
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Publications Artificial Intelligence Institute

2023

IERL: Interpretable Ensemble Representation Learning - IERL: Interpretable Ensemble Representation Learning -

Combining CrowdSourced Knowledge and Distributed Semantic Combining CrowdSourced Knowledge and Distributed Semantic

Representations Representations

Yuxin Zi
University of South Carolina - Columbia

Kaushik Roy

Vignesh Narayanan
University of South Carolina - Columbia

Manas Gaur

Amit Sheth
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/aii_fac_pub

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Publication Info Publication Info
Preprint version 2023.
© The Authors, 2023

This Conference Proceeding is brought to you by the Artificial Intelligence Institute at Scholar Commons. It has
been accepted for inclusion in Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/aii_fac_pub
https://scholarcommons.sc.edu/aii
https://scholarcommons.sc.edu/aii_fac_pub?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.sc.edu%2Faii_fac_pub%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

IERL: Interpretable Ensemble Representation
Learning - Combining CrowdSourced Knowledge

and Distributed Semantic Representations

Yuxin Zi1, Kaushik Roy1, Vignesh Narayanan1, Manas Gaur2, and Amit
Sheth1

1 Artificial Intelligence Institute, University of South Carolina
{vignar,amit}@sc.edu

{yzi,kaushikr}@email.sc.edu
2 University of Maryland, Baltimore County

manas@umbc.edu

Abstract. Large Language Models (LLMs) encode meanings of words in
the form of distributed semantics. Distributed semantics capture com-
mon statistical patterns among language tokens (words, phrases, and
sentences) from large amounts of data. LLMs perform exceedingly well
across General Language Understanding Evaluation (GLUE) tasks de-
signed to test a model’s understanding of the meanings of the input
tokens. However, recent studies have shown that LLMs tend to gener-
ate unintended, inconsistent, or wrong texts as outputs when processing
inputs that were seen rarely during training, or inputs that are associ-
ated with diverse contexts (e.g., well-known hallucination phenomenon
in language generation tasks). Crowdsourced and expert-curated knowl-
edge graphs such as ConceptNet are designed to capture the meaning of
words from a compact set of well-defined contexts. Thus LLMs may ben-
efit from leveraging such knowledge contexts to reduce inconsistencies
in outputs. We propose a novel ensemble learning method, the Inter-
pretable Ensemble Representation Learning (IERL), that systematically
combines LLM and crowdsourced knowledge representations of input to-
kens. IERL has the distinct advantage of being interpretable by design
(when was the LLM context used vs. when was the knowledge context
used?) over state-of-the-art (SOTA) methods, allowing scrutiny of the
inputs in conjunction with the parameters of the model, facilitating the
analysis of models’ inconsistent or irrelevant outputs. Although IERL is
agnostic to the choice of LLM and crowdsourced knowledge, we demon-
strate our approach using BERT and ConceptNet. We report improved
or competitive results with IERL across GLUE tasks over current SOTA
methods and significantly enhanced model interpretability.

Keywords: Knowledge Graphs · Language Models · Knowledge Infu-
sion · Model Interpretability · GLUE Tasks

2 F. Author et al.

1 Introduction

LLMs have performed exceedingly well on the GLUE benchmark tasks [1]. GLUE
tasks measure the machine’s comprehension on supervised learning-based natu-
ral language processing tasks, such as Quora Question Pairs to check question
redundancy, and Recognizing Textual Entailment to check if two sentences share
entailment, neutral, or contraction relations [2]. LLMs learn trillions of param-
eters after training over a humongous amount of data. Irregularities in the data
(for example, little or highly varying language token patterns or contexts) causes
LLMs to hallucinate - generating inconsistent outputs for similar inputs.

Crowdsourced and curated knowledge graphs (KGs), such as ConceptNet,
are designed to capture meanings of commonly used words using a compact set
of contexts agreed by humans [3,4]. As a result, representations learned from
ConceptNet are less likely to suffer from distributional irregularities among the
tokens. Consequently, it is a promising and an active research topic on utilizing
representations from KGs to potentially mitigate irregularities, while processing
input tokens via LLM representations. In this paper, we focus on developing
a learning method that systematically incorporates representations from both
KGs and LLMs to address the following unresolved questions. Q1: Can we de-
sign an approach to combine crowdsourced knowledge and LLM representations
to obtain an integrated representation, in order to mitigate the model hallucina-
tion? Q2: Can we achieve an interpretable design - i.e., can we tractably discern
for what inputs the LLM hallucinates on and what knowledge context improves
representation quality? Next, we briefly review existing methods that seek to
infuse representations from KGs and LLMs and their relevance to questions Q1
and Q2.

1.1 Related Work on Combining Knowledge and LLM
Representations

There is an extensive literature on combining LLMs and knowledge representa-
tions to leverage contextual information among language tokens from both [5].
The representations are then processed through a task-specific neural network.
Here we will cover the four SOTA approaches, KALA, K-Adapter, TDLR, and
GCT, broadly representing two kinds of methods - (1) Combining representa-
tions at the input level before passing it through the neural network (KALA and
K-Adapter) and (2) Combing representations at the parametric level, i.e., mod-
ify the parameters of the task-specific neural network and the resulting token
meaning interpretations (TDLR and GCT) [6,7,8,9].

KALA modifies the input LLM representations for tokens by using a weighted
aggregate of other tokens connected in the knowledge graph. K-Adapter trains
“adapter” models for encoding knowledge representations and combines the LLM
and adapter representations at the input level. With KALA and K-Adapter, it
is not possible to keep track of and understand how the representations are in-
corporated into the neural network after the input stage internally. Ablation

Title Suppressed Due to Excessive Length 3

studies and post-hoc approximate interpretations using LIME, etc., provide rep-
resentation interpretability (was the knowledge context important or the data
context?)[10]. However, it is unclear how far the approximation is off from the
truth, which is crucial to evaluating and systematically addressing LLM halluci-
nation issues. Furthermore, the effect of KALA and K-Adapter representations
on hallucinations has not been studied. Thus, KALA and K-Adapter do not fully
address Q1 or Q2. TDLR operates on the self-attention mechanism of trans-
formers by modifying the attention or weight matrices to hard-code graph con-
nections among language tokens. TDLR does this once, in the first self-attention
block, and then allows model fine-tuning to continue as is. It is unclear if the
attention matrix modification is retained during the fine-tuning across the re-
maining transformer blocks. GCT is similar to TDLR and differs in the specifics
of the self-attention matrix modification operation. TDLR and GCT suffer from
similar issues as KALA and K-Adapter towards addressing Q1 and Q2.

2 Background and Motivation

In this section, we describe the GLUE tasks, what hallucination looks like when
solving the GLUE tasks,, and the theoretical motivations for the IERL algorithm
presented in Section 3.

2.1 Task Descriptions and Hallucinations

We experiment with similarity or entailment GLUE tasks that take a pair of
sentences as input, and format its output as a +1 or a −1. For the similarity
tasks, +1 and −1 correspond to similar or dissimilar input sentences respectively.
For the entailment tasks, +1 and -1 correspond to entailment and contradiction,
respectively.

We use X to denote the dataset, and x is an instance in the dataset X. Each
x is a three-tuple composed of x[1]: sentence 1, x[2]: sentence 2, and the label y.

Hallucinations. Hallucinations refers to inconsistent model outputs for similar
inputs resulting from statistical irregularities in the data. Since this notion is
often used in the context of language generation tasks, we clarify the context in
which we use it in this paper. To formalize this notion, we batch our instances
into random batches. We note the convergence rate variations of the training loop
across these batches, where each batch is of size equal to 80% of the training
dataset X. We find that for the GLUE tasks, SOTA fine-tuning results in a high
convergence rate variance (ranges from 13 − 45 iterations). This suggests that
there may be a high degree of irregularity in the statistical properties across the
batches. Therefore, we can expect a model trained on these datasets to generate
inconsistent outputs for similar inputs, i.e., suffer from hallucinations.

4 F. Author et al.

2.2 Ensemble Learning Approach

To fine-tune the models for GLUE tasks, a few feedforward neural network layers
are added and trained using backpropagation. Such a training procedure works
well when there is a generalizable pattern across the instances in the fine-tuning
dataset (regularly occurring statistical patterns). To tackle the issue of irregu-
larities, we propose using example patterns from each instance and aggregating
them using an ensemble learning approach. We can think of an example pat-
tern as one that maps a given instance to its output in the task-specific dataset,
which can be seen as (an instance level) model and define an ensemble function
g(z) for a new point instance z as an ensemble of weighted contributions from
similar instances in the dataset X as

g(z) =
∑
x

(α1
x[1] ⊙ ⟨z, x[1]⟩+ α2

x[2] ⊙ ⟨z, x[2]⟩). (1)

Here ⊙ refers to a product operation defined in the algorithm and experimenta-
tion sections, and ⟨·⟩ refers to a suitable similarity computation.

2.3 Utilizing Knowledge Graph Contexts

The ensemble approach formulation allows the expressiveness to model both
generalizability across instances and instance-level details. Examining the en-
semble model’s parameters lets us interpret whether an instance shows irregular
patterns. However, it does not yet incorporate a mechanism to solve the irreg-
ularity issue during model learning. Here we posit that combining LLM and
knowledge graph representations using an ensemble approach allows us to inter-
pret instances for their pattern regularities and draw from either the LLM or
knowledge contexts to solve the irregularity resulting in high performance that
hallucinates less.

Thus, we expand the formulation in (1) to describe the operation of combin-
ing LLM and knowledge representations as

g(z) =
∑
x

(αsim
LLM · [⟨z, x[1]⟩simLLM ⟨z, x[2]⟩simLLM] + αsim

KG · [⟨z, x[1]⟩simKG ⟨z, x[2]⟩simKG]) (2)

Here, · refers to the dot product between vectors, ⟨·⟩simLLM refers to a similarity
measure between the LLM representations, and ⟨·⟩simKG refers to a similarity mea-
sure between the KG embedding representations. The αsim

LLM and αsim
KG are two

dimensional vectors.

Aggregation Methods Aggregation as a method to reduce statistical irregu-
larities such as high variance has been well-studied in statistical learning the-
ory literature [11]. The ensemble formulation in (2) can be seen as aggregation
over instances in the dataset X. In this work, we experiment with two types
of aggregation, the average of the instance representations and using averages
over higher-order moment representations. We can expect LLMs trained on very

Title Suppressed Due to Excessive Length 5

large amounts of data to tend to the normal distributional trend in the underly-
ing data distribution. Therefore the average (first-order moment) and variance
(second-order moment) of groups of instance representations are sufficient statis-
tics to describe the underlying distribution. However, for smaller number of data
instances (such as in GLUE task datasets), it may be necessary to utilize av-
erages over higher order moments as sufficient statistics. We experiment with
both types of aggregation and compare the results.

3 The Interpretable Ensemble Representation Learning
(IERL) Algorithm

Figure 1 shows an illustration of the IERL optimization step - (a) Shows the
dataset X (e.g., Recognizing Textual Entailment) and its instances xi indexed
by i. ti[1] and ti[2] denote the BERT representations of sentence 1: xi[1] and
2: xi[2] from instance i. ci[1] and ci[2] denote the ConceptNet representations
of sentences 1 and 2 from instance i. (b) Shows how similar and dissimilar
instances to xi[1] are constructed and aggregated for the cases of yi == 1 and
−1 respectively. (c) Shows one step of optimization in detail corresponding to
line 22 in Algorithm 3 (d) Shows two methods of aggregation over instances
- Averaging and Moment-Based (Algorithm 2) aggregation. Algorithm 1 and 2
detail the IERL and aggregation algorithm, respectively.

4 Experimental Section and Results

In our experiments, we use BERT as the choice of LLM representations and
ConceptNet NumberBatch embeddings for the choice of KG representations in
the IERL algorithm (3). We use gradient descent as our optimization procedure,
and use grid search to tune hyperparameters for optimization. For the computa-
tion of higher order moment representations in algorithm 2, we execute each for
loop iteration in parallel. We initialize the parameters αi[j] for each (i, j) using
a 0 mean, I covariance 4d-gaussian distribution. We test our method on the
GLUE tasks: Quora Question Pairs (QQP), Question-Answering NLI (QNLI),
Multi-Genre NLI (MNLI), RTE, Stanford Sentiment Treebank v2 (SST-2), and
Winograd NLI (WNLI) pertaining to two types of tasks:

1. Sentence Similarity: Consists of input sentence pairs and a 1 or 0 denoting
if the pairs are similar or not (we reformulate to 1 and −1) - QQP, and STS

2. Sentence Entailment: Consists of input sentence pairs and label from
among “entailment, contradiction, neutral” (we reformulate to 1 for entail-
ment and −1 for contradiction) - QNLI, WNLI, MNLI, and RTE

We also convert our vectors to unit vectors before computing dot products (line
21 in IERL Algorithm - 3).

6 F. Author et al.

6HQWHQFH�����[L>�@
%(57������������WL>�@
&RQFHSW1HW��FL>�@

6HQWHQFH�����[L>�@
%(57������������WL>�@
&RQFHSW1HW��FL>�@

6LPLODULW\�/DEHO
\L

'DWDVHW�;

,QVWDQFH�L�ĺ�

�D�

�E� ,I�\L� ��� ,I�\L� ���

$JJUHJDWHG
6LPLODU�6HW

1�URZV

%(57����������WL
VLP>�@� �DJJ�WL>�@��WL>�@�

&RQFHSW1HW��FL
VLP>�@� �DJJ�FL>�@��FL>�@�

%(57����������WL
VLP>�@� �DJJ�WL>�@�

&RQFHSW1HW��FL
VLP>�@� �DJJ�FL>�@�

$JJUHJDWHG
'LVVLPLODU�6HW

%(57����������WL
GLV>�@� �DJJ�����WP>�@��WP>�@�������䌔P�L

&RQFHSW1HW��FL
GLV>�@� �DJJ�����FP>�@��FP>�@�������䌔P�L

%(57���������WL
VLP>�@� �DJJ�WL>�@�����WP>�@��WP>�@�������䌔P�L

&RQFHSW1HW��FL
GLV>�@� �DJJ�FL>�@�����FP>�@��FP>�@�������䌔P�L

䎭�±
��

��

��

��

Į%(57
GLV

Į%(57
VLP

Į&RQFHSW1HW
GLV

Į&RQFHSW1HW
VLP

WL>�@
7�䏙�WL

GLV>�@
WL>�@

7�䏙�WL
VLP>�@

FL>�@
7�䏙�FL

GLV>�@
�FL>�@

7�䏙�FL
VLP>�@

�

PLQ�
Į[>�@

� Į%(57
VLP��������Į%(57

GLV���
Į&RQFHSW1HW

VLP���Į&RQFHSW1HW
GLV

�

�

/DEHO�
9HFWRU

�F�

)RU�HDFK�LQVWDQFH�L

Į[>�@

�������������������������
±
�

�W>�@��

�W>�@��
�

������������������������

$JJUHJDWLRQ�)XQFWLRQV�DJJ�������([DPSOH��DJJ�W>�@��W>�@�� �"

�G�

%DVHOLQH��$YHUDJLQJ 2XU�0HWKRG��0RPHQW�%DVHG

W>�@

W>�@
�

�
±
�

�������������������������
±
�

�W>�@��

�W>�@��
�

������������������������

�������������������������
±
�

�W>�@��

�W>�@��
�

������������������������
____ «__

__���FRQFDWHQDWH

�WK�0RPHQW �VW�0RPHQW �QG�0RPHQW

Fig. 1. (a) Shows the dataset X (e.g., Recognizing Textual Entailment (RTE)) and
its instances xi indexed by i (i = 1, . . . , N). The BERT representations of sentence
1: xi[1] and 2: xi[2] from instance i are denoted by ti[1] and ti[2]. The ConceptNet
representations of sentences 1 and 2 from instance i are denoted by ci[1] and ci[2],
respectively. (b) Shows how similar and dissimilar instances to xi[1] are constructed
and aggregated for the cases of yi = 1 and −1, respectively. (c) Shows one of the
optimization problems in detail corresponding to line 22 in algorithm 3. (d) Shows two
methods of aggregation over instances - Averaging and Moment-Based (algorithm 2)
aggregation.

Baseline Model For our baseline model we implement IERL using a simple
average for aggregation (instead of computing moments using Algorithm 2). We
call this IERLBASE. We present our evaluation results in the order that they
address the questions Q1 and Q2 introduced in section 1.

4.1 Quantitative Evaluation - Addresses Q1

We report accuracy measures of our method against the baseline IERLBASE and
the current leader on the GLUE leaderboard and see that the performance of
IERL shows competitive performance even against state-of-the-art performance.

Title Suppressed Due to Excessive Length 7

Algorithm 1 Interpretable Ensemble Representation Learning (IERL)

1: Inputs: Dataset: x ∈ X ▷ x = (sentence1, sentence2, label), see section 2.1
2: Models = { } ▷ Initialize dictionary to store models for all sentences in X
3: for i ∈ X do ▷ i indexes instance x
4: xi = X[i] ▷ ith instance
5: ti[1], ti[2] = LLM(xi[1]), LLM(xi[2]) ▷ LLM representations for sentences
6: ci[1], ci[2] = KG(xi[1]), KG(xi[2]) ▷ KG representations for sentences
7: y = x[3] ▷ Label for this instance
8: for j ∈ {1, 2} do ▷ j indexes each sentence in the instance
9: if y == +1 then ▷ Similar and dissimilar instance aggregation
10: tsimi [j] =agg([ti[1], ti[2]])
11: csimi [j] =agg([ci[1], ci[2]])
12: tdisi [j] =agg([.., tm[1], tm[2], ..]),∀m ̸= i
13: cdisi [j] =agg([.., cm[1], cm[2], ..]), ∀m ̸= i
14: else if y == -1 then ▷ Similar and dissimilar instance aggregation
15: tsimi [j] =agg([ti[1]])
16: csimi [j] =agg([ci[1]])
17: tdisi [j] =agg([ti[2], .., tm[1], tm[2], ..]), ∀m ̸= i
18: cdisi [j] =agg([ci[2], .., cm[1], cm[2], ..]), ∀m ̸= i

19: αi[j] = [αsim
LLM , αdis

LLM , αsim
KG , αdis

KG] ▷ parameters for instance i, sentence j
20: I = [1,−1, 1,−1]
21: D = [ti[j] · tsimi [j], ti[j] · tdisi [j], ci[j] · csimi [j], ci[j] · cdisi [j]]
22: Optimization until convergence: Minimize gi[j] = ||I−αi[j]⊙D||22+||αi[j]||11
23: Models[xi[j]] = (gi[j], αi[j]) ▷ Store model for instance i, sentence j

24: return Models

Algorithm 2 Aggregation Algorithm (agg)

1: Inputs: list of vectors V
2: aggV = []
3: for v ∈ V do ▷ calculate element wise powers of the vector elements
4: v0, v1, v2, v3 = v0, v1, v2, v3

5: vconcat = concat(v0, v1, v2, v3) ▷ Concatenate the power vectors
6: aggV .append(vconcat) ▷ add to list of vectors to aggregate

7: return mean(aggV) ▷ return average of all lists in aggV

We also compute #Optimization steps using randomly sampled batches of size
80% of the whole dataset per sample and tabulate the range (min-max)3. We
see that the range is significantly higher using an implementation of BERT
(BERT (Ours) - Vanilla BERT with 6 layers and fine-tuning) compared to both
versions of IERL. Furthermore, higher-order moments also show a much faster
convergence of 7-13 steps vs. 20-30 and 20-45 steps. We use up to fourth-order
moments in our experiments, i.e., 0-3.

3 We are currently running fine-tuning using the leaderboard model and will report
#Optimization-Steps range in future work

8 F. Author et al.

System STS QQP QNLI WNLI MNLI RTE #Optimization-Steps (Range)

GLUELEADER 93.5 90.9 96.7 97.9 92.5 93.6 -
BERT (Ours) 89.7 88.7 93.5 93.3 81.5 88.3 20-45
IERLBASE 90.89 86.41 92.3 90.11 88.53 90.4 20-30
IERL 93.55 90.51 95.56 98.7 92.08 92.3 7-13
Table 1. Comparing IERL performance on similarity and entailment GLUE tasks. We
also see that the # of Optimization steps stabilizes using the IERL training method.
IERL shows competitive performance even against state-of-the-art performance. Using
higher-order moments in IERL shows a much faster convergence of 7-13 steps vs. 20-45
and 20-30 steps.

4.2 Qualitative Evaluation - Addresses Q2

Figure 2 shows an example inference output using IERL for a group of test sen-
tences and an anchor sentence z (z chosen for ease of illustration). The figure
shows a group of instances shown in the oval and rectangular boxes (includ-
ing z) and similarity measurements. For a pair of instances z and one other
instance from the group shown (let it be denoted by z2), we first find the clos-
est sentences x1, x2 from the training set X and compute two similarities as

s1 = ˆBERT (x1)· ˆBERT (x2) and s2 = ˆConceptNet(x1)· ˆConceptNet(x2), where

(̂.) represents normalizing the vectors as unit vectors. We display the greater of
the two. The shapes are highlighted in green when the sum of the similarities is
greater than or equal to Models[x1] ·Models[x2], i.e., inference value = 1 (line
23 in algorithm 3) and highlighted in pink otherwise, i.e., inference value = -1.
The rectangular shape denotes the s1 ≥ s2, and the oval shape denotes that
s2 ≥ s1 (the parameter values also reflect the same in αx1 and αx2). Thus IERL
is designed to provide a simple method to interpret the inference results for a
group of test sentences.

5 Conclusion and Future Work

In this work, we propose Interpretable Ensemble Representation Learning (IERL)
as an ensemble technique that demonstrates the interpretable combination of
LLM and knowledge representations to result in a high-performance model that
is robust to hallucinations and results in faster convergence in the number of
optimization steps. Through our experiments, we see the promise of IERL as a
method that advances research towards combining LLMs and knowledge graphs
that retain both high performances and are interpretable by design (thus, ad-
dressing interpretability ambiguities during ablations and approximate post-hoc
interpretations). In future work, we will explore different LLM and KG choices
and vary the order of moments considered. Furthermore, we will explore other
naturally interpretable combination functions (e.g., linear combination ensemble
in this work) that can add layers of expressiveness to the interpretation (e.g.,
abstraction level in a hierarchy of concepts from a KG).

Title Suppressed Due to Excessive Length 9

7]gYG�q<g�Ã�Qh�jPI�
DY]]GQIhj�q<g�Q[�jPI�
PQhj]gs�]N�PkZ<[XQ[G�

0PI�OgI<j�q<g�q<h�N]kOPj�
DIjqII[�ÂÊÂÅ�<[G�ÂÊÂÉ�

7]gYG�7<g����<Yh]�X[]q[�<h�jPI�
�gI<j�7<g��DIO<[�Q[�ÂÊÂÅ�<NjIg�jPI�
<hh<hhQ[<jQ][�]N��gEPGkXI��g<[v�
�IgGQ[<[G�]N��khjgQ<���Qh�ZkgGIg�

E<j<dkYjIG�Q[j]�<�q<g�<Eg]hh�
�kg]dI�jP<j�Y<hjIG�k[jQY�ÂÊÂÉ�

7]gYG�q<g�Â�q<h�jPI�NQghj�
]N�jPI�jq]�q]gYG�q<gh��
jP<j�j]]X�dY<EI�DIjqII[�

ÂÊÂÅ�j]�ÂÊÂÉ�

VLP� �����
VLP� �����

7]gYG�7<g���hj<gjIG�Q[�/<g<WIp]���]h[Q<��qPIgI�
�gEPGkXI��g<[v��IgGQ[<[G¡PIQg�j]�jPI�

�khjg]��k[O<gQ<[��ZdQgI¡q<h�hP]j�j]�GI<jP�
<Y][O�qQjP�PQh�qQNI��/]dPQI��Ds�jPI�/IgDQ<[�
[<jQ][<YQhj��<pgQY]�+gQ[EQd�][��k[I�ÃÉ��ÂÊÂÅ�

7]gYG�7<g����q<h�N]kOPj�Ng]Z�ÂÊÄÊ�j]�ÂÊÅÆ��jPI�
/IE][G�7]gYG�7<g�Qh�jPI�GI<GYQIhj�E][NYQEj�Q[�PQhj]gs��

qQjP�]pIg�ÈÁ�ZQYYQ][�N<j<YQjQIh�

0PI�<ZIgQE<[�EQpQY�q<g�q<h�
N]kOPj�DIjqII[�ÂÉÇÂ�<[G�

ÂÉÇÆ�qQjP�jPI�1[Q][�
EY<QZQ[O�pQEj]gs�

VLP� �����

VLP� �����

VLP� �����

VLP� �����

Fig. 2. Shows an example inference output using IERL for a group of test sentences
along with an anchor sentence z (z chosen for ease of illustration). The figure shows
a group of instances shown in the oval and rectangular boxes (including z) and simi-
larity measurements. For a pair of instances z and one other instance from the group
shown (let it be denoted by z2), we first find the closest sentences x1, x2 from the

training set X and compute two similarities as s1 = ˆBERT (x1) · ˆBERT (x2) and

s2 = ˆConceptNet(x1) · ˆConceptNet(x2), where (̂.) represents normalizing the vectors
as unit vectors. We display the greater of the two. The shapes are highlighted in green
when the sum of the similarities is greater than or equal to Models[x1] · Models[x2],
i.e., inference value = 1 (line 23 in algorithm 3) and highlighted in pink otherwise, i.e.,
inference value = -1. The rectangular shape denotes the s1 ≥ s2, and the oval shape
denotes that s2 ≥ s1 (the parameter values also reflect the same in αx1 and αx2). Thus
IERL is designed to provide a simple method to interpret the inference results for a
group of test sentences.

References

1. Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
Emergent abilities of large language models. arXiv preprint arXiv:2206.07682,
2022.

2. Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. Glue: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461, 2018.

3. Phillip Bricker. Ontological commitment. 2014.
4. Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open mul-

tilingual graph of general knowledge. In Thirty-first AAAI conference on artificial
intelligence, 2017.

5. Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A
survey on knowledge graphs: Representation, acquisition, and applications. IEEE
Transactions on Neural Networks and Learning Systems, 33(2):494–514, 2021.

6. Minki Kang, Jinheon Baek, and Sung Ju Hwang. Kala: Knowledge-augmented
language model adaptation. arXiv preprint arXiv:2204.10555, 2022.

7. Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Guihong
Cao, Daxin Jiang, Ming Zhou, et al. K-adapter: Infusing knowledge into pre-
trained models with adapters. arXiv preprint arXiv:2002.01808, 2020.

10 F. Author et al.

8. Vipula Rawte, Megha Chakraborty, Kaushik Roy, Manas Gaur, Keyur Faldu,
Prashant Kikani, Hemang Akbari, and Amit P Sheth. Tdlr: Top semantic-down
syntactic language representation. In NeurIPS’22 Workshop on All Things Atten-
tion: Bridging Different Perspectives on Attention.

9. Edward Choi, Zhen Xu, Yujia Li, Michael Dusenberry, Gerardo Flores, Emily Xue,
and Andrew Dai. Learning the graphical structure of electronic health records
with graph convolutional transformer. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 606–613, 2020.

10. Saumitra Mishra, Bob L Sturm, and Simon Dixon. Local interpretable model-
agnostic explanations for music content analysis. In ISMIR, volume 53, pages
537–543, 2017.

11. William AV Clark and Karen L Avery. The effects of data aggregation in statistical
analysis. Geographical Analysis, 8(4):428–438, 1976.

	IERL: Interpretable Ensemble Representation Learning - Combining CrowdSourced Knowledge and Distributed Semantic Representations
	Publication Info

	IERL: Interpretable Ensemble Representation Learning - Combining CrowdSourced Knowledge and Distributed Semantic Representations

