a sum of time-
shifted and scaled lognormal density functions rather than scaled normal density functions.
Conceptually, the lognormal density function is the same as the normal density function,
with the time dimension being logarithmically transformed and, in our case, shifted by a
time offset t0. The lognormal density function is defined as in (1), where the index j can
take the values {P, Q, R, S, T+, T−} to refer to any of the components of the PQRST and the
two lognormal components used for the T wave (i.e., T+, T−). For convenience, we also
defined Θj in (2) as the vector of parameters corresponding to the lognormal component Λj.
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Λj(t; Θj) =

Djexp
(

[ln(t−t0j)−µj ]
2

−2σ2
j

)
σj(t− t0j)

√
2π

(1)

Θj = {µj, σj, Dj, t0j} (2)

3.2. ECG Sample

We collected 150 ECG recordings from 40 infants between 1 week and 24 months of
age. A small device containing an ECG sensor (Actiwave Cardio; CamNTech) with two
electrodes was placed on the infants’ chest. Raw ECG signals were recorded in a laboratory
setting while the infants participated in different naturalistic experimental paradigms
involving self-initiated interaction with objects or their parents.

Most recordings were sampled at 1024 Hz (N = 107). ECG signals recorded at a
different rate (512 Hz: N = 13; 128 Hz: N = 30) were upsampled to 1024 Hz to ensure
consistency. We segmented the data according to markers labeling the beginning and the
end of a given experimental condition. Although we did not study the effect of experimental
conditions for this paper, segmenting signals according to these markers ensured that we
only kept valid ECG sections. For example, we automatically discarded initial data points
recorded before the start of the experiment and before the sensor was placed on the infant’s
chest. Most of the 555 segments obtained are of 5–25 min duration, but their distribution
has a long tail, with the longest segment being 150 min long (percentiles (min): 0: 0.25; 10:
4.74; 25: 8.35; 50: 10.03: 75: 16.23; 90: 25.12; 100: 150.25).

3.3. Preprocessing

Heartbeats were automatically detected using HeartPy [12]. We rejected five segments
because HeartPy could not process the signal (i.e., it made an exception) or because it
detected less than 20 beats. For the remaining segments, we made beats comparable by
epoching and normalizing the beat duration as follows. Considering t1, t2, and t3, three
subsequent R peaks, the epoched and normalized version of the peak corresponding to
t2 is obtained by (1) linearly interpolating the ECG between t1 and t2 over 250 regularly
spaced samples, (2) doing the same for the segment from t2 to t3, and (3) concatenating
these two segments. After this process, each beat is defined as one epoch containing a
normalized ECG time series with 500 points starting at the previous R-peak and ending
at the next R-peak, with its own R-peak centered in that window. For plotting, we map
these epochs to the [−1, 1] interval and refer to the variable along that dimension as the
normalized time. For each segment, we computed a mean beat (x) by averaging across these
epochs. We characterized the stability of the PQRST profile within a segment by computing
the following signal-to-noise ratio (SNR):

SNR = 10 ∗ log10

(
∑500

i=1 xi
2

∑500
i=1(xi − xi)2

)
(3)

This definition is classic and widely used in the literature. It expresses in dB the ratio
of the square amplitude of a signal over the square amplitude of noise (or error). The SNR
characterizes how well the model fits the data. It is worth noting that an SNR of 0 means a
noise amplitude as large as the signal, whereas an SNR of 20 means a noise amplitude 102

smaller than the signal. These SNR values are computed for every beat and characterize
how much these beats are similar to the average beat. By averaging these values across a
segment, we obtain a value SNR that characterizes the quality of the signal (i.e., a noisy
PQRST will be less similar, resulting in lower SNR values). Since the goal of this study is not
to develop preprocessing techniques to clean noisy ECG signals, we rejected all segments
with an SNR < 5 dB (N = 116). Figure 2 illustrates how the signal quality varies with SNR.
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Eliminating noisy PQRST complexes allows us to concentrate on the specific contribution of
this work, i.e., the model-driven analysis of the ECG. This exclusion criterion left 434 valid
segments for analysis.

Figure 2. Signal quality as a function of the SNR, as defined in (3). The left panels show 10 s of the
original signals, whereas the right panels show all the normalized beats (in light grey) and the mean
beat (red). From top to bottom, we display examples of recordings with an SNR closest to −15, −10,
−5, 0, 5, 10, and 15 dB.

3.4. The PQRST Lognormal Prototype

The inverse modeling (i.e., curve fitting) constitutes a significant difficulty when
modeling time series with sums of lognormal functions. Various algorithms have been
developed to extract parameters for such models [13–16]. These extractors perform rea-
sonably well, but the difficulty of this regression problem leaves room for improvement.
For our application, we want to benefit from the ability to map lognormal components
between time series provided by the prototype-based extraction [14]. We can adopt this
approach when modeling time series with a stereotypical shape, as is the case for the
PQRST complex. With that method, we embed our prior knowledge of the problem and our
hypotheses about the generation of the observed signals by defining a starting solution (i.e.,
a prototype) made by a series of lognormal components. Then, we obtain the final solutions
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by adjusting this prototype to every sample, fitting the lognormal parameters to account
for individual differences.

However, one issue with the least-square regression of prototypes is that such optimal
solutions, if not properly constrained, can drift away from the conceptual modeling of
the generative process captured by the prototype. For example, in this case, a lognormal
component initially set in the prototype to model the P components can drift and end
up fitting slight noise-related deviations in a high-amplitude component such as the R
component. Although this is not a problem for obtaining a good curve fitting, it becomes
an issue when studying the distributions of the parameters, e.g., associated with the
P component. That is, although potentially providing an optimal curve fitting, such
optimization may not hit the right balance between fitting the observation and providing a
plausible solution for the biological or physiological mechanisms of the modeled process.

To help constrain our prototype, we used upper and lower bounds for the PQRST
complexes. We defined these bounds analytically using box constraints on the lognormal
parameters (4)–(7) (see [13] for the derivation of these bounds; notation further explained
below). Figure 3 illustrates the envelope of all PQRST complexes generated by this sigma-
lognormal (i.e., sum of lognormals) model, given the bounds we selected (see Table 1). We
chose these bounds as a trade-off between encompassing the mean PQRST complexes of
all recordings (except some apparent outliers) while constraining the possible solutions to
minimize the proportion of the parameter space that can produce PQRST time series that
are not physiologically plausible. We derived these bounds from the parameters ΘΨ (we use
the index Ψ to refer to the prototype) of the prototype ΣΛΨ such that Θ± = ΘΨ ± 0.2|ΘΨ|,
except for (1) the value of the D± parameters being ceiled or floored to 0 when their interval
intersects at 0, and (2) for DT+ = DT+Ψ + 0.4DT+Ψ. The first exception ensures that the
qualitative interpretation of the different waves remains intact. A sign inversion for a D
parameter may mean changing a depolarization wave into a repolarization wave, or vice
versa. Such a conversion is not possible in normal physiological conditions. For example,
the P wave can only be due to the depolarization of the myocardial cells of the atrium. We
will never observe a hyperpolarizing wave, rather than depolarizing wave, caused by an
inversion of this process. Alternatively, such polarity reversal could be due to technical
issues, such as a misplacement of the electrodes. However, these acquisition problems
should be managed when preprocessing the recordings rather than being captured by
the model parameters. We used the second exception for a pragmatic reason; we needed
to allow the DT parameter to vary within a wider range to include most of the recorded
PQRST complexes within the established bounds. Concerning the |ΘΨ| term, the | . . . |
notation denotes the absolute value of ΘΨ, and the indices in ΘΨ, Θ+, and DT+Ψ stand for
“prototype”, “upper bound”, and “T+ component of the prototype”, respectively. Other
indices are derived using the same logic. The prototype was obtained by manually fitting a
sigma-lognormal curve that captures the general trend of our sample of beat profiles. Its
parameters are given in Table 2.

Λ− = min


Λ(t− t0+; µ+, σ−)
Λ(t− t0+; µ+, σ+)
Λ(t− t0−; µ+, σ+)
Λ(t− t0−; µ−, σ+)
Λ(t− t0−; µ−, σ−)

(4)

3.5. Reinforcement Learning for Parameter Extraction

For this project, we used the Stable-Baselines3 and OpenAI Gym Python packages
to implement a deep reinforcement learning approach for fitting our lognormal model to
PQRST time series. We aim to improve over the grid optimization algorithm previously
used to adjust the sigma–lognormal prototype to record time series. We adopted reinforce-
ment learning for this problem because it can find optimal solutions to problems for which
the “true” or “best” solution is not known, provided that we can define a measure of the
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quality of a solution. In our case, we can use the root-mean-square fitting error for that
purpose. Contrary to classical supervised learning, reinforcement learning is not limited by
the quality of the training data (i.e., it can adapt and become better than experts at a given
task). Furthermore, the reinforcement learning approach is interesting due to the active
development of Bayesian reinforcement learning [17]. We expect future Bayesian extensions
to provide a more appropriate way to integrate prior knowledge into the estimation process
by using prior distributions in the definition of the prototype instead of point values and
box constraints (see the Discussion section).

Λ+ =



0 i f t ≤ t0−]
Λ(t− t0−; µ−, σ+) i f t ∈]t0−, t0− + eµ−−σ+ ]
Λ(t− t0−; µ−, σ = µ− − ln(t− t0−1)) i f t ∈]t0− + eµ−−σ+ , t0− + eµ−−σ− ]

Λ(t− t0−; µ−, σ−) i f t ∈]t0− + eµ−−σ− , t0− + eµ−−σ2
− ]

Λ(eµ−−σ2
− ; µ−, σ−) i f t ∈]t0− + eµ−−σ2

− , t0+ + eµ−−σ2
− ]

Λ(t− t0+; µ−, σ−) i f t ∈]t0+ + eµ−−σ2
− , t0+ + eµ− ]

Λ(t− t0+; µ = ln(t− t0+), σ−) i f t ∈]t0+ + eµ− , t0+ + eµ+ ]
Λ(t− t0+; µ+, σ−) i f t ∈]t0+ + eµ+ , t0+ + eµ++σ− ]
Λ(t− t0+; µ+, σ = ln(t− t0+)− µ+) i f t ∈]t0+ + eµ++σ− , t0+ + eµ++σ+ ]
Λ(t− t0+; µ+, σ+) i f t > t0+ + eµ++σ+

(5)

ΣΛ− = ∑
i

Di−

{
Λi− i f Di− > 0
Λi+ else

(6)

ΣΛ+ = ∑
i

Di+

{
Λi+ i f Di+ > 0
Λi− else

(7)

Figure 3. This plot overlays the mean PQRST for each valid segment (light grey) and their median
(cyan). We also overlaid the sigma-lognormal prototype (red) and the upper (dashed red) and lower
(dashed blue) envelop of the PQRST time series that can be generated by the model when using
parameters within the ΣΛ− and ΣΛ+ bounds specified in Table 1. We also show the space covered
by each component in different colors.
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Table 1. Parameter bounds. D± are in µV and t0± are using normalized time.

µ− µ+ σ− σ+ t0− t0+ D− D+

P −2.4 −1.6 0.08 0.12 −0.288 −0.192 0 3.6
Q −3.6 −2.4 0.32 0.48 −0.096 −0.064 −60 0
R −3.6 −2.4 0.2 0.3 −0.054 −0.036 0 96
S −4.2 −2.8 0.32 0.48 0.012 0.018 −12 0

T+ −1.2 −0.8 0.32 0.48 0.12 0.18 0 204
T− −1.2 −0.8 0.184 0.276 0.176 0.264 −144 0

Table 2. PQRST Sigma–Lognormal prototype. D± are in µV and t0± are using normalized time.

µ σ t0 D

P −2.0 0.1 −0.24 3
Q −3.0 0.4 −0.08 −50
R −3.0 0.25 −0.045 80
S −3.5 0.4 0.015 −10

T+ −1.0 0.4 0.15 150
T− −1.0 0.23 0.22 −120

Figure 4 shows a classic schematic representation of reinforcement learning, illustrating
the interplay between the learning agent and its environment. In that paradigm, the policy
maps the current state of the environment to the probability of performing given actions.
This policy captures the transition probability of a Markovian decision process, as it does
not depend on past states. In this context, the learning task boils down to optimizing the
policy so that actions leading to the highest rewards have the highest probability of being
executed. To implement such an approach, the space of possible actions, the observations
space (i.e., the observable environment states), and the reward must first be defined.

Action space: Our model has 24 parameters. We consider these as latent variables. We
defined the parameter space as a bounded box in R24, using the upper bound ΣΛ+ and
the lower bound ΣΛ− previously defined. Furthermore, we consider the middle of this
bounded box as a reference point, i.e., ΣΛre f = (ΣΛ+ + ΣΛ+)/2. At the start of the
fitting process, the estimated solution is set equal to ˆΣΛ0 = ΣΛre f , where the index
in ˆΣΛn indicates the step number, with 0 standing for the initial estimate. The action
space is a box A24 = {(a1, a2, . . . , a24)|a1, a2, . . . , a24 ∈ [−0.01, 0.01]}. At each step of the
fitting process, the action a ∈ A24 taken by the agent is used to update the estimated
solution following the rule ˆΣΛi+1 = ˆΣΛi + aΣΛre f . However, we note that even within
this relatively narrow box, the sigma–lognormal parameters can take values such that the
order of the PQRST lognormal components is changed (i.e., the Q component may move
after the R component). Since such an inversion is contrary to the intent of the model,
we further constrain this ordering. To this end, we first define the order of lognormal
components by the timing of their peak. For a lognormal defined by parameters Θj (as

defined in (2)), we can show this peak to happen at time tpj = t0j + eµj e−σ2
j . Thus, we

constrain the impact of the action on Θj so that it is canceled whenever it results in tpj+1 <
tpj+1 (i.e., the action is such that it may cause the timing of the peaks of two consecutive
components to become inverted), with j and j + 1 referring to two consecutive lognormal
components in the set of {P, Q, R, S, T+, T−} components. Alternatively, such restrictions
could have been introduced within the reward function, e.g., by adding a penalty term
that reduces the reward when these constraints are violated. However, constraining the
problem that way would not preclude the algorithm from reaching solutions that violate
these constraints. Since these solutions are biologically irrelevant, we preferred to limit
the actions to categorically prevent them. We further limit the action so that the resulting
parameters remain within the box defined by ΣΛ+ and ΣΛ−.
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Observation space: The observation space for this model is a dictionary containing values
for the estimated parameters and the fitting errors. The fitting error space is a box of
dimension 250. The PQRST signals are normalized to 500 points equally spaced between
−1 and +1 (see the Preprocessing Section), but we observe only half of this interval, between
−0.3 and 0.7. ECG signals in the remaining portion of the normalized time interval are
mostly flat and contain little information. We set lower and upper bounds for that box
at 1.5 times the minimum and maximum values observed for each of these points across
all recorded PQRST time series. The observed values for the fitting error are taken as
the difference between the PQRST time series being analyzed and the signal synthesized
from ˆΣΛi. The observation space for the estimated parameters is the 24-dimensional box
bounded by ΣΛ− and ΣΛ+, and the observed values are ˆΣΛi. We further normalized the
observation space, as is generally recommended when using a heterogeneous observation
space. We confirmed that the normalization of the observation space resulted in a significant
improvement in performance for our application.

Reward: In reinforcement learning, the reward is the objective function to maximize and
depends on the action performed. Thus, reinforcement learning algorithms aim at finding
the action that maximizes the reward associated with any given state. For our application,
we use as reward the difference in fitting SNR (as defined in (3)) before and after the action
was taken.

Training: The optimization of a PQRST time series terminates when the algorithm reaches
its maximal number of steps (1000) or when the agent fails to find a solution (i.e., a set
of parameter values) improving over its best SNR for 100 consecutive steps. Every time
the optimization of a PQRST time series terminated, another time series was picked at
random, and a new optimization was started. We trained our model for 3,000,000 steps, at
which point performances were stable, and no additional training seemed likely to provide
any advantage.

For learning, we implemented a deep reinforcement learning solution based on the
Proximal Policy Optimization (PPO) [18] scheme. This relatively new algorithm has been
designed to control the size of the steps taken when performing the gradient-based opti-
mization of the policy. Large steps in the optimization process can result in instability as
they can push the optimizer into a distant subspace with a flat objective function, potentially
trapping the optimizer in an unproductive and low-reward region of the solution space.
Specifically, in this approach, the update rule for the policy is defined by the loss function

L(θ) = E
[

πθ(at|st)

πθold(at|st)
Ât

]
= E

[
rt(θ)Ât

]
(8)

where π represents the probabilistic policy parameterized with a new (θ) and an old (θold)
set of parameters, at is the action selected at time step t, st is the state of the environment at
time t, and Ât is the advantage associated with a state, defined as the expected total reward
discounted using a factor γ. This variable captures how much choosing the action at when
in state st is better than randomly taking an action according to the current policy πθ , in
terms of discounted reward (i.e., the future discounted reward when using a discounting
factor γ is given by rt + γrt+1 + γ2rt+2 + . . .). We can recurrently formulate the value of a
state in terms of expected future discounted reward using the Bellman equations [19]:

V(st|πθ) = E
at∼πθ ,
st+1∼P

[r(st, at) + γV(st+1)] (9)

We can similarly define an action-value function which is the same as V(st|πθ), but
for a known action:

Q(st, at|πθ) = E
st+1∼P

[
r(st, at) + γ E

at+1∼πθ

[Q(st+1, at+1)]

]
(10)
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Then, we can describe the advantage as a subtraction of these two functions

Ât = Q(st, at|πθ)− R(st|πθ) (11)

Since the policy update specified by the rule (8) can be large (e.g., for πθold(at|st) ≈ 0)
and results in unstable learning, the PPO algorithm clip this function

LC(θ) = E
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

)]
(12)

with epsilon set to a small value (e.g., around 0.2).

Figure 4. Schematic representation of the interaction between the agent and the environment in the
context of reinforcement learning.

Hyperparameter tuning: We attempted to improve the learning and convergence of
the PPO algorithm by tuning the hyperparameters using the Optuna-based [20] stable-
baselines3-zoo package. The first attempt with 500 trials of 100,000 iterations failed to
improve upon the default hyperparameterization provided with stable-baselines3’s imple-
mentation of PPO. We tried a second round with 1000 trials of 3,000,000 iterations with
similar results. Consequently, we used the default hyperparameterization for PPO that
comes with stable-baselines3.

Deep reinforcement learning and network architecture: The PPO algorithm is imple-
mented using deep learning and the architecture illustrated in Figure 5.
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Figure 5. Network architecture used for deep reinforcement learning.

3.6. Parameter Denormalization

Since we estimated lognormal parameters in “normalized time”, we transformed
them back into normal time before statistical analysis. For a lognormal profile to remain
numerically identical after the compression of its time variable t by a factor α such that we
have a new time variable t∗ = αt, we must adjust the original parameters Θ such that the
new values Θ∗ are defined as follows: {µ∗, σ∗, t∗0 , D∗} = {µ+ log(α), σ, αt0, αD}. Therefore,
from the parameters Θ estimated using normalized time t, we computed the denormalized
parameters using α = (t3 − t1)/2, where t1 and t3 are the time of the R peaks for the
preceding and following heartbeats, as previously defined (see Preprocessing Section).

3.7. Software

We used Python for all analyses. Preprocessing was performed mainly using HeartPy
and MNE-Python and the standard Python scientific programming stack (NumPy, SciPy,
Matplotlib, Seaborn, Pandas). The code used for the analyses is available at https://github.
com/lina-usc/ecg_paper (accessed on 30 April 2023).

4. Results
4.1. Parameter Extraction

Once our deep neural network was trained using reinforcement learning, we used
this system to extract lognormal parameters for all PQRST complexes from all segments
(N = 751,510). For the final extraction, we increased the maximum number of iterations
to 2000 and the maximum number of iterations with no progress to 200 to maximize our
chances of obtaining solutions with high SNR. We excluded from further analyses beats
fitted with an SNR < 5 dB (18.28%). Figure 6 shows the distribution of fitting SNR values
obtained with the proposed approach.

https://github.com/lina-usc/ecg_paper
https://github.com/lina-usc/ecg_paper
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Figure 6. Fitting SNR. (a) Distribution of fitting SNR for individual beats. (b) Twelve randomly
selected beats (solid blue) with their fitting (dashed orange) and the corresponding SNR.

4.2. Use Case: Analysis of the Impact of Age

As a proof of concept for this approach, we investigated whether the modeling param-
eters are sensitive to a factor expected to impact ECG systematically: age. For this analysis,
we average all beats in turns within segments and then within recordings. We rejected
time points with recordings from less than eight participants to ensure a sufficient sample
size for reliable statistical estimations. We used the remaining mean parameter values for
statistical analysis (N = 121; per age (months): 1:9, 2:13, 3:19, 4:21, 6:14, 9:19, 12:17, 15:9).

Figure 7 illustrates the relationship between every modeling parameter and the age of
the infant participants. Almost half of the parameters (10/24) show a statistically significant
relationship with age with a p-value lower than 0.01 after correction for multiple tests.
Furthermore, from the plot, some of these relationships (e.g., t0 for the S component or µ for
the T− component) are very clear, with very low p-values and large correlation coefficients.
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Figure 7. Correlation between the age and the modeling parameters. The light blue region denotes
the 95% confidence interval obtained with bootstrapping. Overlaid on each panel is the Kendall rank
correlation coefficient (τ) and its corresponding p-value corrected for 24 independent tests using
Bonferroni’s correction (i.e., reported p-values have been multiplied by 24), both in red if significant
(i.e., p < 0.01). Parameters D are expressed in µV ∗ s (i.e., multiplied 1× 106), for convenience.
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Using a mixed-effect model with age as a fixed effect and the subjects as a random
effect, we predicted the modification of the PQRST complex as a function of age. Figure 8
compares the prediction and the PQRST time series averaged across subjects using the mean
and the median. As demonstrated by this figure, the effect of age is easier to summarize
and understand using the model prediction than from the direct averaging of time series.
This improved interpretability may reflect the “cleaning” of the data by imposing a linear
variation of the parameters with age, effectively smoothing out natural intra- and inter-
subject variability that may not be related to age. It should be kept in mind, however, that
such a linear relationship is appropriate should be further validated. From some of the plots
in Figure 7, an exponential relationship may better capture the variation of some of these
parameters. This observation is particularly true of the t0 parameters, which is unsurprising
since time parameters such as reaction times tend to be distributed logarithmically. We can
make a similar argument for amplitude parameters (i.e., D).

Figure 8. Comparison of PQRST complexes predicted from Sigma–Lognormal modeling (top panel),
mean (middle panel), and median (bottom panel) PQRST across participants, for each time point
with at least 8 participants. Both columns show the same data; the right columns only zoom further
on the P peak to better appreciate the modulation of its amplitude by age.

5. Discussion

Previously, we explained how the PQRST complex generated by the beating of the
heart can be modeled by a set of superimposed lognormal components. Furthermore,
we developed a novel way to perform parameter inference for this model using deep
reinforcement learning. Then, we demonstrated that approach using the effect of age on
an ECG as a use case. This analysis has shown that many modeling parameters have a
systematic linear association with age. Notably, none of the parameters of the Q component
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exhibited statistical significance. Why no parameters of that specific components reached
statistical significance is unclear. This may be due to a detrimental impact of the temporal
superposition of the large neighboring R component on the estimation of the parameters of
the component Q. Regardless, since we cannot conclude from a non-significant statistical
test and given that this analysis is the first to look at the effect of age on this model, it would
be premature to conclude on the lack of influence of age on the Q wave.

For this work, we chose to model the PQRST complex with lognormal rather than
normal components. Multiple reasons motivate this choice. First, lognormal transfer
functions are causal. They have a support that starts at a specific time t0, as opposed to an
]−∞,+∞[ support for the normal equation. Furthermore, the use of sums of lognormal
functions for modeling biological time series has been well-developed for the study of
motor control [21–24]. The biological relevance of the lognormal as a transfer function
is well-rooted mathematically through the central limit theorem, as applied to biological
networks of subprocesses coupled through proportionality. In contrast, the response of
a system made of independent and additive subprocesses converges, under the same
theorem, toward a normal response. These ideas have been developed in detail in the
context of the lognormality principle [11,25].

In terms of interpreting the meaning of lognormal parameters, t0 (in seconds) repre-
sents the time of initiation of the lognormal process. Since lognormal-shaped waveforms
are emerging from the convergence of small effects associated with many coupled subsys-
tems, we can see t0 as the moment the first cells generated an action potential and triggered
an avalanche of subsequent action potentials in the network of neighboring cells. The pa-
rameter D represents the amplitude of the equivalent electric dipole created by this process.
More precisely, it is equal to the integration over time of the depolarization or repolarization
waves (in V ∗ s). The parameters µ and σ represent, on a logarithmic scale, the time delay
(i.e., how long it takes to respond) and response time (i.e., how spread the response is in
time) of the network of excitable cells. Therefore, these parameters are emergent properties
due to the speed of propagation of the electrical waves in these networks. We expect their
values to reflect biological properties that modulate the propagation speed, such as the
strength of gap-junction coupling between neighboring cells.

Six partly overlapping lognormal equations were used to model the PQRST complex.
The P, Q, R, and S waves are all represented by a single equation. For expediency, we
accounted for the negative skew of the T wave by representing it with the subtraction of two
lognormals (noted T+ and T−). Further investigation will be required to understand the
physiological underpinning of this negative skew and, consequently, the most biologically
relevant way to model it.

With respect to fitting accuracy, SNR values obtained with our model are lower than
those reported for a similar modeling approach used for analyzing human movements.
For example, an average SNR of 20.75 dB was reported for a prototype-based lognormal
modeling of the speed of triangular motion [14]. We believe that this lower fitting accuracy
for ECG signals is partly due to systematic offsets in the resting potentials (e.g., see the
segments before the QRS complex in Figure 6b). Such systematic offsets significantly
contribute to the modeling error and can be observed at steady state for electric potential
but not for the speed of human movements. We expect the fitting accuracy from an
approach such as [10] to be higher than what was obtained with our model, although we
did not explicitly compare accuracies. Published values may not be comparable because
they were obtained on a different dataset, with different preprocessing, targeting different
populations. Furthermore, the two approaches are not comparable. For example, ours uses
only 24 parameters, whereas [10] uses 35. This approximative 50% increase in the number
of modeling parameters is expected to provide more flexibility to improve fitting accuracy.
More importantly, we aimed to develop a biologically relevant model rather than obtain
maximal fitting accuracy. High fitting accuracy is highly desirable for some applications
(such as the signal compression application mentioned in [10]). However, for physiological
interpretability, the biological relevance of the model and the preservation of component
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order are more important and should be prioritized even when it results in some loss in
fitting accuracy. These arguments should be familiar to anyone familiar with the issue of
model overfitting.

Furthermore, concerning training and validation, it should be noted that we did not
use a hold-out method or cross-validation for this application since our ECG model was
fixed and we wanted to train an estimator that would provide the best parameter fitting.
Our goal was not to release a generalizing extractor that would perform well on a new
dataset, to benchmark classification metrics (e.g., accuracy), or any similar application that
would require such controls. Such a lack of cross-validations is not infrequent in the context
of classical reinforcement learning (e.g., obtaining the best performance at a game) when a
generalization is not required.

Our overarching aim in this paper was to demonstrate how the analysis of an ECG
can benefit from using a model-driven approach. Most biosignals relevant to fundamental
science and practical applications in medicine and neuroscience present us with ill-posed
problems due to the complexity of their generative processes, the large quantity of uncon-
trolled latent variables, and the relative sparsity of experimental measurements. To progress
in the study of such systems, we need to constrain our analysis using prior knowledge. We
can best exploit such knowledge by embedding it in the structure and parameterization of
our models. This process effectively injects our knowledge into our analysis by operational-
izing our hypotheses about the generative mechanisms that caused the observed signals.
We can deploy similar approaches for a wide range of problems. For example, dynamic
causal modeling (DCM) constitutes a similar model-driven approach for the study of the
brain [26]. Concerning more specifically the model proposed here, we believe that such
approaches may not only be useful for fundamental research on the generation of an ECG
but can also find clinical applications for biomarker development. In this case, modeling
parameters can be used directly as features for classifying particular diseases. For example,
the absence of a Q wave has been considered to suggest abnormal left ventricular diastolic
function [27]. Such a condition would therefore result in the DQ parameters’ value being
negligible. Similarly, many other conditions have specific effects on the different segments
or waves constituting the PQRST complex. Therefore, these conditions are likely to have
a systematic effect on the parameters of our model. Researchers interested in using our
approach for such applications should follow the approach we illustrated (e.g., see Figure 3)
to adjust the constraints on the model (Table 1) to include the type of deviations from the
typical profile of the PQRST complex they want to study.

We plan to develop this framework further along three lines of investigation. First,
here we demonstrated this approach using a partially mechanistic model (e.g., lognormals
are associated with known electrical processes in the heart) and partially phenomenological
(e.g., we used the subtraction of two lognormals to accommodate the reverse asymmetry
of the T wave). The full power of such modeling can be reached only when using rich
mechanistic models. Phenomenological models can be useful in practical applications. For
example, they may offer ways to summarize the data that help improve performances for
biomarkers in clinical applications. However, we argue that, for fundamental research, a
model is as good as its relationship to the underlying mechanisms. By developing models
that mechanistically map latent variables to observable signals, we gain ways to make
inferences on previously inaccessible variables. Refining such models by properly capturing
the various biological mechanisms is an incremental and protracted process. In our case,
we have good reasons to assume the lognormality of the different waves of the PQRST
complex [11,25]. Nevertheless, further analyzing how the physiology and anatomy of the
heart impact the shape and lognormality of these waves may improve the interpretability
and conceptual validation of this approach. This investigation will, for example, require a
more in-depth analysis of the propagation of polarization/depolarization waves along the
atrial and ventricular myocardial cells, and the potential impact of border effects as these
waves travel through these spatially bounded structures.
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Second, for this novel approach we used simple box constraints on the parameter
space for our model as is usual for this kind of application. Such binary (as opposed to
probabilistic) constraints are relatively unrealistic and unrefined. Box constraints enforce
the idea that the probability of the parameters taking a given value goes from being null to
uniformly distributed for an infinitesimal difference in parameter values. Such a discon-
tinuity is not a fair representation of our prior knowledge or assumptions. Furthermore,
box constraints generally do not accurately capture the subspace of plausible or acceptable
solutions. The importance of this problem increases with dimensionality. The proportion
of space occupied by the “corners” of the box (as opposed to its center) increases with the
number of dimensions. These corners represent portions of the subspace where multiple
parameters have extreme values (i.e., edge cases). Corresponding solutions are, therefore,
likely to be biologically implausible. This effect is not negligible in 24 dimensions. For
example, whereas a unit-size ball occupies 52% of a unitary cube, a unit-size hyperball
occupies 0.00000001% of a unit-size hypercube in a 24-dimensional space. Although such
development was out of the scope of this particular work, for future work, we propose to
integrate a Bayesian approach to constrain the estimation of parameters using prior distri-
butions. Aside from being more realistic, such constraints on modeling parameters may
allow for an easier incremental integration of new knowledge by adjusting the Bayesian
priors. It also integrates more naturally into hierarchical models, where such priors can be
generated as an output of another part of the model. Since we do not expect the manifold
supporting plausible solutions to be box-shaped, such prior distributions may ideally be a
multivariate distribution rather than a series of 24 univariate distributions.

Third, although we consider our approach to be highly relevant for many applications
related to cardiology, we primarily aim to develop this model to support the use of the
ECG as a window into the state of the autonomic nervous system. Thus, we plan to model
the generation of the heartbeat sequence rather than independent PQRST complexes, as
proposed in this paper. The heartbeat is regulated by the balance between the opposing
sympathetic (epinephrine and norepinephrine) and parasympathetic (acetylcholine) sys-
tems. Both systems influence the cardiac process by modulating the opening and closing of
calcium channels in myocardial cells. By modeling the impact of these inputs on the heart,
the analysis of the ECG could provide insights into autonomic control and open the door to
clinical applications in conditions wherein this control is atypical, such as autism spectrum
disorder [28].

6. Conclusions

By embedding our knowledge into a forward model of ECG, we demonstrated how
a sum of overlapping lognormal can be used to analyze the ECG and the properties of
its PQRST complex. We also provided a framework to estimate the values of modeling
parameters using deep reinforcement learning, and we constrained this optimization to
preserve parameter interpretability (i.e., parameters are not allowed to take values that
may change their qualitative interpretation). Finally, we used the effect of age to test the
sensitivity of the modeling parameters to factors systematically affecting the ECG. In our
discussion, we highlighted some directions to explore to benefit fully from the potential
of this approach. We are confident that, as scientists and engineers come to refine their
understanding of the complexity of the various natural systems they are tackling, the
systematic embedding of our knowledge into mechanistic models and the adoption of a
model-driven analytic approach will increasingly reveal itself to be the surest way forward.
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