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Cooperative Deep Q-learning Framework for
Environments Providing Image Feedback

Krishnan Raghavan, Member, IEEE, Vignesh Narayanan, Member, IEEE,
and Sarangapani Jagannathan, Fellow, IEEE

Abstract—In this paper, we address two key challenges in
deep reinforcement learning setting, sample inefficiency and
slow learning, with a dual NN-driven learning approach. In
the proposed approach, we use two deep NNs with independent
initialization to robustly approximate the action-value function
in the presence of image inputs. In particular, we develop a
temporal difference (TD) error-driven learning approach, where
we introduce a set of linear transformations of the TD error
to directly update the parameters of each layer in the deep
NN. We demonstrate theoretically that the cost minimized by
the error-driven learning (EDL) regime is an approximation
of the empirical cost and the approximation error reduces as
learning progresses, irrespective of the size of the network. Using
simulation analysis, we show that the proposed methods enables
faster learning and convergence and requires reduced buffer size
(thereby increasing the sample efficiency).

Index Terms—Deep neural-networks, Deep Q-learning, Games,
Images.

I. INTRODUCTION

Control of complex systems is an important research thrust
in the domain of science and engineering [1]–[3]. In a typ-
ical application, sensors’ measure physical quantities such
as position, velocity, pressure, and temperature. These mea-
surements are then utilized to design controllers that solve
control/decision making tasks. However, in many applications
such as the self-driving autonomous cars or control tasks per-
formed by humans, sensory inputs are often encoded as images
and/or audio signals. More recently, deep learning has enabled
NNs to decode complex abstractions from measurement data.
For instance, in the context of reinforcement learning (RL), the
deep RL (DRL) facilitates complex decision-making problems
involving high-dimensional state such as images and audio
inputs and action spaces [4]. Despite decades of research,
learning controllers for complex physical systems cannot be
designed with performance guarantees when the sensors gen-
erate a sequence of images or audio signals [5] as feedback
data for learning. One of the key reasons is that, deep neural
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networks (DNNs) with many hidden-layers are required to
extract complex abstractions from images or audio signals [6].
However, the complex compositional structure of a deep NN
does not allow for traditional Lyapunov theory-based analysis
to provide any suitable conclusion about the performance
of the DNN-based controller without making severe limiting
assumptions.

A typical RL task is composed of three steps: (1.) an agent
selects an action and utilizes it to actutate or effect change in
the environment, (2.) the environment, as a consequence of the
action, transitions from its current state to a new state, and (3.)
the environment then provides a scalar reinforcement/reward
signal as feedback. By performing these three steps repeatedly,
the agent explores the environment and accumulates expe-
riences or knowledge regarding the environment. Based on
these experiences collected over time, the agent learns the best
sequence of actions from any situation/state [7] to achieve a
desired objective/goal.

The desired objective is typically described as a function
of the temporal difference (TD) error and this objective is
estimated through an RL agent (Q−network parameterized
by NN) and its clone (a target) [4]. A typical DRL learning
scheme such as the one introduced in [4] aims to successively
nudge the target network towards the optimal Q−function
while the Q-network is trained to be close to the target. The
key distinction between the target in a DRL task with that of
supervised learning task is that the targets in a DRL problem
are non-stationary [4]. Consequentially, efficient learning re-
quires accurate approximation of the target, i.e., the optimal Q-
function and efficient learning is pivotal on two key conditions:
efficient use of experiences and sufficient exploration of the
parameter or weight space.

To enhance the process of collecting and efficiently utilizing
experiences within high-dimensional state (such as images
and audio inputs) and action spaces [8]–[11], an experience
replay strategy [12]–[15] is usually employed in RL schemes.
However, the memory space to store the experiences may
be limited or expensive in many applications, and therefore,
a mechanism to omit irrelevant experiences is desirable and
have been considered [15]–[17]. Despite appropriate sample
selection strategies, useful experiences may be discarded. For
instance, experiences collected initially, that are near the initial
states, may be useful, but when some experiences are omitted
based on time or reward, these experiences may be discarded.
Even when these initial experiences are not discarded, they
have the tendency to bias the learning procedure, [4], [18] as
the agent may spend more time exploring states dictated by
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the initial experiences but these experiences do not contribute
positively to the overall objective of the agent. Despite several
successful applications of DRL, these strategies of discarding
or utilizing experiences, in general, are typically sample-
inefficient [19], [20].

On the other hand, a tractable and efficient training strategy
to use these experiences and update the network parameters
is essential [21], [22]. The most common strategy for train-
ing DNNs is the back-propagation/stochastic gradient descent
(SGD) algorithm [4]. Despite promising results, SGD suffers
from issues such as vanishing gradient problem and slow
learning [23]–[25]. Many alternative approaches have been
introduced in the literature to target these issues [24], [26]–
[29]. One prominent method is a direct error driven learning
(EDL) approach that was proposed to train DNNs [24] in the
context of supervised learning. However, the EDL approach
was not evaluated in DRL applications with image pixels as
the NN inputs and a theoretical analysis of the EDL algorithm
is a missing component in [24].

To address these issues, we introduce a dual-NN driven
exploratory learning approach, wherein we improve sample ef-
ficiency using two NNs that are updated alternatively using the
EDL update rule. We refer to this dual-NN driven alternative
update mechanism as the cooperative update strategy (coop).
In particular, the two DNNs estimate and minimize the desired
objective (a function of TD errors). Each DNN alternatively
behaves as the target and the Q−network, therefore, each NN
is allowed to exploit, while behaving as target, and explore,
while behaving as Q−network.

In this setting, we adapt and expand the direct EDL rule
proposed in [24] to the case of DRL. In the EDL update
rule, we transform the temporal difference (TD) error onto
each layer in the deep NN through a non-singular matrix
(linear transformation). Since the choice of the transformation
matrix is critical, we construct this matrix for the purpose of
increased exploration. We show that the solutions obtained
with our scheme are as good as the typical SGD. We show
that our coop approach a) improves sample efficiency; b)
enables better exploration; c) results in faster convergence
and d) provides better performance in the context of online
games using DRL. The contributions of this paper include:
(1) alternative optimization-driven online learning approach
for DRL involving high-dimensional state and action spaces
to address sample efficiency; (2) extension of direct error-
driven to RL with the cooperative learning strategy in order to
mitigate vanishing gradient problem; (3) convergence analysis
of the learning scheme.

II. BACKGROUND

In this section, we begin with a brief background on the RL
problem, and then, introduce the notations used in the paper
along with DNNs. Finally, we formally introduce the problem
considered in this work. Additional background details are also
provided in the Appendix.

A. RL Preliminaries
The RL problems can be formulated as Markov decision

processes (MDPs) composed of a state-space S, an action

space A, a state-transition function T : S × A → S , and
a reward function R [30]. During the learning process, an RL
agent perceives the environmental information, described by
the state x(k) ∈ S and takes an action u(k) ∈ A so that the
environment transits from the current state to the next state
x(k+1) based on the transition function T . The action u(k) is,
in general, based on a policy π : S → A, and in this process,
the agent receives an external scalar reward/reinforcement
signal r(k+ 1) ∈ R from the environment. The set composed
of {x(k), u(k), x(k + 1), r(k + 1)} is collected as experience
by the RL agent to learn the value function or the Q-function.
In this work, we utilize a DNN-based architecture to learn and
approximate Q-functions in control/decision making problems
concerned with systems/environments using data (from the
environment) in the form of images.

B. DNNs and notations

Consider a feed-forward NN with d layers denoted using a
parametric map y(z;θ), where z is the input and θ denotes
the weight parameters. In particular, let θ = [W (1) · · ·W (d)]
denote the ideal weights of the DNN such that the paramet-
ric map y(z;θ) is an approximation to a smooth nonlinear
function F(z) with compact support and an approximation
error ε [31] such that F(z) = y(z,θ) + ε. The term f (i),
for i = 1, . . . , d denotes the layer-wise activation functions
(applied component-wise to the vector input) corresponding
to the d layers. In our proposed framework, we will employ
such NNs to approximate the unknown function F(z). Let the
estimated weights be denoted by θ̂ = [Ŵ

(1)
· · · Ŵ

(d)
] such

that the estimated net is denoted by ŷ(z, θ̂), where the symbol
(̂·) is used to denote the estimated quantities. Additionally,
throughout the paper, we use standard mathematical notations.
Specifically, we use N and R to denote the set of natural num-
bers and real numbers, respectively. In the analysis presented
in this paper, we use ‖.‖ to denote the Euclidean norm for
vectors and Frobenius norm for matrices. In the following, we
formally introduce the problem considered in this paper.

C. Problem description

We consider an RL problem, where the dynamics or the
transition function, T , of the environment are given as

x(k + 1) = T (x(k),u(k),ω(k)), (1)

where x(k) ∼ p(S) is the state of the system at the kth

sampling instant, u(k) (actions) is the input to the system, and
ω(k) is some internal fluctuation, e.g., noise. We will define
a compact set S to describe all the states that can be observed
by the agent and p(S) describes a distribution on the states.
Typically, the exact dynamics of the system are unknown at
any sampling instant k. We consider applications where the
system output (i.e., the feedback data) is a sequence of images
or snapshots. The input to the (learning) model are raw images
that are pre-processed. We follow the pre-processing procedure
detailed in [4] and the input to our network is four images of
size 84 × 84. One key difference between standard learning
schemes and DRL is that the images are not the states of
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the system. These images encode the states and it is the job
of the NN to extract the states. Hence, the exact states are
unknown to the model and must be extracted from the images.
For instance, consider the game breakout, where the state of
the game is represented by the position of the bar at the bottom
of the screen. Since, the exact position of the bar is unknown,
the NN must extract it from the images of the screen. With this
feedback information, we seek to train an RL agent to learn a
sequence of actions that yields maximum cumulative reward.
We denote the reward functions by r(x(k),u(k)), which is a
function of both the state and the action or control inputs such
that for a given (state, action pair) (x(k),u(k)) and an action
policy π, the Q-function is given as

Qπ(x(k),u(k)) =

∞∑
k=0

γkr(x(k),u(k)), (2)

where γ ∈ (0, 1) is the discount factor. In a typical DRL envi-
ronment, the reward and images are obtained from an emulator.
Our goal is to utilize the state and reward information from
the environment to develop a learning framework to iteratively
learn the optimal sequence of actions for a given task. Since,
the optimality for a sequence of actions is determined by the
Q−function, we seek to learn the optimal Q−function using
NN, and since the feedback is in the form of images, we
incorporate DNNs in our architecture.

III. PROPOSED METHOD

In this section, we first introduce the optimization problem
and the overall learning architecture. Later, we introduce the
learning scheme to train the DNNs in the proposed architec-
ture.

A. RL Approximation of Q-values
The RL agent receives feedback information from the

environment in the form of images, the RL agent must learn
a map between the inputs and the Q values corresponding to
a fixed policy (a greedy policy is considered in this paper).
To update the Q values, we use the Bellman’s principle of
optimality [30] such that the optimal Q function satisfies

Q∗(x(k),u(k)) = maxu(k)(r(x(k),u(k))

+γk(Q∗(x(k + 1),u(k + 1))),
(3)

where Q∗ is the optimal Q-function. Let ρ(A) describe a
distribution over A. The greedy policy or the optimal control
is given as

u∗(x(k)) = argmaxu(k)∼ρ(Q
ρ(x(k),u(k))), (4)

where we use the notation ρ to denote ρ(A). When the
dynamics are known as in a linear system, the evaluation of
the optimal input to the system is well-known [32]. However,
in most general cases, the system/environment dynamics are
often unknown. Therefore, the optimal Q-function, and in turn
the control policy, have to be approximated. In this work, we
will approximate the Q-function value for each action in the
set A by defining a generic parametric map, y(x(k),u(k);θ)
with an ideal set of parameters θ such that

u∗(x(k)) = argmaxu(k)∈A(y(x(k),u(k);θ)). (5)

The learning problem is to find an approximation ŷ with pa-
rameters θ̂(k) for the function y. We employ DNNs as function
approximators to learn ŷ. To train the weights of the DNN, the
cost is defined as the expected value over all the states and all
the actions such that Ex(k)∼p(S),u(k)∼ρ(A)[J(θ̂(k))], where

J(θ̂(k)) =
1

2
(y(x(k),u(k);θ(k))− ŷ(x(k),u(k); θ̂(k)))2,

(6)
with target y(x(k),u(k);θ(k)) = r(x(k),u(k)) +
γkQ̂∗(x(k + 1),u(k + 1)), coming from the Bellman
equation with Q̂∗ denoting the approximation of the optimal
Q-value obtained by extrapolating the current Q-function
estimate. Therefore, we may write

θ̂(k) = arg minθ̂(k)Ex(k)∈S,u(k)∼ρ(A)[
JE(x(k),u(k), ŷ(x(k),u(k); θ̂(k)))

]
,

(7)

with

JE(x(k),u(k), ŷ(x(k),u(k); θ̂(k))) =

1

2

[
rk + γkQ̂∗k+1 − ŷk

]2
=

1

2

[
εk
]2
,

To simplify notations, we have used rk to denote
r(x(k),u(k)) and denote Q̂∗(x(k + 1),u(k + 1)) by Q̂∗k+1

and ŷ(k; θ̂(k)) by ŷk. Note that rk + γkQ̂∗k+1 − ŷk is the
temporal difference (TD) error denoted as εk from here on.
The empirical cost which we seek to minimize is the squared
temporal difference error.

B. Deep Q Learning

Fig. 1: DQN Algorithm

A learning algorithm to solve the optimization problem in
Eq. (8) was provided in [4]. In [4], the total learning process
was split into episodes. For each episode, there are several
plays, each play is comprised of five basic steps (refer Fig. 1):
(1) current state is inferred from images provided by the envi-
ronment; (2) this state information is utilized by the Q-network
to generate actions; (3) the actions are then presented to the
environment; (4) the environment evolves and provides the
rewards and the next state via images; (5) the tuple of (current
state, next state, action, reward) is stored into an experience
replay array as batches; (6) Finally, batches are sampled from
the experience replay array to update the network parameters
using the gradient of JE(x(k),u(k), ŷ(x(k); θ̂(k))).

In a typical DRL algorithm [4], the TD error (εk =
rk + γkQ̂∗k+1 − ŷk) is computed by extrapolating the cur-
rent Q-network to ’guess’ the Q-values of future states (the
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target). This is typically achieved by defining two net-
works (Q−network and target) and periodically copying the
weights of the current Q-network to the target. Then, the
current state is used as input to the Q-network to generate
ŷk while the future state is used as an input to the target
to generate Q̂∗k+1. Using the εk we update the weights of
ŷ(x(k); θ̂(k)) during the next C plays.

C. Cooperative dual network architecture (coop)

Fig. 2: Schematic diagram illustrating the Co-op dual DQN
architecture. During learning the NNs (NN 1 and NN 2) switch
roles as shown in (a) and (b). In (a) NN 2 is trained using the

experience stored in the memory buffer with targets given by NN 1;
and in (b) the NNs swap their roles.

Our coop strategy utilizes the algorithm from [4] (also
described in III-B) but incorporates two DNNs initialized at
random with different hyper-parameters-(weights and biases)
instead of the periodically cloning the Q−network every C-
plays.

Our coop strategy is comprised of two steps: first, we desig-
nate one of the NNs, say NN 1, to generate the targets (future
state is given as input to NN 1) and NN 2 for generating
action (current state is given as input), where we update the
weights of NN 2. Subsequently, in the following iteration,
NN 2 generates the target and NN 1 generate the action. We
always update the network that generates the action and with
alternative updates, the two NNs play the role of learning the
Q function and the target respectively (see Fig. 2).

The rationale behind the proposed learning scheme where
the NNs have cooperative functionality are two fold. We
expect that the NNs encode the training data from the samples
much more efficiently while reducing the memory footprint
and necessity of raw data stored in the memory buffer,
thereby improving sampling efficiency. Secondly, since each
NN obtains target from the other NN during training, these
NNs are expected to converge asymptotically while improving
the robustness of the learning. In the numerical experiments
presented in Section IV, we show that equipped with a
exploratory error driven learning rule, the proposed learning
architecture is robust, improves the sample utilization and
performs better with lesser buffer memory, and converges
faster when compared with the existing results [4].

D. Error driven TD learning

To minimize the empirical cost, gradient-based update rules
are commonly employed [33], [34]. These update rules are
typically written as

Ŵ
(i)

(k + 1) = Ŵ
(i)

(k) + α∆(i)(k), (8)

where α > 0 is the learning rate, i is the layer number, k is
the sampling instant, and ∆(i)(k) is the parameter adjustment
made along a descent direction by using the gradient of
the error propagated backwards from the output layer of the
network [25], [33]. To simplify notations, we switch to a sub-
script notation instead of expressing the sampling instance in
parenthesis, so that (8) is rewritten as Ŵ

(i)

k+1 = Ŵ
(i)

k +α∆
(i)
k .

From here on, for brevity, the notation of the expected value
operator is suppressed, and we refer to the expected value
of the cost as just the cost value. Furthermore, we add a
regularization term to the cost function such that the revised
cost is written as

H(θ̂k) =
[
JE(θ̂k) +

d∑
i=1

λ(i)Rk(Ŵ
(i)

k )
]
, (9)

where λ(i) > 0 is the decay coefficient, Rk(Ŵ
(i)

k ) denotes the
function of regularization applied on the weights Ŵ

(i)

k , and
the optimal cost H∗(θ̂k) satisfies

H∗(θ̂k) = min
θ̂∈Ω

[
JE(θ̂k) +

d∑
i=1

λ(i)Rk(Ŵ
(i)

k )
]
, (10)

where JE(θ̂k) is used in place of JE(x(k),u(k); θ̂(k)). The
weight adjustment at each iteration k is given as

∆
(i)
k = −

[
∇
Ŵ

(i)
k

H(θ̂k)
]
,

= −
[
δ
(i)
k + λ(i)∇

Ŵ
(i)
k

R(Ŵ
(i)

k )
]
, (11)

where the term ∇
Ŵ

(i)
k

(.) denotes the gradient of (.) with

respect to the NN weight Ŵ
(i)

k , the second term in this update
rule depends on the choice of R(Ŵ

(i)

k ), and δ(i)k is obtained
by applying the chain rule to compute the gradient of the cost
with respect to weight. Specifically, applying the chain rule
to compute layer-wise gradient through error backpropagation
[23], [24], a generalized expression for δ(i)k can be derived as

δ
(i)
k = f (i−1)(x)εk

[ i+1∏
j=d

diag(∇f (j)(x))Ŵ
(j)]

diag(∇f (i)(x))I(i).

(12)

We now denote
∏i+1
j=d(diag(∇f (j)(x))Ŵ

(j)
)diag(∇f (i)(x))

as T (i)(x) and simplify Eq. (12) to get

δ
(i)
k = f (i−1)(x)εkT (i)I(i), (13)

where εk = yk − ŷk = rk + γkQ̂∗k+1 − ŷk is the temporal
difference error (TD error). Observe that the temporal dif-
ference error εk propagates through transformation T (i) to
influence learning. Moreover, for a fixed x, T (i)(x) is a linear
approximation of the gradients in the neighborhood of the
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weights. Since, this approximation of the gradient is a matrix,
the singular vectors of T (i) dictate the directions of learning.
Their magnitude is described by the singular values of T (i).
Each diagonal element in T (i) is the product of the derivative
of the layer-wise activation functions. In other words, the
singular values of T (i) would also tend towards zero as the
number of layers in the DNN increase, otherwise known as the
vanishing gradients issue (see [35] and the references therein
for details).

Therefore, to address this issue, we introduce a user-defined
feedback matrix B(i)

k such that B(i)
k (B

(i)
k )T is positive def-

inite, to take the role of T (i)
k in (13). The new feedback,

denoted as σ(i)
k , is then given as

σ
(i)
k = [f (i−1)(x)]εkB

(i)
k . (14)

With this definition of feedback, the new layer-wise cost
function denoted with H(i)(x(k),u(k); Ŵ

(i)
) is defined to

be

H(i)(x(k),u(k); Ŵ
(i)

) =
1

2

[
tr((σ

(i)
k )TPŴ

(i)

k )

+ λ(i)R(Ŵ
(i)

k )
]
, (15)

where tr(.) is the trace operator and P is a positive definite
symmetric matrix of choice which replaces the identity matrix
in the update for the gradient descent rule. Note that for each
layer i, σ(i)

k can be understood as the feedback provided by
the overall cost JE(θ̂) towards controlling the layer i of the
DNN. Therefore, the layer-wise cost can be interpreted as the
minimization of the correlation between σ(i)

k and Ŵ
(i)

k under

the constraint that ‖Ŵ
(i)

k ‖ is bounded (due to the regulariza-
tion). Finally, the overall cost denoted as H(x(k),u(k); θ̂(k))
may be written as the sum of layer-wise costs as

H(x(k),u(k); θ̂(k)) =

d∑
i=1

H(i)(x(k),u(k); Ŵ
(i)

k ), (16)

With the cost H(θ̂k) defined in Eq. (24), the optimization
problem for the direct error-driven learning can be rewritten
as

θ̂(k) = arg minθ̂(k)Ex(k)∈S,u(k)∼ρ(A)

[
H(x(k),u(k); θ̂(k))

]
.

(17)
The weight updates for each layer are defined as ∆

(i)
k =

−∇
Ŵ

(i)
k

H(x(k),u(k); θ̂(k)), which results in the update rule

as defined in Eq. (11) with δ(i)k replaced by σ(i)
k , and defined

as in Eq. (14). For simplicity, from here on, we will denote
H(x(k),u(k); θ̂(k)) as H(θ̂(k)) and H(i)(x(k),u(k); Ŵ

(i)

k )

as H(i)(Ŵ
(i)

k ).

Remark 1. The direct error driven learning (EDL)-based
weight updates proposed in [24] can be interpreted as an
exploratory update rule, as the descent direction in the weight
updates are assigned through B(i)

k matrix. To define the matrix
B

(i)
k , we decompose it as B(i)

k . = U
(i)
k (Σ

(i)
k + s× I(i))V (i)

k ,

where U (i)
k Σ

(i)
k V

(i)
k is the SVD of T (i)

k for a fixed x with I(i)

being an identity matrix of appropriate dimensions and s is a
chosen perturbation.

In the following, we analyze the EDL scheme and extract
some insights on the role of the matrix B(i)

k introduced in the
update rule to train NNs of d layers.

E. Analysis of EDL for training DNN

In this paper, we approximate the optimization problem
associated with (10) using (17) and introduce the idea of
exploration in the learning approach through the choice of per-
turbations in the design matrix B(i). In this section, we seek to
analyze different components of this learning methodology. In
order to proceed further, we make the following assumptions.

Assumption 1. The objective function is a smooth function in
its domain, and in particular, JE ∈ C1. In addition, for all
x ∈ S,u ∈ A, and θ̂ ∈ Ω, the empirical cost and its gradient
are bounded, i.e., JE(., ., θ̂) ≤ L and ∂JE

∂θ̂
≤M . There exists

a positive constant θB such that for any θ̂,θ ∈ Ω, we have
max(‖θ̂k‖, ‖θ‖) ≤ θB . The activation function f of the NNs
are chosen such that for any x ∈ R, ‖f(x)‖ ≤ 1. Finally,
s ∼ N (0, 1), where N denotes the normal distribution.

Lemma 1. Let Assumption 1 be true. Consider the empirical
cost with regularization given as

H(θ̂k) =
[
JE(θ̂k) + λ(i)

d∑
i=1

Rk(Ŵ
(i)

k )
]
.

Then, the value of H(θ̂k) can be rewritten as

H(θ̂k) =

d∑
i=1

1

2

[
tr((δ

(i)
k )TŴ

(i)

k ) + λ(i)R(Ŵ
(i)

k )
]

+ ξ,

where ξ = JE(θ) −
(
∂JE(θ̂k)

∂θ̂k

)T
θ − H.O.T , where H.O.T

represents the higher order terms of (θ̂k − θ).

The preceding lemma provides the link between the regular
deep RL learning cost and the error driven cost.

Theorem 1. Let Assumption 1 and Lemma 1 hold true.
Consider the original optimization problem defined in Eq.
(9) with the cost denoted as H(θ̂k) and consider the mod-
ified optimization problem defined in Eq. (16) with the cost
denoted as H(θ̂k). Let the feedback matrix be defined as
B

(i)
k = U

(i)
k (Σ

(i)
k + s× I(i))V (i)

k , where U (i)
k Σ

(i)
k V

(i)
k is the

SVD of T (i)
k with I(i) being an identity matrix of appropriate

dimensions. Let s ∼ N (0, 1) be a chosen perturbation, where
N describes the normal distribution. Consider the conditions
for i = 1, . . . , d that ‖Ŵ

i

k‖ ≤ WB and ‖f (i−1)(x)‖ < √η,
where η is the total number of neurons at each layer. Choose
P such that ‖P ‖ ≤ 1. The square difference between original
cost (Eq. (9)) and the new cost (Eq. (16)) is then given as

‖H(θ̂k)−H(θ̂k)‖ ≤ d |s|
2
‖εk‖WB

√
η + ‖ξ‖ (18)

and E‖H(θ̂k)−H(θ̂k)‖ ≤ ‖ξ‖.

Proof. See Appendix

In the above theorem, we have shown that the direct error
driven learning problem is an approximation to the original
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optimization problem with residuals controlled by the choice
of the perturbations. In other words, the residual will be zero
when the choice of perturbations are uniformly zero.

Theorem 2. Let Assumption 1 be true. Let the gra-
dient of the empirical cost be given as ∂JE(θ̂k)

∂θ̂k
=

[f (1)(x)εkT (1) · · · f (d)(x)εkT (d)]. Consider the weight up-
date rule as θ̂k+1 = θ̂k + ∆k,∆k = −α(k) × ∂Hk(θ̂(k))

∂θ̂k
,

with α(k) > 0 and ∂Hk(θ̂k)

∂θ̂k
= [f (1)(x)εkB

(1) +

∂λ(i)R(Ŵ
(1)

)

∂Ŵ
(1) · · · f (d)(x)εkB

(d) + ∂λ(i)R(Ŵ
(d)

)

∂Ŵ
(d) ] with the feed-

back matrix defined asB(i)
k = U

(i)
k (Σ

(i)
k +s×I(i))V (i)

k , where
U

(i)
k Σ

(i)
k V

(i)
k is the SVD of T (i)

k (x) for a given batch of data
x with I(i) being an identity matrix of appropriate dimensions
and s is a known perturbation. Let B(i), i = 1, · · · d be
chosen with non zero singular values then JE converges
asymptotically in the mean.

Proof. See Appendix.

Remark 2. The EDL learning rule was introduced in [24],
and it was shown to perform very well in learning applica-
tions. In this paper, we attempt to uncover the reasons for
the performance of the EDL. In this context, the analysis
presented in this section reveals the following. The results of
Lemma 1 and Theorem 1 reveal that the cost function which
is minimized by the EDL is a first-order approximation of the
empirical cost, and that the difference between these costs
will reduce as the weights of the NN converge. Secondly,
from Theorem 1, we show that the parameters of the EDL
updates rule can be chosen such the the original cost function
asymptotically converges, so that the training error (temporal
difference error) goes to zero asymptotically.

Remark 3. In the cooperative learning strategy, two NNs
are utilized to estimate the objective (JE) which is a func-
tion of TD error. Therefore, the asymptotic convergence of
JE (Theorem 2) demonstrates the convergence of the TD error.
The convergence of the TD error also implies the two neural
networks converge to each other. In this paper, we claim that,
this convergence provides a Q-function estimate that is sample
efficient. While a theoretical proof is not considered in this
paper, we show the intuition with an example in the next
subsection and using a simulation example.

Equipped with the parameter update, we sketch our learning
algorithm as follows.

F. Algorithm

Our algorithm is summarized in Algorithm 1. The training
process is performed for a total of M episodes. At the start of
episode 1, we initialize the two NNs that is NN1 and NN2.
In each episode there are K plays. In each play, we provide an
action to the environment and we receive a tuple comprised of
(reward, state, next-state). This tuple and the action is stored
in the experience replay buffer (denoted as B with buffer size
N ).

Algorithm 1: coop-RL

Initialize θ̂1 (Q1), θ̂2 Q2, and buffer B of capacity N
for episodes = 1, 2, 3, ... do

Set flag = True
for k = 1, 2, ... do

Observe image xk, and preprocess it
if flag == True then

With probability ε select a random action
ak; otherwise ak = argmax(Q1(xk));

Execute ak in emulator and observe reward
rk and image xk+1.

Store the tuple (xk, ak, xk+1, rk) into B
after pre-processesing.

Sample batch of tuples from B.
Calculate the error r + γQ2 −Q1 and

update θ̂1.
else

With probability ε select a random action
ak otherwise ak = argmax(Q2(xk)).

Execute ak in emulator and observe reward
rk and image xk+1.

Store the tuple (xk, ak, xk+1, rk) into B
after pre-processesing.

Sample batch of tuples from B.
Calculate the error r + γQ1 −Q2 and

update θ̂2.
for every C steps toggle flag.

In this training strategy, each episode comprises in repetition
of two phases. Phase 1: we first choose NN2 to be target and
NN1 to be the actor. For each play, the actor network is used
to gather actions that are provided to the emulator. At the end
of each play, the reward and the states are obtained from the
emulator and NN1 is updated using EDL update rule. Once,
the first phase is completed, we initiate phase 2. Phase 2: we
designate NN2 to be the actor and NN1 to be the target. We
alternatively switch between phase 1 and phase 2 for every
C plays and update the two networks. For each update, we
sample a batch of data from the experience replay and use it
to evaluate the error and update the weights.

In the cooperative learning strategy, the two NNs are utilized
to estimate the objective which is a function of TD error.
Therefore, the asymptotic convergence of JE (Theorem 2)
demonstrates the convergence of the TD error. To gain more
insight into the convergence of the coop strategy, consider
two cars (Car 1 and 2) starting at two different points in a
city. These cars do not know their destination but are able
to communicate with each other. Furthermore, both cars are
provided a reward value which describes the goodness of their
location ((0) no need to move, (1) good direction, (-1) bad
direction). The goal of these cars is to minimize the TD error,
which is defined as a function of target, actor and the reward
value. Each car can either be the target or an actor. When a
car is target (say Car 1), it broadcasts its location but does not
move. On the other hand, the actor car (say Car 2) exploits
the targets’ location and the reward value (reinforcement for
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the actors’ current location) to determine its movement. Car
2 seeks to move towards Car 1 (guided by location) while
progressing towards the destination (guided by the reward).
After Car 2 has moved many times, it finds a new location,
that is closer (depending on the initialization) to the destination
than the older location. The new and better location is used to
guide Car 1 and therefore, Car 2 becomes the target and Car
1 becomes the actor. Using the reward and location, Car 1 can
now move many times. Next, Car 1 becomes the target and Car
2 becomes the actor and the process continues. This process
of learning reaches its culmination when the TD error is small,
that is Car 1 and Car 2 have both reached a common location
where the cost is zero. At this point, there is no incentive for
moving (cost 0) and cooperative strategy has converged.

IV. IMPLEMENTATION AND SIMULATION RESULTS

Fig. 3: RL problem: Input-output flow diagram.

To substantiate the efficacy of our approach, we consider the
application of playing games as a way to verify our theoretical
claims. We choose a total of four games, Cartpole, Breakout,
Pong and Space Invaders. The game environments (emulators)
for our analysis are provided by OpenAI and their details
can be availed from the OpenAI website [36]. For all these
games we consider two NNs with equal hyper-parameters. Our
network architecture is depicted in Figure 3, where we use two
convolutional layers and two feed-forward layers with relu
activation function. the input the network are images from the
emulator whereas the output of the network are the Q-values
corresponding to each action. For additional details, please
refer to [4].

For comparisons, we consider three realizations. First, we
consider the standard DQN with one NN (target is a copy of
the action network) and gradient driven updates, denoted as
DQN. Second, we consider EDQL which is a NN (target is
a copy of the action network) with error driven updates [24].
The training strategy for these approaches is identical to the
one proposed in [4]. Third, we consider the two network setup
with standard gradient driven updates (G-coop). For G-coop,
we follow Algorithm 1, however, we use the Gradient-driven
Adam optimizer instead of the error driven update rule. Finally,
we use the two network setup with error driven update and
the coop strategy. As the two NNs are used to approximate
function, from here on, we will refer to output of NN1 as Q1

and NN2 as Q2.
To record performance, we track the progression of the aver-

age reward (instantaneous reward averaged over 100 episodes)
and the cumulative rewards (the average output of Q1 and

Q2) with respect to the episodes. To record these values we
do the following, at the end of each episode, we measure the
performance of the network by recording the reward obtained
by the network at the end of that episode. We also record the
Q values for each action at the end of the episode. We report
the mean and standard deviation of these quantities from the
last 100 episodes.

In these results on games presented below, the model is
trained for a total of 100,000 episodes and each episode is
composed of 1000 plays where each play provides a total of
four images. Therefore, the NN has to process a total of 400
million frames. To provide insights into the inner workings of
our approach, we choose the simpler, cartpole example as it
is memory efficient. We start by discussing performance on
the cart pole example and the NNs variants are implemented
in Python 3.6 using Pytorch libraries. All simulations are per-
formed using NVIDIA Tesla V100 SXM2 w/32GB HBM2 and
NVIDIA Tesla K80 w/dual GPUs provided by the Argonne
Leadership Computing Facility.

A. Example 1 – Cartpole

One of most common examples in RL is that of cart-
pole [37]. The problem is to prevent a vertical pole from falling
by moving the cart left or right. Additional details can be found
in the supplementary files. In our experiments, we execute
our networks for a total of 10000 episodes. We record the Q
function values and the cumulative reward in each episode.

We start by demonstrating that for our coop approach the
average reward over the last 100 episodes is 200 (which is the
best reward for the cartpole problem) with a standard deviation
of 0.2123, refer Table. I. For this experiment, we choose the
hyper-parameters C = 30, len(B) = 5000 with an exploration
rate of s = 0.1 that decays exponentially. In Fig. 4, panel A,
we plot the progression of cumulative reward achieved by the
coop method with the exploration rate of 0.1, as a function
of the total number of episodes. Cumulative rewards ( refer
to coop(0.1)) steadily increase and reaches its peak value near
200 around 2000 episode. There are three crucial components
that effect the performance of our methodology. First, we
use two neural networks Q1, Q2. Second, the length of the
experience replay buffer and third, the exploration rate. We
start by analyzing the behavior of the two neural networks, Q1

and Q2.. Next, we will analyze, how these components affect
the performance of our methodology. We start by analyzing
the convergence of the two NNs

1) Convergence of the two networks: In our approach,
we independently initialize the two networks and update
them alternatively. Provided, an infinite number of iterations
are provided, the Q−function values, predicted by the two
networks are expected to converge to the optimal Q function.
To observe this behavior, we plot ‖Q1−Q2‖ as a function of
the episodes in Fig. 4. We point out that the normed difference
between Q1 and Q2 values come to a value around 0.005
around episode 2000. We note that 2000 episodes is where
our approach reached the best cumulative reward values.

2) Different Buffer Sizes: Next, we analyze we compare the
two NN approach (coop) with one NN approach (EDQL), both
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Fig. 4: Panel A: Mean rewards for different exploration rates,
(exploration rate = 0) is the standard SGD, referred as G− coop,

We use ADAM optimizer for this implementation.. Panel
B:Difference between the Q-values generated by the two networks

as a function of episodes.

for various buffer sizes. In panels C-F, we plot the the trend
of Rewards with respect to different episode for buffer sizes,
1000, 2000, 3000 and 4000. In Panel C-F, the markers indicate
the mean of the cumulative reward over last 100 episodes. Note
that the best performance is observed for both EDQL and coop
is obtained when the buffer size is 45000.

However, we point that when the buffer size is reduced, the
drop in performance for EDQL is much larger than coop. To
observe this, note the trends from Panels F to C. We see a
steady deterioration in performance. The plot shows that the
use of the second NN allows to learn a representation for
the data and thus provides convergence benefits. To further
substantiate this, we observe Panel B. We note from Panel
B that the trend for coop (Observe that this curve is plotted
in Panel A as well) is consistently above the curve for the
EDQL. The size of the buffer is a huge memory load in
practical applications (both for read/write and storage). The
use of a second neural network allows us to reduce this load
by providing good performance for smaller buffer sizes.

3) Effect of exploration: Next, we analyze the effect of dif-
ferent exploration rate for the coop methodology and compare
it to that of G-coop. First, we note that coop with exploration
rate of 0 is equivalent to G-coop. The comparison is provided
in Panel B of Fig. 4 where even a small exploration of 0.1
improves the performance of G-coop drastically. However,
for a large exploration rate (1), coop converges quickly to

200 but oscillates significantly more in comparison to G-
coop (no exploration). On the other hand, coop (0.01) is
stabler compared to coop (0.5). These results concur with
the common idea that larger exploration provides for a fast
but unstable learning process. On the other hand, reasonable
exploration can strike the right balance between exploration
and exploitation.

B. RL Games

For this part of analysis, we choose a total of three games:
breakout, space invaders and pong, details can be found in
[38]. For comparisons, we choose DQN, EDQL, G-coop and
coop. The hyper-parameters for this analysis is taken from
[4] and kept consistent across different games. We record the
mean and standard deviation values of the average reward in
Table. I. Note that for all these games, the network architecture
is identical to that proposed in DQN paper [4]. Therefore, the
input to the network are images.

At the onset, we point that DQN is the baseline and
provides reasonable cumulative rewards on all the games. The
cumulative rewards obtained for DQN in our experiments
are similar to the performance reported in [4]. Note from
the table that we observe mean cumulative rewards with
standard deviation 287 (78) for Breakout, 1139 (158) for
space invaders, 193.6 (0.71) for cartpole and 18.9 (2.12)
for pong. A slight improvement is observed with EDQL
everywhere except space invaders where we observe a 14 %
drop in performance. The improvement is expected as EDQL
introduces an inherent exploration strategy which provides
convergence benefits. However, one has to note that, even
with an improved exploration strategy, best performance often
depends on appropriate hyperparameter tuning which has not
been done in this paper.

With the introduction of the second NN for learning the Q
function, we observe a consistent improvement in performance
indicated by better cumulative rewards in both G-coop and
coop. For coop, we observe an improvement of 9 % for
breakout, 16 % for space invaders, 3.3 % for cartpole and
0.2 % for pong. Similarly, we observe an improvement of 8
% for breakout, 16 % for space invaders, 0.2 % for cartpole
and 0.2 % for pong.

C. Discussions

A common approach in the literature is the use of backprop-
agation/SGD [4]. Typically, in such an approach, labels have to
be defined. However, in RL-based design, the only feedback
from the environment are the reward signals. To work with
a definition of error, in most DRL schemes including ours,
synthetic labels in the form of an optimal Q function are
defined as a function of the reward signal. Since the optimal
Q function is unknown and must be approximated using
samples from the history. The error signal is a function of an
approximated optimal Q function, which provides imprecise
information early in the learning phase. If this imprecise and
small error is utilized as is done with stochastic gradient
descent (SGD) method, the vanishing gradient problem will
stagnate the learning. However, our approach guarantees non
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Fig. 5: Panel A-B: Mean Rewards (with error bars) depicting variance across different buffer sizes. Buffer sizes considered for this plot are
500,1000, 1500, 2000, 3000, 3500, 4000, 5000). As expected, the average rewards across different buffer sizes are better for the double

NN-driven method instead of a single NN driven method. Panel C-F: Trend of rewards with respect to different buffer sizes.

TABLE I: Mean score (standard deviation) over 100 episodes.

Method Breakout Space Invaders Cartpole Pong

DQN 287 (78) 1139 (158) 193.6(0.71) 18.9(2.12)
EDQL 290 (55) 980 (163) 199.6(0.82) 19.11(1.88)
G-coop 314 (15) 1174 (163) 200(0.82) 18.91(1.32)
coop 313 (25) 1144 (121) 200(0.2123) 19.15(2.1)

vanishing leaning signals. Furthermore, we introduce an ex-
ploratory strategy resulting in improved performance.

However, the improvement is contingent upon the idea that
Q∗ is well approximated. The canonical way of obtaining
this approximation is as follows: we start from the current
value of Q (that is the output of the RL agent). Since the
optimal Q value can only be greater than the current value in
a maximization problem, we run multiple updates starting from
the current value. These updates are essentially equivalent to
running a Markov chain starting from the current value to
obtain a new estimate of the Q∗ value. This approximated
Q∗ can be utilized as the target. Once new data is observed,
one can repeat the procedure to get another approximation.
To describe the error signal, we repeatedly replace the Q∗

with this running approximation of Q∗ through Q which is
essentially the output of the neural network. However, the main
drawback of these canonical approaches is that, the process of
approximating the optimal function is imperfect. To introduce
enough exploration in the network for efficient exploration,
one needs to maintain a large experience replay buffer.

Although, to stabilize this approximation, approaches were
introduced in [39], [40], they rely on the learning process
of a single network that can still be biased by its own
initialization. These constraints can be removed with the use
of a second NN. If we run the same approximation procedure
with two independent initialization, the solution is more robust
as the optimal value is obtained only when the two networks
converge to each other which is in contrast with [39], [40].
This type of approach allows for the steady improvement in
cumulative rewards we observed from Table. I results. Another
crucial component of our methodology is the use of buffer
and the use of the second network paired with the exploration
strategy thus reducing the need for a large replay buffer which

we demonstrated in Fig. 4.
An analysis of computational overhead, relative to the

standard DQN approach, can be performed as follows, let o[g]
be the complexity of updating a neural network once using
gradients. Since, each neural network is alternatively updated,
at any point of time, only one network is being updated at a
given time. Let the worst case complexity of evaluating the
SVD of the gradient matrix be denoted by o[S]. Therefore,
for every batch of data, the worst case complexity of our
approach is o[g + S]. In comparison, the complexity of a
standard DQN [4] is o[g].

V. CONCLUSION

In this paper, we present a two NN driven exploratory
error driven learning approach for addressing DRL tasks. This
approach presented the following advantages, (1.) we reduced
the need for a large buffer sizes with the use of two NNs. (2)
We demonstrated that the error driven strategy improves con-
vergence by disentangling the learning across different layers
in a deep NN. We provided both theoretical and experimental
evidence to support this claim. (3) Our approach allows for
methodical analysis of the learning problem and is extendable
to diverse applications where a notion of error can be defined
for an RL problem involving a dynamical process.

Although significant improvements have been shown in this
paper, there are major challenges that are still present. For
instance, in this paper, we consider a typical reinforcement
episodic learning setup where the RL agent attempts to learn
from rewards due to both successes and failures. In real-
time control applications such as controlling autonomous cars,
failures are not acceptable as each failure can lead to enormous
loss of revenue and worse, the loss of human life.
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Despite the reduction in requirement of buffer size, the size
of experience replay buffer is still fixed at one million. Fur-
thermore, the larger the size of the experience array, the better
the performance of the RL agent. There is a significant need of
resources to achieve the required precision in learning optimal
policies for a given task. Therefore, prior to deployment in real
life control applications, the DRL methods must improve to
the extent that learning is sufficiently precise with guaranteed
convergence given limited time and resources.
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APPENDIX

To this end, we first derive an approximation of the original
cost.

Proof of the Lemma 1:

Proof. The proof follows the standard linear approximation
using Taylor series expansion of the function JE(θ). To see
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this, expand JE(θ) around θ̂k to get

JE(θ) =

[
JE(θ̂k) +

(
∂JE(θ̂)

∂θ̂

)T
[θ − θ̂k] +H.O.T

]
.

(19)

Rearranging this equation, we get

JE(θ̂k) =

[
JE(θ) +

(
∂JE(θ̂k)

∂θ̂k

)T
[θ̂k − θ]−H.O.T

]
.

(20)

Define ξ = JE(θ)−
(
∂JE(θ̂k)

∂θ̂k

)T
θ −H.O.T and write

JE(θ̂k) =

(
∂JE(θ̂k)

∂θ̂k

)T
θ̂k + ξ (21)

Note that ∂JE(θ̂k)

∂θ̂k
= ∂JE(θ̂k)

∂ŷ
∂ŷ

∂θ̂k
. If we let ∂ŷ

∂θ̂k
=

[ ∂ŷ

∂Ŵ
(1)
k

, ∂ŷ

∂Ŵ
(2)
k

, · · · , ∂ŷ

∂Ŵ
(d)
k

] and ∂JE(θ̂k)
∂ŷ = εk, we get

H(θ̂k) =

[
∂ŷ

∂Ŵ
(1)

k

,
∂ŷ

∂Ŵ
(2)

k

, · · · , ∂ŷ

∂Ŵ
(d)

k

]T
εk

[
Ŵ

(2)

k , Ŵ
(2)

k , · · · Ŵ
(d)

k

]
+ ξ + λ(i)

d∑
i=1

Rk(Ŵ
(i)

k )
]
, (22)

which can be rewritten as

H(θ̂k) =

d∑
i=1

1

2

[
tr((δ

(i)
k )TŴ

(i)

k ) + λ(i)R(Ŵ
(i)

k )
]

+ ξ.

(23)

Proof of Theorem 1: Consider the quantity H(θ̂k) −
H(θ̂k) with the definitions of H(θ̂k) given in Lemma 1 and
H(θ̂k) in (24) to get

H(θ̂k)−H(θ̂k) =

d∑
i=1

1

2

[
tr((δ

(i)
k )TPŴ

(i)

k ) + λ(i)R(W
(i)
k )

+ ξ −
d∑
i=1

1

2

[
tr((σ

(i)
k )TPŴ

(i)

k )

− λ(i)R(W
(i)
k ). (24)

On simplification, we get

H(θ̂k)−H(θ̂k) =

d∑
i=1

1

2
tr((δ

(i)
k − σ

(i)
k )TPŴ

(i)

k ) + ξ

This difference can be further simplified as

H(θ̂k)−H(θ̂k) =

d∑
i=1

1

2

[
tr(f (i−1)(x)εk

(T (i)
k −B

(i)
k )T I(i)PŴ

(i)

k ) + ξ, (25)

where we use B(i)
k = U

(i)
k (Σ

(i)
k + s× I(i))V (i)

k , and T (i)
k =

U
(i)
k Σ

(i)
k V

(i)
k to get

H(θ̂k)−H(θ̂k) =

d∑
i=1

1

2

[
tr(f (i−1)(x)εk

(U
(i)
k Σ

(i)
k V

(i)
k − U

(i)
k (Σ

(i)
k + s× I(i))V (i)

k )I(i)PŴ
(i)

k )

+ ξ, (26)

which yields

H(θ̂k)−H(θ̂k) =

d∑
i=1

1

2
tr(f (i−1)(x)εk

(U
(i)
k (−s × I(i))V (i)

k )I(i)PŴ
(i)

k ) + ξ. (27)

We can further simplify the difference as

H(θ̂k)−H(θ̂k) = ξ − s
d∑
i=1

1

2

tr(f (i−1)(x)εkU
(i)
k I

(i)V
(i)
k I

(i)PŴ
(i)

k ) (28)

Taking norm both sides to get

H(θ̂k)−H(θ̂k) = ‖ξ − s
d∑
i=1

1

2

tr(f (i−1)(x)εkU
(i)
k V

(i)
k I

(i)PŴ
(i)

k )‖ (29)

Using the trace property along with triangle inequality to get

‖H(θ̂k)−H(θ̂k)‖ ≤ ‖ξ‖+ |s|
d∑
i=1

1

2

‖f (i−1)(x)‖‖εk‖‖U (i)
k V

(i)
k ‖‖P ‖‖Ŵ

(i)

k ‖). (30)

We invoke the condition ‖Ŵ
i

k‖ ≤ WB , f
(i−1)(x) <

√
η,

for i = 1, . . . , d, and choose P such that ‖P ‖ ≤ 1,.
Furthermore, ‖U (i)

k I
(i)V

(i)
k ‖ is a norm taken over the product

of orthonormal matrices and the norm of an orthonormal
matrix is 1. Under these conditions, we may write

‖H(θ̂k)−H(θ̂k)‖ ≤
|s|√ηd

2
‖εk‖W (i)

B + ||ξ||. (31)

Taking expected value both sides provides

E‖H(θ̂k)−H(θ̂k)‖ ≤ E
[ |s|‖εk‖√ηd

2
W

(i)
B + ||ξ||

]
≤
E[|s|‖εk‖]

√
ηd

2
W

(i)
B + ||ξ|| (32)

≤
E
[
|s|
]
E
[
‖εk‖]

√
ηd

2
W

(i)
B

]
+ ||ξ||.

Since, by assumption 1, E
[
|s|
]

= 0, then E‖H(θ̂k) −
H(θ̂k)‖ → ‖ξ‖.
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Proof of Theorem 2: We will begin with the first order
expansion of JE(θ̂k+1) around θ̂k to get

JE(θ̂k+1) = JE(θ̂k) +

(
∂JE(θ̂k)

∂θ̂k

)T
[θ̂k+1 − θ̂k], (33)

We add and subtract J(θ̂k) on the right hand side to achieve
the first difference as

JE(θ̂k+1)− JE(θ̂k) =

(
∂JE(θ̂k)

∂θ̂k

)T
[θ̂k+1 − θ̂k], (34)

Substitute the weight updates given by −α(k)∂Hk(θ̂k)

∂θ̂k
, we get

JE(θ̂k+1)− JE(θ̂k) = −α(k)

[(
∂JE(θ̂k)

∂θ̂k

)T
∂Hk(θ̂k)

∂θ̂k

]
.

(35)

Expanding ∂JE(θ̂k)

∂θ̂k
= [f (1)(x)εkT (1) · · · f (d)(x)εkT (d)]

and ∂Hk(θ̂k)

∂θ̂k
=

[(
f (1)(x)εkB

(1) +

∂λ(i)R(Ŵ
(1)

)

∂Ŵ
(1)

)
· · ·
(
f (d)(x)εkB

(d) + ∂λ(i)R(Ŵ
(d)

)

∂Ŵ
(d)

)]
and

write

JE(θ̂k+1)− JE(θ̂k) = −α(k)

d∑
i=1

[(
f (i−1)(x)εk(T (i)

)T
(
f (i−1)(x)εkB

(i)P +
∂λ(i)R(Ŵ

(i)
)

∂Ŵ
(i)

)]
,

(36)

which provides

JE(θ̂k+1)− JE(θ̂k)

= −
d∑
i=1

α(k)

[(
f (i−1)(x)εkT (i)

)T(
f (i−1)(x)εkB

(i)P

)

+

(
f (i−1)(x)εkT (i)

)T(
∂λ(i)R(Ŵ

(i)
)

∂Ŵ
(i)

)]
,

(37)

Collecting terms to get

JE(θ̂k+1)− JE(θ̂k)

= −α(k)

d∑
i=1

[
T (i)T εTk f

(i−1)(x)T f (i−1)(x)εkB
(i)P

+ T (i)T εTk f
(i−1)(x)T

(
∂λ(i)R(Ŵ

(i)
)

∂Ŵ
(i)

)]
,

(38)

Substitute B(i)
k = U

(i)
k (Σ

(i)
k + s × I(i))V

(i)
k , and T (i)

k =

U
(i)
k Σ

(i)
k V

(i)
k to write

JE(θ̂k+1)− JE(θ̂k) = −α(k)

d∑
i=1

[
[U

(i)
k (Σ

(i)
k )V

(i)
k ]T εTk

f (i−1)(x)T f (i−1)(x)εk[U
(i)
k (Σ

(i)
k + s× I(i))V (i)

k ]P

+ T (i)T εTk f
(i−1)(x)T +

(
∂λ(i)R(Ŵ

(i)
)

∂Ŵ
(i)

)]
,

(39)

which we expand to get

JE(θ̂k+1)− JE(θ̂k) = −α(k)

d∑
i=1

[
V

(i)T
k Σ

(i)T
k U

(i)T
k εTk

f (i−1)(x)T f (i−1)(x)εkU
(i)
k Σ

(i)
k V

(i)
k P + V

(i)T
k Σ

(i)T
k

U
(i)T
k εTk f

(i−1)(x)T f (i−1)(x)εkU
(i)
k (s× I(i))V (i)

k P+

T (i)T εTk f
(i−1)(x)T

(
∂λ(i)R(Ŵ

(i)
)

∂Ŵ
(i)

)]
,

(40)

Let V
(i)
1 = V

(i)T
k Σ

(i)T
k U

(i)T
k εTk f

(i−1)(x)T f (i−1)(x)εk
U

(i)
k Σ

(i)
k )V

(i)
k P , V

(i)
2 = V

(i)T
k Σ

(i)T
k U

(i)T
k εTk

f (i−1)(x)T f (i−1)(x)εk[U
(i)
k (s × I(i))V

(i)
k ]P and

V
(i)
3 = T (i)T εTk f

(i−1)(x)T
(
∂
∑d

i=0 λ
(i)R(Ŵ

(i)
)

∂θ̂k

)
and

write

JE(θ̂k+1)− JE(θ̂k) = −
d∑
i=1

α(k)

[
V

(i)
1 + V

(i)
2 + V

(i)
3

]
,

(41)

For the proof to be complete, it suffices to show that the
right hand side is negative which is true as long as the three
terms in the brackets (V

(i)
1 , V

(i)
2 , V

(i)
3 ) are positive. The term

V
(i)
1 is positive as V (i)T

k Σ
(i)T
k U

(i)T
k εTk f

(i−1)(x)T f (i−1)(x)εk
U

(i)
k Σ

(i)
k )V

(i)
k is a complete square and P is positive definite

by assumption. Next, consider the term V
(i)
2

V
(i)
2 = V

(i)T
k sΣ

(i)
k

T
[
U

(i)
k

T
εTk f

(i−1)(x)T

f (i−1)(x)εkU
(i)
k

]
I(i)V

(i)
k P (42)

The terms in the bracket form a complete square. Therefore,
if P is positive definite and s is chosen such that sΣ(i)

k

T
is

positive definite, so V
(i)
2 is positive. Next, consider the third

term V
(i)
3

V
(i)
3 = λ(i)T (i)T εTk f

(i−1)(x)T
(
∂R(Ŵ

(i)
)

∂Ŵ
(i)

)
. (43)

Choosing λ(i) = sign(T (i)T εTk f
(i−1)(x)T

(
∂R(Ŵ

(i)
)

∂Ŵ
(i)

)
) ×

c,where c ∈ [0, 1], we get, V (i)
3 > 0. Next, we write

E[JE(θ̂k+1)− JE(θ̂k)] = −
d∑
i=1

α(k)E

[
V

(i)
1 + V

(i)
2 + V

(i)
3

]
,

= −
d∑
i=1

α(k)

(
E

[
V

(i)
1

]
+ E

[
V

(i)
2

]
+ E

[
V

(i)
3

])
, (44)

By definition of expected values E[x] =
∫
p(x)x, if x > 0

and p(x) > 0, E[x] > 0. As a consequence, for a positive
definite function JE(·) along with V (i)

1 , V
(i)
2 and V (i)

3 > 0, the
expected value of the first difference is negative. Therefore,
as k → ∞, E[JE(θ̂k+1) − JE(θ̂k)] → 0 and the proof is
complete.

This article has been accepted for publication in IEEE Transactions on Neural Networks and Learning Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNNLS.2022.3232069

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


	Cooperative Deep Q -Learning Framework for Environments Providing Image Feedback
	Publication Info

	tmp.1673967821.pdf.9FjWS

