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Abstract— Motor skills are fundamental for the development 

of children. Neurodevelopmental tests currently used by 
professionals for measuring motor control maturity exhibit 
several limitations. To address some of these, we have designed the 
Lognometer, a tablet-based device that can run computerized 
neuromotor tests. To normalize this tool against a representative 
population, we collected handwritten triangles from 780 children. 
We used the Sigma-Lognormal model and a prototype-based 
parameter estimation algorithm to analyze these movements. To 
ensure clinical acceptance, we developed an explainable solution 
relying on statistical regression. We evaluated how well the 
proposed lognormal decomposition captures the motor control 
maturation between 6 to 13 years of age by plotting the biological 
age versus the age estimated using movement kinematics. To 
provide an equivalent to growth curves, we further overlaid 
percentile lines that can be used by clinicians to evaluate the 
neuromotor development of children. 

Keywords— Neuromotor development; Kinematic Theory; 
Lognormality Principle; Human Motor Control; Normalization; 
Sigma-Lognormal Model; Parameter Extraction. 

I.  INTRODUCTION 
Motor skills are crucial in the development of children. 

They allow them to explore their environment, engage in 
games, initiate social interactions and develop their basic 
academic skills [1]. According to [1], exploring the 
environment requires two essential processes: perception, 
which relies on sensory functioning, and action, which depends 
on motor control. The theory of embodied cognition also places 
great importance on the sensorimotor exploration of the 
environment for the development of the child [2]. Its 
proponents argue that the development of different cognitive 
processes such as conceptualization, categorization, and 
ideation is possible through sensorimotor exploration of the 
surrounding world. This theory has been supported by various 
studies showing that the motor areas of the brain are activated 
during different cognitive tasks, such as lexical decision [3] or 
action-related sentence comprehension [4]. Taken together, 
these studies suggest a significant contribution of the motor 
system in the development of the child. 

Analysis of motor control in children is a central aspect in 
the assessments of several neurodevelopmental conditions, 
according to the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5). Among these stands the Attention-
Deficit/Hyperactivity Disorder (ADHD), which is the most 
common psychiatric disorder in school-aged children (4-10%) 
with a male predominance (4 boys/1 girl) [5], [6]. Most children 
with ADHD present gross or fine motor skill problems, or both 
[7]. They have poorer handwriting than control participants, 
with less legible and slower writing [8]. 

The tools currently used by professionals for measuring 
neurodevelopmental maturity in ADHD children present 
several limitations [9]. Most evaluations are conventional “pen 
and paper” tests or are based on behavioral observations often 
relying on task completion time [10], [11]. Although some 
image-based tests have been computerized [12]–[14], most 
assessments cannot be administered remotely, which 
constitutes a major limitation in the post-pandemic context 
where remote medical and psychological consultations are 
becoming increasingly frequent. Current assessments with 
conventional tests are long to administer and scored manually. 
There is a significant lack of precision in motor assessments, 
and most tools have not been standardized in a large 
representative population. Therefore, there is an urgent need to 
set up digital, effective, and objective evaluation systems based 
on properly standardized tests. This problem is the focus of this 
paper. 

We recently integrated into an experimental device, the 
Lognometer [15], the fruit of many years of research on the 
design of objective tools for measuring fine motor skills. This 
system has proven to be one of the most innovative and efficient 
tools for performing fundamental exploratory research on many 
problems and phenomena related to neuromotor control. Its 
software, running on a high-end digitizing tablet (Wacom 
Cintiq 13HD) connected to a microcomputer, extracts 
lognormal kinematic parameters from simple gestures. These 
parameters describe the central and peripheral neuromotor state 
of a person. We have collected data from 780 children aged 6 
to 13, which allowed us to normalize the Lognometer and 
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produce curves of neuromotor maturation as a function of age. 
Our long-term objective with this study is to establish standards 
for measuring fine motor skills in elementary school children. 
The aim of this article is to describe the methodology used to 
perform this standardization. We first describe the Lognometer 
and briefly review the theoretical ground on which this 
technology has been designed. We then present the protocol 
used to build our reference database. The description of the 
various statistical analyzes used to standardize the Lognometer 
follows. We discuss and conclude after presenting our 
normalization curves. 

II. THE LOGNOMETER 
The Lognometer [15] is an experimental tool composed of 

a Wacom Cintiq 13HD digitizer connected to a portable 
computer and operated by specialized software. It has a 
graphical interface that displays visual stimuli or audio cues to 
be used as starting times in psychometric tests. As depicted in 
Fig. 1, the interface is divided into three sections, two lateral 
sections displaying the visual cues and a middle section used to 
display a guide sheet for the task. A button in the interface 
allows switching between right-handed and left-handed guide 
sheets. 

 
Fig. 1. Example of stimulus. The lateral sections blink red to signal that the 
system is ready for a new trial. The middle portion displays the guiding sheet. 
In this example, we show the guiding sheet used for the triangular drawing test. 

To standardize the system, a battery of five tests was created 
from tests previously developed in our laboratory [15], [16]. 
This battery included, in order of presentation, 1) fast reaching 
movements initiated following an auditory or 2) a visual 
stimulus, 3) fast reaching movement with a choice of direction, 
4) triangular drawing, and 5) maximal frequency oscillations. 
These tasks were developed in collaboration with a neurologist 
and are based on classic experimental psychology paradigms 
used to measure well-studied psychophysical properties (e.g., 
visual, auditory, and choice reaction times). However, these 
tasks were also adapted to allow contrasting simple ballistic 
motions with more complex sequences of movements (e.g., 
triangular drawings) and to characterize the maximal speed of 
motion (maximal frequency oscillations). Importantly, these 
tasks are accessible to a wide range of individuals (i.e., their 
simplicity is inclusive), and they are easy to understand and 
execute by school children. 

All tests are following the same timeline: Red color flashing 
on both sides invites the subjects to put their pen on the black 
starting dot. Once the pen is in position, the two sides become 
black for a random period (between 1 and 10 s). Then, the two 
sides become green to signal “go” (visual condition), or they 
remain black and a beep signal is emitted (auditory condition). 
When the subjects perceive the start signal, they must perform 
the requested task as quickly as possible. Since preliminary 
analyses showed the highest sensitivity (true positive rate) and 
specificity (true negative rate) for the triangle drawing task 
(e.g., when attempting to classify children by age or by a 
medical condition such as ADHD), we report only the results of 
our analyses for this task. This test consisted in drawing a 
triangle by linking the 3 points displayed on the guide sheet 
starting from point 1 and returning to it at the end (Fig. 1). This 
test used an auditory stimulus and had 30 repetitions.  

As shown in Fig. 2, the interface also shows, in real-time, on 
the tablet and the computer screen, the stroke being executed by 
a subject as well as its velocity profile. The various 
neuromuscular tests present in our database are embedded in 
the system [17]. 

 
Fig. 2. Interface showing in real-time the trajectory and velocity of the 
digitized movement. 

III. THE KINEMATIC THEORY 
The Lognometer is a tool for analyzing graphomotor 

capabilities. It relies on solid foundations: the Kinematic 
Theory of human movements [18]–[21] and its Lognormality 
Principle [22], [23]. This theory predicts that humans in perfect 
control of their gestures produce overlapping sequences of 
lognormal speed profiles and attempt to use a minimum number 
of lognormals (i.e., individual motor commands) to perform a 
task. It has been validated experimentally using 
electromyography (EMG) [24] and electroencephalography 
(EEG) [25]. It has further been demonstrated to capture the 
optimal neuromuscular response under proportionality 
assumptions [26]. Although many alternative models have been 
proposed to capture the generation of human movements (an 
extensive list can be found in [27]), the Kinematic Theory has 
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the advantage of offering a precise analytical representation of 
movements. This representation can be used to explain most 
basic phenomena reported in classical studies of human motor 
control [28] and to analyze several factors involved in fine 
motor control [29-31]. Further, this theory has shown its 
practical usefulness in various applications, such as in online 
signature verification [32], teaching handwriting to children 
[33], and health monitoring [16, 34].  

Based on this theory, the Sigma-Lognormal model has been 
developed to allow the analysis of simple and complex rapid 
movements [35]. Following the description in [36], this model 
decomposes the speed of a movement into several lognormal 
components representing discrete motor commands being 
generated by the central nervous system. Each lognormal 
composing a movement is characterized by six parameters, four 
describing the motor command (t0, D, θstart, and θend) and two 
describing the dynamic properties of the neuromuscular chain 
producing the gesture (µ, σ). The tangential velocity (i.e., the 
modulus of the vectorial velocity) of such components is 
modeled as having a lognormal profile, scaled by a command 
parameter (D) and time-shifted by the time occurrence of the 
command (t0) as shown in (1). 

         (1) 

Under the assumption that this movement is made around a 
fixed pivot point, the angular position can be calculated as 
shown in (2), where the set of parameters Pj is defined in (3). 
The error function, erf(x), used in (2) is as defined in (4). 

       (2)   

                        (3) 

                                           (4) 
A movement made up of many overlapping components can 

be computed as the vectorial sum (5) with P defined in (6) and 
the Cartesian components of the velocity defined in (7-8). If 
needed, Cartesian positions can be obtained from these 
velocities using standard numerical integration algorithms.  

              (5) 

                               (6) 

              (7) 

              (8) 

This model can be used to synthesize human-like movement 
[37, 38] or, as is the case in this paper, to analyze simple and 
complex gestures to characterize the fine motor control of a 
person [29, 30, 36]. Such an analysis gives an objective measure 
of the overall state of the neuromuscular system of the tested 
persons. 

When using this model to represent a digitized movement, 
we characterized fitting accuracy using a signal-to-noise ratio 
(SNR). This SNR index the lognormality of the movement, and, 
therefore, indicates its fluidity [39]. The parameters extracted 
for the Sigma-Lognormal model and the SNR are defined as 
follows: 

• SNR (dB): This parameter represents how well the 
software reproduces the recorded movement. It is 
defined as follows: 

 𝑆𝑁𝑅 = 10𝑙𝑜𝑔!" *
∫ |%!(')|)|%"(')|*'
+ ∫ |%!('),%"(')|*'

+          (9) 

with 𝑉-(𝑡) and 𝑉.(𝑡) being the vectorial velocity from 
the fitted model and the digitized movements, 
respectively, and |...| standing for the Euclidean norm. 
The higher the SNR, the better the reconstruction. An 
SNR greater than 20 dB is considered good. 

• t0 (s): The time required for the brain to send the motor 
command with respect to a reference at t=0 (e.g., the 
time of the “go” stimulus). t0 should not be confused 
with the reaction time measured by the moment when 
the child begins to move the pen. t0 represents the 
moment when a population of neurons sends a motor 
command. Therefore, it happens after the start signal, 
since the central nervous system must perceive the 
stimulus before sending the command, but before the 
reaction time, since a delay is necessary for the motor 
command to propagate and recruit enough muscle 
cells to initiate the movement [29]. The higher the t0, 
the longer the pre-motor delay (i.e., the delay before 
the motor command is issued). This parameter is 
therefore expected to index processes such as 
attention. 

• D (mm): The amplitude of movement associated with 
each motor command. Larger D values indicate a 
greater range of motion for the corresponding 
movement primitives. 

• μ: The neuromuscular time delay (on a logarithmic 
scale) associated with the reaction of the 
neuromuscular system to a command, i.e., the 
logarithm of the time it takes to reach halfway through 
the movement. It is therefore expected to be associated 
with the overall response speed of the neuromuscular 
system to the neural command. 

• σ: The response time (on a logarithmic scale) of the 
neuromuscular system. It constitutes an estimate of the 
duration of the movement component. 
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• θstart: Angle at the start of the movement primitive. 

• Θend: Angle at the end of the movement primitive. 

The theory has been used in numerous studies to describe 
and characterize the movements of the fingers, hand, wrist, 
forearm, eyes, head, trunk, and most recently speech [23]. 
These parameters have been analyzed by us and our 
collaborators to study: the handwriting learning in kindergarten 
and elementary school children; the course of concussions in 
children; the effects of physical and mental fatigue in children, 
adults, and athletes; the actions of people with Parkinson's or 
Alzheimer's diseases; the risk of cerebrovascular accidents 
(brain stroke); and monitoring of rehabilitation following 
stroke. The first chapter of a recent book gives a brief overview 
of more than 50 such studies [23]. 

IV. DATABASE 
To proceed with the normalization of the Lognometer, 780 

children (52% boys) between the ages of 5 and 13 were 
recruited. These children came from three different schools, 
from kindergarten to grade 6. Between 120 and 135 children 
participated at each school level, except for kindergarten which 
included only 11 children.  

All the acquisitions were done under the guidance and 
supervision of a university student who makes sure that the 
whole protocol, formerly approved by our institution ethical 
committee, was respected. For the acquisition, the children sat 
comfortably at their desk in front of the tablet (i.e., the 
Lognormeter). To provide a naturalistic use of the tool, no rigid 
constraints were imposed on the orientation of the tablet with 
respect to the body, neither on the posture or the distance 
between the eyes and the tablet. Children were allowed to 
practice a given test a few times before it was run, to make sure 
that they were familiar with the equipment and the protocol. 
Then they performed the experiment at their own rhythm, 
following the sequence of the five tests presented to them by 
the Lognometer. The order of the tests and the sequence of 
events during each test were as described in section II. 

In addition, 185 children (24%) were neuroatypical 
(ADHD: 117, attention deficit disorder (ADD): 45, other: 23) 
of which 132 were medicated (ADHD: 91, ADD: 35, other: 6). 
Other conditions included disorders such as anxiety disorder, 
oppositional defiant disorder, autism spectrum disorder, 
Asperger's syndrome, epilepsy, Tourette syndrome, Down 
syndrome, tic disorders, impulsivity-control disorder, 
intellectual disorder, muscular hypotonia, or coordination 
disorders. Neurodevelopmental issues were reported through 
questionnaires filled by parents and were not validated by a 
neuropsychologist or a medical doctor. In this context, to 
normalize the Lognormeter with respect to a neurotypical 
baseline, we included only the healthy neurotypical subjects in 
our analyses. Following these selection criteria, 579 
participants were considered. 

V. STATISTICAL ANALYSIS 

A. Lognormal parameter estimation 
A prototype-based approach [30] has been adopted to 

estimate lognormal parameters from digitized movements by 
fitting a predefined sigma-lognormal model (i.e., the prototype) 
using least-square optimization. The prototype we used to set 
the initial condition for optimization in this study describes a 
stereotypical triangular movement as six lognormal 
components, themselves being grouped as three overlapping 
agonist/antagonist pairs of motor commands (see Table 1 for 
parameter values). This is based on the idea of decomposing the 
triangular motion into a sequence of three ballistic motions, 
each being the result of an agonist motion pushing the end 
effector toward its target and an antagonist motion breaking the 
movement to avoid overshooting. In this prototype, the same 
values are used as starting and ending angles of individual 
lognormal components (i.e., the trajectory of these components 
is straight). The amplitude of all components is given as a 
proportion of a single  𝑑1 value, with all agonist components 
being equal to 100 mm and all antagonist components being 
equal to 10% of the amplitude. The value of 𝑑1 defines the 
overall size of the equilateral triangle.  

The optimization procedure was implemented as a two-
stage grid search algorithm. The first stage optimized global 
time offset (i.e., a common offset being added to all t0) and 
amplitude scaling parameters (i.e., a common scaling parameter 
being multiplied to all D parameters) to minimize the square 
difference between the tangential velocity profile of the model 
and the digitized movement. The second stage optimized all 36 
parameters to minimize the sum of squared differences between 
the vectorial velocity of the modeled and digitized movements. 
For this second step, the search space was bounded such that 
t0∊[-1, 20] s, D∊[𝑑1/100, 3𝑑1], μ∊[-10, -0.01], σ∊[0.01, 2], θs∊[-
4, 4], and θe∊[-8, 8]. This two-stage strategy was used to 
simplify the fitting procedure by improving the starting solution 
of the second stage using a simple (in two dimensions) 
adjustment of two meta-parameters having a global and 
predictable impact over the whole velocity profile.  

TABLE I.    PARAMETER VALUES FOR THE PROTOTYPE OF TRIANGULAR 
MOVEMENT USED FOR PROTOTYPE-BASED OPTIMIZATION. ANGLES ARE 
SPECIFIED FOR A CLOCKWISE AND COUNTERCLOCKWISE TRIANGULAR 

MOVEMENT. FOR THIS STUDY, 𝑑"=100 MM. 

 
No.  

 
t0 (s) 

 
D 

(mm) 

 
μ 

 
σ 

θs and θe (rad) 
Clockwise Counterclockwise 

1 0.1 𝑑"	 -1.1 0.5 π/3 2π/3 

2 0.2 0.1𝑑" -0.5 0.2 4π/3 -π/3 

3 0.7 𝑑"  -1.1 0.5 π 0 

4 0.8 0.1𝑑" -0.5 0.2 0 π 

5 1.3 𝑑"  -1.1 0.5 5π/3 -2π/3 

6 1.4 0.1𝑑" -0.5 0.2 2π/3 π/3 
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B. Outlier rejection 

We used a univariate non-parametric approach to reject 
outliers. The rejection thresholds were set at Q2 ± 3*(Q3-Q1), 
with QX being the Xth quartile of the variable distribution. It was 
applied in turn to SNR values (rejection: 0%), to Δθ=θe-θs 
(rejection: 1.96%), and then, for each of the six lognormal 
components, to t0, D, μ, σ, sin(θs), sin(θe), cos(θs), and cos(θe). 
Angles were decomposed in their sine and cosine projections 
for this operation because computing quartiles on the 
distribution of angular variables is problematic given the cyclic 
nature of these variables. The rejection was performed at the 
level of the lognormal (i.e., one lognormal parameter being an 
outlier was ground for rejecting for the whole lognormal 
component, but not the other lognormals of the same triangular 
movement). Table 2 gives the details regarding the percentage 
of rejected lognormals. 

Further, to ensure a reliable estimation of the mean value for 
each lognormal parameter, we also rejected any participants 
having less than 10 valid lognormals for any of the six 
movement primitives used for the sigma-lognormal 
decomposition of their triangular movements. This criterion 
reduced the final number of included participants to 500. 

C. Statistical modeling 

To evaluate the degree to which the proposed lognormal 
decomposition can track motor control maturation between 6 to 
13 years of age, we predicted the age of the participants using a 
linear model. This model was used for simplicity (i.e., Occam’s 
razor) and interpretability, an important consideration for 
medical applications. To estimate this model, we used the 
ordinary least square regression implemented in the OLS class 
for the StatsModels Python package, with the logarithm of the 
age as the dependent variable and the within-subject average 
value of the 36 sigma-lognormal parameters, and the fitting 
SNR as predictive factors. We included the SNR as a feature 
because the Lognormality Principle predicts that its value 

increases with the mastering of handwriting. Hence, the SNR is 
expected to constitute a good predictor of control motor 
maturity. In this study, we used the traditional regression 
approach, and therefore did not implement a training-test split 
of the data as the low number of factors (37) compared to the 
sample size (500) and the simplicity of the model (linear 
regression) does not make this approach susceptible to 
significant overfitting. 

VI. RESULTS 
Our regression model captured around 60% of the age 

variability in our sample (R2=0.603; adjusted R2=0.570; 
F37,442=18.16; p-value 4.15e-67). This corresponds to a 
Pearson’s coefficient of correlation (r) of 0.78. For reference, a 
coefficient r=0.50 is generally considered to indicate an effect 
size considered as “large” [40]. We noted that, since the least 
square optimization aims only to reduce the square difference 
between the biological age and the estimated age, its solution 
can have a systematic age bias (i.e., it tended to systematically 
overestimate the age of young participants and underestimate 
the age of older participants). To correct this bias, we further 
computed a robust linear regression (as implemented in the rlm 
function of the StatsModels Python package, using Huber's T 
M-estimator) between the estimated age and the biological age 
and used the parameters from this regression to remove any 
bias. A scatter plot of the biological age versus the age 
estimated and bias-corrected using movement kinematics is 
shown in Fig. 3, along with overlaid lines showing population 
percentiles, as is usual for analogous growth curves.  

To evaluate the impact of the number of recorded 
movements on the precision of age estimates, we used a 
bootstrapping approach and sampled randomly N movements 
per subject (for N=1, 2, …, 10) and with 100 iterations per N 
value. We then computed the average absolute difference 
between the biological age and the estimated age and reported 
these results in Fig. 4. This figure illustrates the impact of using 
a smaller number of repetitions on the estimates shown in Fig. 
3. As can be seen, although we used 30 repetitions in our 

TABLE II.     PERCENTAGE OF LOGNORMAL COMPONENTS REJECTED WHEN APPLYING, IN TURN, THE UNIVARIATE OUTLIER REJECTION TO EVERY PARAMETER. 
THE SECOND TO LAST COLUMN SHOWS THE PROPORTION OF LOGNORMALS REJECTED FOR EACH OF THE SIX MOVEMENT PRIMITIVES. THE LAST COLUMN LISTS 

THE MEAN ± STD [MIN, MAX] NUMBER VALID LOGNORMALS PER SUBJECT. 

 
t0    

(%) 
D 

(%) 
μ 

(%) 
σ 

(%) 
sin(θs) 
(%) 

sin(θe) 
(%) 

cos(θs) 
(%) 

cos(θe) 
(%) 

Total 
rejection 

(%) 

# of valid 
lognormals per 

subject 

1 2.06 0.00 0.07 0.02 0.70 1.16 11.78 0.50 15.7 28.1±  3.1 [6, 31] 

2 1.83 0.04 0.03 0.62 7.20 0.55 14.38 2.31 24.7 24.4 ± 4.7 [1, 31] 

3 1.49 0.10 0.09 0.55 0.08 0.00 12.49 6.99 20.5 26.4 ± 3.8 [5, 31] 

4 1.46 0.10 0.02 0.65 0.00 0.38 12.38 0.48 15.1 27.5 ± 3.2 [4, 32] 

5 1.23 0.28 0.05 0.35 13.0 2.06 9.09 0.91 24.7 25.0 ± 4.4 [1, 33] 

6 1.21 0.65 0.04 0.66 8.77 2.18 0.00 0.20 13.2 24.4 ± 4.1 [3, 30] 
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normalization study, the precision of the estimates is already 
ceiling with N=10 repetitions. This indicates that a relatively 
short test with around 10 valid repetitions would suffice in 
practice. Overall, we obtain a median absolute difference 
between the biological age and the predicted age roughly 
between 1.1 and 1.3 years, depending on the age. 

 
Fig. 3. Scatter plot for the biological age (in x) versus the age estimated from 
movement kinematics (in y) for 500 neurotypical participants between 6 and 13 
years of age. Each point represents a single student. Diagonal lines show 
population percentiles (form 2.5th to 97.5th, as labeled). Dispersion along the y-
axis is expected to be due to natural variability in the population but varies 
depending on the ability of the model to capture age-related differences in 
produced movements. 

 
Fig. 4. Mean absolute difference between the estimated age and the biological 
age, as a function of the sample size (from one (light) to ten (dark) movements 
per child) and age. Shaded regions show the 95% confidence intervals on these 
estimates. 

VII. CONCLUSION 
In this paper, we reported on a methodology used to 

standardize the Lognometer, a computerized tool for the 
assessment of motor skills. The results of the various tests are 
obtained with no human intervention, enhancing the objectivity 

of this test compared to common neurophysiological tests 
involving subjective scoring. For example, in the Conners test 
used to assess ADHD symptoms, the respondents are the 
teachers and parents who are often affected by the negative 
symptoms of the unruly child. This exposure makes it very 
difficult for them to be objective in their assessment. 

Moreover, most competing tests were validated using 
samples comprising less than 25 children [6], [7]. The 
Lognometer was standardized on a large sample of 500 
children. Such a large-sample validation is an important step for 
establishing standards on fine motor control in elementary 
school children. This standardization allowed us to calibrate the 
tool and define the trajectory of fine motor development in 
neurotypical primary school children. This tool can now be 
used to classify and follow children according to their 
percentile, like growth curves are used to evaluate and monitor 
infants. In the end, we expect that the standardization of this 
diagnostic tool will allow specialists to establish a standard for 
each age category and determine if the motor skills of a child 
are indicative of a typical developmental trajectory. In the 
future, the sensitivity of these tests to varying cultural aspects 
would need to be further validated before clinical use in non-
occidental cultures or populations using other alphabets than 
roman letters. 
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