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Iron is critical for virtually all organisms, yet major questions
remain regarding the systems-level understanding of iron in
whole cells. Here, we obtained Mössbauer and EPR spectra of
Escherichia coli cells prepared under different nutrient iron
concentrations, carbon sources, growth phases, and O2 concen-
trations to better understand their global iron content. We
investigated WT cells and those lacking Fur, FtnA, Bfr, and Dps
proteins. The coarse-grain iron content of exponentially grow-
ing cells consisted of iron–sulfur clusters, variable amounts of
nonheme high-spin FeII species, and an unassigned residual
quadrupole doublet. The iron in stationary-phase cells was
dominated by magnetically ordered FeIII ions due to oxyhydrox-
ide nanoparticles. Analysis of cytosolic extracts by size-exclu-
sion chromatography detected by an online inductively coupled
plasma mass spectrometer revealed a low-molecular-mass
(LMM) FeII pool consisting of two iron complexes with masses
of �500 (major) and �1300 (minor) Da. They appeared to be
high-spin FeII species with mostly oxygen donor ligands, per-
haps a few nitrogen donors, and probably no sulfur donors. Sur-
prisingly, the iron content of E. coli and its reactivity with O2
were remarkably similar to those of mitochondria. In both cases,
a “respiratory shield” composed of membrane-bound iron-rich
respiratory complexes may protect the LMM FeII pool from
reacting with O2. When exponentially growing cells transition
to stationary phase, the shield deactivates as metabolic activity
declines. Given the universality of oxidative phosphorylation in
aerobic biology, the iron content and respiratory shield in other
aerobic prokaryotes might be similar to those of E. coli and
mitochondria.

Iron is critical for virtually all living systems, including Esch-
erichia coli, the most extensively studied single-celled organism
on the planet (1). This redox-active transition metal is at the
active site of numerous enzymes, including respiratory com-

plexes that contain iron–sulfur clusters (ISCs)2 and heme cen-
ters (2, 3). Mononuclear FeII complexes are particularly danger-
ous to cells because they react with O2 or O2-derived species
(e.g. H2O2) to generate reactive oxygen species (ROS) such as
hydroxyl radicals. Regulating iron traffic is critical to minimiz-
ing the dangers of this metal in aerobic organisms (4).

The iron content of whole E. coli cells has been studied spo-
radically over the past 4 decades by Mössbauer (MB) spectros-
copy, in which transitions from the I � 1⁄2 ground state of an
57Fe nucleus are induced to the I � 3⁄2 excited state using �
radiation (5, 6). The energies of these transitions are sensitive to
the type of iron center (ISCs, hemes, nonhemes, etc.) as well as
to oxidation state, spin state, and ligand environment. The
technique can decompose the major iron-containing species in
whole cells and in organelles such as mitochondria into groups
of iron centers. This partial or coarse-grain resolution is better
than can be achieved by any other iron-sensitive spectroscopy;
however, MB spectroscopy cannot resolve individual iron spe-
cies. The inherent spectral intensity of each iron in a sample is
approximately the same, such that spectral percentages of a
center can be converted into absolute iron concentration if the
overall iron concentration of the sample is known (e.g. as deter-
mined by ICP-MS). The most typical spectral feature, called a
quadrupole doublet, consists of two equal-intensity lines
extending down from the baseline. In a magnetic field, a six-line
sextet is generally observed. In cases where unpaired electrons
generate an internal magnetic field, the sextet “collapses” into a
doublet at sufficiently high temperatures.

For magnetically ordered materials, such as the FeIII cores of
ferritins, the critical temperature for a related phenomenon is
called the blocking temperature (TB) (7). At temperatures
below TB, magnetically ordered FeIII exhibits a magnetic spec-
trum, whereas above TB, this form of iron exhibits a broad qua-
drupole doublet. E. coli cells contain three types of ferritins that
store iron under iron-replete conditions. These include ferritin
(FtnA), bacterioferritin (Bfr), and miniferritin (Dps) (8). The
main iron storage protein is FtnA, a 24-subunit multimer that
can bind thousands of iron ions as inert ferric aggregates.
Expression of FtnA and Bfr increases dramatically as cells tran-
sition from exponential growth to stationary phase (9).
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LMM, low-molecular-mass; MB, Mössbauer; NHHS, nonheme high-spin;
OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; TB,
blocking temperature; T, tesla.

croEDITORS’ PICK

50 J. Biol. Chem. (2019) 294(1) 50 –62

© 2019 Wofford et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

 by guest on M
ay 5, 2020

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

https://orcid.org/0000-0001-8307-9647
http://www.jbc.org/cgi/content/full/RA118.005233/DC1
mailto:lindahl@chem.tamu.edu
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.RA118.005233&domain=pdf&date_stamp=2018-10-18
http://www.jbc.org/


In 1980, Bauminger et al. (10) reported that MB spectra of
E. coli are dominated by a broad quadrupole doublet character-
istic of magnetically ordered FeIII ions. Matzanke et al. (11)
identified a second doublet, representing up to half of the spec-
tral intensity, with parameters typical of nonheme high-spin
(NHHS) FeII complexes coordinated by oxygen and nitrogen
ligands. Hudson et al. (12) recognized that the FeII doublet was
composed of two subcomponents.

FtnA has a TB of �20 K, which is substantially higher than
that of the magnetically ordered FeIII species in E. coli cells
(�3.5 K). Because of this, Bauminger et al. (10) suggested that
ferritin was not the source of the observed magnetically ordered
iron. In contrast, Abdul-Tehrani et al. (13) concluded that the
magnetically ordered iron arose from FtnA.

Iron regulation and metallation of metalloproteins in E. coli
involve a poorly characterized labile iron pool (LIP) (14 –16).
The LIP is presumably composed of one or more low-molecular-
mass (LMM) nonproteinaceous FeII complexes in the cytosol.
Estimates of the LIP concentration in aerobic bacteria are variable;
1 �M (17), 10 �M (18, 19), 26 �M (20), 15–30 �M (21), and 140 �M

(22) have been reported. The size of the LIP increases (to �177
�M) under anaerobic conditions (20) and reportedly with increas-
ing iron levels in the growth medium (23).

The Fur (ferric uptake regulator) system regulates cellular
iron by binding FeII ions from the LIP and regulating transcrip-
tion of more than 100 genes involved in iron import, trafficking,
and storage as well as in iron-dependent enzyme catalysis and
cellular metabolism (24). Fur also controls expression of pro-
teins involved in the TCA cycle and respiration via a small RNA
RyhB (25). Fur expression is induced during oxidative stress,
which represses iron uptake and limits Fenton chemistry. �fur
cells reportedly contain less iron than WT cells and a higher LIP
(13, 18, 21). �fur cells cannot respire effectively because they
are deficient in many iron-containing proteins (25, 27).

Aqueous FeII ions bind Fur with a KD of �1 �M (17, 23, 28) or
�10 �M (19) for one-iron binding and KD1 � 30 �M and KD2 �
280 �M for two-iron binding (22). Weakly coordinated ligands
in the LIP undergo fast ligand exchange, making such com-
plexes difficult to isolate and study. Böhnke and Matzanke (15)
isolated and characterized a soluble nonproteinaceous nega-
tively charged iron species from E. coli extracts that accounted
for 40% of the cellular LIP; they reported a mass of �2.2 kDa.

Using MB spectroscopy, Abdul-Tehrani et al. (13) estimated
the concentration of the FeII species in the cell at �200 �M,
higher than most other estimates and higher than implied by
the FeII-Fur dissociation constant. To explain this, they pro-
posed that the FeII species observed by MB represented a dif-
ferent pool than is used to bind Fur.

Under aerobic conditions, the LIP is thought to enter cells via
any of a number of ferric or ferrous iron transport systems that
are largely regulated by Fur. Ferric ions, brought into the cell by
siderophore transport systems, are likely reduced to FeII prior
to entry into the cytosolic LIP. Under anaerobic conditions, the
feo ferrous ion transport system dominates iron import, leading
to an increased LIP (20, 29). FNR is an O2-sensing transcription
factor that regulates the shift between aerobic and anaerobic
metabolism by regulating �300 genes (30). In the absence of

O2, FNR increases expression of the feo iron uptake operon to
increase cellular FeII (20).

Using MB spectroscopy, Hristova et al. (31) reported a fourth
quadrupole doublet in whole E. coli cells, representing �60% of
spectral intensity in their samples. This doublet was attributed
to [Fe4S4]2� and [Fe2S2]2� clusters, low-spin FeII hemes, and
possibly fast-relaxing high-spin FeIII species. Beilschmidt et al.
(32) assigned the same doublet exclusively to ISCs.

In summary, previous MB studies have decomposed the iron
content of E. coli into four major groups. These include mag-
netically ordered FeIII (which may represent the iron core of the
ferritin FtnA), two nonheme high-spin FeII species (some of
which may represent the LIP), and a group of overlapping iron
centers that include [Fe4S4]2� and [Fe2S2]2� clusters, low-spin
FeII hemes, and possibly fast-relaxing high-spin FeIII species.

In this study, we used MB spectroscopy (and EPR) to reinves-
tigate the iron content of E. coli. We show that the dominant
magnetically ordered FeIII doublet does not arise from ferritins.
We use an anaerobic LC-ISC-MS system to detect and partially
characterize the LMM FeII species that may constitute the LIP
in these cells. We report a dramatic change in the size of the
LMM FeII pool due to oxygenation state of the growth medium.
Our results suggest a major reinterpretation of iron homeosta-
sis in this organism, and they reveal an unexpected and intrigu-
ing connection to the iron content of mitochondria and other
prokaryotes.

Results

Initial objective: To better understand the iron content of WT
E. coli

Although the iron content of E. coli has been investigated
sporadically using MB spectroscopy over the past 4 decades,
many fundamental issues remain unresolved. Most previous
studies were focused on the MB of E. coli strains in which an
iron-containing protein of interest was overexpressed; WT
cells served only as the controls. Here, we focused on WT
E. coli, with mutant strains assisting in that investigation. The
word content not only refers to the concentration of iron in such
cells but to a semiquantitative description of the major iron
species contained therein. 57Fe-enriched cells were grown on
minimal medium using two different carbon sources, three dif-
ferent nutrient iron concentrations, and variable levels of O2
exposure. Some batches were harvested during exponential
growth, whereas others were harvested in stationary phase. Our
motivation was to gain a foundational understanding of iron
trafficking and regulation in WT E. coli, as our previous MB
investigations of whole cells have focused on eukaryotic sys-
tems. These studies were only performed using minimal
medium, and we are uncertain whether results would differ
using other growth media.

Exponentially growing E. coli cells contain 400 –1600 �M iron,
depending on conditions

The iron concentration of E. coli cells grown on glucose min-
imal medium and harvested under exponential growth condi-
tions increased with increasing iron concentration in the
growth medium. Cells grown in media supplemented with 1,
10, and 100 �M 57FeIII citrate contained 350 � 120 (n � 4),
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540 � 70 (n � 2), and 990 � 20 �M iron (n � 2), respectively.
WT E. coli cells harvested during exponential growth using ace-
tate as the carbon source and in media supplemented with 1, 10,
and 100 �M 57FeIII citrate contained 600 � 200 (n � 2), 730 �
490 (n � 3), and 1600 � 400 �M iron (n � 2), respectively. These
concentrations are �1.6 times those in glucose-grown cells. See
Table S1 for a compilation of other element concentrations.
The trends observed were similar to those reported previously
(33).

Mössbauer spectra of exponentially growing cells exhibit the
ISC and NHHS FeII doublets, as observed previously, as well as
a previously undetected (residual) quadrupole doublet

Low-temperature low-field MB spectra of glucose-grown
and exponentially harvested cells were similar regardless of
nutrient iron concentration (Fig. 1A and Fig. S1, A and B). The
doublet simulated by the solid blue line in Fig. 1 and referred to
as the ISC doublet had parameters (� � 0.45 mm/s and �EQ �
1.15 mm/s; Table 1) typical of S � 0 [Fe4S4]2� clusters and
low-spin FeII hemes (the two cannot be resolved by MB). The
ISC doublet represented as much as 30% of the overall spectral

intensity. The species simulated by the pink line in Fig. 1B will
be referred to as the residual doublet. In some spectra, this
doublet represented as much as 40% of the overall intensity (� �
0.47 mm/s and �EQ � 0.72 mm/s; Table 1). Its isomer shift �
was near to that of S � 0 [Fe4S4]2� clusters, but the quadrupole
splitting �EQ was smaller than normal; thus, we leave this spe-
cies unassigned. The combined simulation of the ISC and resid-
ual doublets, as they would appear at 6 T, was overlaid on the
experimental 6 T spectrum in Fig. S2A. Although the spectrum
was noisy, the fit provides evidence that both ISC and residual
doublets arise from diamagnetic S � 0 centers, as would be the
case for [Fe4S4]2� clusters and low-spin FeII hemes.

The other major quadrupole doublet of Fig. 1A had parame-
ters of NHHS FeII species coordinated by 4 – 6 oxygen, 0 –2
nitrogen, and few if any sulfur donor ligands. The doublet was
broader than expected for one species, so two subcomponents
(FeII

RET and FeII
LMM) were assumed (� � 1.17 mm/s and

�EQ � 2.99 mm/s (FeII
RET) and � � 1.33 mm/s and �EQ � 3.47

mm/s (FeII
LMM)). The green and gold lines in Fig. 1 (A and B)

simulate the two subcomponents (Table 1). The subscripts RET
and LMM are explained below.

Acetate-grown and exponentially harvested cells exhibited
the MB spectra shown in Fig. 1B and Fig. S1 (C and D). Cells
grew less than half as fast on acetate as they did on glucose; the
average exponential growth rate � was 0.40 � 0.04 h	1 for
glucose-grown cells and 0.17 � 0.03 h	1 for acetate-grown cells
(n � 3 for each). E. coli converts acetate directly to acetyl-CoA,
which is then sent to the TCA cycle without involving glycolysis
(34). In contrast, cells first convert glucose to acetyl-CoA via
glycolysis (and pyruvate dehydrogenase). Thus, acetate-grown
cells respire exclusively, whereas glucose-grown cells both
respire and ferment, depending on local oxygen and glucose
concentrations.

Figure 1. Low-temperature low-field (5 K, 0.05 T) Mössbauer spectra of
WT E. coli harvested during exponential growth. A, glucose medium sup-
plemented with 100 �M

57FeIII citrate; B, acetate medium supplemented with
1 (top) and 100 �M

57FeIII citrate (bottom). Gold, blue, green, and pink lines
simulate FeII

RET, ISC, FeII
LMM, and residual doublets, respectively. The red lines

in this and other figures represent composite simulations assuming compo-
nents, parameters, and percentages given in Table 1. The presence of the
FeII

LMM doublet in the spectrum from acetate-grown cells with 1 �M iron
added is evident from the shift in the high-energy line of the NHHS FeII dou-
blet. The spectrum in C is the sum of all six spectra in Fig. 1 and Fig. S1, after
removing contributions from the four major doublets. The red line in C is a
simulation assuming parameters typical of S � 5⁄2 FeIII or ferritins (the two
cannot be distinguished) with 5% of overall spectral intensity. Unless speci-
fied otherwise, the magnetic field was applied parallel to the � radiation.

Table 1
Components assumed in simulating Mössbauer spectra of E. coli and
the percentages of each component included in simulations
In addition to the parameters listed for the sextet species, the following parameters
were used in simulations: D � 0.5 cm	1, E/D � 0.33, � � 2, Aiso/gn�n � 	228 kG.

A respiratory shield to protect low-mass FeII from oxidation
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MB spectra of acetate-grown cells were similar to those
grown in glucose, except that the ISC and residual doublets
were slightly more intense, consistent with a higher iron con-
centration. Acetate-grown cells probably contain a higher con-
centration of iron-rich respiration-related proteins. We also
observed a shift in the position of the FeII doublet, depending on
the iron concentration in the growth medium. For the sample
grown with 1 �M 57FeIII citrate, 11% of spectral intensity was
FeII

LMM (Fig. 1B, top spectrum). For samples grown with 10 or
100 �M 57FeIII citrate (Fig. 1B, bottom spectrum), no FeII

LMM
was evident.

Only �5% of MB intensity could be due to ferritins in
exponentially grown cells

We searched for low-intensity features emanating from the
baselines associated with the spectra of Fig. 1 and Fig. S1. Such
features, if present, might arise from paramagnetic centers,
such as S � 5⁄2 FeIII hemes, or from superparamagnetic centers,
such as ferritins (at temperatures below their TB). To probe this,
we summed the six spectra and removed the major spectral
features described above. The resulting difference spectrum
(Fig. 1C) exhibited weak spectral absorption, which could be
simulated using parameters of either S � 5⁄2 FeIII hemes and
nonheme species or of ferritins below their TB. Magnetic fea-
tures with S � 1⁄2 may have also been present but obscured by
features of the central spectral region. Collectively, these mag-
netic baseline features constituted �5% of overall spectral
intensity. We include this estimate in the composite simula-
tions of Fig. 1, A and B (Table 1).

EPR spectra confirm Mössbauer analysis; exponentially grown
cells contain minor levels of paramagnetic ISCs and heme
centers

Glucose- and acetate-grown whole cells exhibited EPR sig-
nals in the low-field (g � 4 – 6) and high-field (g �2) regions
(Fig. 2). Spectral decomposition identified three low- and
three high-field signals (Fig. S3). Low-field signals were typ-
ical of S � 5⁄2 hemes and nonheme FeIII species. High-field
signals included two gave � 1.94 type signals arising from
reduced S � 1⁄2 [Fe4S4]1� and/or [Fe2S2]1� clusters, as well as
an unassigned isotropic g � 2.00 signal. Similar spectra of
whole E. coli cells have been reported (25) except that signals
from [Fe3S4]1� centers were not observed in our spectra, and
the low-field signals in our reductant-free spectra were more
typical of signals of previous dithionite-reduced cells. All
current signals except the radical were 2–10 times more
intense in acetate-grown cells than in glucose-grown cells
(the intensity of the radical was similar in both spectra). The
overall spin concentration in the g � 2 region was �60 �M

for the acetate-grown sample and 20 �M for the glucose-
grown sample. We did not quantify the signals in the low-
field region, but concentrations are likely of the same mag-
nitude or less. We assumed that these paramagnetic centers
contributed �5% to the central regions of the MB spectra
and a similar percentage in the “wings.” This makes the EPR
signals consistent with the minor intensity associated with
paramagnetic centers in the MB of Fig. 1C, and it suggests

that most ISCs in WT E. coli cells are diamagnetic and oxi-
dized (i.e. [Fe4S4]2� and [Fe2S2]2� clusters).

The intensity of the NHHS FeII doublets was correlated to O2

levels during growth

In some spectra, the NHHS FeII doublets were significantly
more intense than in Fig. 1, reaching as high as 85% of overall
intensity for the MB spectra (Fig. 3). This variation was initially
puzzling because batches were grown on the same medium,
using the same concentration of nutrient 57FeIII citrate, and
harvested at about the same A600. Like Beauchene et al. (20), we
discovered that the concentration of NHHS FeII in cells was
affected by the O2 concentration in the culture. Subtle changes in
aerobicity (e.g. caused by differences in rotation rates of the shaker
or in volume ratios of liquid culture to flask capacity) affected the
intensity of the FeII spectral features. Higher concentrations of
NHHS FeII species correlate with lower O2 concentrations.

�fur cells have dysregulated FeII
LMM

We were surprised that modest changes in O2 had a signifi-
cant effect on the concentration of NHHS FeII in WT cells; we
had expected that FeII concentrations would be tightly regu-
lated by Fur. To investigate further, �fur cells were grown on
glucose media supplemented with 1, 10, and 100 �M 57FeIII

citrate. Like WT cells, �fur cells exhibited MB spectra domi-
nated by NHHS FeII and ISC doublets (Fig. 4). Iron concentra-
tions of a different set of �fur cells but grown in the same way
were 420 � 10, 1460 � 240, and 4300 � 70 �M, respectively
(n � 2 for each). The most significant spectroscopic difference
relative to WT was the increased intensity of the FeII

LMM dou-
blet relative to other features as the concentration of nutrient
iron increased. This effect was not observed in WT cells; it

Figure 2. Low-temperature X-band EPR spectra of whole packed E. coli
cells grown on glucose (G100E) or acetate (A100E) and harvested
under exponential growth conditions. Samples were grown in media
supplemented with 100 �M FeIII citrate. Composite simulations are the red
lines overlaying the data (black lines). Individual simulations are shown in
Fig. S3. Temperature was 10 K, microwave frequency was 9.38 GHz, micro-
wave power was 0.2 milliwatt, time constant was 0.293 s, and modulation
amplitude was 10 G.

A respiratory shield to protect low-mass FeII from oxidation
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implies that the species responsible for the FeII
LMM doublet is

not well regulated in �fur cells (13, 18). The presence of higher
concentrations of iron in �fur versus WT cells also implies

poorer regulation in �fur cells. These results differ from a pre-
vious report (13) in which the iron concentration in �fur cells
was less than that of WT cells. Perhaps the difference arises
because we harvested these cells during exponential phase,
whereas Abdul-Tehrani et al. (13) harvested them during sta-
tionary phase. The mechanism of Fur regulation implies that
the concentration of iron in �fur cells should be higher than in
WT cells, as we observed.

Mössbauer spectra of cells harvested at stationary phase were
dominated by magnetically ordered FeIII

WT cells harvested in stationary phase exhibited a broad
quadrupole doublet with parameters typical of magnetically
ordered FeIII (Fig. 5B). This doublet was largely absent in spec-
tra of cells harvested during exponential growth (Fig. 5A). The
FeII doublets were stronger in spectra from exponentially grow-
ing cells, whereas the ISC and residual doublet intensities were
almost unchanged regardless of growth phase. This suggests
that the species in the cell that gives rise to these latter doublets
are less sensitive to the metabolic changes associated with the
exponential 3 stationary shift than are the cell’s FeII species.
The overall percentage effect nearly doubled in the MB spec-
trum of stationary-phase cells relative to that of exponentially
growing cells. This implies that stationary-phase cells import
iron even when the cells are not growing. We observed a similar
phenomenon in yeast (35).

Figure 3. Mössbauer spectra (5 K, 0.05 T) of three separate batches (A, B, and
C) of WT E. coli cells grown in glucose under reduced O2 conditions. Blue and
green lines, simulations of the FeII

LMM and FeII
RET species, respectively.

Figure 4. Mössbauer spectra (5 K, 0.05 T) of whole �fur cells grown on
glucose medium and harvested during exponential phase. The concen-
tration of 57FeIII citrate was 1 (A), 10 (B), or 100 �M (C).

Figure 5. Mössbauer spectra (0.05 T) of whole E. coli cells grown on
minimal medium, supplemented with 100 �M 57Fe citrate, and har-
vested during exponential and stationary phases. A, WT cells harvested dur-
ing exponential growth. B, same as A but harvested in stationary phase. C, �ftnA
cells harvested during exponential growth. D, same as C except collected at 100 K.
E, same as C and D except harvested in stationary phase. Vertical dashed lines
between C and D highlight the FeIII sextet extending slightly from the baseline. F,
�bfr�dps cells harvested during exponential phase. G, same as F but harvested
during stationary phase. Spectra A, B, C, E, F, and G were collected at 5 K.

A respiratory shield to protect low-mass FeII from oxidation
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Magnetically ordered FeIII arises from oxyhydroxide
nanoparticles rather than ferritins

The magnetically ordered FeIII doublet was similar to that
arising from FeIII oxyhydroxide nanoparticles in mitochondria
for which ISC assembly is impaired (36) (see Fig. S4B). Also, the
high-field spectrum of the magnetically-ordered material in
E. coli (Fig. 5 of Popescu et al. 37) was remarkably similar to that
of mitochondrial nanoparticles (38, 39). Thus, we assign this
spectral feature to FeIII oxyhydroxide nanoparticles.

Some past investigators assigned this feature to iron bound in
ferritin cores (8, 15, 36), whereas others doubted such an
assignment (10, 11, 32, 39). To settle the issue, we repeated the
experiment using three genetic strains of E. coli (�ftnA, �bfr,
and �bfr�dps) in which ferritin-related genes were deleted. As
above, a portion of a growing culture was harvested during
exponential phase, and the remainder was harvested later in
stationary phase. In the experiments involving �ftnA and �bfr,
samples harvested during exponential growth exhibited little if
any intensity from the magnetically ordered doublet (see Fig. 5
(C and D) for �ftnA and Fig. S5A for �bfr), whereas the corre-
sponding samples harvested during stationary phase were
dominated by this material (Fig. 5E for �ftnA and Fig. S5B for
�bfr). The iron concentration of �ftnA cells increased from 1.2
to 2.0 mM as cells transitioned from exponential to stationary
phase. The corresponding iron concentration shifts for �bfr
and WT cells were from 1.6 to 1.8 mM and from 1.1 to 1.3 mM,
respectively.

The magnetically ordered iron in these spectra could not
have originated from the major ferritin or bacterioferritin in
E. coli because the corresponding genes had been deleted. The
�ftnA 5 K spectral baseline in Fig. 5C suggested a hint of mag-
netic material (�5% of total intensity) in the wings. We col-
lected a spectrum at 100 K and found that about half of the
intensity remained, suggesting that no more than �3% of cel-
lular iron might be due to ferritins. We cannot identify the
ferritin-like species that could be involved, but it cannot be
FtnA. The EPR spectrum suggests that most of the magnetic
material emanating from the baseline arose from high-spin S �
5⁄2 FeIII hemes and nonheme FeIII (see above). In summary, our
results indicate that no more than �3% of cellular iron (�50
�M) could be due to ferritins in any experiment performed in
this entire study.

The results of two experiments with the �bfr�dps strain dif-
fered from those of WT, �ftnA, or �bfr cells. In duplicate exper-
iments, the spectra of exponential and stationary phase were
similar (Fig. 5 (F and G) and Fig. S5 (C and D)); nanoparticles
did not form under what was ostensibly stationary phase. How-
ever, these cells grew slowly and may not have reached true
stationary phase when they were harvested. Also, the iron con-
centration of �bfr�dps cells declined slightly (from 980 to 880
�M) during the exponential3 stationary transition, which dif-
fered from the other ferritin mutants.

The iron content of E. coli is similar to that of mitochondria

We have studied mitochondria from yeast and human cells
extensively using MB and EPR spectroscopies (e.g. see Refs. 36,
38, and 40) and were surprised by the remarkable similarity to

E. coli. MB spectra of E. coli cells harvested during exponential
state were similar to those of mitochondria isolated from
respiring cells (compare Fig. 1 with Fig. S4A), whereas MB spec-
tra of E. coli cells harvested in stationary phase were similar to
those of mitochondria isolated from yeast cells with a defect in
ISC assembly (compare Fig. 5 (B and E) with Fig. S4B).

We have developed a chemical model that explains how
nanoparticles form in mitochondria from ISC-defective mu-
tants (41, 42). Accordingly, nanoparticles are generated when a
LMM FeII complex called Fe580 reacts with O2 or a derivative
thereof (Fig. 6, top). Our model assumes that the matrix of the
WT mitochondria is microaerobic under healthy conditions,
due to the ability of the iron-rich respiratory complexes on the
inner membrane to hinder O2 from diffusing into the matrix
and reacting with Fe580. In ISC-defective mutants, the respira-
tory complexes are less effective due to incomplete metallation
of these complexes. The additional O2 that diffuses into the
matrix of unhealthy mitochondria reacts with Fe580 to generate
nanoparticles in a vicious cycle.

The similar iron content of E. coli and mitochondria sug-
gested a similar explanation for how nanoparticles are gener-
ated in this bacterium during stationary phase. We hypothesize

Figure 6. Respiratory shield model for mitochondria (top) and E. coli
(bottom). The respiratory shield consists of the ISC- and heme-containing
respiratory complexes located in the inner membrane of mitochondria and
the cytoplasmic membrane of E. coli and other prokaryotes. The shield is
operational when cells are metabolically active, oxidizing nutrient carbon
and passing electrons through the respiratory electron-transfer chain and
reducing some diffusing O2 to water. With the shield operational, the cytoso-
lic regions become microaerobic. This protects the labile FeII pool in the cell
from reaction with O2. When cells transition to stationary phase, they become
metabolically less active, and the shield deactivates. Then additional O2 dif-
fuses into the cytosol, where it reacts more rapidly with the labile FeII pool,
forming FeIII oxyhydroxide nanoparticles. A similar deactivation of the shield
occurs when respiratory complex IV is inhibited by cyanide.

A respiratory shield to protect low-mass FeII from oxidation
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that the cytosol of exponentially growing E. coli cells is suffi-
ciently reducing to maintain the FeII state of a LMM FeII com-
plex called Fe500 (see below) and that this space is sufficiently
oxidizing in stationary-phase cells to support O2-dependent
oxidation of FeII3 FeIII oxyhydroxide nanoparticles.

For E. coli transitioning into stationary phase, the low activity
of respiratory complexes is caused, not by insufficient ISC or
heme centers, but by low metabolic levels. The flow of electrons
through respiratory centers can as readily be restricted by insuf-
ficient reducing equivalents as it can by insufficient iron cen-
ters. We suggest that the respiratory complexes on the periplas-
mic membrane of E. coli constitute a “shield” that partially
blocks O2 from penetrating the cytosol. This shield, when oper-
ational, maintains the cytosol in a microaerobic (although not
fully anaerobic) state. When exponentially growing cells
transition to stationary phase, metabolic activity declines and
the shield deactivates such that the cytosol becomes more
oxygenated.

Inhibiting respiratory complex IV with cyanide generates
nanoparticles from NHHS FeII in E. coli, suggesting a protective
“respiratory shield” against O2 or O2-derived species

To test this hypothesis, we inhibited cytochrome c oxidase
activity in exponentially growing cells by treating cells with
sodium cyanide, a well-known inhibitor of this respiratory
complex. Prior to treatment, cells grew rapidly (� � 0.26 h	1),
and after treatment, they quickly stopped growing (� �0 h	1).
MB samples of each state were prepared. After 90-min incuba-
tion, 13% of cellular iron in the form of NHHS FeII had con-
verted to nanoparticles, as observed in the difference MB spec-
trum (Fig. 7C). The parameters needed to simulate the
observed NHHS FeII doublet were those of FeII

LMM. The other
doublet was simulated using parameters typical of nanopar-
ticles (Table 1). That only the FeII

LMM doublet was affected
suggests that the iron species giving rise to this doublet is par-
ticularly susceptible to oxidation by O2 or its ROS derivatives.
We cannot exclude the possibility that the nanoparticle doublet
might include other forms of FeIII that have similar isomer shift
and quadrupole splitting parameters; nor can we exclude the
possibility that some effects of cyanide treatment may have
been due to the binding of cyanide to cellular species other than
cytochrome c oxidase.

Mössbauer spectra of LMM flow-through solutions and
retentate of E. coli soluble extracts distinguish FeII

RET from
FeII

LMM

We wondered whether the NHHS FeII species in E. coli that
give rise to the FeII

RET and/or FeII
LMM doublets were bound to

FeII-containing proteins or whether they were nonproteina-
ceous LMM FeII complexes. Such structural differences would
suggest different physiological roles. Small FeII complexes
might be associated with the LIP and function in iron traffick-
ing and regulation, in Fenton chemistry, and as substrates for
ISC/heme assembly (13, 18, 20, 21, 27, 43). In contrast, FeII-
containing proteins often serve catalytic roles.

To distinguish the species giving rise to these two FeII dou-
blets, three MB samples were brought into an anaerobic glove
box after their spectra had been collected. The averaged spec-

trum exhibited a strong NHHS FeII doublet (Fig. 8A), indicating
a high concentration of FeII species. Samples were thawed,
diluted with buffer, and lysed. The supernatant was then passed
through a 10-kDa cutoff membrane. The retentate and flow-
through solutions (FTSs) were collected and transferred to MB
cups. The retentate should have contained soluble iron-bound
proteins, whereas the FTS should have been largely protein-
free. The MB spectrum of the FTS (Fig. 8B) exhibited a sharp
NHHS FeII doublet, which was simulated using parameters of
the FeII

LMM doublet associated with whole-cell spectra (Table
1). This suggests that FeII

LMM is a LMM FeII complex that
passes through the 10-kDa cutoff membrane (which explains
our nomenclature). A MB spectrum of the FTS was also col-
lected at 6 T and 4.2 K (Fig. S2B). Although noisy, it could be
simulated using a high-spin FeII Hamiltonian.

The low-field 5 K MB spectrum of the retentate (Fig. 8C) also
exhibited the FeII

LMM doublet along with other features. The
presence of the FeII

LMM doublet in the retentate was expected
because we did not wash this solution (e.g. by adding buffer and
reconcentrating) to remove all traces of LMM FeII

LMM. To
highlight the other features in the retentate spectrum, we sub-
tracted the FeII

LMM doublet. The FeII
RET doublet was present in

the resulting spectrum (Fig. 8D), as was another broad doublet
near the central region. This latter doublet was composed of the
ISC and residual doublets. The species giving rise to these dou-
blets should be high-molecular-mass and probably proteina-
ceous, in that protein-bound iron cofactors should be retained
by the 10-kDa cutoff membrane.

Figure 7. Mössbauer spectra (5 K, 0.05 T) of cyanide-treated E. coli cells.
A, before treatment; B, after treatment. C, a difference spectrum of B 	 A. The
solid red line in C is a simulation in which the FeII

LMM doublet in A is replaced by
the nanoparticle doublet in B (13% of spectral intensity for each).

A respiratory shield to protect low-mass FeII from oxidation
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LC-ICP-MS chromatograms of flow-through solutions reveal
that the LIP consists of two iron complexes

In some samples, a portion of the FTS was analyzed for metal
concentrations. For one sample, the concentration of LMM
iron within the cell was back-calculated from the iron concen-
tration in the FTS. After multiplying by all dilution factors
involved in preparing the sample from whole cells, the concen-
tration of LMM iron species within whole cells was calculated
to be �200 �M.

We then used LC in conjunction with an online ICP-MS to
detect LMM iron species in soluble E. coli extracts. FTSs from
such extracts were separated on a size-exclusion column
designed to resolve LMM peptides, and the eluent fractions
flowed into an online ICP-MS. Iron-detected chromatograms
are shown in Fig. 9; those of the other elements are presented in
Fig. S6.

One major LMM iron species was detected in all chromato-
graphs, with a mass of �500 Da (to be referred to as Fe500). A
minor LMM iron species at �1300 Da was evident in all chro-
matograms but was more intense in FTSs from acetate-grown
cells. The intensities of Fe500 peaks did not vary systematically
with the concentration of nutrient iron in cells grown on glu-
cose, but in acetate-grown cells, Fe1300 increased with increas-
ing nutrient iron levels. In one experiment, the cells contained
370 �M iron (at a collective volume of 1.42 ml), whereas the 600
�l of FTS contained 230 �M iron. This suggests that �26% of
total cellular iron was LMM; this compares nicely to the MB
percentage of FeII

LMM for this sample, namely 20%. We con-

clude that Fe500 and Fe1300 collectively give rise to the FeII
LMM

doublet in the MB spectra of E. coli cells. We hypothesize that
these two LMM species constitute the LIP.

Discussion

Composition and properties of the LMM FeII pool in E. coli

In this study, we have isolated two LMM FeII complexes from
E. coli, which we call Fe500 and Fe1300 (subscripts indicate
approximate masses in Da). Fe500 was the major component in
all samples investigated. The concentration of Fe1300 was vari-
able, with higher levels in samples grown on acetate and under
iron-replete conditions. The concentration of this pool
depended on the level of O2 exposure during cell growth. Under
more aerobic conditions, the LMM FeII concentration in WT
E. coli cells was only �50 �M, whereas under less aerobic con-
ditions, it exceeded 500 �M in some samples.

Our results suggest that these LMM FeII complexes are not
artifacts of isolation. The � and �EQ parameters for the FeII

LMM
doublet exhibited by isolated FTS were the same as those for
MB spectra of intact E. coli cells. We generated the FTS from
whole cells rapidly in a refrigerated anaerobic glove box to avoid
oxidation to the FeIII state and to slow potential ligand-ex-
change reactions. The intensity of the FeII

LMM doublet in whole
cells varied with O2 levels similar to the effect observed by Kiley
and co-workers (20). Also, the FTS FeII quadrupole doublet was
sharper than would be expected for adventitious FeII, which
would generally be broadened due to heterogeneity. Also, the

Figure 8. Mössbauer spectra (5 K, 0.05 T) of whole E. coli cells and asso-
ciated retentate and flow-through solutions. A, sum of the spectra
obtained of the three samples used in the experiment; B, FTS; C, retentate; D,
same as C except after removing the FeII

LMM contribution.

Figure 9. 57Fe-detected LC-ICP-MS chromatograms of flow-through
solutions from exponentially grown E. coli cells. Traces A, B, and C were for
glucose-grown cells in which media were supplemented with 1, 10, and 100
�M

57FeIII citrate, respectively. D, E, and F, the same respective iron concentra-
tions for acetate-grown cells.

A respiratory shield to protect low-mass FeII from oxidation
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simplicity of the LMM chromatograms, which reproducibly
exhibited only peaks from Fe500 and Fe1300, is inconsistent with
our expectation that adventitious iron would show batch-to-
batch variation with multiple irreproducible peaks. Finally,
aqueous FeII/FeIII solutions, which would likely be a component
of adventitious iron, adsorb strongly on our columns (44),
whereas the LMM iron complexes observed here do not. We
hypothesize that the physiological labile iron pool in E. coli con-
sists mainly of one NHHS FeII complex with an approximate
mass of 500 Da. A second minor species with a mass of �1300
Da is also present. The low mass of these complexes suggests
that they are not proteins. We do not know the functions of
Fe500 or Fe1300 but speculate that they are involved in iron traf-
ficking, sensing, and/or regulation. They might serve as feed-
stock for building ISCs and/or hemes or for metallating various
apoenzymes. Further studies are required to evaluate these
possibilities.

Comparing � and �EQ parameters for the FeII
LMM doublet

with those from chemically defined high-spin FeII complexes
(Table 2) provides some insight into the coordination environ-
ment of Fe500. An FeII ion coordinated to six oxygen donors
affords similar parameters. The parameters for FeII

RET are
closer to those of FeII complexes with a mixture of nitrogen/
oxygen donor ligands.

A new perspective for iron regulation in E. coli

A popular notion is that only a small portion of cellular iron is
present as labile FeII, only enough for regulatory sensing and
trafficking so as to minimize Fenton chemistry (14, 23). Conse-
quently, the LIP is thought to be buffered in the low micromolar
range (35, 43, 45). This view is supported by our results for cells
grown under aerobic conditions; here, the concentration of the
LMM FeII pool was 50 �M or less. However, the situation is
different under microaerobic conditions in which the LMM
FeII concentration can exceed 500 �M. If KD for binding of FeII

to Fur equals �1 �M (17, 23, 28), virtually all Fur in these cells
should be bound with FeII under most nutrient iron conditions.
How might Fur serve as a regulator under these conditions?
One possibility is that the KD is actually weaker than 1 �M;
higher values have been reported (19, 22), including one as high
as KD � 280 �M. There is more than one binding site on Fur;
perhaps sites that bind FeII weakly may be physiologically rele-

vant. Another possibility is that only certain FeII complexes
within the LIP bind Fur, and yet another possibility is that LIP
levels in anaerobic/microaerobic cells are not as tightly regu-
lated as is generally assumed.

Beauchene et al. (20) suggested that expression of the feo
genes that control iron import under anaerobic conditions
might be controlled more by FNR than by Fur. However, our
results suggest that the concentration of FeII

LMM is Fur-depen-
dent. Its concentration in �fur cells was significantly affected by
the concentration of iron in the medium, whereas its concen-
tration in WT cells was not. Without Fur, FeII

LMM does not
seem to be well regulated.

A modified role of ferritins in E. coli

Abdul-Tehrani et al. (13) concluded from their MB study of
iron-replete WT E. coli that half of the iron in cells harvested in
stationary phase was bound to FtnA ferritin. They assumed that
the magnetically ordered FeIII material observed in MB spectra
of such cells arose from ferritin iron cores. During exponential
growth, the concentration of iron in the cell was about half of
what it was at stationary state, due, they suggested, to the
absence of the magnetically ordered FeIII (i.e. FtnA-bound
iron). This conclusion was reasonable because expression of
FtnA increases 10-fold as exponentially growing cells transition
to stationary phase (13).

In contrast, we found virtually no evidence for iron bound to
ferritin in any E. coli sample studied, including iron-replete WT
samples harvested at stationary state. We observed an intense
magnetically ordered FeIII doublet in 5 K MB spectra of station-
ary-phase cells, and indeed this material represented over half
of the iron in those samples. However, this material does not
arise from FtnA-bound iron, as evidenced by the following
results. First, the same doublet was observed in stationary-state
cells lacking FtnA and Bfr. The doublet had � and �EQ typical of
FeIII oxyhydroxide nanoparticles in mitochondria. The TB of
the doublet, like that of mitochondrial nanoparticles, is �5 K.
This explains why we observed (in E. coli spectra) a broad dou-
blet at 5 K, whereas others observed magnetic interactions for
the same material at 1.7 K (13).

Although the baselines of our 5 K MB spectra were largely
devoid of any features, some spectra exhibited very low-inten-
sity features that could be due to ferritins. The intensity of these
features represented �5% or less of total cellular iron. Such
features had characteristics (at 5 K and 0.05 T) of either ferritin-
associated iron or high-spin FeIII heme or nonheme centers;
these possibilities could not be distinguished. However, similar
features were evident in spectra of samples in which FtnA had
been deleted, in which case the features could not have origi-
nated from that ferritin. Also, EPR spectra of packed E. coli cells
exhibited three low-field signals arising from mononuclear S �
5⁄2 FeIII hemes and nonheme species. Such spin systems could
have given rise to the MB baseline features. The 100 K high-
temperature MB spectra of �ftnA cells exhibited similar mag-
netic features as at 5 K (but with reduced intensity). Collec-
tively, our results demonstrate that no more than half of these
minor MB features, barely distinguishable from baseline, could
have arisen from FtnA-bound iron.

Table 2
Comparison of Mössbauer parameters associated with the two low-
molecular mass NHHS FeII species observed in spectra of E. coli cells to
selected FeII complexes
The numbers of oxygen and nitrogen donor atoms coordinating the complexes are
indicated by subscripts.
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Evolution of respiratory shields as a strategy for dealing with
O2 and iron

Chemiosmotic coupling is as ancient a process as transcrip-
tion and translation, and it is universally employed to generate
energy in living systems (46). We propose that this process has
important consequences for iron metabolism. Prior to the dra-
matic increase in atmospheric O2 due to the evolution of pho-
tosynthetic organisms, early prokaryotes used molecules other
than O2 as terminal electron acceptors in chemiosmotic cou-
pling. During that era, aqueous FeII dominated the environ-
ment, so these ancestral cells imported FeII and trafficked these
ions through the cytosol for use in ISC assembly. This was fol-
lowed by installation into various proteins, including nonoxy-
genic respiratory complexes located on the periplasmic mem-
brane. Once O2 appeared in the environment, it replaced these
other molecules as the terminal electron acceptor in chemios-
motic energy coupling. This boosted the thermodynamics of
the process such that more ATP could be generated per elec-
tron transferred. However, it also had negative consequences
for iron trafficking and ROS damage.

We hypothesize that the newly evolved OXPHOS process
provided a “respiratory shield” for these early prokaryotes. Such
a shield is not a new concept; previous studies have provided
evidence for it in aerobic bacteria. Azotobacter vinelandii uses a
respiratory shield to protect nitrogenase, an extremely O2-sen-
sitive enzyme (47). In fact, the nitrogenase iron protein remains
active when expressed in the mitochondrial matrix of yeast
(48), which should be encapsulated by a respiratory shield on
the inner membrane.

We hypothesize that during early stages of evolution, the
shield maintained the cytosol at low O2 concentrations as the
pressure in the atmosphere increased. This allowed cytosolic
FeII ions to continue to be used in trafficking because such ions
were shielded from oxidation to the poorly soluble FeIII state.
For this reason, hexaqua FeIII complexes could not be used in
iron trafficking. Maintaining the respiratory shield simply
required that the organisms metabolize nutrients fast enough
to generate a rapid flow of electrons into the respiratory com-
plexes, which in turn reduced O2 fast enough to limit its diffu-
sion into the cytosol.

Respiratory shields provide “safe spaces” for O2-sensitive
biochemistry in aerobic prokaryotes and mitochondria

At a later stage in evolution, an ancestor of �-proteobacteria
was engulfed by a proto-eukaryotic host, culminating in a sym-
biotic relationship in which mitochondria provided chemical
energy to the host via OXPHOS (49). Mitochondria and their
bacterial ancestors share similar iron-rich respiration-related
proteins as well as a suite of proteins involved in ISC biosynthe-
sis (50, 51).

We report here that the iron content of E. coli and mitochon-
dria are remarkably similar, at least at the coarse-grain level
accessible by our methods. We recently proposed that the mito-
chondrial matrix in healthy eukaryotic cells is microaerobic and
that this provides a safe space for O2-sensitive enzymes (41, 42).
This is especially important for ISC biosynthesis, an O2-sensi-
tive process that occurs in the matrix. The matrix contains a

pool of labile LMM NHHS FeII (called Fe580) that gives rise to a
quadrupole doublet in MB spectra (Fig. S4, blue line) (52). Fe580
in mitochondria and Fe500 in E. coli may both serve as feedstock
for ISC biosynthesis and possibly for the iron insertion step of
heme biosynthesis. Although the two LMM complexes have
different names, we cannot exclude the possibility that they are
the same complex. Isolated mitochondria also exhibit an ISC
doublet (Fig. S4, green line) with parameters that are nearly
identical to those of the ISC doublet in E. coli spectra.

Previous results from the Lindahl laboratory (42, 52) suggest
that nanoparticles form in mitochondria when O2 penetrates
the matrix and reacts with Fe580, as illustrated in Fig. 6 (top). O2
penetrates ISC-deficient mitochondria because the respiratory
shield is disabled. Under these conditions, the respiratory com-
plexes are probably not fully loaded with ISCs and heme cen-
ters, and are thus unable to transfer sufficient electrons from
the tricarboxylic acid cycle to cytochrome c oxidase and then to
O2. In healthy mitochondria, more of the O2 that diffuses to the
IM is reduced to H2O so that this diatomic molecule cannot
overwhelm the matrix. We now propose an equivalent mecha-
nism in E. coli and other aerobic bacteria (Fig. 6, bottom). Elec-
trons generated by the metabolic activity of the cell are deliv-
ered to the inner membrane complexes and eventually to
cytochrome c oxidase. This rapidly reduces some of the O2 that
would otherwise diffuse into the cytosol. When the metabolic
activity of the organism declines, as when cells transition to
stationary phase, more O2 penetrates the cytosol, where it can
react with Fe500 to form nanoparticles. The content and O2-as-
sociated reactivity of iron in mitochondria and bacteria are sim-
ilar largely because both have respiratory shields.

Examining the iron content of all bacteria is not possible, but
published MB spectra of various bacteria support a common
iron content, at least at the coarse-grain level of our analysis.
The MB spectra of Pseudomonas aeruginosa whole cells (har-
vested after 44 h of growth) exhibit the same features as we
observed for E. coli and mitochondria, namely a magnetically
ordered FeIII doublet, an ISC doublet, and a NHHS FeII doublet
(53). The 82 K MB spectrum of Proteus mirabilis consists of a
broad magnetically ordered FeIII doublet as well as a NHHS FeII

doublet (54). MB spectra of Erwinia chrysanthemi (grown on
glucose, harvested in stationary state) exhibit a magnetically
ordered FeIII doublet and a NHHS FeII doublet (55).

To provide further evidence for a common (coarse-grain)
iron content in prokaryotes, we examined the MB spectrum of
Gram-positive Bacillus subtilis harvested under exponential
growth conditions. As predicted, the spectrum (Fig. S7) was
similar to those of E. coli and mitochondria. The MB spectrum
of B. subtilis exhibited more magnetic iron than in E. coli or
mitochondria, but the difference is only one of degree.
Viewed collectively, these results provide strong support for
a common (coarse-grain) iron content in aerobic pro-
karyotes and mitochondria.

The respiratory shield, NHHS FeII
LMM, and nanoparticles might

collectively serve to regulate and store iron in prokaryotes

Eukaryotes protect against Fenton chemistry by minimizing
the concentration of FeII in the cytosol and by storing excess
iron in ferritin (or in vacuoles, for fungi and plants). It was

A respiratory shield to protect low-mass FeII from oxidation
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reasonable to assume that E. coli and other prokaryotes use the
same strategies. However, this does not appear to be the case. As
strange as it sounds, metabolically active aerobic E. coli simply do
not store much iron, certainly not in ferritin cores. Under lower O2

conditions, E. coli does not minimize the concentration of labile
FeII species in the cytosol; in fact, they might store iron as labile
FeII. Metabolically active E. coli avoid Fenton chemistry by reduc-
ing the amount of O2 that diffuses into the cytosol via the respira-
tory shield. Metabolically dormant E. coli store iron mainly as FeIII

oxyhydroxide nanoparticles. Although we have not determined
whether E. coli can utilize such iron when they reactivate metabol-
ically, yeast cells are able to do this (56). The implication is that
ferritins play more specialized and limited roles in storing iron in
E. coli cells than has been considered previously.

The love-hate relationship of cells with O2 involves respiratory
shields and antioxidant swords

The concentration of O2 in the mitochondrial matrix, E. coli,
and other aerobic prokaryotes has not been measured directly,
so estimates vary. Unden and co-workers (57) measured O2

consumption rates of bacterial cultures and calculated O2 dif-
fusion rates. They concluded that the O2 concentration in the
cytosol of bacteria is essentially the same as in external aerobic
environments. This conclusion implies that the respiratory
shield is weak and ineffective, and it supports the view that a
multilayered antioxidant system (involving SOD, catalases, per-
oxidases, etc.) is continuously and vigorously fighting against ROS
damage in healthy metabolically active cells and rapidly repairing
any damage that occurs. We stress that the respiratory shield is not
completely effective in preventing O2 from entering the cytosol or
matrix, and we recognize the critical importance of the antioxidant
system. These protected spaces certainly contain some O2 and
O2-derived ROS, as evidenced by enzymes (e.g. dioxygenases,
superoxide dismutases, and FNR) that are in these spaces and use
O2 as substrates. However, we suggest that cells use both a respi-
ratory “shield” and an antioxidant “sword” in their battle with O2.
By locating the respiratory shield near their peripheries, cells reap
the energetic benefits of using O2 in OXPHOS while at the same
time minimizing exposure to O2-sensitive cytosolic species. We
look forward to probing further this intriguing love-hate relation-
ship between aerobic cells and the molecule that they so desper-
ately need but also the one that poses an existential threat to their
very survival.

Experimental procedures

Construction of cell strains

The �fur::kanR, �ftnA::kanR, and �bfr::kanR�dps::cmR muta-
tions were constructed by replacing the indicated open reading
frames in strain DY330 with the kanamycin resistance cassette
(kanR) from pKD4 or the chloramphenicol resistance cassette
(cmR) from pKD3 using the � RED system as described (58).
Mutations were moved by P1 transduction into the MG1655 or
other strain backgrounds. MG1655 �bfr was generated by
removal of the kanR cassette from the MG1655 �bfr::kanR

strain using the pCP20 plasmid as described (58).

Cells and growth

A single colony of each strain was inoculated into 50 ml of
M9 minimal medium containing 0.2% (w/v) glucose. Cultures
were incubated overnight at 37 °C and �200 rpm. Grown cul-
tures were used to inoculate 1–2 liters of the same medium but
supplemented with 1, 10, or 100 �M 57FeIII citrate. For expo-
nential growths, cells were harvested at A6oo � 0.5– 0.8. Sta-
tionary-phase samples were harvested at A6oo �1.2.

The same procedure was used for cells grown on acetate
except that the medium contained 0.4% (w/v) sodium acetate
rather than glucose. For MB or EPR samples, harvested cells
were centrifuged and washed with 50 ml of 50 mM EDTA, 100
mM sodium oxalate, 100 mM NaCl, and 10 mM KCl. Washed
cells were packed into either MB cups or EPR tubes and then
frozen in liquid N2. WT B. subtilis cells (a generous gift of Jen-
nifer K Herman, Texas A&M University (TAMU)) were grown
in glucose-containing M9 medium under aerobic conditions
and supplemented with 100 �M 57Fe citrate. Cells were har-
vested during exponential phase (A600 � 0.6) and a MB sample
was prepared as above.

For experiments involving cyanide, WT cells were inoculated
into 2 liters of minimal medium containing glucose and 100 �M

iron citrate in a 2.8-liter baffled flask and incubated as above.
Half of the cells were harvested during exponential phase (A600

�0.65) and used to prepare a MB sample. The other half was
incubated with 3.0 mM KCN (final concentration) and then
used to prepare an MB sample after 1.5 h of incubation. Metal
analysis and LC-ICP-MS experiments were performed essen-
tially as described (42, 44) using MB samples after spectra had
been collected. For metal analyses, a packing efficiency of 0.7
volume of cells/volume of packed wet cells was assumed, as was
a density of 1.1 g/ml.

For LC-ICP-MS studies, samples (�800 �l) were thawed in
the glove box and suspended in a 15-ml Falcon tube containing
5.0 ml of 20 mM ammonium bicarbonate, pH 8.5, �100 mg of
lysozyme (Sigma-Aldrich), and 2.0 ml of 0.1-mm diameter acid-
washed glass beads (Sigma-Aldrich). The suspension was vor-
texed for 5 min and then placed in an ice bath for 5 min. This
process was repeated twice. The lysate was then centrifuged for 15
min at 12,000 
 g (Sorvall Evolution RC centrifuge, GSA rotor).
One ml of supernatant was mixed with 1.0 ml of 2% (v/v) Triton
X-100 (Sigma-Aldrich), affording a 1% final concentration of Tri-
ton. The solution was vortexed for 30 min. (The remaining super-
natant was frozen at 	80 °C.) The Triton-containing lysate was
spun at 12,000 
 g for 15 min. The resulting supernatant (�2 ml)
was passed through an Ultracel 10-kDa ultrafiltration membrane
using a stirred cell concentrator (Amicon, Millipore). Three hun-
dred microliters of each FTS was injected onto two Superdex Pep-
tide 10/300 GL (GE Healthcare) columns connected in series,
equilibrated in 20 mM ammonium bicarbonate, pH 8.5.

Mössbauer spectra were collected on an MS4 WRC or
LHe6T spectrometer (SEE Co., Edina, MN). Spectra were sim-
ulated with WMOSS software, and calibrated at room temper-
ature with �-iron foil. EPR spectra were recorded using an
X-band Elexsys E500 spectrometer (Bruker Biospin Corp., Bil-
lerica, MA). EPR spectra were simulated using SpinCount.

A respiratory shield to protect low-mass FeII from oxidation

60 J. Biol. Chem. (2019) 294(1) 50 –62

 by guest on M
ay 5, 2020

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


Author contributions—J. D. W., F. W. O., and P. A. L. conceptualiza-
tion; J. D. W., F. W. O., and P. A. L. formal analysis; J. D. W., N. B., and
N. D. investigation; J. D. W., F. W. O., and P. A. L. writing-review and
editing; N. D. methodology; F. W. O. and P. A. L. supervision; F. W. O.
and P. A. L. resources; F. W. O. and P. A. L. funding acquisition; P. A. L.
writing-original draft.

References
1. Mettert, E. L., and Kiley, P. J. (2015) How Is Fe-S Cluster Formation Reg-

ulated? Annu. Rev. Microbiol. 69, 505–526 CrossRef Medline
2. Rouault, T. A., and Tong, W. H. (2005) Iron–sulphur cluster biogenesis

and mitochondrial iron homeostasis. Nat. Rev. 6, 345–351 CrossRef
Medline

3. Braymer, J. J., and Lill, R. (2017) Iron-sulfur cluster biogenesis and traffick-
ing in mitochondria. J. Biol. Chem. 292, 12754 –12763 CrossRef Medline

4. Outten, F. W., and Theil, E. C. (2009) Iron-based redox switches in biol-
ogy. Antioxid. Redox Signal. 11, 1029 –1046 CrossRef Medline

5. Gütlich, P., Bill, E., and Trautwein, A. X. (2011) Mössbauer Spectroscopy
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and Moore, G. R. (1991) Mössbauer spectroscopic studies of iron in Pseu-
domonas ariginosa. J. Inorg. Biochem. 43, 753–758 CrossRef Medline

54. Dickson, D. P. E., and Rottem, S. (1979) Mössbauer spectroscopic studies
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