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Abstract

Learning tasks involving function approximation are preva-
lent in numerous domains of science and engineering. The
underlying idea is to design a learning algorithm that gener-
ates a sequence of functions converging to the desired target
function with arbitrary accuracy by using the available data
samples. In this paper, we present a novel interpretation of
iterative function learning through the lens of ensemble dy-
namical systems, with an emphasis on establishing the equiv-
alence between convergence of function learning algorithms
and asymptotic behavior of ensemble systems. In particular,
given a set of observation data in a function learning task,
we prove that the procedure of generating an approximation
sequence can be represented as a steering problem of a dy-
namic ensemble system defined on a function space. This in
turn gives rise to an ensemble systems-theoretic approach to
the design of “continuous-time” function learning algorithms,
which have a great potential to reach better generalizability
compared with classical “discrete-time” learning algorithms.

Introduction
Learning a function from measurement data is a common
task prevalent across diverse domains of science and engi-
neering. Typical applications include system identification
(Schoukens and Ljung 2019; Ljung 1999; Narendra and
Kannan 1990), reinforcement learning (Sutton and Barto
1998; Bertsekas et al. 2000; Doya 2000), classification
(Abu-Mostafa, Magdon-Ismail, and Lin 2012; Goodfellow,
Bengio, and Courville 2016a), and model learning (inverse)
problems (Tarantola 2005). The key idea behind the many
existing techniques to accomplishing these tasks is to gen-
erate a sequence of function estimates from an initial guess
that tend toward the target function using observation data.
The primary challenge to efficiently solve this problem con-
cerns with the design of update rules that generate a con-
vergent sequence of functions such that the target function
forms the limit point of this sequence. In general, the initial
guess of the sequence and the observed data (both quality
and quantity) play a significant role to warrant convergence
of the sequence to the desired target.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org), AAAI 2023 Workshop “When Ma-
chine Learning meets Dynamical Systems: Theory and Applica-
tions” (MLmDS 2023). All rights reserved.

Our Contributions In this work, we study a fundamen-
tal question on function approximation via iterative algo-
rithms from a systems-theoretic viewpoint. Namely, can we
formally represent an iterative learning algorithm as a dy-
namical system? What are the necessary and sufficient con-
ditions for such an iterative learning algorithm to converge
in terms of the associated dynamical system representations?
We shall answer these highly non-trivial questions by mak-
ing the following contributions. We show that for every it-
erative learning algorithm generating a convergent sequence
of functions (converging to a target function), there exists an
ensemble control system defined on the function space with
an equilibrium point at the target function and vice versa.
Moreover, we show that the convergence of the learning al-
gorithm is guaranteed, regardless of the initial guess, when
the associated ensemble control system is ensemble control-
lable. In addition, examples are provided to numerically ver-
ify the conclusion, which further demonstrates the applica-
bility of leveraging the proposed ensemble-system theoretic
approach to designing “continuous-time” function learning
algorithms with better generalizability comparing with clas-
sical “discrete-time” algorithms.

Related works
In this paper, we study the function learning problems, and
in particular, draw a parallel between the dynamics induced
by iterative function learning task and the propagation of
an inhomogeneous ensemble dynamical system. An (inho-
mogeneous) ensemble system is a parameterized family of
dynamical systems evolving on a function space. Funda-
mental investigations of ensemble dynamical systems and
their properties, e.g., controllability and observability, have
been conducted in series of works over the last two decades
(Li 2006, 2011; Zeng et al. 2016; Chen 2020; Narayanan,
Zhang, and Li 2020; Li, Zhang, and Tie 2020)). Specif-
ically, ensemble controllability of both time-varying and
time-invariant linear (Li 2011; Li, Zhang, and Tie 2020;
Zeng and Allgöewer 2016), bilinear (Li and Khaneja 2009;
Zhang and Li 2021), and some classes of nonlinear ensemble
systems (Kuritz, Zeng, and Allgöwer 2018; Li, Dasanayake,
and Ruths 2013) have been studied in the literature.

Recently, there has been a renewed interest in the use
of techniques from dynamical systems and control to gain
insights into the commonly encountered learning problems
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and to synthesize new tools to tackle them. For instance,
the connection between control systems and certain classes
of computational neural networks have been studied in
(Weinan 2017; Haber and Ruthotto 2017; Lu et al. 2018;
He et al. 2016). In particular, these developments view the
common learning problems, such as weight identifiability
from data (Albertini and Sontag 1993), controllability (Son-
tag and Sussmann 1997; Sontag and Qiao 1999), and stabil-
ity (Michel, Farrell, and Porod 1989; Hirsch 1989) of neural
networks, from a dynamical system viewpoint. In this con-
text, more recently, function approximation problems and
the concept of universality of a class of deep residual net-
works were analyzed through the lens of homogeneous dy-
namic ensembles (Tabuada and Gharesifard 2020; Agrachev
and Sarychev 2020). Different from the works presented ear-
lier (Tabuada and Gharesifard 2020; Agrachev and Sarychev
2020), we introduce a new notion interpreting the evolution
of an iterative function learning algorithm as the time propa-
gation of an inhomogeneous ensemble system, and the con-
vergence toward a desired function is interpreted as a steer-
ing problem of an ensemble system. Specifically, we illus-
trate that the dynamic properties of the learning algorithm
can be studied and analyzed through a dynamically equiva-
lent systems, an inhomogeneous ensemble system.

Ensemble Systems and Ensemble Control
An ensemble system is a parameterized family of dynamical
systems evolving on a common manifold M ⊆ Rn of the
form

d

dt
x(t, β) = f(x(t, β), β, u(t)), (1)

where the system parameter β takes values on Ω ⊆ Rd,
u(t) ∈ Rm is the control input, and f(·, β, u(t)) is a vector
field on M for each fixed β ∈ Ω and u. A canonical ensem-
ble control task is to design a β-independent control input
u(t) that steers the whole family of systems from an initial
profile x0(β) = x(0, β) to a desired final profile xF (β) for
all β. By regarding the state variable x(t, β) as a function of
β, the ensemble system in (1) can be considered as a single
dynamical system evolving on a space of M -valued func-
tions defined on Ω, denoted by F(Ω,M).

Ensemble Controllability
Controllability is one of the most fundamental properties of
a dynamical system, which characterizes the ability of the
control input to precisely steer a control system between any
two given points in the state-space. For an ensemble system
as in (1), the parameter space Ω is generally an infinite set
so that the state-space F(Ω,M) is an infinite-dimensional
manifold; or, in another words, the system is an infinite-
dimensional system. For such a system, the classical notion
of controllability, i.e., exact controllability of steering the
ensemble system between two functions in F(Ω,M), can
be too restrictive. Hence, we introduce the concept of en-
semble controllability to characterize the ability to control
an ensemble system in the approximation sense.

Definition 1 (Ensemble controllability) The system in (1)
is said to be ensemble controllable on the function space

F(Ω,M) if for any ε > 0 and starting with any initial
profile x0 ∈ F(Ω,M), there exist a time T > 0 and
a control law u : [0, T ] → Rm that steers the system
into an ε-neighborhood of a desired target profile xF ∈
F(Ω,M), i.e., d(x(T, ·), xF (·)) < ε, where d : F(Ω,M)×
F(Ω,M)→ R is a metric on F(Ω,M).

Definition 1 shows that ensemble controllability is a no-
tion of approximate controllability, in which the final time T
may depend on the approximation accuracy ε.

Remark 1 (Ensemble controllability and convergence)
Ensemble controllability further conveys the idea of function
convergence, namely, x(T, ·) → xF (·) as T is sufficiently
large. This is essentially a continuous-time analogue to the
convergence of a sequence of functions, e.g., generated by a
learning algorithm.

Inspired by the observation in Remark 1, in the rest of the
paper, our goal is to rigorously establish and characterize the
relationship between the process of generating a sequence
of functions via an iterative learning algorithm and the pro-
pogation of an ensemble system. Meanwhile, we will also
investigate the role of control inputs and ensemble control-
lability of ensemble systems played in the design and con-
vergence analysis of function learning algorithms.

Function Learning from an Ensemble Control
Viewpoint

The focus of this section is to formulate function learning
as an ensemble control problem. We will develop a univer-
sal framework to transform the design of function learning
algorithms to that of ensemble control laws, and rigorously
establish the equivalence between convergence of learning
algorithms and ensemble controllability.

Ensemble systems adapted to function learning
algorithms
The most widely-used approach to learning a function is to
generate a sequence of functions converging to it. By treat-
ing the index of the sequence as time, it is natural to as-
sume that the generation of the sequence follows the time-
evolution of some dynamical system. In addition, because
each term in the sequence is a function, the associated dy-
namical system is necessarily an ensemble system evolving
on the same function space as the sequence does.

To rigorously bridge function learning algorithms and en-
semble systems, let h : Ω → Rn denote the function to be
learned and h0 : Ω → Rn be the initial guess of h, then
the algorithm learning h can be represented by the iterative
formula

hk+1 = hk + ∆hk, k ∈ N, (2)

where N denotes the set of nonnegative integers and ∆hk :
Ω → Rn is the update rule at the kth iteration, generally
depending on the gradient of hk, for each k ∈ N. Because
F(Ω,Rn) is a vector space, it is possible to define a norm
‖ · ‖ on it for the convergence analysis of the algorithm, i.e.,
hk → h if and only if ‖hk − h‖ → 0.
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Next, to acquire an ensemble systems-theoretic under-
standing of the function learning algorithm with the iterative
relation described in (2), we think of the iterations as the Eu-
ler discretization of an unforced ensemble system defined on
F(Ω,Rn) of the form as in (1), that is,

d

dt
x(t, β) = f(x(t, β), β). (3)

For convenience, we also use xt to denote the state variable
x(t, ·) of the system. To be adapted to the iterative rule in
(2), the ensemble system in (3) is required to satisfy x0 = h0
and (tk+1 − tk)f(xtk , ·) = ∆hk for a sequence of time tk
such that tk → ∞ as k → ∞. In this case, we say the
ensemble system in (3) is adapted to the learning algorithm
in (2). Moreover, we also assume that f : Rn × Ω → Rn is
a smooth function (in both arguments), which, for example,
can be guaranteed by the condition that ∆hk : Ω → Rn are
smooth functions for all k ∈ N.

Undoubtedly, one of the most crucial criteria for evaluat-
ing the performance of a learning algorithm is convergence.
As shown in the following proposition, the transformation of
an iterative learning algorithm in (2) to the adapted ensem-
ble system in (3) also carries over the convergence analysis
of the algorithm to the stability analysis of the system.

Proposition 1 If the sequence of functions {hk}k∈N in
F(Ω,Rn) generated by the learning algorithm in (2) con-
verges to a function h ∈ F(Ω,Rn), then there is an ensem-
ble system in the form of (3) defined on F(Ω,Rn) adapted
to this learning algorithm such that it has an equilibrium
point at h.

Proof. See Appendix for the complete proof. The main idea
is to construct an ensemble system defined on F(Ω,Rn) in
the form of (3) whose sampled trajectory approximates the
“tail” of the sequence {hk}k∈N with arbitrary accuracy so
that the system stabilizes to h. �

Remark 2 We note that Proposition 1 only demonstrates
the existence of an ensemble system being able to stabilize
at the limit point of the sequence generated by the learning
algorithm, and it by no means indicates that every ensemble
system adapted to the same algorithm has this property.

Dynamic function learning via ensemble systems
The association of stable ensemble systems to convergent
function learning algorithms discussed above takes the first
step towards the goal of understanding function learning
problems through the lens of ensemble systems theory. In
this section, we will reverse the engineering to generate
function learning algorithms by using ensemble systems.

To be more specific, given a function learning task and an
ensemble system as in (3), we would like to know whether
the iterative algorithm generated by the Euler discretization
of the ensemble system is able to accomplish the learning
task. According to Proposition 1, it is necessary that the en-
semble system has an equilibrium point at the function to
be learned. However, this is not sufficient to guarantee the
convergence of the learning algorithm generated by the en-
semble system to the desired function. Additionally, we also
need to make sure the initial guess to be accurate enough in

the sense of lying in the region of attraction of the equilib-
rium point. These two conditions together then give rise to a
converse of Proposition 1 as follows.

Proposition 2 Consider an ensemble system defined on the
function space F(Ω,Rn) as in (3). If h ∈ F(Ω,Rn) is a
stable equilibrium point of the system and h0 ∈ F(Ω,Rn)
is in the region of attraction of h, then there is a function
learning algorithm generated by the ensemble system which
converges to h.

Proof. This directly follows from the definition of stable
equilibrium points of dynamical systems, and the detail is
in Appendix. �

Propositions 1 and 2 give a necessary and sufficient con-
dition for convergence of function learning algorithms in
terms of stability of the adapted ensemble systems. The re-
quirement for the adapted ensemble systems to have stable
equilibrium points at the desired functions imposes strong
restrictions on their system dynamics. On the other hand, the
need for the initial guesses to be in the regions of attraction
of the equilibrium points may lead to sensitivity of the learn-
ing algorithms generated by these ensemble systems to the
initial guesses. To waive these requirements, it is inevitable
to force such ensemble systems by external control inputs.

In the presence of a control input, e.g., as the ensemble
system in (1), the function learning algorithm in (2) gener-
ated by the ensemble system, more specifically the updating
rule ∆hk, also depends on u(t). As a result, it is possible
to design an appropriate u(t) to enforce the convergence of
learning algorithm to the desired function h, even though h
may not be an equilibrium point of the uncontrolled system.

Theorem 1 Given an ensemble control system defined on
the function space F(Ω,Rn) as in (1). Then, for any h ∈
F(Ω,Rn), there is a function learning algorithm generated
by the ensemble system converging to h regardless of the ini-
tial guess if and only if the system is ensemble controllable
on F(Ω,Rn).

Proof. The idea is to interpret the concept of ensemble con-
trollability in terms of convergence. See Appendix for de-
tails. �

Conceptually, Theorem 1 demonstrates the potential for a
novel function learning algorithm design method using en-
semble control theory. Moreover, it is worth noting that even
the system is ensemble uncontrollable, it may still be able
to generate a learning algorithm accomplishing the desired
function learning task. However, in this case, it is natural that
the initial guess is pivotal to the algorithm convergence.

Corollary 1 For any function h ∈ F(Ω,Rn), if the initial
guess h0 ∈ F(Ω,Rn) of h is in the controllable submani-
fold of the ensemble system in (1) containing h, then there
is a function learning algorithm as in (2), generated by the
ensemble system, converging to h.

Proof. Because any ensemble system is ensemble control-
lable on its controllable submanifold, the proof directly fol-
lows from Theorem 1 by restricting the ensemble system in
(1) to the controllable submanifold containing h and h0. �
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Remark 3 (Robustness to initial guesses) Theorem 1 and
Corollary 1 presented a distinctive feature of the function
learning algorithms generated by ensemble control systems,
that is, the robustness to initial guesses. With the ability to
manipulate the “algorithm dynamics” using a control input,
initial guesses are no longer required to be close to the de-
sired function. In particular, under the condition of ensemble
controllability, the learning algorithm converges globally;
otherwise, it is sufficient to set the initial guess on the same
controllable submanifold as the target function.

On the other hand, Theorem 1 and Corollary 1 also indi-
cate that the function learning algorithm design problem can
be formulated as an ensemble control problem, which can be
tackled by various well-developed methods, such as pseu-
dospectral (Li et al. 2011) and iterative linearization meth-
ods (Wang and Li 2018; Zeng 2019).

Dynamic function learning for parameterized
models
In practice, to learn a function h : Ω→ Rn, it is highly inef-
ficient, or even impractical, to search for the entire space of
functions from Ω to Rn. Fortunately, with some prior knowl-
edge about h, it is possible to focus the learning on a sub-
space of this function space. Of particular interest, it is com-
mon to consider the case where functions in this subspace
can be indexed by parameters taking values in a set Θ. Con-
sequently, the function learning problem can be formulated
as the search of an element θ ∈ Θ such that the function in-
dexed by θ best approximates h in the sense of minimizing
a loss function L : Θ → R at θ. In this case, the learning
algorithm in (2) reduces to

θk+1 = θk − αk∇L(θk), (4)

where αk ∈ R is the learning rate for the kth iteration and
∇L denotes the gradient of L. Then, the dynamical system
adapted to (4) is of the form,

d

dt
θ(t) = −∇L(θ(t)), (5)

defined on Θ. Note that the equilibrium points of the sys-
tem in (5) are exactly the critical points of the function L.
Moreover, an equilibrium point θ∗ is stable if and only if the
Hessian matrix −∇2L(θ∗) is negative-definite, and this ob-
servation reveals that the local minima of L are composed of
the set of stable equilibrium points. Then, provided that the
system in (5) has no hyperbolic equilibrium point, equiva-
lently, the function L does not have any saddle point, Propo-
sition 2 guarantees the convergence of any trajectory of the
system to a local minimum of L.

In practice, it is common to minimize L under some
penalties Ri, i = 1, . . . ,m, e.g., for improving the general-
izability of the learning algorithm (Goodfellow, Bengio, and
Courville 2016b). In this case, we can choose the adapted
ensemble system to be in the control-affine form as

d

dt
θ(t) = −∇L(θ(t)) +

m∑
i=1

ui(t)∇Ri(θ(t)), (6)

in which u1, . . . , um are the control inputs representing the
weights of the penalties. This further leads to a unique ad-
vantage of formulating a learning algorithm as a dynami-
cal system as in (6), that is, real-time tuning of the weights
of the penalty terms for the algorithm to achieve better per-
formance. Furthermore, as a special case of the general en-
semble system in (1), the equivalence between convergence
of learning algorithms and controllability also holds for the
system in (6).

Remark 4 Note that, as in (6), the gradient of the cost func-
tion represents the natural drift of the system, which is in-
herent to many of the existing gradient-based learning ap-
proaches. However, what is interesting is the role of the
control vector fields play as regulators or exploratory sig-
nals. Contrary to regular learning algorithms in which these
terms combat with gradient terms resulting in some sacrifice
for algorithm performance, our results reveal that they, serv-
ing as control vector fields, tend to make the ensemble sys-
tem adapted to the learning algorithm controllable, which in
turn leads to global convergence of the algorithm. Geomet-
rically, with these penalties, the ensemble system, equiva-
lently, the learning algorithm, can reach more functions (any
functions if controllable), in addition to those along the gra-
dient direction of the cost function.

Examples and Simulations
In this section, we use the curve fitting problem to illustrate
the applicability of the proposed ensemble control-theoretic
function learning approach. In particular, to verify the pro-
posed approach, we compare it with classical function learn-
ing methods, such as linear regression.

Curve fitting
The purpose of curve fitting is to find a function having the
best fit to an input-output dataset. Let X = {x1, . . . , xN} ⊂
Rn and Y = {y1, . . . , yN} ⊂ R be the input and output
data, respectively, and F denote the space containing func-
tions from Rn to R, then the curve fitting problem can be
formulated as minh∈F L(h) for some loss functionL : F →
R. In general, F is chosen to be a vector space, then it has
a basis {ϕi}∞i=0 so that any h ∈ F can be represented as
h =

∑∞
i=0 θiϕi for some θi ∈ R. As a result, F can be

paramterized by real-valued sequences θ = (θ0, θ1, . . . ),
and the function learning problem can be tackled by using
this paramterization as minθ L(θ).

To illustrate the main idea, we pick F to be the
finite-dimensional vector space spanned by the first r ba-
sis functions ϕ0, . . . , ϕr−1 and L(θ) = 1

2

∑N
i=1 |yi −∑r−1

j=0 θjϕj(xi)|2, which reduces the curve fitting to a re-
gression problem. To find a concrete representation of the
dynamical system adapted to this problem in the form of
(5), let Y = (y1, . . . , yN )′ ∈ RN denote the N -dimensional
column vector consisting of the output data, andH ∈ RN×r
be the regressor matrix with the (i, j)-entry defined by
Hij = Φj(xi),then the loss function admit the matrix form
L(θ) = 1

2 (Y − Hθ)′(Y − Hθ), whose gradient is given
by ∇L(θ) = H ′Hθ − H ′Y . This immediately leads to the
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system adapted to the regression problem as

d

dt
θ(t) = −H ′Hθ +H ′Y, (7)

which characterizes the dynamics of the adapted en-
semble system on F under the parameterization θ =
(θ0, . . . , θr−1) ∈ Rr. Moreover, the system in (7) is a lin-
ear system whose solution is given by

θ(t) = e−tH
′Hθ(0) +

∫ t

0

e(s−t)H
′HH ′Y dt,

where θ(0) is the initial guess. In general, the regressor
matrix H is full rank (unless there are redundant data) so
that −H ′H is negative-definite, and hence e−tH

′H → 0 as
t → 0. This implies that the solution of the adapted system
in (7) converges to the solution of the regression problem
regardless of the initial guess. Moreover, the invertibility of
H ′H gives a more concrete representation of the solution

θ(t) = e−tH
′Hθ(0) + (I − e−tH

′H)(H ′H)−1H ′Y,

where I ∈ Rr×r denotes the identity matrix, and we use
the commutativity of (H ′H)−1 and etH

′H . When t → ∞,
θ(t) → (H ′H)−1H ′Y , which exactly coincides the solu-
tion θ∗ of the linear regression problem, theoretically veri-
fying the proposed ensemble system-theoretic approach to
function learning.

To demonstrate the applicability of this novel approach,
we would like to learn the nonlinear function h : [−1, 1] →
R, x 7→ cos(1.15πx) + sin(1.15πx) by using polynomial
functions up to order 4, i.e., the function space F is the
5-dimensional vector space spanned by ϕi(x) = xi for
i = 0, 1, . . . , 4. To this end, we draw 20 samples x1, . . . , x20
from the uniform distribution on [-1,1] as the input data,
then noise the values of h evaluated at these points by a 0
mean and 0.05 variance Gaussian noise δ as the output data
yi = h(xi) + δ, i = 1, . . . , 20. In this case, the regres-
sor matrix H is a 20-by-5 matrix with the (i, j)-entry given
by xji for each i = 1, . . . , 20 and j = 0, . . . , 4. Specifi-
cally, we solve the ordinary differential equation system in
(7) numerically for the time duration [0, 100]. The `2-error
between θ(t) and θ∗ and the cost with respect to time are
shown in Figure 1, which rapidly converge to 0 and the min-
imum cost, respectively. Moreover, in Figure 2, we show the
polynomials with coefficients θ(t) for t = 10, 20, . . . , 100,
which clearly converge to the least square solution h∗ of the
regression problem.

Remark 5 (Dynamic function learning and early stop-
ping) It is well-known in the machine learning society that
early stopping is one of the most effective ways to improve
the generalizability of learning algorithms. In the proposed
ensemble system-theoretic function learning approach, early
stopping can be simply realized by choosing a relatively
small final time for the ensemble system adapted to a learn-
ing algorithm. In addition, compared with the classical
“discrete-time” learning algorithms, the stopping criterion
for this “continuous-time” algorithm does not restrict to in-
teger time, which demonstrates a great potential to reach
better generalizability.
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Figure 1: The time evolutions of the `2-error between θ(t)
and θ∗ (the top figure), and the cost L(θ(t)) (the bottom
figure), where θ(t) is the solution of the system in (7)
adapted to the curve fitting problem minθ∈R4

∑20
i=1 |yi −∑4

j=0 θix
j
i |2, and θ∗ is the least square solution.

Conclusions
In this paper, we propose a novel viewpoint for function
learning problems through the lens of ensemble control the-
ory. The core idea is to draw a parallel between the process
of generating a sequence of functions by a iterative learn-
ing algorithm and the propagation of an ensemble system
defined on a function space. Specifically, we establish an
equivalence between convergence of function learning al-
gorithms and asymptotic stability of ensemble systems, in
which we particularly emphasize the importance of ensem-
ble controllability of a system to the global convergence of
the function learning algorithm, in the sense of being ro-
bust to initial guesses, generated by it. Moreover, the pro-
posed framework is also applicable to parameterized model
learning given prior knowledge about the targets, as well as
learning problems with penalties. In addition, this ensemble
system-theoretic framework further gives rise to a system-
atic approach to the design of “continuous-time” function
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Figure 2: Convergence of the polynomial functions (the
solid curves) with coefficients θ(t), t = 10, 20, . . . , 100
to the least square solution of the curve fitting problem
minθ∈R4

∑20
i=1 |yi −

∑4
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j
i |2 (the dashed curve).

learning algorithms, which have a great potential to reach
better generalizability than classical “discrete-time” algo-
rithms.

Due to the nature of function learning problems, the de-
veloped framework requires data consisting both of the val-
ues of a function and the corresponding preimages in the do-
main. This implies learning algorithms generated by ensem-
ble systems only works for supervised learning tasks, which
indicates a limitation of this work. In the future, we would
like to include unsupervised learning tasks into the ensemble
control-theoretic learning framework, and on the other hand
reverse the engineering to study ensemble control problems
by using function leaning techniques, which promises to ex-
pand the scope of both control theory and machine learning.

Appendix
Proof of Proposition 1
Because the sequence {hk}k∈N is convergent, it must be
a Cauchy sequence, i.e., hk+1 − hk = ∆hk → 0. By
the definition of the ensemble system in (3), we also have
f(x(tk, ·), ·) = ∆hk(·)/(tk+1 − tk) → 0, which particu-
larly implies that f can be chosen to be a bounded function
with bounded derivative. In order to show that this choice of
f yields f(h(·), ·) = 0, because of the continuity of f , it is
suffices to prove that we can choose xtk , k ∈ N such that
xtk → h as k →∞.

Note that because convergence is a long-term behavior of
a dynamical system, we can let the system in (3) start from
x0 = hN for some N large enough so that ‖hk+1 − hk‖ =
‖∆hk‖ < ε/2k for all k ≥ N and some ε > 0, after passing
hk to a subsequence if necessary. In addition, without loss of
generality, we also choose the sampling rate of the ensemble
system in (3) to be uniform, that is, tk+1 − tk = τ for all
k ∈ N. Following these assumptions, the error of the approx-
imation of the sequence {hk}k≥N by the sampled trajectory

{xtk}k≥0 can be obtained iteratively as follows. We first ap-
ply Taylor’s theorem to x(t1, β) up to the second order

x(t1, β) ≈ x(0, β) + τ
d

dt
x(0, β) +

τ2

2

d2

dt2
x(0, β)

= hN (β) + τf(x(0, β), β) +
τ2

2

d

dt
f(x(0, β), β)

= hN+1(β) +
τ2

2
Df(x(0, β), β) · f(x(0, β), β)

= hN+1(β) +
τ

2
Df(x(0, β), β) ·∆hN (β),

where Df denote the differential, i.e., the Jacobian matrix,
of f(x, β) with respect to x, and τ0 = t1−t0 = t1. Similarly,
applying Taylor’s theorem to x(t1, β) up to the second order
yields

x(t2, β) ≈ x(t1, β) + τf(x(t1, β), β)

+
τ

2
Df(x(t1, β), β) ·∆hN+1(β)

≈ hN+1(β) + τf(x(t1, β), β)

+
τ

2
Df(x(t1, β), β) ·∆hN+1(β)

+
τ

2
Df(x(0, β), β) ·∆hN (β)

= hN+2(β) +
τ

2

(
Df(x(t1, β), β) ·∆hN+1(β)

+Df(x(0, β), β) ·∆hN (β)
)
.

and inductively, we obtain

x(tk, β) ≈ hN+k(β) +
τ

2

k−1∑
i=0

Df(x(ti, β), β) ·∆hn(β).

Let C be the upper bound of ‖Df‖, then we have the fol-
lowing estimate

‖x(tk, ·)− hN+k‖ ≤
k−1∑
i=0

1

2i+1
‖Df(x(ti, ·), ·)‖‖∆hn‖

≤ C(1− 2−k)ε,

which then yields ‖x(tk, ·) − hN+k‖ → 0 as k → ∞ since
ε is arbitrary. Consequently, we obtain ‖xtk − h‖ ≤ ‖xtk −
hN+k‖ + ‖hN+k − h‖ → 0 because both of the two terms
on the right hand side approach 0 when k →∞, which also
concludes the proof.

Proof of Proposition 2
Because h ∈ F(Ω,Rn) is an equilibrium point of the en-
semble system in (3), we have f(h(·), ·) = 0, the zero func-
tion. Together with the condition that h0 ∈ F(Ω,Rn) is in
the region of attraction of h, the solution of the system with
the initial condition h0 satisfies x(t, ·) → h(·) as t → ∞.
We pick a sequence of time tk, k ∈ N such that tk → ∞ as
k →∞. Taylor’s theorem implies that for each k

x(tk+1, β) = x(tk, β) + (tk+1 − tk)
d

dt
x(τk, β)

= x(tk, β) + (tk+1 − tk)f(x(τk, β), β)
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for some tk ≤ τk ≤ tk+1. Then, we evolve the system
from the initial condition xt0 = h0 and define ∆hk(·) =
(tk+1 − tk)f(x(τk, ·), ·), which gives hk = xtk for all
k ∈ N, yielding the convergence of the learning algorithm
hk → h as k →∞.

Proof of Theorem 1
Necessity: Suppose that the system in (1) is ensemble con-
trollable on F(Ω,Rn), then for any ε > 0 and any initial
condition x0 ∈ F(Ω,Rn), there is a control input u(t) steer-
ing the system to a function x(T, ·) ∈ F(Ω,Rn) in a finite
time T such that ‖xT − h‖ < ε. Then, we design a function
learning algorithm with the initial guess h0 = x0 as in the
proof of Proposition 2, which will converge to h since ε is
arbitrary.

Sufficiency: Given arbitrary h and h0 in F(Ω,Rn), sup-
pose that there is a function learning algorithm as in (2),
generated by the ensemble system in (1) driven by a control
input u(t), converging to h with the initial guess h0. Then,
following the same proof as Proposition 1, we can show the
ensemble system stabilizes to h, i.e., for any ε > 0, there
is a finite time T such that the control input u(t) steers the
ensemble system to xT satisfying ‖xT − h‖ < ε. Because ε
is arbitrary, it concludes ensemble controllability of the sys-
tem.
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