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Abstract

Epidemics like Covid-19 and Ebola have impacted people’s lives signif-
icantly. The impact of mobility of people across the countries or states
in the spread of epidemics has been significant. The spread of disease
due to factors local to the population under consideration is termed the
endogenous spread. The spread due to external factors like migration,
mobility, etc. is called the exogenous spread. In this paper, we introduce
the Exo-SIR model, an extension of the popular SIR model and a few
variants of the model. The novelty in our model is that it captures both
the exogenous and endogenous spread of the virus. First, we present an
analytical study. Second, we simulate the Exo-SIR model with and with-
out assuming contact network for the population. Third, we implement
the Exo-SIR model on real datasets regarding Covid-19 and Ebola. We
found that endogenous infection is influenced by exogenous infection.
Furthermore, we found that the Exo-SIR model predicts the peak time
better than the SIR model. Hence, the Exo-SIR model would be helpful
for governments to plan policy interventions at the time of a pandemic.

Keywords: COVID-19, Ebola, Epidemic modeling, Compartment model,
Exogenous infection, Endogenous infection, SIR, Exo-SIR
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1 Introduction

An epidemic is a disease that spreads
rapidly to a large number of people
in a given population within a short
period. Many epidemics occur in the
world. Covid-19 and Ebola are recent
prominent examples.

People have tried many methods
to study epidemics. The suscepti-
ble, infected, and recovered model
(SIR model) is considered as one of
the seminal models of epidemics [1].
A recent work [2] gives a compre-
hensive review of the methods to
model and analyze Covid-19. Out of
these methods, the models relevant to
our model are compartmental models.
They are prominent methods used for
the analysis and prediction of Covid-
19 dynamics [2] [3] [4]. However, these
works consider only infection from
people to people from within the
population and do not consider any
external source of infection explicitly.

World Health Organization
(WHO) has identified external trans-
mission as one of the three modes of
transmission [5]. According to WHO,
the infection within the population
is called as Local transmission and
community transmission, and the
infection external to the population
is called as Imported cases. We call
the infection from a source within
the population and external to the
population as the endogenous and
exogenous spread of infection, respec-
tively. Human migration is one of the
prime reasons behind the exogenous
spread of infection.

The governments can intervene to
curb the spread of the disease by
bringing in policies to stop human
mobility. However, the implementa-
tions of such intervention policies

have a lot of challenges. Social dis-
agreement is an example. Social dis-
agreement means people do not abide
by the government’s directives. The
Tablighi Jamaat1 religious congrega-
tion that happened in India and the
human mobility as a result of it is an
example of social disagreement.

As a part of intervention, the Gov-
ernments can restrict human mobil-
ity. However, they cannot completely
prevent all such human mobility
and migration. For example, in the
Indian sub-continent, people migrate
to metropolitan cities for work. Due
to the risk of COVID-19 exposure
in these overpopulated cities, people
migrate back to their homes [6]. This
is also known as reverse migration2.

The government cannot deny
one’s right to go home. However,
the government can allow necessary
movement in a controlled manner.
For example, when people move from
one state to another, the state gov-
ernments can issue passes for any-
one who is allowed to travel to that
state similar to what was practiced by
the State of Kerala3. They can iden-
tify the incoming people and ensure
that they correctly follow the proce-
dures advised by the respective gov-
ernments.

These movements will increase the
exogenous spread of the infections
compared to the ideal condition of
sealed borders. To find the amount
of infection during this movement

1https://en.wikipedia.org/wiki/
Tablighi Jamaat

2https://www.epw.in/
journal/2020/19/commentary/
migration-and-reverse-migration-age-covid-19.
html

3https://www.news18.com/news/auto/
covid-19-omicron-kerala-travel-guidelines-for-international-and-domestic-passengers-4525862.
html

https://en.wikipedia.org/wiki/Tablighi_Jamaat
https://en.wikipedia.org/wiki/Tablighi_Jamaat
https://www.epw.in/journal/2020/19/commentary/migration-and-reverse-migration-age-covid-19.html
https://www.epw.in/journal/2020/19/commentary/migration-and-reverse-migration-age-covid-19.html
https://www.epw.in/journal/2020/19/commentary/migration-and-reverse-migration-age-covid-19.html
https://www.epw.in/journal/2020/19/commentary/migration-and-reverse-migration-age-covid-19.html
https://www.news18.com/news/auto/covid-19-omicron-kerala-travel-guidelines-for-international-and-domestic-passengers-4525862.html
https://www.news18.com/news/auto/covid-19-omicron-kerala-travel-guidelines-for-international-and-domestic-passengers-4525862.html
https://www.news18.com/news/auto/covid-19-omicron-kerala-travel-guidelines-for-international-and-domestic-passengers-4525862.html
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and when the peak occurs, authori-
ties need an explicit model that can
predict infection through exogenous
means. Our model extends the SIR
model and explicitly takes care of the
amount of exogenous infection and
endogenous infections. In the case of
the spread of epidemics, even if there
is a small increase in the number
of infected people, the impact grows
exponentially with time. Hence, it is
important to consider the exogenous
infections while studying the dynam-
ics of epidemics. This allows the gov-
ernments to have pertinent informa-
tion regarding the possible exogenous
infections. This gives the government
authorities time to prepare their med-
ical resources accordingly.

There are challenges even if people
do not migrate. For example, front-
line workers like doctors and nurses
are more frequently exposed to the
virus than a common man. Corre-
spondingly, we need to be able to
model different rates of infections for
different groups of people. The gov-
ernments will have to make all the
necessary safety equipment available
to the front-line workers and monitor
their health constantly to control the
infection as a measure of intervention.

In this context, we address the
following research questions that sig-
nificantly modifies the current, well-
studied SIR model:

1. How to quantify the exogenous
spread of infection?

2. What is the interplay between the
exogenous and endogenous spread
of infection concerning the follow-
ing:

(a) In the presence of social dis-
agreement.

(b) In the presence of controlled
migration.

(c) In the presence of n communi-
ties that have a different rate of
infection - e.g., front line work-
ers such as healthcare workers
or hospitality workers.

3. What is the change in the peak
position (the most significant num-
ber of people infected in a unit of
time) in the presence of exogenous
infection?

4. What is the change in the height
of the peak in the presence of
exogenous infection?

The following are our contribu-
tions in this work. We study the
impact of external reasons of infec-
tions such as cross-border mobility
on COVID infection by introducing a
novel SIR-like compartmental model
called Exo-SIR.

We study three variants of the
model applicable for special scenarios
like the presence of social disagree-
ment, the presence of different groups
that have a different amount of risk,
and infectiousness like the front line
workers.

We analyze the interplay between
endogenous and exogenous infections
during the Covid-19 and Ebola pan-
demics in the following ways.

1. Analytically.
2. By simulating the Exo-SIR model

with and without assuming con-
tact network for the population.

3. By implementing the Exo-SIR
model on real datasets regarding
Covid-19 and Ebola.

We compare the predictions of Exo-
SIR with the SIR model using real
data on the recent spread of the
Covid-19 in India and the USA and
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the spread of Ebola in Africa as the
ground truth.

This paper is structured as fol-
lows. Section 2, discuss related works
and preliminaries. Then, we formu-
late the Exo-SIR model by extend-
ing the SIR model and discuss the
different variants of the model (in
Section 3). We analyse our model
by comparing it with the SIR model
and study the behavior of the
infected population in the presence
and absence of exogenous infection
(in Section 4). Then we describe the
simulation study where we simulated
the SIR model and Exo-SIR model
and compared them (in Section 5).
Finally, we study the real data of
Covid-19 and Ebola epidemics (in
Section 6).

2 Related works

Here, we discuss the works related to
the idea of exogenous influence to the
population under study.

The work in [7] considers exoge-
nous infections for Malaria at China
- Myanmar border. However, the
model is not deterministic. In a deter-
ministic model, individuals in the
population are assigned to differ-
ent subgroups or compartments, each
representing a specific epidemic stage.
Deterministic models often provide
useful ways of gaining sufficient
understanding about the dynamics of
populations whenever they are large
enough [8]. Also, the deterministic
models are simpler and more popular
[9] [10]. Our model is deterministic.

2.1 Models of external
influence on online
social networks

Information diffusion in online social
networks is similar to the way the
virus spreads in a population [11].
There are a few recent works in the
literature that attempt to model the
external influence in information dif-
fusion in online social networks [12].
Moreover, [12] and [13] propose infor-
mation diffusion model on the net-
work. These works assume that the
information flows through an under-
lining network. Also, they consider
links from other websites like the
mainstream media as external sources
of information. Internal diffusion is
when the shared messages do not
have any external links.

The work described in [12] uses
very specific parameters like the fol-
lowing:

• probability of any node receiving
exposure at time t

• the random amount of time it
takes an infected node to expose its
neighbors

• how the probability of infection
changes with each exposure

• the probability that a node I have
received n exposures by time t

The work described in [13] traces
the information cascade and thereby
tries to reconstruct the underlying
graph structure as much as possi-
ble. Also, they conclude that external
influence has a bigger impact on the
network when compared to the influ-
ence of social media influencers.

The model that is closest to our
work is Yang et. al.’s model [14]. This
model is an extends the SIR model
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(explained in Section 2.4) by includ-
ing the external influence on the net-
work. State transition diagram of the
diffusion mechanisms of this model is
given in Figure 1.

Fig. 1 State transition diagram of the dif-
fusion mechanisms in Yang et al’s model.
Diagram taken from [14].

This model is defined in the fol-
lowing way.

s+ i+ r = 1 (1)

ds

dt
= −p1ksi− ((1− p1)p3 + p4)θs

ds

dt
= −p1ksi− ((1− p1)p3 + p4)θs

−(1− p1)p5ksi

(2)

di

dt
= p1ksi+ p4θs− p2i (3)

dr

dt
= p2i+(1−p4)p3θs+(1−p1)p5ksi

(4)
In Figure 1 There are two pos-

sible transitions from the state S to

I. One path is the normal endoge-
nous path, and the second is due
to external influence. These transi-
tions have probabilities p1 and p4,
respectively. Similarly, there are two
possible transitions from the state S
to R – one through endogenous and
the other through external influence.
Their probabilities are p5 and p3,
respectively. However, the transition
from the state I to R is not affected
by external influence(s).

Although the exogenous infection
is modeled in Yang et al.’s model, it
fails to capture the dynamics between
endogenous and exogenous infections.
This is because they do not differ-
entiate between the infections due to
exogenous factors from those due to
endogenous factors.

2.2 Other studies of
endogenous and
exogenous information
diffusion

The dual nature of message flow over
the online social network is stud-
ied and verified in [15]. Here, the
dual nature refers to the injection of
exogenous opinions to the network
and the endogenous influence-based
dynamics. In [16], the authors pro-
pose a method for extracting the
relative contributions of exogenous
and endogenous contents. In [17], the
authors postulate that the nature of
the information plays a crucial role
in the way it spreads through the
network. They quantify two proper-
ties of the information – endogeneity
and exogeneity. Endogeneity refers
to its tendency to spread primar-
ily through the connections between
nodes, and exogeneity refers to its
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tendency to spread to the nodes, inde-
pendently of the underlying network.
In [18], the authors study the bursts
that originate from endogenous and
exogenous sources and their tempo-
ral relationship with baseline fluctu-
ations in the volume of tweets. The
study reported in [19] classifies the
bursts into endogenous and exoge-
nous. According to this study, those
bursts that reach the peak almost
instantaneously after the diffusion
starts and then go down slowly are
exogenous bursts. Also, those bursts
that gradually increase and slowly
decrease are endogenous.

2.3 Compartmental models
for Covid-19 modeling

Compartmental models are promi-
nent methods that are used for the
analysis and prediction of Covid-19
dynamics. The SIR model is one of
the seminal compartmental models.
Many compartmental models have
come up recently to improve the SIR
model. QSIR model [20] [21] is an
example in which they add an extra
state to the standard SIR model that
represents the number of people in
Quarantine. SPCIRD model [22] adds
three extra states – P, C, and D,
where P represents the number of
susceptible people who are partially
controlled. Partially controlled peo-
ple are those who can be consid-
ered as people not conforming to all
the restrictions of the Quarantine. C
represents the number of susceptible
people who are controlled. Controlled
people are those who can be con-
sidered as people conforming to all
the restrictions of the Quarantine. D
represents the number of people who
died. Multiple epidemic wave model

[23] as its name suggests models the
multiple waves of infection that could
occur. Time-dependent SIR model
[24] [25] considers the constants in
the SIR model - beta and gamma
to be varying with time. However,
none of these models consider infec-
tions arising from outside the popula-
tion, mostly due to the cross-border
mobility of infected people. Hence,
we introduce the Exo-SIR model to
address this particular issue.

2.4 SIR Model

This section briefly reviews the SIR
epidemiological model to learn how
epidemics spread through population.
SIR is often used to study informa-
tion diffusion by approximating the
process of epidemic spread.

In this model, the population
is classified into three – Suscepti-
ble (who are prone to infection),
Infected (who contain the infection),
and Recovered (who do not have the
infection and its associated symp-
toms). In the limit of sizeable total
population N that does not change
over time, the given equations model
the dynamics of the spread [26]:

s(t) + i(t) + r(t) = 1 (5)

ds

dt
= −βsi (6)

di

dt
= βsi− γi (7)

dr

dt
= γi (8)

where the fraction of Susceptible,
Infected and Recovered people at
time t are represented by s(t), i(t)
and r(t) respectively. β is the rate of
infection, and γ is the rate of recovery.
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3 The Model

In this section, we propose the Exo-
SIR model. It differs from SIR model
in the following ways. It classifies
infected nodes into two different types
– Infected from exogenous source
and Infected from endogenous source.
It also differentiates between the
spread from endogenous and exoge-
nous sources.

Susceptible nodes become infected
with a certain probability called the
rate of infection. This rate could be
different for endogenous and exoge-
nous infections. The nodes affected
by endogenous and exogenous sources
move into different states. We assume
that susceptible nodes get infected
from only one of these sources and
never from both sources. Hence, even
when some nodes are susceptible to
endogenous and exogenous infection,
they become infected by either an
endogenous or an exogenous source
but not both. The infected nodes
recover with a certain probability
called the recovery rate. These nodes
move into the recovered state. The
advantage of the Exo-SIR model com-
pared to the SIR model is that we can
observe the endogenous and exoge-
nous diffusion separately.

We use the following notations:

S state of susceptible
Ix state of infected from exogenous

source
Ie state of infected from endogenous

source
R state of recovered
ix Fraction of nodes that are infected

from exogenous source
ie Fraction of nodes that are infected

from endogenous source

r Fraction of nodes that are recov-
ered

βx Rate at which the exogenous source
infects the nodes

βe Rate at which the nodes infects
other nodes

γ Rate at which the nodes get recov-
ered
We use the words infection, dif-
fusion and spread interchangeably
according to the context.

The state transition diagram of
the Exo-SIR model is given in
Figure 2.

Fig. 2 State transition diagram of the
nodes in the Exo-SIR model

We classify infected nodes into
two different types – infected from
exogenous source ix and infected from
endogenous source ie.

ie + ix = i (9)

We assume that the total popula-
tion remains constant.

s+ i+ r = 1 (10)

A fraction of the susceptible peo-
ple s gets infected by exogenous
sources, and another fraction of s
gets infected by endogenous sources.
For endogenous infection, the popula-
tion that is infected plays a big role.
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Hence, we have

ds

dt
= −βxs− βesi (11)

Increase in ix is determined by the
number of susceptible nodes and the
decrease in ix is determined by ix.
This gives

dix
dt

= βxs− γix (12)

Increase in ie is determined by
the number of susceptible nodes and
the number of infected nodes and the
decrease in ie is determined by ie.
This gives

die
dt

= βesi− γie (13)

Increase in r is determined by
the number of infected people in the
network. This gives

dr

dt
= γi (14)

3.1 Variants of the model
to address specific
situations

In this section, we discuss how the
Exo-SIR may be used in the different
situations.

3.1.1 Exo-SIR Model with
social disagreement

This scenario occurs when people do
not abide by the government’s orders.
For example, not wearing masks, not
following social distancing, etc. As a
result, more people contract the virus,
and hence the infectiousness of the
disease will go up. This can be rep-
resented in the Exo-SIR model by
increasing the βe value.

3.1.2 Exo-SIR Model with
people migrating with
the permission of the
Government

This scenario can be studied using
the Exo-SIR model. Here, we assume
that when the government allows peo-
ple to travel, the government makes
sure that these people are isolated
and given treatment. Change in ix is
influenced by the action of the gov-
ernment that allowed people to travel
across their border. Hence, planning
and execution efficiency to minimize
the impact are essential. This is cap-
tured in βx. If the government effi-
ciently contains the infection from
these people, then the value of βx goes
down.

3.1.3 Exo-SIR model with
multiple groups that
have different risk of
infection

Fig. 3 State transition diagram of the
model.

This case may be depicted as
shown in Figure 3. In this case, there
are n different groups of susceptible
people with varying levels of infection



Springer Nature 2021 LATEX template

Exo-SIR 9

risk. Hence, we add them up wherever
we use s in the equations of the Exo-
SIR model. Also, the value of each
parameter is different for a different
group of people. Hence, we have dif-
ferent values for each group of people
for the parameters. Hence, there will
be the summation of the n groups and
parameters for each group. Figure 3 is
the state diagram and the equations
are given below.

ie + ix = i (15)

s =

n∑
k=1

sk (16)

s+ i+ r = 1 (17)

ds

dt
= −

n∑
k=1

βxksk −
n∑

k=1

βekski (18)

dix
dt

=

n∑
k=1

βxksk − γix (19)

die
dt

=

n∑
k=1

βekski− γie (20)

dr

dt
= γi (21)

4 Analysis

In this section, we compare our model
with SIR model and analyse the
dynamics of exogenous spread and
endogenous spread.

4.1 Comparison with SIR
model

Mirroring the rate of change of
s(t), i(t), and r(t) in the SIR model
(Section 2), we find the expressions
for the rate of change of s(t), i(t), and
r(t) for the Exo-SIR model.

Rate of change of s is given by

ds

dt
= −βxs− βesi (22)

Rate of Change of r is given by

dr

dt
= γi (23)

Differentiating Eq 9 with respect
to time, we get

di

dt
=

die
dt

+
dix
dt

(24)

di

dt
= βesi− γie + βxs− γix (25)

di

dt
= βesi+ βxs− γ(ix + ie) (26)

Applying Eq 9 on Eq 26, we get

di

dt
= βes(ix + ie) + βxs− γ(ix + ie)

(27)
Here, even if we assume that there

are no infected people in the begin-
ning – i.e. ie = 0 and ix = 0, we get
the following.

di

dt
= βxs (28)

This shows that, unlike the SIR
model, the Exo-SIR model explains
how an infection starts spreading
from the state where no one is
infected. SIR model assumes that
there is an initial outbreak size i0.
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This means i0 people are infected in
the beginning and i0 > 0 [27]. Our
work addresses this limitation of the
SIR model. Note that the Exo-SIR
model would behave the same way
as the SIR model if we assume that
ix = 0 and βx = 0.

4.2 Dynamics of exogenous
spread and endogenous
spread

In this section, we find the relation-
ship between the cumulative exoge-
nous infections (ix) and the daily
endogenous infections (diedt ).

Applying Eq 9 on Eq 13, we get

die
dt

= βes(ie + ix)− γie (29)

die
dt

∣∣∣∣
ix>0

= βes(ie + ix)− γie (30)

At ix = 0,

die
dt

∣∣∣∣
ix=0

= βesie − γie (31)

Since all βe, s, ie, and γ are posi-
tive,

die
dt

∣∣∣∣
ix=0

<
die
dt

∣∣∣∣
ix>0

(32)

This shows that die
dt increases in

the presence of ix. In other words, this
shows that the presence of exogenous
diffusion causes endogenous diffusion
to increase.

5 Simulation

We simulate the Exo-SIR model to
determine its behavior for various sce-
narios that are represented by the
different values of its parameters. We
simulated the model in two ways:

One, by assuming no network
(well-mixed population). In this sce-
nario, a susceptible node can get
infected from any of the infected
nodes in the population under consid-
eration.

Two, By assuming that the peo-
ple network is a scale-free network.
Within this network, the susceptible
nodes can catch the infection from
only those infected nodes, which they
are connected to through an edge, i.e.,
their immediate neighbors. We chose
scale-free network because there are
pieces of evidence that the human dis-
ease network could be scale-free [28].
The results of these simulations are
discussed in the following section.

5.1 Using scale-free
network

The analysis presented in this section
has been done considering a scale-free
contact network for the population
under study, which is called Barabási-
Albert network [29]. Under this sce-
nario, the susceptible nodes can catch
the infection from only those infected
nodes, which they are connected to
through an edge, i.e., their immedi-
ate neighbors. We have predicted the
values for various combinations of βx,
βe, and γ using the Exo-SIR model in
the network mentioned above.

Next, we study the dependency
of endogenous spread on the exoge-
nous factors through simulation. The
step-by-step methodology adopted to
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carry out the simulation and the anal-
ysis is given in Algorithm 1.

Algorithm 1 Algorithm to per-
form the simulations and analysis by
assuming that the contact network in
the population is scale-free

1: Initialize βx, βe and γ with 3 dif-
ferent values, i.e., 0.1, 0.5 and 0.9.
Henceforth, we have 27 different
combination of these parameters.

2: For each of the combinations of
βx, βe, and γ, iterate over steps 3
and 4 fifty times.

3: Setup a Barabási-Albert network
of 1000000 nodes having an aver-
age node degree of 2 [29].

4: Simulate and predict the values of
S, Ie, Ix, and R using the Exo-SIR
model.

5: Extract the values of the height of
the peak (we call it as peak value)
and the time slice at which it
occurs (we call it as peak tick), for
both endogenous and exogenous
peaks from each of the simula-
tions.

6: Calculate the mean peak value
and peak tick of Exogenous and
Endogenous infections so that we
have one value per combination of
βx, βe, and γ.

In the above algorithm, we have
carried out 50 simulations for each
combination of the parameters and
averaged it out to address the bias
that might get introduced due to the
network structure since the setting up
of a network in step 3 in the above
algorithm is random each time.

Sample simulation results are
shown in Figures 4 and 5. Figure 4
shows the SIR model’s simulation

results with no exogenous influence,
and Figure 5 shows the simula-
tion results with exogenous influence.
Here we can see that when we con-
sider exogenous factors, the peak of
the distribution of the number of the
infected population show changes.

Fig. 4 plot of susceptible, infected and
recovered with no exogenous source

Fig. 5 plot of susceptible, infected and
recovered with exogenous source

Figures 6 and 7 are a result
of simulation and analysis done as
described in Algorithm 1 and provide
us with the following insights. Figure
6 shows that endogenous peak tick
decreases with increase in βx. Figure
7 shows that βx(exogenous factors)
influence the peak value of endoge-
nous infections. The endogenous peak
value increases with increase in βx.

We can conclude that exogenous
source and its infection impacts the
endogenous spread in the network by
advancing the peak and increasing
the height of the peak.



Springer Nature 2021 LATEX template

12 Exo-SIR

Fig. 6 impact of βx on peak tick of ie

Fig. 7 impact of βx on peak value of ie

Table 1 Impact of βe, βx and γ on
ln(ie_peak)

coef std err confidence
interval

βe 0.6319 0.006 0.6204 to
0.6434

βx 0.6319 0.006 0.6204 to
0.6434

γ −0.4390 0.006 −0.4505 to
−0.4274

5.2 With no network

In this section, we determine the rel-
ative effects of βx, βe, and γ on
the endogenous peak statistically and
measure the impact of βx on endoge-
nous infections, which is consistent
with the results shown above. Here,
we did not assume any network for
our population, and the objective of

these simulations was to determine
the impact of βx, βe, and γ on endoge-
nous peak value and peak tick (see
Table 1). To achieve this, we took
a sample of 27000 simulations and
analyzed them as described in Algo-
rithm 2.

Algorithm 2 Algorithm to per-
form the simulations and analysis by
assuming no contact network in the
population.
Note: If we look at the differen-
tial equations, the system is not a
linear one, but rather exponential.
Therefore, we took natural log of the
peak value as the dependent variable.
Table 1 shows the impact of the above
three independent variables on the
dependent variable.

1: Initialize βx, βe and γ with 30
random values between 0 and 1.

2: Initialize the number of sus-
ceptible, infected(endogenous
and exogenous) and recovered
nodes experimentally as: N =
1000000.0, S0 = 999996.0, Ix0

=
3.0, Ie0 = 1.0 and R0 = 0.0.

3: For each of the 27000 combina-
tions of βx, βe, and γ, with the
above initial condition, predict
the endogenous and exogenous
peak value and peak tick using
the Exo-SIR model.

4: Then, compute the natural loga-
rithm of the peak value and scaled
it between 0 and 1.

5: Finally, fit an OLS Regression
Model with βx, βe and γ as
the independent variables and the
natural log of the peak value as
the dependent variable and anal-
yse the coefficients statistically.
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The following inferences can be
drawn from the results of Regres-
sion Analysis. The p-value for all
the three variables is less than 0.05.
This means we would reject the null
hypothesis and adopt the alternate
hypothesis that the impact of all the
three parameters on the peak endoge-
nous infection’s peak is statistically
significant.

The adjusted R-squared value is
maximum(0.70) when all the three
parameters are considered while fit-
ting the regression model. This means
that we can better explain the
variation in the dependent variable
when considering all three, i.e., βe,
βx, and γ. Removing any one of
them would decrease the adjusted R-
squared value. Also, the confidence
interval of each parameter is men-
tioned in Table 1.

βx impacts endogenous infections
as much as βe(the contribution of
both is almost equal), which is an
important observation. This means
that exogenous factors also have a
considerable impact on the endoge-
nous infection, and ignoring the
exogenous factors would not give an
accurate estimate of the endogenous
infections.

6 Analysis using real
data

In this section, we describe the data
and the analysis of the implementa-
tion of the SIR model and Exo-SIR
model on the Covid-19 and Ebola
epidemics.

6.1 Covid-19 infection in
India

Covid-19 has caused large and per-
sistent negative effects on the world
economy4. India is one of the coun-
tries that are worst affected. There
were many issues that made the
spread of Covid-19 in India compli-
cated. One of them was the migration
of people from different parts of the
country and abroad.

Many sub-events in India involved
the migration of people. Examples are
a celebrity coming to India from the
UK and socializing at many places
even after being tested positive for
Covid-195, laborers working in dif-
ferent states or other countries mov-
ing back to their native places [6]
and large religious meetings with par-
ticipation from many national and
international locations.

A major sub-event was the Tab-
lighi Jamaat religious congregation
in Delhi from 1st March 2020 to
21st March 20206. Over 9000 people
from various states of India partic-
ipated in this event7. Nearly 4300
cases have been reported that can
be traced to the event8. As of 18th

April 2020, 30% of the cases in India
were due to this event9. The number
of people from each state is widely
deferred. Hence, the impact of the
event was significantly different for
different states. However, it is reason-
able to state that the mobility of peo-
ple is a causative phenomenon that
changed the dynamics of the spread
of the virus.

4shorturl.at/qBZ05
5shorturl.at/imBGK
6https://en.wikipedia.org/wiki/2020

Tablighi Jamaat coronavirus hotspot in Delhi
7shorturl.at/qryKU
8shorturl.at/myFQ2
9shorturl.at/iyVY9

shorturl.at/qBZ05
shorturl.at/imBGK
https://en.wikipedia.org/wiki/2020_Tablighi_Jamaat_coronavirus_hotspot_in_Delhi
https://en.wikipedia.org/wiki/2020_Tablighi_Jamaat_coronavirus_hotspot_in_Delhi
shorturl.at/qryKU
shorturl.at/myFQ2
shorturl.at/iyVY9
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We apply the Exo-SIR model on
a real dataset regarding the spread of
the Covid-19 pandemic in the Indian
states of Rajasthan, Tamil Nadu, and
Kerala from 14th March, 2020 to 14th

April, 2020. Exogenous spread dom-
inates endogenous spread in Tamil
Nadu, whereas the contrary is true
in the case of Rajasthan. Both the
endogenous and exogenous spread in
Kerala have roughly the exact preva-
lence. The trends in the analytical
study, results of the simulations, and
the analysis of the real dataset are
consistent.

We analyzed the data of three
states in India, namely Tamil Nadu,
Rajasthan and Kerala. The reason for
choosing these states is that ie ≪ ix
in Tamil Nadu, ie ≫ ix in Rajasthan
and ie ≈ ix in Kerala.

We constructed our dataset from
three different sources10 for our anal-
ysis – covid19india.org11, the govern-
ment website of the respective states
for their press release to find the
daily number of Tablighi cases and
Wikipedia page on state-wise daily
data12.

covid19india.org is a publicly
available volunteer-driven dataset of
Covid-19 statistics in India13. There
are multiple files in this dataset. One
of which is called raw data that cap-
tures the anonymized details of the
patients. In the raw data, the columns
of interest for our study are DateAn-
nounced, DetectedState, and Type-
OfTransmission.

10The code and all the data used in our
experiments will be made openly available
upon the acceptance of this paper

11www.covid19india.org
12https://en.wikipedia.org/wiki/Statistics

of the COVID-19 pandemic in India
13www.covid19india.org

Another file from covid19india.org
is called states daily. In this
file the columns of interest are
states daily/status, states daily/kl,
states daily/rj, states daily/tn and
states daily/date. kl, rj and tn are
the codes used in this dataset for
the states of Kerala, Rajasthan and
Tamil Nadu respectively.

Here, status can have the fol-
lowing values: infected, recovered,
and diseased. From these columns,
we prepared the time series dataset
for each state. The columns avail-
able in the dataset we created are
daily confirmed, daily deceased, daily
recovered, date, total confirmed, total
deceased, totally recovered, and daily
imported cases.

Another dataset that we used is
the compilation of the press releases
(news bulletins) from the states’ gov-
ernments under study. This is to get
the daily number of cases due to a
significant event that influenced the
Covid-19 spread in India – Tablighi
Jamaat religious congregation. Since
there was no ready made data avail-
able, we manually went through the
press releases and collected the data.

Now, we discuss how the values
in the dataset is mapped on to the
variables in the Exo-SIR model. On a
particular day, say day k, by rearrang-
ing and differentiating Equation 10,
we get the following.

ds

dt
= −(

di

dt
+

dr

dt
) (33)

where dr
dt is the sum of the numbers

of the daily recovered and the daily
deceased cases on day k and

di

dt
=

die
dt

+
dix
dt

(34)

covid19india.org
covid19india.org
www.covid19india.org
https://en.wikipedia.org/wiki/Statistics_of_the_COVID-19_pandemic_in_India
https://en.wikipedia.org/wiki/Statistics_of_the_COVID-19_pandemic_in_India
www.covid19india.org
covid19india.org
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where die
dt is the daily confirmed cases

on day k and dix
dt is the sum of daily

imported cases on day k and the daily
cases due to Tablighi event on day k.

The initial values of s, i and r are
found as follows.

s = 1− d(0)

N
(35)

where d(0) is the daily confirmed
on day 0 and N is the total population
who are prone to the infection.

i is the total number of confirmed
cases on day 0 and r is the sum of the
total numbers of the deceased and the
recovered cases on day 0.

Algorithm 3 Algorithm to plot the
Exo-SIR model.
1: For each time slice, calculate the

values of di
dt and dr

dt from the
dataset.

2: Consider s as the susceptible peo-
ple from the population of the
state under study.

3: Calculate the cumulative values i
and r.

4: Find γ, βe and βx using values
of the time for which the data is
available.

5: Run the Exo-SIR model with
these values as the initial values
and plot ie in the presence of ix
and ie in the absence of ix

Next, we analyze the data from
Tamil Nadu, Rajasthan, and Kerala.
We compare the peak tick and peak
value of the plot of ie in the pres-
ence and absence of ix. This would
give information about the impact of
ix on ie. For this purpose, we used
Algorithm 3.

For the state of Tamil Nadu, the
plots of Ie in the presence and absence

of ix are plotted in Figure 8 and
Figure 9 respectively. For the state of
Rajasthan, the plots of Ie in the pres-
ence and absence of ix are plotted in
Figure 11 and Figure 12 respectively.
For the state of Kerala, the plots of Ie
in the presence and absence of ix are
plotted in Figure 14 and Figure 15,
respectively. In all these plots, we can
see that ix is very small compared to
ie. Yet, ix is having an impact on ie.
Ix is plotted separately in Figure 10,
Figure 13 and Figure 16.

Fig. 8 Ie in the presence of ix. The values
of ix are very small for the scale of this plot.
Hence it is plotted separately. Please refer
the Figure 10

Fig. 9 Ie in the absence of ix

The peak tick and peak values cor-
responding to the Ie of the Exo-SIR
model in the presence and absence of
ix for Tamil Nadu, Rajasthan, and
Kerala are mentioned in Table 2,
Table 3 and Table 4 respectively. In
all the tables, we can see that the
peak value of ie is different when the
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Fig. 10 ix in Exo-SIR model. Please note
that y axis is in the scale of 10−4.

Table 2 Impact of Ix on Ie in the state of
Tamil Nadu

peak value peak tick

Ie in the pres-
ence of ix

0.1714 907 Days

Ie in the
absence of ix

0.1710 1351 Days

Fig. 11 Ie in the presence of ix. The values
of ix are very small for the scale of this plot.
Hence it is plotted separately. Please refer
the Figure 13

case of ix is present. Also, we can see
that the peak tick of ie is different for
the instance when ix is present.

Finally, we present the compar-
ison of the predictions of Exo-SIR
model and SIR model with the real
data for the following cases:

1. Covid-19 in Kerala (Figure 17)
2. Covid-19 in Tamil Nadu (Figure

18)
3. Covid-19 in Rajasthan (Figure 19)

Fig. 12 Ie in the absence of ix

Fig. 13 ix in Exo-SIR model. Please note
that the y axis is in the scale of 10−6.

Table 3 Impact of Ix on Ie in the state of
Rajasthan

peak value peak tick

Ie in the pres-
ence of ix

0.3487077 143 Days

Ie in the
absence of ix

0.3486663 147 Days

Here, the peak values are scaled
down as they are very high for both
SIR and Exo-SIR predictions. This
may be due to the fact that in both
SIR and Exo-SIR models, we assume
that each infected person is equally
likely to infect all the susceptible peo-
ple. In the real life, this is not true.
However, we can see that in all the
three cases (shown in Figure 17, 18
and 19), the peak of the Exo-SIR
model is closer to the peak of the real
data.



Springer Nature 2021 LATEX template

Exo-SIR 17

Fig. 14 Ie in the presence of ix in the state
of Kerala. The values of ix are very small
for the scale of this plot. Hence it is plotted
separately. Please refer the Figure 16

Fig. 15 Ie in the absence of ix in the state
of Kerala

Fig. 16 ix in Exo-SIR model. Please note
that the y axis is in the scale of 10−5.

6.2 Covid-19 infection in
the USA

In this section, we discuss the analy-
sis that we carried out on the data of
Covid-19 infection in the USA.

We constructed our dataset from
two different sources14 for our anal-
ysis – kaggle.com and incoming

14The code and all the data used in our
experiments will be made openly available
upon the acceptance of this paper

Table 4 Impact of Ix on Ie in the state of
Kerala

peak value peak tick

Ie in the pres-
ence of ix

0.0842 608 Days

Ie of in the
absence of ix

0.0841 715 Days

Fig. 17 Comparison of the predictions of
Exo-SIR and SIR models with real data for
Covid-19 in Kerala

Fig. 18 Comparison of the predictions of
Exo-SIR and SIR models with real data for
Covid-19 in Tamil Nadu

Fig. 19 Comparison of the predictions of
Exo-SIR and SIR models with real data for
Covid-19 in Rajasthan

kaggle.com
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tourists travel data for the USA from
the CEIC database 15.

Now, we discuss how the values
in the dataset is mapped on to the
variables in the Exo-SIR model. We
calculated the number of endogenous
infections (IE(t)) from the following
equation.

IE(t) = IE(t−1)+Daily(t)−D(t−1)
(36)

where, Daily(t) is the daily new
cases at the time slice t and D(t −
1) is the deaths from within the USA
population at the time slice t− 1.

We estimated infected tourists
death number from endogenous
deaths in the following way. First, we
calculated γ from endogenous data
by using equation

γ =
dr/dt

i
(37)

Applied the same gamma to get
the number of deaths from data
of exogenous infections using the
equation

r(t) = r(t− 1) + dr/dt (38)

where

dr/dt = γ ∗ i(t− 1) (39)

Then we calculated the number of
exogenous infections (IX(t)) by using
the equation:

IX(t) = IX(t− 1) +Daily(t)−D(t)
(40)

where Daily(t) is the daily new
tourist cases at the time slice t and

15https://www.ceicdata.com/en/indicator/
united-states/visitor-arrivals

D(t) is the number of deaths at the
time slice t

Then we calculated the number
of susceptible people by using the
following equation:

S(t) = N − IcE(t)− IcX(t) (41)

where IcE(t) is the cumulative
value of IE(t) and IcX(t) is the cumu-
lative value of IX(t).

Finally we computed d(ie)
dt , d(ix)

dt ,
d(r)
dt and d(s)

dt values.
Next, we analyze the Covid-19

data from the USA by applying the
Exo-SIR model. We compare the
peak tick and peak value of the plot
of ie in the presence and absence of
ix. This would give information about
the impact of ix on ie. For this pur-
pose, we used Algorithm 3. The cases
in the presence and absence of Ix is
plotted in Figure 20 and 21 respec-
tively. Ix is plotted in the Figure 22.

In these plots, it can be observed
that the peak and the height of the
peak are different compared to the
values in the absence of ix The peak
tick and peak values corresponding to
the Ie of Exo-SIR model in the pres-
ence and absence of ix are mentioned
in Table 5.

Fig. 20 ie and ix for Covid-19 in the USA

Figure 23 shows the comparison
of the predictions of Exo-SIR model

https://www.ceicdata.com/en/indicator/united-states/visitor-arrivals
https://www.ceicdata.com/en/indicator/united-states/visitor-arrivals
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Fig. 21 ie in the absence of ix for Covid-
19 in the USA

Fig. 22 ix for Covid-19 in the USA

Table 5 Impact of Ix on Ie in Covid-19 in
the USA

peak value peak tick

Ie in the pres-
ence of ix

0.7 130 days

Ie in the
absence of ix

0.7 135 days

and SIR model with the real data.
Here, we can see that the peaks in
the SIR and Exo-SIR plots are of the
same height and are coming more or
less simultaneously. However, both of
them are very different from the peak
position in the real data.

6.3 Ebola infection in
Guinea

Ebola, also known as EVD, was
another severe, often fatal epidemic
that hit the Western African coun-
tries from 2014 to 2016, particularly

Fig. 23 Comparison of the predictions of
Exo-SIR and SIR models with real data for
Covid-19 in the USA

Guinea, Sierra Leone, and Liberia.
Its fatality rate16 varies from 25%
to 90%. Like the case of Covid-
19, there was migration of people
from abroad, especially tourists trav-
eling into these countries. The dataset
regarding travel and tourism is pub-
licly available17.

We compared peak tick and peak
value of the plot of ie in the presence
and absence of ix, as per Algorithm 3.
This gave us information and impor-
tant insights on the impact of ix on
ie.

We constructed our dataset from
two different sources: kaggle.com and
incoming tourists travel data for
Guinea from UNWTO Dashboard18.

Now, we discuss how the values
in the dataset is mapped on to the
variables in the Exo-SIR model. We
calculated the number of endogenous
infections (IE(t)) from the following
equation.

IE(t) = IE(t− 1)+M(t)−D(t− 1)
(42)

where M(t) is the monthly new
cases at the time slice t and D(t− 1)

16https://www.who.int/health-topics/ebola
17https://www.unwto.org/

unwto-tourism-dashboard
18https://www.unwto.org/seasonality

kaggle.com
https://www.who.int/health-topics/ebola
https://www.unwto.org/unwto-tourism-dashboard
https://www.unwto.org/unwto-tourism-dashboard
https://www.unwto.org/seasonality
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is the deaths from within the Guinea
population at the time slice t− 1.

We estimated infected tourists
death number from endogenous
deaths in the following way. First, we
calculated γ from endogenous data
by using the equation

γ =
dr/dt

i
(43)

Then we applied the same gamma
to get the number of deaths from
data of exogenous infections using the
equation:

r(t) = r(t− 1) + dr/dt (44)

where

dr/dt = γ ∗ i(t− 1) (45)

Then we calculated number of
exogenous infections (IX(t)) by using
the equation:

IX(t) = IX(t−1) +M(t)−D(t) (46)

where M(t) is the monthly new
tourist cases at the time slice t and
D(t) is the number of deaths at the
time slice t.

Then we calculated the number
of susceptible people by using the
following equation:

S(t) = N − IcE(t)− IcX(t) (47)

where IcE(t) is the cumulative
value of IE(t) and IcX(t) is the cumu-
lative value of IX(t).

Finally we computed d(ie)
dt , d(ix)

dt ,
d(r)
dt and d(s)

dt values.

Next, we analyze the data from
Guinea. We compare the peak tick
and peak value of the plot of ie in
the presence and absence of ix. This
would give information about the
impact of ix on ie. For this purpose,
we used Algorithm 3. The cases in the
presence and absence of Ix are plot-
ted in Figure 24 and 25 respectively.
Ix is shown in Figure 26.

From Figure 24, 25, and 26, the
peak and the height of the peak are
different compared to the values in
the absence of ix. The peak tick and
values corresponding to Ie of the Exo-
SIR in the presence and absence of ix
are mentioned in Table 6.

Fig. 24 ie and ix for Ebola

Fig. 25 ie in the absence of ix for Ebola

Figure 27 shows the comparison of
the predictions of Exo-SIR model and
SIR model with the real data. Here,
we can see that the peak of Exo-SIR
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Fig. 26 ix for Ebola

Table 6 Impact of Ix on Ie in Guinea

peak value peak tick

Ie in the pres-
ence of ix

0.00012 5 Months

Ie in the
absence of ix

0.00012 6 Months

and SIR models are coming differ-
ently and they are coming far from
the peak of the actual data.

Fig. 27 Comparison of the predictions of
Exo-SIR and SIR models with real data for
Ebola in Guinea

6.4 Discussion

Both Covid-19 and Ebola satisfy
our hypothesis that the endogenous
spread changes in the presence of
exogenous spread. Also, the results in
the case of Covid-19 infection in India

show that the Exo-SIR model pre-
dicts the epidemic’s peak tick better
than the SIR model.

Covid-19 in the USA and Ebola in
Guinea show less accurate predictions
than Covid-19 in India. This may be
because of the following reasons.

In these cases, we took the data
from the beginning of the spread of
the infection. As soon as the infec-
tions started growing, the govern-
ments began multiple interventions
to curb the spread of the epidemics.
If these efforts were successful, that
would change the values of the con-
stants that we calculated using the
initial values. This will reflect in the
curve of the real data primarily by
delaying the peak and flattening the
curve. This can be observed in the
real data of Covid-19 in the USA and
Ebola in Guinea. On the other hand,
in the case of the data from India,
we took the data when the migration
of people after the Tablighi religious
congregation happened. By this time,
India was already on the alert, and
the government had already inter-
vened in the matter. Hence, our cal-
culation of the constants was closer to
the actual values.

We analyzed a sub-event in the
case of Covid-19 in India, the Tablighi
religious congregation, with many
participants from almost all the states
in India. The number of these peo-
ple who traveled back to the states
was considered Ix. The probability of
these people being infected was very
high as the event was a hot spot of
the infection. However, in the case
of Covid-19 in the USA and Ebola
in Guinea, we considered the tourist
arrival data as Ix. We made strong
assumptions in these cases due to the
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unavailability of the daily inflow of
the infected people to the population.
In the case of Covid-19 in the USA,
we calculated the external infection
as the tourist arrival data multiplied
by the total infection in the world.
We normalized it by the total popula-
tion of the world. In the case of Ebola
in Guinea, we calculated the exter-
nal infection as the tourist arrival
data multiplied with the total pop-
ulation of the three countries where
the infection was the most preva-
lent and normalized it by the world’s
total population. In these cases, the
probability that all the people in the
travel data are infected is compara-
tively less. This may be the reason for
the difference. It is important to note
that the SIR model performed equally
bad in these cases. This also suggests
that the issue might be with the data.

The peak value of the predictions
of both SIR and Exo-SIR models was
very high compared to the real val-
ues. The reason for this may be the
following. In the case of SIR and
Exo-SIR models, we assume that sus-
ceptible people are equally likely to
get infected from each infected per-
son in the population. This is not true
in real life. In real life, people are
likely to get infected only from those
they contact. This number is much
less than the assumption in both SIR
and Exo-SIR models.

7 Conclusion

This study introduced the Exo-
SIR model by extending the SIR
model. Unlike the other epidemio-
logical models, the Exo-SIR model
differentiates between the endogenous

and exogenous spread of virus/infor-
mation. We studied the model in the
following ways:

1. Analytical study
2. Simulation considering the pres-

ence of contact network of the
population ans assuming it to be a
scale free network

3. Simulation without considering
the presence of contact network

4. Implementation of the Exo-SIR
model on real data about the
spread of Covid-19 in India, Covid-
19 in the USA and the spread of
Ebola in Guinea.

We found that all the four anal-
yses mentioned here converge to the
same result: the peak comes differ-
ently in time and size when the
exogenous source is present. We stud-
ied the impact of exogenous infection
on endogenous diffusion. We found
that exogenous diffusion impacts the
endogenous spread of infection. If
there are exogenous sources of infec-
tion, like in the case of Covid-19
or Ebola, then the Exo-SIR model
is more appropriate to estimate the
scenario better. This will help the
government allocate its resources bet-
ter as the endogenous and exogenous
spread needs different sets of actions
to stop them.
Limitations and Future works:
We used the SIR model for compar-
ison as it is simple and widely used.
Other models like SEIR, SEYAR, etc.
that could be used for a similar study.
There is scope for introducing the
external source of infection to these
models like SEIR and SEYAR. Also,
we have considered only one external
source of infection. There may exist
multiple external sources of infection
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like bats, pigs, birds, etc. Another
possible scenario is the possible pres-
ence of multiple viruses. We propose
to study these in the future.
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