Tunable Multiferroic Properties in Nanocomposite PbTiO$_3$-CoFe$_2$O$_4$ Epitaxial Thin Films

M. Murakami
K.-S. Chang
M. A. Aronova
C.-L. Lin
Ming H. Yu

See next page for additional authors

Follow this and additional works at: https://scholarcommons.sc.edu/eche_facpub

Part of the Chemical Engineering Commons, Electromagnetics and Photonics Commons, and the Semiconductor and Optical Materials Commons

Publication Info
Published in *Applied Physics Letters*, Volume 87, Issue 11, 2005, pages #112901-.
http://dx.doi.org/10.1063/1.2041825

This Article is brought to you by the Chemical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.
Tunable multiferroic properties in nanocomposite PbTiO 3 – CoFe 2 O 4 epitaxial thin films


Citation: Applied Physics Letters 87, 112901 (2005); doi: 10.1063/1.2041825
View online: http://dx.doi.org/10.1063/1.2041825
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/87/11?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Pillar shape modulation in epitaxial BiFeO3–CoFe2O4 vertical nanocomposite films
APL Mat. 2, 081101 (2014); 10.1063/1.4892695

Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO3 incorporated in (BiFeO3)0.50 (Co0.4Zn0.4Cu0.2 Fe2O4)0.5 nanocomposite
AIP Advances 4, 037112 (2014); 10.1063/1.4869077

Interfacial engineering and coupling of electric and magnetic properties in Pb ( Zr 0.53 Ti 0.47 ) O 3 / CoFe 2 O 4 multiferroic epitaxial multilayers
J. Appl. Phys. 107, 104105 (2010); 10.1063/1.3386510

Magnetoelectric and multiferroic properties of variously oriented epitaxial BiFeO 3 – CoFe 2 O 4 nanostructured thin films
J. Appl. Phys. 107, 064106 (2010); 10.1063/1.3359650

Orientation-dependent multiferroic properties in Pb ( Zr 0.52 Ti 0.48 ) O 3 – CoFe 2 O 4 nanocomposite thin films derived by a sol-gel processing
J. Appl. Phys. 103, 034103 (2008); 10.1063/1.2838482
Tunable multiferroic properties in nanocomposite PbTiO$_3$–CoFe$_2$O$_4$ epitaxial thin films

M. Murakami, K.-S. Chang, M. A. Aronova, C.-L. Lin, Ming H. Yu, J. Hattrick Simpers, M. Wuttig, and I. Takeuchi
Department of Materials Science and Engineering and Center for Superconducting Research, University of Maryland, College Park, Maryland 20742

C. Gao and B. Hu
National Synchrotron Radiation Laboratory and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China

S. E. Lofland
Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028

L. A. Knauss
Neocera, Inc., 10000 Virginia Manor Road, Beltsville, Maryland 20705

L. A. Bendersky
NIST, Gaithersburg, Maryland 20899

(Received 26 April 2005; accepted 19 July 2005; published online 6 September 2005)

We report on the synthesis of PbTiO$_3$–CoFe$_2$O$_4$ multiferroic nanocomposites and continuous tuning of their ferroelectric and magnetic properties as a function of the average composition on thin-film composition spreads. The highest dielectric constant and nonlinear dielectric signal was observed at (PbTiO$_3$)$_{85}$–(CoFe$_2$O$_4$)$_{15}$, where robust magnetism was also observed. Transmission electron microscopy revealed a pancake-shaped epitaxial nanostructure of PbTiO$_3$ on the order of 30 nm embedded in the matrix of CoFe$_2$O$_4$ at this composition. Composition dependent ferroics properties observed here indicate that there is considerable interdiffusion of cations into each other. © 2005 American Institute of Physics.

DOI: 10.1063/1.2041825

Multiferroic materials are of significant scientific and technological interests. In particular, composite multiferroics can exhibit sizable magnetoelectric (ME) coupling at room temperature and therefore they have the potential for novel device applications such as sensitive magnetic field sensors. In such systems, the ME effect arises from the elastic coupling between the piezoproperties of the ferromagnetic and ferroelectric components. There have been a number of reports on BaTiO$_3$–CoFe$_2$O$_4$ multiferroic composites and related materials. In these composite systems, eutectic separation of CFO and BTO give rise to the segregation of the two phases. Pursuing such materials in thin film structures is desirable because they offer the possibility to create compositions where the component materials are modulated and coupled at the nanometer level.

Previously, we have reported on investigation of thin film multiferroic compounds in BTO–CFO composition spreads where we identified a composition region which was ferromagnetic and displayed a relatively high dielectric constant at room temperature. In this letter, we report on the microstructure and tunable multiferroic properties of CFO–PbTiO$_3$ (PTO) thin film composition spreads.

In order to create composition spread structures modulated at the nanometer level, we deposited CFO and PTO by laser ablation in the “superlattice spread” geometry where the wedge thickness of each layer equals multiples of the lattice constants of CFO and PTO (Fig. 1). The resulting average composition of the spread varies continuously form pure PTO at one end to pure CFO at the other. The detail of the spread synthesis is described in Ref. 10. (100) MgO substrates were used. The deposition substrate temperature was 600 °C and the oxygen partial pressure was 65 mTorr. The ablation energy was approximately 2 J/cm$^2$, and the total thickness at each position on the spread was 300 nm. The sample was approximately 6 mm long in the spread direction.

We have found that by varying the layering configuration and the deposition condition, a variety of different nanocomposite configurations can be obtained. Cross-sectional high-resolution transmission electron microscopy (TEM) was performed at different compositions on various spreads. Figure 2(a) was taken from a spot on a spread where the average composition was approximately 80% PTO and 20% CFO (PTO$_{80}$–CFO$_{20}$). The wedge thickness of each depos-

![CoFe$_2$O$_4$–PbTiO$_3$ superlattice composition spreads used to design a magnetoelectric material. The schematic of the composition spread. The thickness of each wedge is 12.6 nm corresponding to 15 unit cells of CFO. The average composition of the film is continuously varied from pure PTO (right) to pure CFO (left). The total thickness of 300 nm is constant across the spread. The boxed region near the composition of PTO$_{80}$–CFO$_{20}$ was found to be consisting of epitaxial PTO nanopancakes embedded in the CFO matrix.](image)
ided layer for this particular spread was 12.6 nm which correspond to roughly 15 unit cells of CFO and 30 units cells of PTO. Pancake-shaped nanostructures of PTO on the order of 30 nm are seen as embedded in the matrix of CFO. In other samples, we have observed structures where one component has formed an ordered array of nanopillars in the matrix of the other component as well as structures where the superlattice configurations have remained intact. It is interesting to note that even though we fabricated our samples in a layered manner, the resulting structures have revealed very a different microstructure.

The lattice constants of the end compounds are \( a = 0.839 \text{nm} \) for CFO (cubic spinel, \( Fd3m \)) and \( a = 0.390 \text{nm} \) and \( c = 0.415 \text{nm} \) for PTO (low-temperature pseudocubic perovskite, tetragonal \( P4mm \)), and they are expected to grow heteroepitaxially with the MgO substrate (cubic rocksalt, \( Fm3m \), \( a = 0.421 \text{nm} \)). Figure 2(b) shows the electron diffraction of the same sample as Fig. 2(a) taken along the (100) direction of MgO. Cubic-like PTO and CFO are clearly observed to have an epitaxial relationship \( (100)_{\text{MgO}}// (100)_{\text{PTO}}\parallel (100)_{\text{CFO}} \). Although the phase diagram for PTO–CFO is not known, by analogy with BaTiO\(_3\) we expect pseudobinary eutectic separation. The nonequilibrium laser deposition process used here together with the nucleation of phases and the eutectic separation is expected to give rise to complex nanostructures. Details of the dependence of the microstructure on various parameters will be published elsewhere.

Figure 3 shows the mapping of ferromagnetic and ferroelectric properties of a CFO–PTO spread with the same layering scheme as the one used to make the sample shown in Fig. 2. The out-of-plane and in-plane remanent magnetization were used as measures of ferromagnetism and determined as a function of average composition using a room-temperature scanning superconducting quantum interference device (SQUID) microscope [Fig. 3(a)]. The magnetization value is defined here as the magnetic moment per film volume. At the pure CFO end, the film is out-of-plane magnetized. As a small amount of PTO is introduced in the structure, there is a sudden increase in in-plane magnetization indicating a drastic change in anisotropy. We attribute this to the diffusion of Pb and Ti ions into CFO leading to a metastable solid solution and the subsequent change in magnetocrystalline anisotropy as well as the microstructure of the material. TEM of this region showed CFO layers to be separated by the nanopancake structure of PTO. Despite the decaying trend in the overall magnetization as more PTO is added, we find that the material remains ferromagnetic toward the low CFO concentration region. The inset of Fig. 3(a) shows a SQUID magnetometer measurement of an individually prepared PTO\(_{80}–\text{CFO}_{20}\) thin film sample made in the same layer-by-layer manner as described earlier with the field applied in the out-of-plane direction. It shows the presence of robust magnetism despite the reduced overall magnetization at this composition. We have also performed high temperature vibrating sample magnetometer measurement on several individual samples and found that the ferromagnetic Curie temperature is the same for the samples with different average compositions.

The linear dielectric constant \( \varepsilon \) and the nonlinear dielectric signal were measured across the spread using a scanning microwave microscope operating at 1 GHz [Fig. 3(b)]. The nonlinear signal here represents the tunability of the dielectric constant \( \delta \varepsilon / \delta E \), which is measured as \( \delta \varepsilon / \delta E \), where \( \delta \varepsilon \) is the change in the resonant frequency of the microwave microscope cavity due to the applied electric field \( E \) in the vertical direction due to a voltage \( V_{\text{tip-substrate}} \) applied between the microscope tip and an electrode on the back of the sample substrate. For the present measurement, the amplitude of this ac voltage was 16 V.

Overall, both the linear dielectric constant and the nonlinear dielectric signal show a decreasing trend toward the low PTO concentration as expected. However, they display an unexpected peak at approximately PTO\(_{85}–\text{CFO}_{15}\). To understand this behavior, we performed scanning x-ray microdiffraction (using a D8 DISCOVER with GADDS for combinatorial screening by Bruker-AXS). Figure 3(a) shows the x-ray diffraction spectra taken at room temperature with a 500 \(\mu\text{m}\) diameter beam in the 2\( \theta \) range which includes the PTO (200) and (002) peaks in the composition range of PTO to PTO\(_{90}–\text{CFO}_{10}\). Continuous shifts in the peaks are observed as a function of the average composition, and the peaks appear to merge at the composition of PTO\(_{85}–\text{CFO}_{15}\), indicating the occurrence of a structural transition. The lat-
has revealed a trace of CFO with shifts in the PTO peaks. Because of the complex nonequilibrium nature of our nanocomposite growth process, it is not unreasonable to expect a continuous cation substitution between PTO and CFO across the spread well into the region where the separated CFO matrix is clearly also present. We found this shift in the transition temperature to be highly reproducible from sample to sample.

Further investigation of the interdiffusion near the CFO/PTO interfaces is currently underway. The result of the ME effect measurement will be published elsewhere.\textsuperscript{26}

This work was supported by ONR N000140110761, ONR N000140410085, NSF DMR 0094265 (CAREER), NSF DMR 0231291, and MRSEC DMR-00-80008.


\textsuperscript{15}L. A. Bendersky (unpublished).


\textsuperscript{17}M. A. Aronova, Ph.D. thesis, University of Maryland (2004).


