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Abstract

Modern medical treatments have substantially improved cure rates for many chronic

diseases and have generated increasing interest in appropriate statistical models to

handle survival data with non-negligible cure fractions. The mixture cure models

are designed to model such data set, which assume that the studied population is a

mixture of being cured and uncured. In this dissertation, I will develop two programs

named smcure and NPHMC in R. The first program aims to facilitate estimating two

popular mixture cure models: the proportional hazards (PH) mixture cure model and

accelerated failure time (AFT) mixture cure model. The second program focuses on

designing the sample size needed in survival trial with or without cure fractions based

on the PH mixture cure model and standard PH model. The two programs have been

tested by comprehensive simulation settings and real data analysis. Currently, they

are available for download from R CRAN. The third project in my dissertation will

focus on developing a new estimation method for the PH mixture cure model with

allowing patients to die from other causes. The performance of proposed method has

been evaluated by extensive simulation studies.
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Chapter 1

Introduction

One of the most important statistical models in handling survival data is the Cox

proportional hazards (PH) model. A common unstated assumption behind this model

is that all patients will eventually experience the event of interest, given that the

follow-up time is long enough. However, with the development of medical studies,

more and more fatal diseases are now curable. Therefore, in some clinical studies,

a substantial proportion of patients may never experience the event because the

treatment has effectively cured the patients. Statistically speaking, an estimated

Kaplan-Meier survival curve will tend to level off at a value greater than 0 after a

certain time. That is, after sufficient follow-up, the survival curve will reach a plateau.

We refer to these subjects who never experience the event as cured (nonsuscepti-

ble) and the remaining subjects as uncured (susceptible). The main interests of such

data are to determine the proportion of cured patients, the failure time distribution

of uncured patients, and the possible effects of covariates.

In this chapter, we will introduce two examples of data with cure fractions in

Section 1.1. The first data is melanoma data from Eastern Cooperative Oncology

Group (ECOG) and the second one is leukemia data from Bone Marrow Transplant

study. The two basic survival regression models: the PH model and AFT model will

be discussed in Section 1.2. In Section 1.3, we will give the outline of this dissertation.
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1.1 Motivation

Eastern Cooperative Oncology Group (ECOG) Data

We consider melanoma data from the ECOG phase III clinical trial E1684 [16]. This

study has been investigated by many authors [16, 6, 5, 11, 8]. The aim of the E1684

clinical trial was to evaluate the high dose interferon alpha-2b (IFN) regimen against

the placebo as the postoperative adjuvant therapy on relapse-free survival (RFS)

in patients with American Joint Committee on Cancer (AJCC) stage IIB or III

melanoma.

A total of 287 patients with high-risk melanomas were accrued to E1684 be-

tween 1984 and 1990. High-risk patients were defined to include those designated as

stage IIB or III by the former AJCC staging system (primary tumor >4 mm depth

with or without regional lymph node involvement or shallower lesions with patho-

logically proven lymphatic metastases or regional lymph node recurrence). Patients

were treated with wide local excision and complete regional lymph node dis-section

and then randomized to adjuvant high dose IFN (20 MU/m IV 5 days per week for 4

weeks, followed by 10 MU/m 3 days per week SC for 48 weeks) or observation group.

The results of this trial were first reported in 1996 with a median follow-up time of

6.9 years (range, 0.6 to 9.6 years) [16]. After deleting 2 observations with missing

data, analysis of treatment effects versus observation group was based on data from

285 patients randomized to IFN or observation group in trial E1684. The median

RFS was 1.721 years in the IFN arm versus 0.982 year in the observation arm with

a p-value of 0.0118 by log-rank test. The IFN treatment group is coded as 1 and

observation group as 0. The response variable is RFS in years.

The time data is listed in Table 1.1. There were 140 patients in observation

group and 145 patients in IFN treatment group. The Kaplan-Meier survival curves

for the IFN treatment group and observation group are given in Figure 1.1. The

2



RFS is significant better for IFN group compared to the observation group (p-value

= 0.0118 by log rank test).

Figure 1.1 Kaplan-Meier relapse-free survival for the IFN treatment group and the
control group.

From the Kaplan-Meier survival curves, we can see that the estimated RFS curve

from the IFN group is above the observation group, which indicates that the survival

probability of patients from the IFN group is higher than that from the observation

group. It also shows that both curves level off at a value substantially greater than 0

after about 8-year follow-up, which indicates that some patients will not experience

the recurrence after treatments. Therefore, there may exist cured patients in both

treatment group and observation group.
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Table 1.1 ECOG 1684

High-dose
interferon
alfa-2b
(IFN)

0.04932, 0.06027, 0.09863, 0.10411, 0.11507, 0.12329, 0.13151,
0.13151, 0.14247, 0.14521, 0.15890, 0.17260, 0.17260, 0.18082,
0.18082, 0.19178, 0.24658, 0.26027, 0.26027, 0.26027, 0.30137,
0.30137, 0.33699, 0.34247,0.34795, 0.35616, 0.39178, 0.41370,
0.43836, 0.43836, 0.46027, 0.46027, 0.47945, 0.49041, 0.49041,
0.54795, 0.55068, 0.55068, 0.56164, 0.56986, 0.59178, 0.60822*,
0.62466, 0.63288, 0.64384, 0.64658, 0.70959, 0.78630, 0.82466,
0.82740, 0.82740, 0.85479, 0.85753, 0.86301, 0.95068, 0.99726,
1.00274, 1.00822, 1.02192, 1.03288, 1.07123, 1.09041, 1.15068,
1.16438, 1.19178, 1.23836, 1.35068, 1.47671, 1.48767, 1.52055,
1.61370, 1.70411, 1.72055, 1.73425, 1.83562*, 1.85753, 1.88219,
2.08219, 2.15068*, 2.28219, 2.29589, 2.31507, 2.47671, 2.55068,
2.55616, 2.87397, 2.87671, 2.90411*, 3.02466, 3.05479, 3.58630,
3.93973, 4.26301, 4.29041, 4.29863*, 4.36164*, 4.63836*, 4.81918*,
4.86027*, 4.89315*, 4.90685*, 4.92877*, 4.94795*, 5.16712,
5.30137, 5.45479*, 5.54521*, 5.59178*, 5.75890*, 6.00000*,
6.13699*, 6.20274*, 6.34795*, 6.37808*, 6.41096*, 6.47123*,
6.89315*, 7.00000*, 7.04110*, 7.04384*, 7.23288*, 7.30685*,
7.35616*, 7.41918*, 7.42466*, 7.62192*, 7.70959*, 7.82192*,
7.83562*, 7.96438*, 7.96712*, 8.04110*, 8.09863*, 8.21370*,
8.28767*, 8.33425*, 8.36712*, 8.40000*, 8.45753*, 8.75342*,
8.98630*, 8.99178*, 9.03288*, 9.38356*,9.63014*

Placebo 0.03288, 0.06027, 0.06027, 0.07671, 0.07945, 0.08493, 0.09589,
0.09863, 0.09863, 0.10685, 0.10959, 0.12603, 0.12603, 0.12877,
0.13151, 0.13973, 0.13973, 0.14795, 0.14795, 0.15342, 0.17260,
0.17260, 0.18630, 0.19452, 0.19452, 0.21918, 0.23014, 0.23288,
0.23836, 0.24110, 0.24110, 0.24110, 0.25753, 0.26575, 0.26575,
0.28767, 0.28767, 0.28767, 0.28767, 0.30959, 0.30959, 0.32055,
0.32055, 0.32603, 0.32877, 0.34795, 0.35616, 0.36438, 0.38630,
0.41096, 0.41644, 0.43562, 0.44384, 0.45205, 0.45479, 0.46301,
0.46575, 0.49589, 0.51507, 0.51507, 0.52603, 0.57260, 0.59726,
0.62740, 0.72603, 0.89589, 0.90137, 0.91781, 0.92877, 0.97808,
0.98630, 0.98904, 1.00822, 1.01644, 1.06849, 1.08219, 1.18904,
1.35342, 1.35616, 1.51507, 1.64110, 1.65205, 1.69589, 1.69863,
1.70959, 1.83288, 1.84658, 1.87945, 1.89863*, 1.94795, 2.09041,
2.13151, 2.39726, 2.57808, 2.72329, 3.06849, 3.18630, 3.20548,
3.27671, 3.33973, 3.85205, 3.86575, 4.24384*, 4.40822*, 4.45205,
4.72055*, 4.74795*, 4.76986*, 4.81370*, 4.86849, 4.95616*,
5.12329*, 5.24658*, 5.32329*, 5.77808*, 5.88493*, 6.01096,
6.02192*, 6.06575*, 6.15890*, 6.30959*, 6.40548*, 6.48493*,
6.51507*, 6.85479*, 6.93151*, 7.09589*, 7.25205*, 7.53151*,
7.63836*, 7.79726*, 7.81370*, 7.83288*, 7.94521*, 7.99726*,
8.02740*, 8.24658*, 8.26301, 8.34247*, 9.64384*
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Bone Marrow Transplant Study for Leukemia Patients

We consider the bone marrow transplant study for the refractory acute lymphoblastic

leukemia patients, which was first analyzed by [15]. This data set is widely used in

the AFT mixture cure model because the PH assumption is not appropriate for

the latency distribution [31]. Figure 1.2 illustrates the logarithm of the estimated

cumulative hazard functions for the uncensored patients for each group based on the

Nelson-Aalen estimator. It is easy to see that the two curves cross over which indicate

that the PH assumption is not appropriate for this data set.
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Figure 1.2 Logarithm of the cumulative hazard function curves. Dashed line for
the autologous transplant, solid line for the allogeneic transplant.

There were 46 patients in the allogeneic treatment and 44 patients in the autol-

ogous treatment group. The treatment variable is included in both incidence and

latency parts (1 for autologous treatment group; 0 for allogeneic treatment group).

The data set is listed in Table 1.2, and the Kaplan-Meier survival curves for the two

treatment groups are given in Figure 1.3.
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Table 1.2 Bone marrow transplant treatment of high risk acute lymphoblastic
leukemia (March 1982–December 1985, University of Minnesota).

allogeneic
treatment
group

11, 14, 23, 31, 32, 35, 51, 59, 62, 78, 78, 79, 87, 99, 100, 141,
160, 166, 216, 219, 235, 250, 270, 313, 332, 352, 368, 468, 491,
511, 557, 628*, 726*, 819, 915*, 966*, 1109*, 1158*, 1256, 1614*,
1619*, 1674*, 1712*, 1745*, 1820*, 1825*

autologous
treatment
group

21, 40, 42, 50, 53, 54, 56, 61, 64, 67, 73, 76, 79, 81, 88, 95, 98, 98,
99, 104, 105, 106, 112, 131, 147, 171, 172, 179, 189, 195, 199, 213,
223, 224, 277, 724*, 729*, 734, 1053*, 1094*, 1192*, 1475*, 1535*,
1535*, 1845*

Figure 1.3 Kaplan-Meier survival for Bone Marrow Transplant Study.

From the Kaplan-Meier survival curves, we can see that the estimated survival

curve from the allogeneic treatment group is above the one from the autologous

treatment group, which indicates that the survival probability of patients from the

allogeneic treatment group is higher than that from the autologous treatment group

(p-value = 0.106 by log-rank test). It also shows that both curves level off at a value

6



substantially greater than 0 after one or two years follow-up, which indicates that

some patients will not experience the recurrence after the treatments. Therefore,

there may exist cured patients in both treatment groups.

Both data display the possible cure fractions, in order to estimate the proportion

of cured patients accurately, a cure rate model has to be considered. The most

commonly used type of cure rate model is the mixture cure model which was first

developed by Boag in 1949 [2] and later developed by Berkson and Gage in 1952 [1].

After that, there are many extensions on the mixture cure model, such as the PH

mixture cure model and AFT mixture cure model. In this dissertation, we will focus

on the software developments and advanced methodology developments in various

mixture cure models.

1.2 Basic Survival Regression Models

Standard PH Model

The PH assumption provides a way to introduce covariates into models and to sep-

arate the effect of the covariates and the shape of a baseline hazard function. It has

been successfully employed in Cox’s PH regression model for survival data. The PH

model can be expressed as

h(t) = h0(t) exp(βx), (1.1)

where h(·) is the hazard function, h0(·) is the baseline hazard function and β is a

vector of unknown coefficients of interest. If x = 0, the hazard function h(t) is equal

to the baseline hazard function h0(t). The model is called the proportional hazards

model because if we look at two individuals with covariate values x1 and x2, the ratio

of their hazards
h(t|x1)
h(t|x2) = exp(β(x1 − x2)),

7



is a constant. Therefore, the hazards are proportional. The quantity exp(β(x1−x2))

is called as the relative risk (hazard ratio) of an individual with risk factor x1 having

the event as compared to an individual with risk factor x2. In particular, if x1

indicates the treatment effect (x1 = 1 if treatment and x1 = 0 if placebo) and all

other covariates have the same value, exp(β) is the relative risk between patients

in the treatment group and control group with other risks factors fixed at the same

value.

The cumulative hazards function is defined as the integral of the baseline hazard

function. If H(t) is the cumulative hazards function corresponding to h(t), H(t) =∫∞
0 h(t)dt. Let H(t) and H0(t) be the cumulative hazards functions corresponding to

h(t) and h0(t). The logarithm of the cumulative hazard function satisfies the following

equation

log(H(t)) = βx + log(H0(t)).

Therefore, the curves of the logarithm of the cumulative hazard function for various

levels of x should be parallel, which is referred to as the PH assumption. Usually,

this assumption should be verified before using the PH model.

The main innovation of the PH model is that β can be estimated without speci-

fying, or even estimating, a baseline hazard function. This is accomplished by devel-

oping the concept of the partial likelihood, a likelihood function which only depends

on β. In the rest of this section, we will introduce the partial likelihood estimation

method of the PH model. Let O = (ti, δi,xi) denote the observed data for the ith

individual i = 1, · · · , n, where ti is the observed survival time, δi is the censoring

indicator with δi = 1 for the uncensored time and 0 for the censored time, and xi is

the value of covariate. We assume that censoring is noninformative in that, given xi,

the event and censoring time for the ith patient are independent.

Suppose that there are no ties among event times. Let t1 < t2 < · · · < tD denote

the ordered event times and x(i)k be the kth covariate associated with the individual

8



whose failure time is ti. Define the risk set at time ti, R(ti), as the set of all individuals

who are still under study at a time just prior to ti. The partial likelihood for the PH

model is expressed by

L(β) =
D∏
i=1

exp[∑p
k=1 βkx(i)k]∑

j∈R(ti) exp[∑p
k=1 βkxjk]

.

This is treated as a usual likelihood, and inference is carried out by usual means. It

is of interest to note that the numerator of likelihood depends only on information

from the individual who experiences the event, whereas the denominator utilizes

information about all individuals who have not yet experienced the event (including

some individuals who will be censored later).

Let LL(β) = ln[L(β)], we can write LL(β) as

LL(β) =
D∑
i=1

p∑
k=1

βkx(i)k −
D∑
i=1

ln
 ∑
j∈R(ti)

exp
( p∑
k=1

βkxjk
) .

The efficient score equation is found by taking partial derivatives with respect to β

as follows. Let Ub(β) = ∂LL(β)/∂βb, b = 1, . . . , p. Then,

Ub(β) =
D∑
i=1

x(i)b −
D∑
i=1

∑
j∈R(ti) xjb exp[∑p

k=1 βkxjk]∑
j∈R(ti) exp[∑p

k=1 βkxjk]

The partial maximum likelihood estimates are found by maximizing LL(β). This

maximization procedure can be done in most statistical software packages, such as

coxph in R and PROC PHREG in SAS.

Standard AFT Model

The AFT model regresses the logarithm of survival time over covariates, which is a

useful alternative to the PH model, when the PH assumption does not satisfy. We

can specify the AFT model by

log(T ∗i ) = βxi + εi , (1.2)
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where εi’s are independent random errors and E(εi) may not be zero. One advantage

of the AFT model over the PH model is that the covariate effects on the failure

time are modeled directly rather than indirectly, as in the PH model. Thus, the

interpretation of covariate effects in the AFT model is much simpler than in the PH

model.

There are many discussions on parametric estimation methods [18, 13] and semi-

parametric estimation methods [28, 23] for the AFT model. Our main interest focuses

on the semiparametric estimation method. Tsiatis [28] proposed the rank estimation

method and Ritov [23] considered the general linear square estimation method. How-

ever, Ritov[23] proved the equivalency between the rank estimation method and the

general linear square estimation method.

In the rest of this section we will give a brief description of the rank estimation

method in the semiparametric AFT model. The rank estimation method can be

derived from the partial likelihood principle of the PH model. Consider the usual PH

model with the regression coefficient vector γ, say

h(εi) = h0(εi) exp(γ′xi),

where εi = log ti − βxi. The partial log likelihood function is

n∑
i=1

δi
(
γ′xi − log

n∑
j=1

eγxjI(εj ≥ εi)
)
,

where I(·) is the indicator function. The derivative of the logarithm of the partial

likelihood function with respect to γ is simply:

Ψ(γ) =
n∑
i=1

δi

(
xi −

∑n
j=1 xjeγxjI(εj ≥ εi)∑n
j=1 e

γxjI(εj ≥ εi)

)
.

If the parameter γ is 0, Ψ(0) = 0 can be used as a linear rank estimating equation for

β (εi is a function of β). It is important to note that as long as the underlying failure

times T ∗i are independent and identically distributed, for large n, Ψ(0) is approxi-

mately centered around 0. It can also be extended to include a general (predictable)
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weight function. That is, we rewrite Ψ(0) as Ψ(β; k(·)):

Ψ(β; k(·)) =
n∑
i=1

δik(εi)
(

xi −
∑n
j=1 xjI(εj ≥ εi)∑n
j=1 I(εj ≥ εi)

)
,

where k(·) is a general (predictable) weight function. For example, k(u)

= ∑n
j=1 I(εj ≥ u)/n is called as the Gehan weight function. Once the weight function

is specified, Ψ(β) = 0 is the estimating equation for β.

However, the above semiparametric estimating functions are step functions of

the regression parameters with potentially multiple roots, and the corresponding

estimators may not be well defined. Jin[12] provided simple and reliable methods

for implementing the aforementioned rank estimators. They showed that the rank

estimator with the Gehan weight function can be readily obtained by minimizing a

convex objective function through a standard linear programming technique. Their

procedure yielded a consistent root and can be extended to other choices of weight

function. Under the Gehan weight function, Jin[12] showed that Ψ(β; k(·)) can be

simplified as

n−1
n∑
i=1

n∑
j=1

δi(xi − xj)I(εj ≥ εi) ,

which is the gradient of the convex function

n−1∑
i

∑
j

δi (εi − εj) I(εi ≤ εj) .

Therefore it can be easily minimized by the linear programming method.

1.3 Outline of Dissertation

In Chapter 2, we will outline the PH mixture cure model and its computational

estimation method. In the mixture cure model, the smcure package is developed

to estimate the semiparametric PH mixture cure model with covariates where the

cure fraction can be modeled by various binary regression models and the survival

of uncured individuals can be modelled by the PH survival model. The R function

11



of the smcure package and its usage are also described. The results of simulation

study are provided to evaluate the performance of the package. An example is given

to illustrate the usage of the package.

In Chapter 3, we will focus on the sample size design of a study with possible long-

term survivors based on the PH mixture cure model. An R package NPHMC will be

introduced. This package is developed to facilitate physicians or clinicians to design

a study with or without cure fraction based on the semiparametric PH mixture cure

model or standard PH model. The parameters of sample size formula can be specified

based on previous literature reviews or estimated based on historical or observed data

via smcure R package.

In Chapter 4, we will propose a new estimation method for PH mixture cure

model allowing other causes of death. with competing risks data. The model and

its computational method will be discussed. The results of simulation study and

application to real data analysis will also be provided.

In Chapter 5, the cure rate model will be extended to the AFT mixture cure model.

When the PH assumption does not satisfy for the uncured patients, an AFT model

is an alternative to model the latency party of mixture cure model. The estimation

method and its application in R will also be discussed.

Chapter 6 is the summary and conclusions of mixture cure models. Some future

work will also be discussed.
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Chapter 2

Estimating Semiparametric PH Mixture Cure

Model and Software Program Development

2.1 Abstract

The mixture cure model is a special type of survival models and it assumes that the

studied population is a mixture of uncure (susceptible) individuals who may expe-

rience the event of interest, and cure (non-susceptible) individuals who will never

experience the event. For such data, standard survival models are usually not appro-

priate because they do not account for the possibility of cure. The mixture model

has been widely used in medical research. The aim of this chapter is to present the

PH mixture cure model and an R package smcure, which fits the PH mixture cure

model semiparametrically.

2.2 Introduction

The PH model is the most popular model in survival analysis. As stated before, the

common unstated assumption behind this model is that all patients will eventually

experience the event of interest, given that the follow-up time is long enough. How-

ever, in recent years, with the development of medical studies, more and more fetal

diseases are now cured. There has been an increasing interest in modelling survival

data with long term survivors. Such data often arise from clinical trials. Thus, there

is a need to develop statistical models to analyze whether the treatment can cure the

disease or slow down the progression of the disease if not cure.
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The mixture cure model, firstly introduced by Boag (1949) [2] and Berkson and

Gage (1952)[1], is one of the popular models to estimate the cure rate of the treatment

and the survival rate of uncure patients at the same time.

Let T denote the failure time of interest, 1− π(z) be the probability of a patient

being cured depending on z, and S(t|x) be the survival probability of the uncured

patients depending on x, where x and z are observed values of two covariate vectors

that may affect the survival function. The mixture cure model can be expressed as

Spop(t|x, z) = π(z)S(t|x) + 1− π(z) (2.1)

Usually, π(z) is refer to as “incidence" and S(t|x) is refer to as “latency". If the PH

model is used to model the latency part, the cure model is called the PH mixture

cure model.

An R package called smcure is developed to estimate semiparametric PH mixture

cure model and semiparametric AFT mixture cure model. This chapter will only

focus on PH mixture cure model and AFT mixture cure model will be discussed in

Chapter 5.

In section 2.3, we outline models and the computational methods. The R function

and its arguments are described in Section 2.4. Simulation results are displayed in

Section 2.5. We use an example to illustrate the smcure package in Section 2.6.

2.3 Model and Computational Method

Semiparametric PH Mixture Cure Model

An advantage of the mixture cure model is that the proportion of cured subjects

and the survival distribution of uncured subjects are modeled separately and the

interpretation of effects of x and z is straightforward.
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Usually, a logit link function

π(z) = exp(bz)
1 + exp(bz) ,

where b is a vector of unknown parameters, is used to model the effects of z. Other

link functions can also be applied to the incidence part, such as the complementary

log-log link

log(− log(1− π(z))) = bz,

and the probit link

Φ−1(π(z)) = bz,

where Φ(·) is the cumulative distribution function of a standard normal distribution.

The logit link is a default option in the smcure package.

If the distribution of failure time of uncured patients/latency part can be modeled

by a PH model, the mixture cure model is called as the PH mixture cure model.

To model the effect of covariates x on the failure time distribution of uncured

patients in the mixture model, we employ the PH assumption to model the effect of

x on the distribution by h(t) = h0(t) exp(βx). This assumption implies that S(t|x) =

S0(t)exp(βx) where S0(t) is the baseline survival function of uncured subjects when x =

0. Parametric approaches to the mixture cure model were studied by many authors

[10, 21, 30]. Since it is usually difficult to verify a parametric assumption, there has

been increasing interest in the semiparametric mixture cure models [19, 20, 26, 27, 31].

This chapter will focus on semiparametric estimation method for the PH mixture cure

model.

Computational Method

Let O = (ti, δi, zi,xi) denote the observed data for the ith individual i = 1, · · · , n,

where zi,xi are the possible covariates in the incidence and latency parts respectively.

We assume that the censoring is independent and noninformative. It is worthwhile
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pointing out that the same covariates are allowed for the incidence and latency com-

ponents although we use different covariate notations for these two components.

Let Θ = (b,β, S0(t)) denote the unknown parameters. To use the EM algorithm

to estimate unknown parameters in this PH mixture cure model, let yi be an indicator

of cure status of the ith patient, namely, yi = 1 if the patient is uncured and 0 other-

wise, i = 1, 2, · · · , n.. Obviously, if δi = 1, yi = 1; if δi = 0, yi is not observable and it

can be one or zero. Note that π(z) = P (yi = 1|z). Let y = (y1, y2, · · · , yn). Therefore,

y is partially missing information which will be employed in the EM algorithm.

Given y = (y1, y2, · · · , yn) and O, the complete likelihood function can be ex-

pressed as

n∏
i=1

[1− π(zi)]1−yiπ(zi)yih(ti|Y = 1,xi)δiyiS(ti|Y = 1,xi)yi (2.2)

where h(·) is the hazard function corresponding to S(·). The logarithm of the com-

plete likelihood function can be written as lc(b,β; O,y) = lc1(b; O,y) + lc2(β; O,y),

where

lc1(b; O,y) =
n∑
i=1

yi log[π(zi)] + (1− yi) log[1− π(zi)], (2.3)

lc2(β; O,y) =
n∑
i=1

yiδi log[h(ti|Y = 1,xi)] + yi log[S(ti|Y = 1,xi)]. (2.4)

The E-step in the EM algorithm computes the conditional expectation of the

complete log-likelihood with respect to y′is, given the observed data O and current

estimates of parameters Θ(m) = (b(m),β(m), S
(m)
0 (t)). The conditional expectation of

yi will be enough to complete this step since both (2.3) and (2.4) are linear functions

of yi. The expectation of E(yi|O,Θ(m)) can be written as

w
(m)
i = E(yi|O,Θ(m)) = δi + (1− δi)

π(zi)S(ti|Y = 1,xi)
1− π(zi) + π(zi)S(ti|Y = 1,xi)

∣∣∣∣∣
(O,Θ(m))

. (2.5)

It is easy to see that w(m)
i = 1 if δi = 1 and w

(m)
i is the probability of uncured

patients if δi = 0. Thus, the second part of E(yi|O,Θ(m)) can be interpreted as the
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conditional probability of the ith individual remaining uncured. Because δi logw(m)
i =

0 and δiw(m)
i = δi, the expectations of (2.3) and (2.4) can be written as

E(lc1) =
n∑
i=1

w
(m)
i log[π(zi)] + (1− w(m)

i ) log[1− π(zi)], (2.6)

E(lc2) =
n∑
i=1

δi log[w(m)
i h(ti|Y = 1,xi)] + w

(m)
i log[S(ti|Y = 1,xi)]. (2.7)

The M-step in the EM algorithm is to maximize (2.6) and (2.7) with respect to

the unknown parameters. The parameters in equation (2.6) can be easily estimated

by ‘glm’ package in R. Because the expressions of equation (2.7) and w(m)
i depend on

the latency assumption, we will first demonstrate the estimation approach under the

PH mixture cure model.

Peng and Dear [22] and Sy and Taylor [26] proposed a partial likelihood type

method to estimate β without specifying the baseline hazard function. The estimating

equation (2.7) can be written as

log
n∏
i=1

[h0(ti) exp(βxi + log(w(m)
i ))]δiS0(ti)exp(βxi+log(w(m)

i )), (2.8)

which is similar to the log-likelihood function of the standard PH model with the

additional offset variable log(w(m)
i ). Therefore, the parameters in equation (2.7) can

be estimated by ‘coxph’ package in R. A detailed presentation can be found in Peng

[20], Peng and Dear [22], and Sy and Taylor [26].

Estimation of the Survival Function in the E-Step

In the E-step, we update wi by (2.5). This updating involves the survival function

S(t|Y = 1), which also involves the baseline survival function S0(t|Y = 1) for given

β̂. Therefore, the estimation method of baseline survival function S0(t|Y = 1) based

on the current information is needed to complete the E-step.

Let t(1) < t(2) < · · · < t(k) be the distinct uncensored failure times, dt(j) denote

the number of events and R(t(j)) denote the risk set at time t(j). The Breslow-type
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estimator for S0(t|Y = 1) is given by

Ŝ0(t|Y = 1) = exp
− ∑

j:t(j)≤t

dt(j)∑
i∈R(t(j)) w

(m)
i eβxi

 . (2.9)

Because the estimator, Ŝ0(t|Y = 1), may not approach 0 as t→∞, we set Ŝ0(t|Y =

1) = 0 for t > t(k). Then Ŝ(t|Y = 1) = Ŝ0(t|Y = 1)exp(β̂x).

Variance Estimation

Because of the complexity of the estimating equation in the EM algorithm, the stan-

dard errors of estimated parameters are not directly available. In order to obtain the

variance of β̂ and b̂, this package uses sample function in R to respectively draw

random bootstrap samples with replacement from cases and controls. The results of

standard errors with different bootstrap sampling numbers for the later two examples

are shown in Tables 2.1 and 2.2.

Table 2.1 Eastern Cooperative Oncology Group (ECOG) Data

Cure probability model SE(nboot=100) SE(nboot=200) SE(nboot=500)
Intercept 0.35 0.33 0.29
TRT 0.36 0.33 0.31
SEX 0.34 0.33 0.33
AGE 0.02 0.01 0.01
Failure time distribution model SE(nboot=100) SE(nboot=200) SE(nboot=500)
TRT 0.16 0.17 0.17
SEX 0.18 0.17 0.19
AGE 0.01 0.01 0.01

Table 2.2 Bone Marrow Transplant Study
Cure probability model SE(nboot=100) SE(nboot=200) SE(nboot=500)
Intercept 0.25 0.23 0.26
TRT 0.52 0.48 0.54
Failure time distribution model SE(nboot=100) SE(nboot=200) SE(nboot=500)
Intercept 0.21 0.18 0.18
TRT 0.30 0.27 0.27
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2.4 Package Description

The estimation methods discussed above are implemented in the smcure package.

The smcure function in the package can be called with the following syntax:

smcure(formula,cureform,offset=NULL,data,na.action=na.omit,

model=c("ph","aft"),link="logit",Var=TRUE,emmax=50,eps=1e-7,nboot=100)

The required arguments are:

• formula: a formula object, with the response on the left of a ’∼’ operator, and

the variables included in the latency part on the right. The response must be

a survival object as returned by the Surv function.

• cureform: specifies the variables included in the incidence part on the right of

a ’∼’ operator.

• data: a data frame containing variables used in formula and cureform.

• model: specifies survival model in the latency component, which can be "ph"

or "aft".

The optional arguments are:

• offset: variable(s) with coefficient 1 in both incidence and latency parts of the

semiparametric PH mixture cure model or the semiparametric AFTMC model.

By default, offset = NULL.

• na.action: a missing-data filter function. By default na.action = na.omit.

• link: specifies the link function in the incidence component. The logit, probit or

complementary loglog (cloglog) links are available. By default link = "logit".
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• Var: if it is TRUE, the program returns bootstrap standard errors Std.Error for

β̂ and b̂ by the bootstrap method. If it is set to be False, the program only

returns coefficient estimates. By default, Var = TRUE.

• emmax: specifies the maximum iteration number. If the convergence criterion

is not met, the EM iteration will be stopped after emmax iterations and the

estimates will be based on the last maximum likelihood iteration. The default

emmax = 50.

• eps: sets the convergence criterion. The default is eps = 1e-7. The itera-

tions are considered to be converged when the maximum relative change in the

parameters and likelihood estimates between iterations is less than the value

specified.

• nboot: specifies the number of bootstrap samplings. The default nboot = 100.

The output is composed of two parts: Cure probability model and Failure

time distribution model. The cure rate can be easily estimated from the output

by 1 − π̂(z). The estimated mixture cure survival function Spop(·) is computed by

predictsmcure function and plotted by plotpredictsmcure function.

Notes of the package:

• The user has to create “dummy variables" outside the package if data has cat-

egorical variable with more than two values.

• The “formula" and “cureform" arguments require at least one covariate.

• The default nboot = 100 is good number to estimate variance. From the Tables

2.1 and 2.2, we can see that the impact of the choice of 100, 200 and 500 for

the nboot is trivial.
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2.5 Simulation Study

In the simulation study, the probability of cure is generated from a logistic model

where π(z) = exp(bz)
1+exp(bz) . The covariate z is generated from a binary distribution

with a probability of 0.5. Censoring times are generated from a uniform distribution

U(c1, c2), where constants of c1 and c2 are determined to obtain a desired censoring

rate. The survival times of uncure patients are generated from either a Weibull

distribution where S(t|Y = 1, z) = exp[−(λt)k exp(βz)] with λ = 0.5 and k = 1 or a

Lognormal distribution of log N(0,1). The results below are based on n = 200 and

n = 500 respectively with 500 replications.

Table 2.3 Estimates from PHMC model (2,-1,2)

Survival Censoring Parameter True n = 200 n = 500
Distribution Rate Values Bias MSE Bias MSE

Weibull 21.9 b̂0 2 0.0644 0.1530 0.0470 0.0505
b̂1 -1 -0.0590 0.2092 -0.0459 0.0693
β̂1 2 0.0185 0.0514 0.0077 0.0199

33.4 b̂0 2 -0.4613 0.9757 -0.5052 0.4038
b̂1 -1 0.4856 1.0264 0.5102 0.4299
β̂1 2 0.0982 0.0328 0.0881 0.0218

Lognormal 21.1 b̂0 2 0.0655 0.1407 0.0318 0.0475
b̂1 -1 -0.0459 0.1885 -0.0351 0.0675
β̂1 2 0.0238 0.0461 0.0139 0.0190

29.5 b̂0 2 -0.2903 0.5530 -0.3329 0.2270
b̂1 -1 0.3022 0.5905 0.3280 0.2429
β̂1 2 -0.0626 0.0584 -0.0695 0.0279

Tables 2.3 and 2.4 present the estimated biases and MSE from the PH mixture

cure model of three regression parameters b0, b1 and β1 based on the logistic-Weibull

data and logistic-lognormal data.

In Table 2.3, b0 = 2 and b1 = −1 correspond to π(z = 0) = 0.88 and π(z =

1) = 0.73 which mean that 12% of the population is cured in the control group and
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Table 2.4 Estimates from PHMC model (1.3863,-1,2)

Survival Censoring Parameter True n = 200 n = 500
Distribution Rate Values Bias MSE Bias MSE

Weibull 32.1 b̂0 1.3863 0.0638 0.0923 0.0123 0.0291
b̂1 -1 -0.0566 0.1384 -0.0115 0.0473
β̂1 2 0.0092 0.0615 0.0135 0.0225

37.5 b̂0 1.3863 0.0714 0.9070 -0.0216 0.0773
b̂1 -1 -0.0713 0.9791 0.0125 0.0945
β̂1 2 0.0041 0.0667 -0.0024 0.0260

Lognormal 32.0 b̂0 1.3863 0.0265 0.0846 0.0163 0.0325
b̂1 -1 -0.0209 0.1358 -0.0067 0.0510
β̂1 2 0.0330 0.0594 0.0193 0.0262

39.4 b̂0 1.3863 -0.1662 0.2517 -0.2246 0.1238
b̂1 -1 0.1706 0.3061 0.2362 0.1448
β̂1 2 0.0063 0.0807 -0.0613 0.0283

27% in the treatment group. In Table 2.4, b0 = 1.3863 and b1 = −1 correspond to

π(z = 0) = 0.8 and π(z = 1) = 0.6, which mean that 20% of the population is cured

in the control group and 40% in the treatment group.

The simulation results show that estimates of b and β do not depend on the

assumption of the distribution. The bias of estimates based on the PH mixture cure

model are quite small. Even though the bias increase a little bit as the censoring rate

increases, the MSE of estimates get smaller as sample size increases from 200 to 500.

The same conclusion can be made even we increase cure rates from 12% to 20% in

the control group and 27% to 40% in the treatment group as shown in Table 2.4.

Investigate the effect of link functions

As discussed in the section of semiparametric PH mixture cure model, besides ‘logit’

link, ‘probit’ link and ‘cloglog’ can also be used to model the probability of cure.

Suppose we use the same input data that are generated in Table 2.3. We only
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consider sample size 500 and Weibull distribution for survival times. We re-estimate

the unknown parameters b by ‘logit’ link, ‘probit’ link and ‘cloglog’ link respectively.

Then, re-calculate the cure rates for control group and treatment group by different

link functions. The estimates of parameters b and cure rates based on 500 replicates

are summarized in Table 2.5.

Table 2.5 Estimated cure rates for different link functions (n=500)

PHMC Survival Censoring Parameter True Logit Probit Cloglog
Distribution Distribution Values
Weibull U(0.5,9) b̂0 2 2.0169 1.1463 0.7159

b̂1 = −1 -1 -1.017 -0.5203 -0.4352
Cure Rate

Control 0.12 0.117 0.206 0.129
Treatment 0.27 0.269 0.327 0.266

From Table 2.5, we can see that even though the point estimates of unknown

parameters b are different, the estimated cure rates by different link functions are

quite close.

In order to visually see the effects of different link functions, we plot the esti-

mated uncure rates by ’logit’ link, ’probit’ link and ’cloglog’ link versus a continuous

covariate, which takes values ranging from −2 to 2.

From the Figure 2.1 , we can see that the estimated cure rates from ‘logit’ link,

‘probit’ link and ‘cloglog’ are quite close if the input is the same.

2.6 Application

In this section, we use an example to illustrate the use of smcure package for the

semiparametric PH mixture cure model.
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Figure 2.1 Plot of different link functions.

Eastern Cooperative Oncology Group (ECOG) Data

We fit the semiparametric PH mixture cure model to the melanoma data from the

ECOG phase III clinical trial E1684 [16], which was also illustrated by PSPMCM SAS

macro [8]. The aim of the E1684 clinical trial was to evaluate the high dose interferon

alpha-2b (IFN) regimen against the placebo as the postoperative adjuvant therapy.

After deleting missing data, a total number of 284 observations is used in the analysis.

Treatment (0=control,1=treatment), gender (0=male,1=female) and age (continuous

variable which is centered to the mean) are used in both the incidence and latency

parts. The response variable is relapse free survival in years. The semiparametric PH

mixture cure model can be fitted as following:

> pd <- smcure(Surv(FAILTIME,FAILCENS)~TRT+SEX+AGE,cureform=~TRT+SEX+AGE,

data=e1684,model="ph",nboot=500)

The output is:

> printsmcure(pd)
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Call:

smcure(formula = Surv(FAILTIME, FAILCENS) ~ TRT + SEX + AGE, cureform =

~TRT + SEX + AGE, data = e1684, model = "ph", nboot = 500, Var = TRUE)

Cure probability model:

Estimate Std.Error Z value Pr(>|Z|)

(Intercept) 1.36493298 0.28769252 4.7444159 2.091088e-06

TRT -0.58847727 0.30645148 -1.9202951 5.482064e-02

SEX -0.08696490 0.32905294 -0.2642885 7.915576e-01

AGE 0.02033857 0.01445227 1.4072922 1.593408e-01

Failure time distribution model:

Estimate Std.Error Z value Pr(>|Z|)

TRT -0.153595097 0.172120117 -0.8923716 0.3721938

SEX 0.099458470 0.190788176 0.5213031 0.6021556

AGE -0.007664013 0.006695195 -1.1447033 0.2523321

The standard errors of the estimated parameters are obtained based on 500 bootstrap

samples. If considering the male with the median centered age of 0.579, we can draw

the fitted survival curves by the treatment group using the following commands:

> predm=predictsmcure(pd,newX=cbind(c(1,0),c(0,0),c(0.579,0.579)),

newZ=cbind(c(1,0),c(0,0),c(0.579,0.579)),model="ph")

> plotpredictsmcure(predm,model="ph")

The fitted survival curves for the male with median centered age are shown in Figure

2.2. The upper solid line is the allogeneic treatment group and lower dashed line is

the autologous treatment group. The IFN treatment has higher survival probability

than the placebo group.
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Figure 2.2 Fitted survival curves for the male with median centered age.

Figure 2.3 Fitted survival curves for the female with median centered age.

> predf=predict.smcure(pd,newX=cbind(c(1,0),c(1,1),c(0.579,0.579)),

newZ=cbind(c(1,0),c(1,1),c(0.579,0.579)),model="ph")

> plotpredictsmcure(predf,model="ph")
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Similarly, we fitted the survival curves by the treatment group for the female at the

same age, which are shown in Figure 2.3. The upper solid line is the IFN treatment

and lower dashed line is the control group. The IFN treatment has higher survival

probability than the placebo group for female as well.

2.7 Conclusions

We develop an R package to estimate the semiparametric PH mixture cure model.

The cure probability part is estimated by the generalized linear model which allows

many link functions, such as logit, probit and cloglog. The latency part can

follow the PH model. The semiparametric estimation procedures are based on the

EM algorithm for both models. The smcure package in R is developed for imple-

menting the semiparametric estimation methods to the PH mixture cure model with

covariates.

2.8 Availability

The package smcure and the relevant documentation can be freely downloaded from

CRAN webpage http://cran.r-project.org/package=smcure.
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Chapter 3

New Program Development of Sample Size

Estimation for PH Mixture Cure Model

3.1 Abstract

Due to the advances in medical research, more and more diseases can be cured nowa-

days, which largely increases the need for an easy-to-use software in calculating sample

size of clinical trials with cure fractions. Current available sample size software, such

as PROC POWER in SAS, Survival Analysis module in PASS, powerSurvEpi pack-

age in R are all based on the standard proportional hazards (PH) model which is not

appropriate to design a clinical trial with cure fractions. Instead of the standard PH

model, the PH mixture cure model is an important tool in handling the survival data

with possible cure fractions. However, there are no tools available that can help deal

with the design of a trial with cure fractions. Therefore, we develop an R package

NPHMC to determine the sample size needed for such study design.

3.2 Introduction

Sample size calculation is an important component in designing randomized controlled

clinical trials with time-to-event endpoints. Assuming constant hazard ratio between

the treatment arm and control arm, the following sample size formula based on the

standard PH model has been widely used in practice[24, 25]:

n = (Zα/2 + Zθ)2

p(1− p)β2
0P (δ = 1) , (3.1)
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where α specifies the level of significance of the statistical test and 1 − θ specifies

the power of the statistical test; Zα/2 and Zθ are the upper α/2 and θ percentiles of

the standard normal distribution, respectively; p is the proportion of patients being

assigned to the treatment arm; β0 is the log-hazard ratio between treatments; δ is the

censoring indicator (1 for failure and 0 for censoring), and P (δ = 1) is the probability

of failure. Assuming SC(t) = P (C ≥ t) is the survival function of the censoring

time and f0(t) is the density function of survival times for uncured patients in the

control arm, P (δ = 1) =
∫∞

0 SC(t)f0(t)dt. Formula (3.1) has been implemented in

most software, and a common assumption is that the baseline density function f0(t)

follows the exponential distribution and the survival function of censoring time SC(t)

is uniform, such as PROC POWER in SAS.

One unstated assumption of the standard PH model is that all individuals under

study are susceptible to the adverse event of interest, and they would experience the

event eventually if there was no censoring. However, more and more patients will

be cured nowadays due to the advances in recent medical research, that is, those

patients may never experience the event even after a sufficient follow-up period. The

mixture cure model [17, 22, 26] is particularly designed to handle the dataset with a

cure fraction. Unlike the standard survival model, the mixture cure model has two

components in order to model the cure probability and the survival probability of

uncured patients.

Assume S∗j (·) denote the overall survival function, Sj(·) denote the survival func-

tion of uncured patients and πj (0 ≤ πj < 1) is the cure rate in arm j, j = 0 for

control arm and j = 1 for treatment arm. The mixture cure model can be written as

S∗j (t) = πj + (1− πj)Sj(t). (3.2)

Specifically, the PH mixture cure model is designed by assuming the PH model for

survival probability of uncured patients Sj(t) and logistic regression for the cure

probability πj.
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In this chapter, we design an R package NPHMC to implement the sample size

calculation proposed in [29]. The sample size formula based on the PH mixture cure

model (3.2) includes the sample size calculation based on the standard PH model.

Thus, the R package NPHMC is an extension of the exiting sample size software for

designing survival trial. In the next Section, we outline the computational method.

The R function and its arguments are described in Section 3.4. A simulation study

comparing parametric with nonparametric sample size calculation is discussed in

Section 3.5. Two examples are provided to illustrate the usage of the NPHMC package

in Section 3.6.

3.3 Computational Method

Let T denote the observed times, which is the minimum of the failure time and

censoring time. We assume that the censoring is independent. Let λ∗j(·) denote the

overall hazard function and λj(·) denote the hazard function of uncured patients for

arm j, j = 0, 1 respectively. The PH mixture cure model (3.2) assumes the constant

hazard ratio between the treatment arm and the control arm, that is

λ1(t) = eβ0λ0(t)

and the difference of the odds ratio of cure rates between two arms is a constant,

which can be written as logit(π1) = logit(π0) + γ0, where β0 and γ0 are unknown

parameters. When π0 = π1 = 0, it reduces to the standard PH model.

For a clinical trial with a proportion of patients being cured, we are interested in

testing

H0 : S1(t) = S0(t) and π1 = π0,

which is equivalent to

H0 : β0 = γ0 = 0
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. Based on the alternative hypotheses (Ha,n : β0 = βa/
√
n, γ0 = γa/

√
n) and the

log-rank test, Wang et al. [29] has shown that to achieve a power of 1− θ, the total

sample size for the PH mixture cure model can be determined by

n = (Zθ + Zα/2)2 ∫∞
0 SC(t)f0(t)dt

p(1− p)β2
0(1− π0)

{ ∫∞
0 m(γ0, β0, π0)SC(t)f0(t)dt

}2 , (3.3)

where m(γ0, β0, π0) = π0{γ0/β0 +Λ0(t)}/S∗0(t)−1. When π0 = 0, m(γ0, β0, π0) = −1.

The above sample size formula is reduced to the standard PH model sample size

formula as given in (3.1).

Let τa denote the accrual period, τf denote the follow-up time and τ denote the

total study length with τ = τa + τf . Let g(t) denote the probability density function

of accrual times and three (uniform, increasing and decreasing) accrual patterns are

considered in the package. We also assume that the only censoring is due to adminis-

trative censoring at time τ , and there is no loss to follow-up or competing risks. The

probability density functions g(t) of accrual times and their corresponding survival

functions SC(t) of the censoring times for the uniform, increasing and decreasing

accruals are summarized in Table 3.1.

Table 3.1 Density functions g(t) of accrual times and the corresponding survival
functions SC(t) of censoring times.

Accrual g(t) SC(t)

Uniform g(t) =
{ 1
τa

if 0 < t ≤ τa
0 otherwise

SC(t) =


1 if t ≤ τf
τa+τf−t

τa
if τf < t ≤ τa + τf

0 if t > τa + τf

Increasing g(t) =


2t
τ2
a

if 0 < t ≤ τa
0 otherwise

SC(t) =


1 if t ≤ τf
(τa+τf−t)2

τ2
a

if τf < t ≤ τa + τf

0 if t > τa + τf

Decreasing g(t) =


2(τa−t)
τ2
a

if 0 < t ≤ τa
0 otherwise

SC(t) =


1 if t ≤ τf
1− (τf−t)2

τ2
a

if τf < t ≤ τa + τf

0 if t > τa + τf
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Examples Under Parametric Assumption

Uniform Accrual and Exponential Distribution

The uniform accrual assumes that patients enter a study at a constant rate 1/τa. The

exponential distribution with the rate of λ0 assumes that the patients in the control

arm has mean survival time of 1/λ0 and hazard risk in the control arm is changed by

a constant λ0, that is λ0(t) = λ0, Λ0(t) = λ0t and S0(t) = e−λ0t. Plugging the defined

survival functions SC(t) and other information into formula (3.3), the sample size is

calculated as

n =

(Zθ + Zα/2)2
(∫ τf

0 λ0e
−λ0tdt+

∫ τa+τf

τf

τa+τf −t
τa

λ0e
−λ0tdt

)
p(1 − p)β2

0(1 − π0)
{∫ τf

0 m(γ0, β0, π0)λ0e−λ0tdt+
∫ τa+τf

τf

τa+τf −t
τa

m(γ0, β0, π0)λ0e−λ0tdt

}2 ,
(3.4)

where m(γ0, β0, π0) = π0(γ0/β0+λ0t)
π0+(1−π0)e−λ0t − 1.

Increasing Accrual and Weibull Distribution

The increasing accrual assumes that patients enter a study with the density function

of g(t) = 2t
τ2
a
. The Weibull distribution with scale parameter λ0 and shape parameter k

is assumed for survival times of uncured patients, which can be written as Comparing

to the exponential assumption, the Weibull distribution allows increasing hazard rate

(k > 1), constant hazard rate (k = 1) and decreasing hazard rate (0 < k < 1). The

sample size is calculated as

n =

(Zθ + Zα/2)2
(∫ τf

0 λ0(t)S0(t)dt+
∫ τa+τf

τf

(τa+τf −t)2

(τa)2 λ0(t)S0(t)dt
)

p(1 − p)β2
0(1 − π0)

{∫ τf

0 m(γ0, β0, π0)λ0(t)S0(t)dt+
∫ τa+τf

τf

(τa+τf −t)2

(τa)2 m(γ0, β0, π0)λ0(t)S0(t)dt
}2 ,

(3.5)
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where m(γ0, β0, π0) = π0(γ0/β0+λ0tk)
π0+(1−π0)e−λ0tk

− 1, λ0(t) = λ0k(λ0t)k−1, Λ0(t) = (λ0t)k and

S0(t) = e−(λ0t)k .

Example Under Nonparametric Estimation of Parameters

(Ŝ0(t), π̂0, γ̂0, β̂0)

Let t(1) < t(2) < · · · < t(k) be the distinct failure times. If observed/historical data is

available, the survival function S0(t), cure rate π0, log odds ratio γ0 and log hazard

ratio β0 can be estimated from the PH mixture cure model, which is implemented by

smcure package in R [4]. In this situation, only α, θ, p and accrual pattern need to

be specified. The sample size formula for nonparametric estimation is written as

n =
(Zθ + Zα/2)2

k∑
i=1

Ŝ0(t(i))SC(t(i))

p(1− p)β2
0(1− π0)

{ k∑
i=1

Ŝ0(t(i))SC(t(i))m̂(γ0, β0, π0; t(i))
}2
, (3.6)

where m̂(γ0, β0, π0; ti) = π0{γ0/β0 + Λ̂0(t)}/Ŝ∗0(t) − 1, Λ̂0(t) = log(−Ŝ0(t)), Ŝ∗0(t) =

π0 + (1− π0)Ŝ0(t).

3.4 Package Description

The sample size formula (3.3) under the exponential or the Weibull distribution with

different accrual patterns and formula (3.6) are implemented in the NPHMC package.

The NPHMC function in the package can be called with the following syntax:

NPHMC <- function(power, alpha, accrualtime, followuptime, p,

accrualdist=c("uniform","increasing","decreasing"), hazardratio,

oddsratio, pi0, survdist=c("exp","weib"), k, lambda0, data=NULL)

The arguments are:
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• power: specifies the required power. The default power = 80%.

• alpha: specifies the level of significance of the statistical test. The default is 0.05.

• accrualtime: specifies the length of accrual period.

• followuptime: specifies the follow-up time.

• p: specifies the proportion of subjects in each arm. The default p = 0.5.

• accrualdist: specifies the accrual rate distribution. It can be "uniform",

"increasing" or "decreasing".

• hazardratio: specifies the hazard ratio of uncured patients between two arms, which

is equivalent to eβ0 = λ1(t)/λ0(t). The value must be greater than 0.

• oddsratio: specifies the odds ratio of cure rates between two arms, which is equiv-

alent to eγ0 = π1
1−π1

/ π0
1−π0

. The value should be greater than 0 if cure rates exist. It

can be 0 if there is no cure rate.

• pi0: specifies the cure rate for the control arm, which is between 0 and 1.

• survdist: specifies the survival distribution of uncured patients. It can be "exp" or

"weib".

• k: if survdist = "weib", the shape parameter k needs to be specified. By default

k = 1, which refers to the exponential distribution.

• lambda0: specifies the scale parameter of exponential distribution or Weibull distri-

bution for survival times of uncured patients in control arm.

The density function of Weibull distribution with shape parameter k and scale pa-

rameter λ0 is given by

f(t) = λ0k(λ0t)k−1 exp(−(λ0t)k), for t > 0

.
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• data: if observed/historical data is available, the sample size can be calculated based

on the nonparametric estimators from the PH mixture cure model by smcure package

in R. The data must contain three columns with the order of "Time", "Status" and

"X" where "Time" refers to time to event of interest, "Status" refers to censoring

indicator (1 = event of interest happens, and 0 = censoring) and "X" refers to arm

indicator (1 = treatment and 0 = control). By default, data = NULL.

Output:

If data = NULL, the output will display

• PH Mixture Cure Model: n

• Standard PH Model: n

When data is specified, the output will first display the estimators from the

smcure package in R, and then show results from the NPHMC package.

• Estimators from smcure package

• PH Mixture Cure Model: n

• Standard PH Model: n

3.5 Simulation Study

In this section, we conduct a simulation study to investigate the performance of

the NPHMC package based on the PH mixture cure model. Two sets of results are

reported. One is based on the fully parametric approach, and the other is based on

the nonparametric approach.

The following settings are used in the simulation study: (1) an exponential dis-

tribution with parameter λ0 = 1, and a Weibull distribution with shape parameter

k = 2 and scale parameter λ0 = 1 are assumed for survival distributions of uncured
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patients; (2) an accrual period of 3 years and a follow-up time of 4 years; (3) an equal

allocation p = 0.5; (4) a number of 500 observations is generated in each dataset; (5)

simulation results are based on 200 replications.

Table 3.2 Comparison of Exponential Parametric Sample Size Estimation with
Nonparametric Sample Size Estimation (200 replications)

Accrual Parametric Nonparametric
π0 π1 OR λ0 λ1 HR k Rate Sample Size Sample Size
0.2 0.4 2.667 1 1/2 0.5 1 Uniform 110 111

Increasing 108 112
decreasing 112 112

0.45 3.273 Uniform 88 89
Increasing 87 90
decreasing 89 90

0.5 4.000 Uniform 73 74
Increasing 72 74
decreasing 73 74

0.2 0.5 4.000 1 1/2 0.5 1 Uniform 73 74
Increasing 72 74
decreasing 73 74

1/2.5 0.4 Uniform 59 60
Increasing 58 60
decreasing 59 60

1/3 0.3 Uniform 50 51
Increasing 49 51
decreasing 51 51

We first compare the parametric estimation approach based on the exponential

distribution with the nonparametric estimation approach in Table 3.2. We fix π0 =

0.2, λ0 = 1, and then set π1 = (0.4, 0.45, 0.5) and λ1 = (1/2, 1/2.5, 1/3) respectively,

which correspond to the values of oddsratio = (2.6667, 3.2727, 4) and hazardratio

= (0.5, 0.4, 0.3). In Table 3.3, we consider the Weibull distribution with k = 2. The

same settings of odds ratio and hazards ratio are used. Both tables show that the
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Table 3.3 Comparison of Weibull Parametric Sample Size Estimation with
Nonparametric Sample Size Estimation (200 replications)

Accrual Parametric Nonparametric
π0 π1 OR λ0 λ1 HR k Rate Sample Size Sample Size
0.2 0.4 2.667 1 0.707 0.5 2 Uniform 115 125

Increasing 115 124
decreasing 115 127

0.45 3.272 Uniform 92 96
Increasing 92 93
decreasing 92 97

0.5 4.000 Uniform 75 77
Increasing 75 76
decreasing 75 79

0.2 0.5 4.000 1 0.707 0.5 2 Uniform 75 77
Increasing 75 76
decreasing 75 79

0.632 0.4 Uniform 61 64
Increasing 61 61
decreasing 61 64

0.548 0.3 Uniform 48 50
Increasing 48 49
decreasing 48 50

results from the nonparametric sample size estimation are quite close to those based

on the parametric approach.

3.6 Examples

Parametric Sample Size Estimation

If the survival curve in each arm is assumed to follow exponential distribution or

Weibull distribution, besides the specifications of power, alpha, accrualtime, follow

uptime and p, the user needs to give accrualdist, survdist, k, lambda0, and as-

sumption of relationship between two arms, such as hazardratio and oddsratio in
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order to calculate sample size for the PH mixture cure model.

For example, a survival trial will follow a uniform accrual with an accrual period

of 3 years and a follow-up period of 4 years with equal amount of patients in each

arm (p = 0.5). The mean life of uncured patients in control arm will be 2 years and

the mean life of uncured patients in treatment arm will be 2.5 years. Assume both

arms follow the exponential distribution. Further, assume cure rates are π0 = 0.1 and

π1 = 0.2 for the control arm and treatment arm. At 5% significance level, to detect a

25% improvement in mean survival time from 2 to 2.5 years and achieve 90% power

of statistical test, the estimated sample size can be obtained by the following code:

> NPHMC(power=0.90,alpha=0.05,accrualtime=3,followuptime=4,p=0.5,

accrualdist="uniform",hazardratio=2/2.5,oddsratio=2.25,pi0=0.1,

survdist="exp",k=1,lambda0=0.5)

The output is:

========================================================================

SAMPLE SIZE CALCULATION FOR PH MIXTURE CURE MODEL AND STANDARD PH MODEL

========================================================================

PH Mixture Cure Model: n = 429

Standard PH Model: n = 908

A sample size of 429 patients will be needed to achieve a power of 90% based on

the PH mixture cure model. The sample size from the standard PH model is 908

which is overestimated if there exits a cure rate.

Nonparametric Sample Size Estimation When

Observed/Historical Data is Available

We illustrate the application of NPHMC package by melanoma data from the ECOG

phase III clinical trial e1684 [16]. The ECOG trial e1684 was a two-arm phase III
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clinical trial comparing high dose interferon alpha-2b with an observation arm. The

primary endpoint was relapse-free survival (RFS), with RFS defined as the time from

randomization until progression of the tumor or death. Note that our intention here

is not to re-design the trial but to show the application of the package.

If an observed/historical data is given, users only need to specify power, alpha,

accrualtime, followuptime, p, accrualdist and data. The hazard ratio and cure

rates can be directly estimated from the available data, therefore the sample size can

be obtained by the following code:

> NPHMC(power=0.80,alpha=0.05,accrualtime=4,followuptime=3,p=0.5,

accrualdist="uniform",data=e1684szdata)

The output is:

Call:

smcure(formula = Surv(Time, Status) ~ X, cureform = ~Z, data = data,

model = "ph", Var = FALSE)

Cure probability model:

Estimate

(Intercept) 1.2850677

Z -0.5455204

Failure time distribution model:

Estimate

X -0.1643542

========================================================================

SAMPLE SIZE CALCULATION FOR PH MIXTURE CURE MODEL AND STANDARD PH MODEL
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========================================================================

PH Mixture Cure Model with KM estimators: n = 454

Standard PH Model with KM estimators: n = 251

The package first fitted the data using the smcure R package with the treatment

as a covariate. The log hazard ratio is estimated as β̂0 = -0.164. The coefficients of

logistic regression model for cure probability model are 1.285 and -0.5455, which lead

to cure rates for the observation arm and the interferon arm as π̂0 = 1 − e1.285

1+e1.285 =

0.2167 and π̂1 = 1− e1.285−0.5455

1+e1.285−0.5455 = 0.3231. To achieve a power of 80%, a sample size

of 454 is required based on the estimates from the PH mixture cure model. A sample

size of 251 is calculated based on the standard PH model assumption, which will lead

to a underpowered trial if there is a cure fraction.

3.7 Conclusions

We develop an R package to estimate the sample size of the PH mixture cure model.

Comparing to existing software, the main advantage of this package is to allow a cure

fraction in survival trial. Besides that, this package can allow patients to enter study

with different patterns and also different hazard patterns for the uncured patients.

Therefore, the NPHMC package provides an important and flexible tool in sample size

design in survival trial with or without cure fractions.

3.8 Availability

The package NPHMC and the relevant documentation can be freely downloaded from

CRAN webpage http://cran.r-project.org/package=NPHMC.
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Chapter 4

New Estimation Method for Semiparametric PH

Mixture Cure Model with Competing Risks

Data

4.1 Introduction

Competing risks data are commonly seen in medical research particularly in survival

analysis when subjects are at risk of failure from K different causes. When one event

occurs, it precludes the occurrence of any other events. The PH mixture cure model

is commonly used regression model that accounts for the cure fraction. Considering

two types of failures k = 1, 2, within the mixture cure model framework, it is assumed

that an individual will fail from the event of interest or other risks. The following

flow chart can show you how cure fraction works in competing risks data framework.

Figure 4.1 Cure Model with Competing Risks Data.
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In Figure 4.1, it is obvious that cure fraction not only exits in censored patients but

also in those patients who died of other causes. Ignoring the competing risks would

lead the bias in estimating cure rates. In this project, I propose a new estimation

method for semiparametric PH mixture cure model with competing risks data. The

estimation is based on maximum likelihood of the full likelihood. In next sections, I

will discuss data and model, computational method, simulation study and real data

analysis for the semiparametric PH mixture cure model with competing risks data.

4.2 Data and Model

Let T1 be the failure time from the event of interest, T2 be the failure time from all

other risks, Ti be the event time where T = (T1 ∩ T2) and Ci be the right censoring

times for ith individual. εi ∈ (1, . . . , K) indicates the cause of failure. We consider

K = 2 in this study (ε = 1 for event of interest; ε = 2 for other causes). Let

T̃ = min(T,C) and δ = I(T ≤ C). z be a vector of covariates.

Let O = (T̃i, δi, δiεi, zi) denote the observed competing risks data for the ith

individual i = 1, · · · , n, where T̃i is the observed survival time, δi is the censoring

indicator with δi = 1 for the uncensored time and δi = 0 for the censored time, and zi

are the possible covariates that affect the cure probability, cause of death probability

and marginal survival probability for specific cause of death, respectively. We assume

that (Ti, εi) are independent of Ci given covariates.

Let Y be the indicator that an individual will eventually (Y = 1) or never (Y =0)

experience the event of interest, with the probability of π(bz). Usually, a logit link

function

π(bz) = exp(bz)
1 + exp(bz) ,

where b is a vector of unknown parameters, is used to model the probability of being

uncure. The probability of being cured is 1− π(bz).
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Let π(θz) be the probability of failure from the event of interest and 1−π(θz) be

the probability of failure from other risks. It is obvious that if an individual is cured

(Y = 0), then the individual must fail from other risks (ε = 2). Given an individual

is uncured (Y = 1), the conditional probability of failure from the event of interest

is assumed to have the following logistic form,

P (ε = 1|Y = 1) = exp(θz)
1 + exp(θz) .

Therefore, the probability of failure from the jth cause is given by

P (ε = j) =


π(bz)π(θz) if j = 1

1− π(bz) + π(bz)[1− π(θz)] if j = 2

where P (ε = 1) + P (ε = 2) = 1.

Let Sj(t; z) be the conditional survival function given that failure is due to the

jth cause. The survival function Sj(t; z) is given by

Sj(t; z) = P (Ti > t|εi = j) =


S0j(t)exp(βjz) if j = 1

S0j(t)exp(βjz) if j = 2

where S0j(t) is a cause-specific baseline survival function and βj is a vector of regres-

sion coefficients for jth cause.

4.3 Computational Method

Let Θ = (b,θ,β1,β2, S01(t), S02(t)) be the unknown parameters. The EM algorithm

is used to estimate the parameters of interest in the mixture cure model with com-

peting risks data. The estimation is based on the maximum likelihood method.
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Likelihood

On the basis of the observed data O = (T̃i, δi, δiεi, zi), the observed likelihood function

for the unknown parameters Θ under the PH mixture cure model is given by

Lo =
n∏
i=1
{π(bzi)π(θzi)h1(ti)S1(ti)}I(εi=1)δi

{[(1− π(bzi)) + π(bzi)(1− π(θzi))]h2(ti)S2(ti)}I(εi=2)δi

{π(bzi)π(θzi)S1(ti) + [(1− π(bzi)) + π(bzi)(1− π(θzi))]S2(ti))}1−δi

(4.1)

where π(bzi) is probability of being uncured for ith individual, π(θzi) is probability

of failing from event of interest for ith individual, S1(ti) is the survival function

from event of interest and S2(ti) is the survival function due to other causes for ith

individual. hj(·) is the hazard function corresponding to Sj(·) for jth type of risk,

j = 1, 2.

Given the cure indicator y = (y1, y2, · · · , yn) and the observed data O, the com-

plete likelihood function can be expressed as

Lc =
n∏
i=1
{π(bzi)π(θzi)h1(ti)S1(ti)}I(εi=1)δi

{[1− π(bzi)]1−yi [π(bzi)(1− π(θzi))]yh2(ti)S2(ti)}I(εi=2)δi

{π(bzi)π(θzi)S1(ti)}I(εi=1)(1−δi)

{[1− π(bzi)])1−yi [π(bzi)(1− π(θzi))]yiS2(ti))}I(εi=2)(1−δi)

(4.2)

The logarithm of the complete likelihood function can be written as

lc(b,θ,β1,β2; O,y) = lc1(b; O,y) + lc2(θ; O,y) + lc3(β1; O,y) + lc4(β2; O,y),

where

lc1(b) =
n∑
i=1

[I(εi = 1) + I(εi = 2)yi] log π(bzi) +
n∑
i=1

I(εi = 2)(1− yi) log(1− π(bzi))

(4.3)
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lc2(θ) =
n∑
i=1

I(εi = 1) log π(θzi) +
n∑
i=1

I(εi = 2)yi log(1− π(θzi)) (4.4)

lc3(β1, S01(t)) =
n∑
i=1

[I(εi = 1)δi log h1(ti) + I(εi = 1) logS1(ti) (4.5)

lc4(β2, S02(t)) =
n∑
i=1

[I(εi = 2)δi log h2(ti) + I(εi = 1) logS2(ti) (4.6)

with respect to the unknown parameters Θ(m) = (b(m),θ(m),β
(m)
1 ,β

(m)
2 , S01(t)(m), S02(t)(m)).

EM Algorithm

The E-step in the EM algorithm computes the conditional expectation of the complete

log-likelihood with respect to the three unobserved probabilities P (Y = 1, ε = 1),

P (Y = 1, ε = 2), and P (Y = 0, ε = 2). These three probabilities sum to 1 and can

be given by

P (Y = 1, ε = 1) = δI(ε = 1)

+ (1− δ) π(b)π(θ)S1(t)
[1− π(b)]S2(t) + π(b)π(θ)S1(t) + π(b)[1− π(θ)]S2(t)

(4.7)

P (Y = 1, ε = 2) = δI(ε = 2) π(b)[1− π(θ)]S2(t)
[1− π(b)]S2(t) + π(b)[1− π(θ)]S2(t)

+ (1− δ) π(b)[1− π(θ)]S2(t)
[1− π(b)]S2(t) + π(b)π(θ)S1(t) + π(b)[1− π(θ)]S2(t)

(4.8)

P (Y = 0, ε = 2) = δI(ε = 2) [1− π(b)]S2(t)
[1− π(b)]S2(t) + π(b)[1− π(θ)]S2(t)

+ (1− δi)
[1− π(b)]S2(t)

[1− π(b)]S2(t) + π(b)π(θ)S1(t) + π(b)[1− π(θ)]S2(t)
(4.9)
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Let p̂(m)
11,i = P (yi = 1, εi = 1|O,Θ(m)) and p̂

(m)
ε,1i = P (εi = 1|O,Θ(m)), then

p̂
(m)
ε,1i = p̂

(m)
11,i. Let p̂(m)

12,i = P (yi = 1, εi = 2|O,Θ(m)) and p̂
(m)
02,i = P (yi = 0, εi =

2|O,Θ(m)) and p̂(m)
ε,2i = P (εi = 2|O,Θ(m)), then p̂(m)

ε,2i = p̂
(m)
12,i + p̂

(m)
02,i. The expectations

of (4.3),(4.4),(4.5) and (4.6) can be written as

E(lc1) =
n∑
i=1

[p̂(m)
11,i + p̂

(m)
12,i] log[π(bzi)] + p̂

(m)
02,i log[1− π(bzi)]

, (4.10)

E(lc2) =
n∑
i=1

p̂(m)
11,i log[π(θzi)] + p̂

(m)
12,i log[1− π(θzi)]

, (4.11)

E(lc3) =
n∑
i=1

δip̂(m)
ε,1i log h1(t;β1) + p̂

(m)
ε,1i logS1(t;β1)

, (4.12)

E(lc4) =
n∑
i=1

δip̂(m)
ε,2i log h2(t;β2) + p̂

(m)
ε,2i logS2(t;β2)

. (4.13)

The M-step in the EM algorithm is to maximize (4.10), (4.11), (4.12) and (4.13)

with respect to the unknown parameters Θ = (b,θ,β1,β2, S01(t), S02(t)). The pa-

rameters in equation (4.10) and equation (4.11) can be easily estimated by ‘optim’

function in R.

Peng and Dear [22] and Sy and Taylor [26] proposed a partial likelihood type

method to estimate β1 and β2 without specifying the baseline hazard functions. The

estimating equation (4.12) and (4.13) can be rewritten as

log
n∏
i=1

[h0(ti) exp(βzi + log(p(m)
ε,ji ))]δiS0(ti)exp(βzi+log(p(m)

ε,ji)) (4.14)

which is similar to the log-likelihood function of the standard PH model with the

additional offset variable log(p(m)
ε,ji ), j = 1, 2. Therefore, the parameters in equation

(4.12) and (4.13) can be estimated by ‘coxph’ package in R. A detailed presentation

can be found in Peng [20], Peng and Dear [22], and Sy and Taylor [26].
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Estimation of Baseline Survival Function

In order to proceed the E-step in the EM algorithm, we need to update the estimated

survival function S1(t) and S2(t) at each iteration. Let t(j1) < t(j2) < · · · < t(jk) be

the distinct uncensored failure times due to the jth cause (j=1, 2), dt(jk) denote the

number of failures due to cause j at time t(jk) and R(t(jk)) denote the risk set at time

t(jk). The nonparametric Breslow-type estimator for baseline survival function S0j(t)

is given by

Ŝ0j(t) = exp
− ∑

k:t(jk)≤t

dt(jk)∑
i∈R(t(jk)) p

(m)
ε,jie

βzi

 . (4.15)

4.4 Simulation

In this section, we consider the sample sizes of n = 200, n = 500 and n = 800

respectively. Two distinct causes of failure is assumed in this study. The covariate z is

a binary variable, which is generated independently from the binary distribution with

probability of 0.5. We assume b = (2,−1), θ = (−1, 0.5), β1 = −0.5 and β2 = −1.

The cure indicator Y is generated from the binary distribution with probability of

π(bz). The censoring time is generated from a uniform distribution U(c1, c2), where c1

and c2 are some constants to obtain the desired censoring rate. If the ith failure time

is greater than the ith censoring time, it is taken to be censored at this censoring time.

In the simulation, we consider two different sets of values for c1 and c2 so that different

censoring scenarios can be investigated. The survival times of uncure patients are

generated from a Weibull distribution where Sj(t) = exp[−(λjt)k exp(βjz)], j = 1, 2

(λ1 = 0.5, λ2 = 1 and k = 1) and a Lognormal distribution log N(0,1). The results

for different censoring scenarios are presented in Table 3.2. For each simulation set,

we generated 500 independent samples.

Tables 4.1 and 4.2 present the estimated biases and MSE from the PH mixture

cure model of six regression parameters b0, b1, θ0, θ1, β0 and β1 based on the logistic-
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Weibull data and logistic-lognormal data.

Table 4.1 Estimates of parameters from Logistic-Weibull PH mixture cure model
Average Parameter True Cure n = 200 n = 500 n = 800
censoring value rate Bias MSE Bias MSE Bias MSE

20.1 b0 2 0.12 0.0243 0.1018 -0.0177 0.0346 -0.0212 0.0247
b1 -1 0.27 -0.0454 0.1430 -0.0396 0.0572 -0.0317 0.0388
θ0 -1 0.0089 0.0687 0.0086 0.0268 0.0063 0.0155
θ1 0.5 0.0847 0.1529 0.02132 0.0649 0.0196 0.0345
β0 -0.5 -0.0940 0.1681 -0.0365 0.0547 -0.0173 0.0301
β1 -1 0.0192 0.0485 0.0017 0.0162 0.0002 0.0104

33.5 b0 1.3863 0.2 -0.5056 0.3281 -0.3758 1.7970 -0.5035 0.2956
b1 -1 0.4 -0.1124 0.1443 -0.1452 0.5357 -0.0689 0.0449
θ0 -1 0.2131 0.1136 0.2377 0.0820 0.2474 0.0773
θ1 0.5 0.2881 0.2347 0.2713 0.1393 0.2946 0.1257
β0 -0.5 0.0734 0.0630 0.0619 0.0275 0.0530 0.0160
β1 -1 -0.0169 0.0603 -0.0021 0.0220 0.0008 0.0151

Table 4.2 Estimates of parameters from Logistic-Lognormal PH mixture cure
model
Average Parameter True Cure n = 200 n = 500 n = 800
censoring value rate Bias MSE Bias MSE Bias MSE

23.3 b0 2 0.12 0.0725 0.1092 0.0516 0.0421 0.0318 0.0225
b1 -1 0.27 -0.3256 0.2527 -0.3306 0.1633 -0.3299 0.1425
θ0 -1 -0.0420 0.0815 -0.0396 0.0329 -0.0543 0.0202
θ1 0.5 0.1084 0.1704 0.0330 0.0904 0.0317 0.0467
β0 -0.5 0.0247 0.2020 0.0707 0.0751 0.0981 0.0481
β1 -1 -0.0065 0.0497 -0.0086 0.0171 -0.0254 0.0112

34.5 b0 1.3863 0.2 0.0096 0.0603 -0.0007 0.0259 -0.0137 0.0164
b1 -1 0.4 -0.2241 0.1576 -0.2313 0.0953 -0.2321 0.0784
θ0 -1 -0.1129 0.1053 0.1086 0.0474 -0.1185 0.0383
θ1 0.5 0.0507 0.2801 -0.0537 0.0955 -0.0501 0.0629
β0 -0.5 0.0674 0.3821 0.1498 0.1418 0.1646 0.0813
β1 -1 -0.0085 0.0606 -0.0165 0.0217 0.0252 0.0122

The simulation results show that point estimates do not depend on the assumption

of the distribution. The bias of estimates based on PH mixture cure model are

quite small on both Weibull distribution and lognormal distribution. The MSE of

estimates get smaller as sample size increases. The same conclusion can be made

when we increase cure rates from 12% to 20% in control group and 27% to 40% in

treatment group.
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4.5 Example

To illustrate the proposed estimation method for semiparametric PH mixture cure

model with competing risks data, we will consider the prostate cancer clinical trial

data. The survival times of 502 patients with prostate cancer entered the trial during

1967 to 1969 and were randomly allocated to different levels of treatment with the

drug diethylstilbestrol (DES). These data have been analyzed and published by many

authors [3, 14, 7]. Patients with missing covariates were excluded from this analysis.

There were 483 patients with completion information on covariates.

In this analysis, we consider two types of failures: (1) death due to prostate cancer

(2) death due to other causes. There were 125 patients who died from prostate cancer,

and 219 patients who died from other causes. The remaining 139 survival times were

censored. The censoring rate is 28.78%. Only covariate of drug treatment (0.0 or

0.2 mg coded as 0; 1.0 or 5.0 mg coded as 1) was considered in the analysis. The

proposed semiparametric mixture cure model approach is adopted and the result is

presented in Table 4.3.

Table 4.3 Maximum likelihood estimates for prostate cancer clinical trial data
based on semiparametric mixture cure model

Incidence Part Latency Part
Coefficient Cure incidence Cause of prostate cancer Prostate cancer Other causes

Constant 1.2713* (0.07) -0.1943 (0.12)
Treatment -0.9129* (0.23) -0.3011 (0.29) 0.0558 (0.23) -0.6318* (0.24)

* p-value < 0.05

The data were fitted by PH mixture cure model based on completing risks data

framework. The parameter b were estimated as b = (1.2713,−0.9129) which lead

to cure rates for the drug treatment group (0.0 or 0.2 mg) and the drug treatment

group (1.0 or 5.0 mg) as e1.2713

1+e1.2713 = 21.9% and e1.2713−0.9129

1+e1.2713−0.9129 = 41.1%. Based on the

results, we can conclude that treatment had significant effect on estimating cure rate
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by logistic regression with p-value < 0.05. Treatment also had significant effect on

estimating failure times due to other causes.

4.6 Conclusions and Discussion

We proposed an EM based algorithm for estimating PH mixture cure model with

competing risks data. The estimation is based on maximum likelihood of the full

likelihood, and estimation process allows the nonparametric maximum likelihood es-

timates of the baseline survival functions to be used in the estimation of the param-

eters.
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Chapter 5

An Extension to Semiparametric AFT Mixture

Cure Model and Its Application in R

Another important statistical model in medical research is the AFT model. If the

AFT model is used to model the survival of uncure individuals, the cure model

is called the AFT mixture cure model. In this Chapter, I will first introduce the

standard AFT model and AFT mixture cure model, and then discuss the application

of AFT mixture cure model in R.

5.1 Semiparametric AFT Mixture Cure Model

As mentioned before, the latency part of mixture cure model can be specified by

either the PH model or the AFT model. The AFT model is specified as

log(T ) = βx + ε

where the distribution of the error term ε is unknown. The survival function can be

written as

S(t|x) = S0(teβx).

The mixture cure model is called the AFT mixture cure model if the assumption of

latency part follows AFT model. This section will focus on an estimation method for

the semiparametric AFT mixture cure model.

Let f(·) be the density probability function of ε and S(·) be the corresponding

survival function. The conditional survival function of T , given that the patient is
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not cured, is S(log(t) − βx). Assuming the censoring is independent and noninfor-

mative, the contribution to the likelihood from the ith uncensored patient (δi = 1) is

π(zi)f(log(ti) − βx)/ti and 1 − π(zi) + π(zi)S(log(ti) − βxi) from censored patient

(δi = 0).

Similar to the semiparametric PH mixture cure model, we define yi as an indicator

of cure status of the ith patient, namely, yi = 1 if the patient is uncured and 0

otherwise, i = 1, 2, · · · , n.. Given y = (y1, y2, · · · , yn) and O, the complete data are

available, The logarithm of the complete likelihood function can be written as

lc(b,β; O,y) = lc1(b; O,y) + lc2(β; O,y), where

lc1(b; O,y) =
n∑
i=1

yi log[π(zi)] + (1− yi) log[1− π(zi)], (5.1)

lc2(β; O,y) =
n∑
i=1

yiδi log[h(log(ti)− βxi),xi)] + yi log[S(log(ti)− βxi)]. (5.2)

and h(·) = f(·)/S(·) is the hazard function of ε. We can see that (5.1) and (5.2)

are linear functions of latent variable Y . Therefore, we consider EM algorithm to

estimate the unknown parameter b and β.

The E-step in the EM algorithm computes the conditional expectation of the com-

plete log-likelihood with respect to y′is, given the observed data O and current esti-

mates of parameters Θ(m) = (b(m),β(m), S
(m)
0 (t)). The expectation of E(yi|O,Θ(m))

can be written as

w
(m)
i = E(yi|O,Θ(m)) = δi + (1− δi)

π(zi)S(log(ti)− βxi)
1− π(zi) + π(zi)S(log(ti)− βxi)

∣∣∣∣∣
(O,Θ(m))

.(5.3)

Therefore, the estimation equations can be written as

E(lc1) =
n∑
i=1

w
(m)
i log[π(zi)] + (1− w(m)

i ) log[1− π(zi)], (5.4)

E(lc2) =
n∑
i=1

δi log[w(m)
i h(log(ti)− βxi)] + w

(m)
i log[S(log(ti)− βxi)]. (5.5)

The M-step in the EM algorithm is to maximize (2.6) and (2.7) with respect to

the unknown parameters. Similar to the PH mixture cure model, the parameters in

equation (5.4) can be easily estimated by ‘glm’ package in R.
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Zhang and Peng [31] proposed a rank-based estimation method to estimate β

in the M-step for the semiparametric AFT mixture cure model. They turned the

estimation equation (5.5) into a log-likelihood function of a standard semiparametric

AFT model, except for the constant term w
(m)
i , which is

log
n∏
i=1

[w(m)
i h(log(ti)− βxi)]δi [S(log(ti)− βxi)w

(m)
i ].

This enables us to estimate β in the M-step by the existing semiparametric estima-

tion method for the AFT model [19]. Zhang and Peng [31] suggested to obtain the

estimator by maximizing the convex function G(β), where

G(β) = n−1
n∑
i=1

n∑
j=1

δiwj|εi − εj|I(εi − εj). (5.6)

Therefore, maximization of (5.5) can be realized by maximizing (5.6) through the

linear programming method in R.

Estimation of the Survival Function in the E-Step

Let τ1 < τ2 < · · · < τk be the distinct uncensored failure residuals, which is log ti−βxi,

i = 1, · · · , n, dτj denote the number of failures and R(τj) denote the risk set at τj.

An estimator of S0(ε|Y = 1) is given by

Ŝ0(ε|Y = 1) = exp
− ∑

j:τj<ε

dτj∑
i∈R(τj) w

(m)
i

 . (5.7)

Same as the semiparametric PH mixture cure model, we set Ŝ0(ε|Y = 1) = 0 for

ε > τk. Then Ŝ(t|Y = 1) = Ŝ0(ε|Y = 1).

Variance Estimation

Because of the complexity of the estimating equation in the EM algorithm, the second

derivative of estimation equation is not available. The same bootstrap method as the

PH mixture cure model is used to estimate the variance of AFT mixture cure model.
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5.2 Simulation Study

In the simulation study, the probability of cure is generated from a logistic model

where π(z) = exp(bz)
1+exp(bz) . The covariate z is fixed by design and is binary. Censoring

times are generated from a uniform distribution U(c1, c2), where c1 and c2 are some

constants. The results below are based on n = 200 and n = 500 respectively with

500 replications.

Table 5.1 Estimates from Logistic-Extreme AFTMC model (2,-1,0,2)

Censoring Censoring Parameter True n = 200 n = 500
Distribution Rate Values Bias MSE Bias MSE

U(0.5,30) 28.8 b̂0 2 0.0305 0.1090 0.0252 0.0454
b̂1 -1 0.0657 0.3608 0.0211 0.1095
β̂0 0 -0.6916 0.5272 -0.6904 0.5280
β̂1 2 0.0057 0.0711 0.0142 0.0313

U(0.5,9) 42.8 b̂0 2 0.0720 0.3389 0.0355 0.0569
b̂1 -1 -0.0801 1.1891 -0.1434 0.4802
β̂0 0 -0.6680 0.5588 -0.6647 0.5360
β̂1 2 -0.1093 0.2394 -0.0990 0.1054

U(0.5,5) 50.8 b̂0 2 0.1496 1.1778 0.0088 0.1745
b̂1 -1 -0.8977 2.4754 -0.7173 0.9915
β̂0 0 -0.5143 0.3816 -0.5584 0.3956
β̂0 2 -0.4277 0.4993 0.0982 0.0328

In Table 5.1, b0 = 2 and b1 = −1 correspond to π(z = 0) = 0.88 and π(z =

1) = 0.73 which mean that 12% of the population is cured in control group and

27% in treatment group. Table 5.1 presents the estimated biases and MSE from

the AFT mixture cure model of three regression parameters b0, b1 and β based on

logistic-Extreme data. The error distribution follows extreme distribution. The bias

are quite small with censoring rates change from light censoring (20%), moderate

censoring (40%), to heavy censoring (50%). Same as the PH mixture cure model, the

MSE get small when the sample size increase from 200 to 500.
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5.3 Application

To illustrate the usage of smcure R package for semiparametric AFT mixture cure

model, we fit the bone marrow transplant study for the refractory acute lymphoblastic

leukemia patients as an example. The semiparametric AFT mixture cure model can

be fitted as following:

> bmtfit <- smcure(Surv(Time,Status)~TRT,cureform=~TRT,

data=bmt,model="aft",nboot=200)

The output is:

> printsmcure(bmtfit)

Call:

smcure(formula = Surv(Time, Status) ~ TRT, cureform = ~TRT,

data = bmt, model = "aft", nboot = 200)

Cure probability model:

Estimate Std.Error Z value Pr(>|Z|)

(Intercept) 1.007354 0.2261408 4.4545448 8.407136e-06

TRT 0.427327 0.4843662 0.8822394 3.776474e-01

Failure time distribution model:

Estimate Std.Error Z value Pr(>|Z|)

(Intercept) 0.2101563 0.1783968 1.178027 0.2387859

TRT -0.3531250 0.2705977 -1.304982 0.1918991

The standard errors of estimated parameters are obtained based on 200 bootstrap

samples. The cure rate can be calculated based on the results from Cure probability

model part. For example, the cure rate for the autologous transplant is 19.2 percent,
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which is calculated by 1 − π̂(z) = 1 − e1.007354+0.427327/(1 + e1.007354+0.427327). The

estimated survival curves with respect to the treatment can be obtained by

> predbmt=predictsmcure(bmtfit,newX=c(0,1),newZ=c(0,1),model="aft")

> plotpredictsmcure(predbmt,model="aft")

From the fitted survival curves in Figure 5.1, we can see that the patients from

the allogeneic treatment group has better survival probability than those from the

autologous treatment group.

Figure 5.1 Predicted Survival curves by treatment groups for bone marrow
transplant study. The upper solid line is the allogeneic treatment group and lower
dashed line is the autologous treatment group.

5.4 Conclusions

We develop an R package to estimate the semiparametric PH mixture cure and AFT

mixture cure models. The cure probability part is estimated by the generalized linear
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model which allows many link functions, such as logit, probit and cloglog. The

latency part can follow either the PH model or the AFT model. The semiparametric

estimation procedures are based on the EM algorithm for both models. This package

is an extension of the S-PLUS package semicure by Y. Peng which is for the PH

mixture cure model only, and the SAS macro PSPMCM [8] which accounts for the

PH mixture cure model and the parametric approach for the AFT mixture cure

model. The smcure package in R is developed for implementing the semiparametric

estimation methods to both the PH mixture cure model and the AFT mixture cure

model.
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Chapter 6

Summary and Conclusions

This dissertation is about advanced methodology development in mixture cure mod-

els. It consists of three projects: (1) Software Development for Estimating Semipara-

metric Mixture Cure Models (2) New Program of Sample Size Estimation with Cure

Fraction in R (3) New Estimation Method for Semiparametric Mixture Cure Model

with Competing Risks Data.

Modern medical treatments have substantially improved cure rates for many

chronic diseases and have generated increasing interest in appropriate statistical mod-

els to handle survival data with non-negligible cure fractions. The mixture cure model

is designed to model such data, which assumes that studied population is a mixture

of individuals who are cured and individuals who are not cured. The mixture cure

model assumes that a fraction of the survivors are cured from the disease of interest.

The failure time distribution for the uncured individuals (latency) can be modeled

by either parametric models or a semi-parametric proportional hazards model. A

straightforward way to identify whether a particular dataset might have a proportion

of long-term survivors is to look at the estimated survival curve. If the Kaplan-Meier

survival curve has a plateau at the end of the study, a cure model may be an appro-

priate and useful way to analyze the data. Some statistical research has been done

on mixture cure models, but none of the proposed statistical approaches has software

available for public use.

In this dissertation, I first develop an R package named smcure to estimate the

semiparametric proportional hazards (PH) mixture cure model and accelerated failure
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time (AFT) mixture cure model. The cure probability part is estimated by the

generalized linear model which allows many link functions, such as logit, probit

and cloglog. The latency part can follow either the PH model or the AFT model.

The semiparametric estimation procedures are based on the EM algorithm for both

models. This package is an extension of the S-PLUS package semicure by Y. Peng

which is for the PHMC model only, and the SAS macro PSPMCM [8] which accounts

for the PHMC model and the parametric approach for the AFTMC model.

Second, I develop another R package named NPHMC to estimate the sample size

based on the PH mixture cure model if cure fraction exits or standard PH model if

there is no cure. The package provides an important and flexible tool in sample size

design in survival trial with or without cure fractions.

Competing risks data are commonly seen in medical research particularly in sur-

vival analysis. I propose a new estimation approach based on the PH mixture cure

model in competing risks data framework. The estimation can be obtained from the

EM algorithm.

The mixture cure model generally requires a sufficiently long follow-up and large

sample sizes to identify the parameters in cure fraction and latent survival distribution

for uncured individuals (Farewell, 1986) [9]. Cautious interpretation of the cure

fraction estimate is needed when these is no evidence of sufficient follow-up and

enough samples. Therefore, it is recommended to use the mixture cure models in

situations where it is clear that a cured fraction exists and follow-up beyond the time

when most events have occurred.

Work in the future may include methodology developments and possible applica-

tion of cure models in real world. I will continue to maintain the two contributed

packages and add more features in the programs (such as different variance estima-

tion methods, goodness of fit, etc.) and complete simulation studies for competing

risks data. Besides the application in oncology, it would be interesting to apply cure
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models in other fields such as Alzheimer’s disease in Neurology where failure rates are

low, vaccine effectiveness, prophylactic treatments for pertussis, rabies, occupational

exposures in public health and procedural interventions with adjunctive treatments

in cardiovascular disease.
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Appendix A

Source Codes for smcure package
library(survival)

smrank <- function(beta,Time,X,n,w,Status){

error <- drop(log(Time)-beta%*%t(X))

tp <- numeric()

for(i in 1:n){

tp[i] <- sum(as.numeric((error[i]-error)<0)*abs(error[i]-error)*w*Status[i])

}

sum(tp)/n

}

smsurv <- function(Time,Status,X,beta,w,model){

death_point <- sort(unique(subset(Time, Status==1)))

if(model==’ph’) coxexp <- exp((beta)%*%t(X[,-1]))

lambda <- numeric()

event <- numeric()

for(i in 1: length(death_point)){

event[i] <- sum(Status*as.numeric(Time==death_point[i]))

if(model==’ph’)

temp <- sum(as.numeric(Time>=death_point[i])*w*drop(coxexp))

if(model==’aft’)

temp <- sum(as.numeric(Time>=death_point[i])*w)

temp1 <- event[i]

lambda[i] <- temp1/temp

}

HHazard <- numeric()

for(i in 1:length(Time)){

HHazard[i] <- sum(as.numeric(Time[i]>=death_point)*lambda)

if(Time[i]>max(death_point))HHazard[i] <- Inf

if(Time[i]<min(death_point))HHazard[i] <- 0

}

survival <- exp(-HHazard)

list(survival=survival)

}

em <- function(Time,Status,X,Z,offsetvar,b,beta,model,link,emmax,eps)

{
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w <- Status

n <- length(Status)

if(model == "ph") s <- smsurv(Time,Status,X,beta,w,model)$survival

if(model == "aft"){

if(!is.null(offsetvar)) Time <- Time/exp(offsetvar)

error <- drop(log(Time)-beta%*%t(X))

s <- smsurv(error,Status,X,beta,w,model)$survival

}

convergence<- 1000;i <-1

while (convergence > eps & i < emmax){

uncureprob <- matrix(exp((b)%*%t(Z))/(1+exp((b)%*%t(Z))),ncol=1)

if(model == "ph"){

survival<-drop(s^(exp((beta)%*%t(X[,-1]))))}

if(model == "aft"){

error <- drop(log(Time)-beta%*%t(X))

survival <- s}

## E step

w <- Status+(1-Status)*(uncureprob*survival)/((1-uncureprob)+uncureprob*survival)

## M step

logistfit<- eval(parse(text = paste("glm", "(", "w~Z[,-1]",",

family = quasibinomial(link=’", link, "’",")",")",sep = "")))

update_cureb <- logistfit$coef

if(!is.null(offsetvar))

update_cureb <- as.numeric(eval(parse(text =

paste("glm", "(", "w~Z[,-1]+offset(offsetvar)",",

family = quasibinomial(link=’", link, "’",")",")",sep = "")))$coef)

if(model == "ph") {

update_beta <- coxph(Surv(Time, Status)~X[,-1]+

offset(log(w)), subset=w!=0, method="breslow")$coef

if(!is.null(offsetvar)) update_beta <- coxph(Surv(Time, Status)~X[,-1]+

offset(offsetvar+log(w)), subset=w!=0, method="breslow")$coef

update_s <-smsurv(Time,Status,X,beta,w,model)$survival}

if(model == "aft") {

update_beta <- optim(rep(0,ncol(X)), smrank,

Time=Time,X=X,n=n,w=w,Status=Status,method="Nelder-Mead",

control=list(reltol=0.0001,maxit=500))$par

update_s <- smsurv(error,Status,X,beta,w,model)$survival}

convergence<-sum(c(update_cureb-b,update_beta-beta)^2)+sum((s-update_s)^2)

b <- update_cureb

beta <- update_beta

s<-update_s

uncureprob <- matrix(exp((b)%*%t(Z))/(1+exp((b)%*%t(Z))),ncol=1)

i <- i+1
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}

em <- list(logistfit=logistfit,b=b, latencyfit= beta,Survival=s,

Uncureprob=uncureprob,tau=convergence)

}

#####################

## main function ##

#####################

smcure <- function(formula,cureform,offset=NULL,data,na.action=na.omit,

model= c("aft", "ph"),link="logit", Var=TRUE,emmax=50,eps=1e-7,nboot=100)

{

call <- match.call()

model <- match.arg(model)

cat("Program is running..be patient...")

## prepare data

data <- na.action(data)

n <- dim(data)[1]

mf <- model.frame(formula,data)

cvars <- all.vars(cureform)

Z <- as.matrix(cbind(rep(1,n),data[,cvars]))

colnames(Z) <- c("(Intercept)",cvars)

if(!is.null(offset)) {

offsetvar <- all.vars(offset)

offsetvar<-data[,offsetvar]}

else offsetvar <- NULL

Y <- model.extract(mf,"response")

X <- model.matrix(attr(mf,"terms"), mf)

if (!inherits(Y, "Surv")) stop("Response must be a survival object")

Time <- Y[,1]

Status <- Y[,2]

bnm <- colnames(Z)

nb <- ncol(Z)

if(model == "ph") {

betanm <- colnames(X)[-1]

nbeta <- ncol(X)-1}

if(model == "aft"){

betanm <- colnames(X)

nbeta <- ncol(X)}

## initial value

w <- Status

b <- eval(parse(text = paste("glm", "(", "w~Z[,-1]",",

family = quasibinomial(link=’", link, "’",")",")",sep = "")))$coef

if(model=="ph") beta <- coxph(Surv(Time, Status)~X[,-1]+
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offset(log(w)), subset=w!=0, method="breslow")$coef

if(model=="aft") beta <- survreg(Surv(Time,Status)~X[,-1])$coef

## do EM algo

emfit <- em(Time,Status,X,Z,offsetvar,b,beta,model,link,emmax,eps)

b <- emfit$b

beta <- emfit$latencyfit

s <- emfit$Survival

logistfit <- emfit$logistfit

if(Var){

if(model=="ph") {b_boot<-matrix(rep(0,nboot*nb), nrow=nboot)

beta_boot<-matrix(rep(0,nboot*(nbeta)), nrow=nboot)

iter <- matrix(rep(0,nboot),ncol=1)}

if(model=="aft") {b_boot<-matrix(rep(0,nboot*nb), nrow=nboot)

beta_boot<-matrix(rep(0,nboot*(nbeta)), nrow=nboot)}

tempdata <- cbind(Time,Status,X,Z)

data1<-subset(tempdata,Status==1);data0<-subset(tempdata,Status==0)

n1<-nrow(data1);n0<-nrow(data0)

i<-1

while (i<=nboot){

id1<-sample(1:n1,n1,replace=TRUE);id0<-sample(1:n0,n0,replace=TRUE)

bootdata<-rbind(data1[id1,],data0[id0,])

bootZ <- bootdata[,bnm]

if(model=="ph") bootX <- as.matrix(cbind(rep(1,n),bootdata[,betanm]))

if(model=="aft") bootX <- bootdata[,betanm]

bootfit <- em(bootdata[,1],bootdata[,2],bootX,bootZ,offsetvar,b,beta,model,link,emmax,eps)

b_boot[i,] <- bootfit$b

beta_boot[i,] <- bootfit$latencyfit

if (bootfit$tau<eps) i<-i+1}

b_var <- apply(b_boot, 2, var)

beta_var <- apply(beta_boot, 2, var)

b_sd <- sqrt(b_var)

beta_sd <- sqrt(beta_var)

}

fit<-list()

class(fit) <- c("smcure")

fit$logistfit <- logistfit

fit$b <- b

fit$beta <- beta

if(Var){

fit$b_var <- b_var

fit$b_sd <- b_sd

fit$b_zvalue <- fit$b/b_sd
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fit$b_pvalue <- (1-pnorm(abs(fit$b_zvalue)))*2

fit$beta_var <- beta_var

fit$beta_sd <- beta_sd

fit$beta_zvalue <- fit$beta/beta_sd

fit$beta_pvalue <- (1-pnorm(abs(fit$beta_zvalue)))*2 }

cat(" done.\n")

fit$call <- call

fit$bnm <- bnm

fit$betanm <- betanm

fit$s <- s

fit$Time <- Time

if(model=="aft"){

error <- drop(log(Time)-beta%*%t(X))

fit$error <- error}

fit

printsmcure(fit,Var)

}

coefsmcure <- function(x, ...)

{

coef <- c(x$b,x$beta)

names(coef) <- c(x$bnm,x$betanm)

coef

}

printsmcure <- function(x,Var=TRUE, ...)

{

if(is.null(Var)) Var=TRUE

if(!is.null(cl <- x$call)) {

cat("Call:\n")

dput(cl)

}

cat("\nCure probability model:\n")

if (Var) {

b <- array(x$b,c(length(x$b),4))

rownames(b) <- x$bnm

colnames(b) <- c("Estimate","Std.Error","Z value","Pr(>|Z|)")

b[,2] <- x$b_sd

b[,3] <- x$b_zvalue

b[,4] <- x$b_pvalue}

if (!Var) {

b <- array(x$b,c(length(x$b),1))

rownames(b) <- x$bnm

colnames(b) <- "Estimate"
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}

print(b)

cat("\n")

cat("\nFailure time distribution model:\n")

if (Var) {

beta <- array(x$beta,c(length(x$beta),4))

rownames(beta) <- x$betanm

colnames(beta) <- c("Estimate","Std.Error","Z value","Pr(>|Z|)")

beta[,2] <- x$beta_sd

beta[,3] <- x$beta_zvalue

beta[,4] <- x$beta_pvalue}

if (!Var) {

beta <- array(x$beta,c(length(x$beta),1))

rownames(beta) <- x$betanm

colnames(beta) <- "Estimate"

}

print(beta)

invisible(x)

}

predictsmcure <- function(object, newX, newZ,model=c("ph","aft"), ...)

{

call <- match.call()

if(!inherits(object, "smcure")) stop("Object must be results of smcure")

if(is.vector(newZ)) newZ=as.matrix(newZ)

newZ=cbind(1,newZ)

if(is.vector(newX)) newX=as.matrix(newX)

s0=as.matrix(object$s,ncol=1)

n=nrow(s0)

uncureprob=exp(object$b%*%t(newZ))/(1+exp(object$b%*%t(newZ)))

scure=array(0,dim=c(n,nrow(newX)))

t=array(0,dim=c(n,nrow(newX)))

spop=array(0,dim=c(n,nrow(newX)))

if(model==’ph’)

{ebetaX=exp(object$beta%*%t(newX))

for( i in 1:nrow(newZ))

{scure[,i]=s0^ebetaX[i]}

for (i in 1:n){

for (j in 1:nrow(newX)){

spop[i,j]=uncureprob[j]*scure[i,j]+(1-uncureprob[j])

}

}

prd=cbind(spop,Time=object$Time)
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}

if(model==’aft’)

{

newX=cbind(1,newX)

ebetaX=exp(object$beta%*%t(newX))

for( i in 1:nrow(newX))

{t[,i]=ebetaX[i]*exp(object$error)}

for (i in 1:n){

for (j in 1:nrow(newX)){

spop[i,j]=uncureprob[j]*s0[i]+(1-uncureprob[j])

}

}

prd=cbind(spop=spop,Time=t)

}

structure(list(call=call,newuncureprob=uncureprob,prediction=prd),class="predictsmcure")

}

plotpredictsmcure <- function(object, type="S", xlab="Time",

ylab="Predicted Survival Probability",model=c("ph","aft"), ...)

{

pred <- object$prediction

if(model=="ph"){

pdsort <- pred[order(pred[,"Time"]),]

if(length(object$newuncureprob)==1) plot(pdsort[,"Time"],pdsort[,1], type="S")

else

matplot(pdsort[,"Time"],pdsort[,1:(ncol(pred)-1)],col=1,type="S",

lty=1:(ncol(pred)-1),xlab=xlab,ylab=ylab)

}

if(model=="aft"){

nplot=ncol(pred)/2

pdsort <- pred[order(pred[,1+nplot]),c(1,1+nplot)]

plot(pdsort[,2],pdsort[,1],xlab=xlab,ylab=ylab,col=1,type="S",ylim=c(0,1))

if(nplot>1){

for(i in 2:nplot){

pdsort<- pred[order(pred[,i+nplot]),c(i,i+nplot)]

lines(pdsort[,2],pdsort[,1],lty=i,type="S")

}

}

}

}
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Appendix B

Source Codes for NPHMC package
library(survival)

Sc<-function(t,accrualtime,followuptime,accrualdist){

if(accrualdist=="uniform") return((accrualtime+followuptime-t)/accrualtime)

if(accrualdist=="increasing") return((accrualtime+followuptime-t)^2/accrualtime^2)

if(accrualdist=="decreasing") return((1-(followuptime-t)^2/accrualtime^2))

}

f1<-function(t,survdist,k,lambda0){

if(survdist=="exp") {k=1; return(lambda0*k*(lambda0*t)^(k-1)*exp(-(lambda0*t)^k))}

if(survdist=="weib") {return(lambda0*k*(lambda0*t)^(k-1)*exp(-(lambda0*t)^k))}

}

f2<-function(t,accrualtime,followuptime,accrualdist,survdist,k,lambda0){

Sc(t,accrualtime,followuptime,accrualdist)*f1(t,survdist,k,lambda0)

}

H0<-function(t,survdist,k,lambda0){

if(survdist=="exp") {return(lambda0*t)}

if(survdist=="weib") {return((lambda0*t)^k)}

}

S0<-function(t,pi0,survdist,k,lambda0){

if(survdist=="exp") {k=1;return(pi0+(1-pi0)*exp(-(lambda0*t)^k))}

if(survdist=="weib") {return(pi0+(1-pi0)*exp(-(lambda0*t)^k))}

}

m<-function(t,beta0,gamma0,pi0,survdist,k,lambda0){

(gamma0/beta0+H0(t,survdist,k,lambda0))*pi0/S0(t,pi0,survdist,k,lambda0)-1}

f3<-function(t,beta0,gamma0,pi0,survdist,k,lambda0){

m(t,beta0,gamma0,pi0,survdist,k,lambda0)*f1(t,survdist,k,lambda0)

}

f4<-function(t,accrualtime,followuptime,accrualdist,beta0,gamma0,pi0,survdist,k,lambda0){
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m(t,beta0,gamma0,pi0,survdist,k,lambda0)*

f2(t,accrualtime,followuptime,accrualdist,survdist,k,lambda0)

}

NPHMC<-function(power=0.8,alpha=0.05,accrualtime,followuptime,p=0.5,

accrualdist=c("uniform","increasing","decreasing"),

hazardratio,oddsratio,pi0,survdist=c("exp","weib"),k=1,lambda0,data=NULL){

n<-list()

class(n) <- c("NPHMC")

if (is.null(data)){

if (hazardratio<=0) stop("Hazardratio must be greater than 0")

if (oddsratio<0) stop("Oddsratio cannot be less than 0")

if (pi0==0 | oddsratio==0) {

i1 <- integrate(f1,0,followuptime,survdist,k,lambda0)$value

i2 <- integrate(f2,followuptime,(accrualtime+followuptime),accrualtime,followuptime,

accrualdist,survdist,k,lambda0)$value

beta0 <- log(hazardratio)

pdeath <- i1+i2

nsizeph <- ceiling((qnorm(power)-qnorm(alpha/2))^2/(p*(1-p)*beta0^2*pdeath))

cat("====================================================================== \n")

cat("SAMPLE SIZE CALCULATION BASED ON STANDARD PH MODEL (NO CURE FRACTION) \n")

cat("====================================================================== \n")

cat("Standard PH Model: n =",nsizeph,"\n")}

else {

i1 <- integrate(f1,0,followuptime,survdist,k,lambda0)$value

i2 <- integrate(f2,followuptime,(accrualtime+followuptime),

accrualtime,followuptime,accrualdist,survdist,k,lambda0)$value

beta0 <- log(hazardratio)

gamma0 <- log(oddsratio)

i3 <- integrate(f3,0,followuptime,beta0,gamma0,pi0,survdist,k,lambda0)$value

i4 <- integrate(f4,followuptime,(accrualtime+followuptime),

accrualtime,followuptime,accrualdist,beta0,gamma0,pi0,survdist,k,lambda0)$value

nsize <- ceiling((qnorm(power)-

qnorm(alpha/2))^2*(i1+i2)/((i3+i4)^2*p*(1-p)*(1-pi0)*beta0^2))

pdeath <- i1+i2

nsizeph <- ceiling((qnorm(power)-qnorm(alpha/2))^2/(p*(1-p)*beta0^2*pdeath))

cat("\n")

cat("======================================================================== \n")

cat("SAMPLE SIZE CALCULATION FOR PH MIXTURE CURE MODEL AND STANDARD PH MODEL \n")

cat("======================================================================== \n")

cat("PH Mixture Cure Model: n =",nsize,"\n")

cat("Standard PH Model: n =",nsizeph,"\n")

n$nsize <- nsize }
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}

if (!is.null(data)){

ta=accrualtime

tf=followuptime

ttot=ta+tf

t<-data[,1]

colnames(data)<-c("Time","Status","X")

Time=data[,1]

Status=data[,2]

X=data[,3]

f=smcure(Surv(Time, Status)~X,~X,data=data,model="ph",Var=FALSE)

time<-sort(t[Status==1])

beta0nocure <- coxph(Surv(Time, Status)~X,method="breslow", data=data)$coef

death_point <- sort(unique(subset(Time, Status==1)))

coxexp <- exp(beta0nocure*X)

lambda <- numeric()

event <- numeric()

for(i in 1: length(death_point)){

event[i] <- sum(Status*as.numeric(Time==death_point[i]))

temp <- sum(as.numeric(Time>=death_point[i])*Status*drop(coxexp))

temp1 <- event[i]

lambda[i] <- temp1/temp

}

HHazard <- numeric()

for(i in 1:length(Time)){

HHazard[i] <- sum(as.numeric(Time[i]>=death_point)*lambda)

if(Time[i]>max(death_point))HHazard[i] <- Inf

if(Time[i]<min(death_point))HHazard[i] <- 0

}

snocure <- exp(-HHazard)

beta0 <- f$beta

print(beta0)

gamma0 <- -f$b[2]

pi0=1-exp(f$b[1])/(1 + exp(f$b[1]))

s=sort(f$s[Status==1],decreasing = TRUE)

snocure <- sort(snocure[Status==1],decreasing = TRUE)

f0<-diff(s)

f0nocure <- diff(snocure)

s1 <- sum(-f0*as.numeric(time<=tf)[-1])
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s1nocure <- sum(-f0nocure*as.numeric(time<=tf)[-1])

sc=(ta+tf-time)/ta

s2 <- sum(-diff(s)*sc[-length(sc)]*as.numeric(time>tf)[-1])

s2nocure <- sum(-diff(snocure)*sc[-length(sc)]*as.numeric(time>tf)[-1])

Spop=pi0+(1-pi0)*s

m=(gamma0/beta0-log(s))*pi0/Spop-1

s3 <- sum(-diff(s)*m[-length(m)]*as.numeric(time<=tf)[-1])

Spop4=pi0+(1-pi0)*s

m4=(gamma0/beta0-log(s))*pi0/Spop4-1

s4 <- sum(-diff(s)*m4[-length(m4)]*sc[-length(sc)]*

as.numeric((time>tf) & (time<=ttot))[-1])

nonpar=ceiling((qnorm(power)-qnorm(alpha/2))^2*(s1+s2)/((s3+s4)^2*p*(1-p)*(1-pi0)*beta0^2))

n$nonpar<- nonpar

n$HR <- exp(beta0)

n$OR <- exp(gamma0)

n$pi0<- pi0

cat("\n")

cat("======================================================================== \n")

cat("SAMPLE SIZE CALCULATION FOR PH MIXTURE CURE MODEL AND STANDARD PH MODEL \n")

cat("======================================================================== \n")

cat("PH Mixture Cure Model with KM estimators: n =",nonpar,"\n")

pdeathNonpar <- s1+s2

pdeathNonpar <- s1nocure+s2nocure

#cat("Probability of Death: p =",pdeathNonpar,"\n")

nonparPH <-

ceiling((qnorm(power)-qnorm(alpha/2))^2/(p*(1-p)*beta0nocure^2*pdeathNonpar))

cat("Standard PH Model with KM estimators: n =",nonparPH,"\n")

n$nonparPH<- nonparPH

}

}
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