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Knowledge Infused Policy Gradients with Upper
Confidence Bound for Relational Bandits

Kaushik Roy1, Qi Zhang1, Manas Gaur1, and Amit Sheth1

kaushikr@email.sc.edu qz5@cse.sc.edu mgaur@email.sc.edu amit@sc.edu

Artificial Intelligence Institute, University of South Carolina, Columbia, USA

Abstract. Contextual Bandits find important use cases in various real-
life scenarios such as online advertising, recommendation systems, health-
care, etc. However, most of the algorithms use flat feature vectors to
represent context whereas, in the real world, there is a varying num-
ber of objects and relations among them to model in the context. For
example, in a music recommendation system, the user context contains
what music they listen to, which artists create this music, the artist
albums, etc. Adding richer relational context representations also in-
troduces a much larger context space making exploration-exploitation
harder. To improve the efficiency of exploration-exploitation knowledge
about the context can be infused to guide the exploration-exploitation
strategy. Relational context representations allow a natural way for hu-
mans to specify knowledge owing to their descriptive nature. We propose
an adaptation of Knowledge Infused Policy Gradients to the Contextual
Bandit setting and a novel Knowledge Infused Policy Gradients Upper
Confidence Bound algorithm and perform an experimental analysis of a
simulated music recommendation dataset and various real-life datasets
where expert knowledge can drastically reduce the total regret and where
it cannot.

1 Introduction

Contextual Bandits (CB) are an extension of the classical Multi-Armed-Bandits
(MAB) setting where the arm choice depends also on a specific context [1]. As an
example, in a music recommendation system, the choice of song recommendation
(the arm choice) depends on the user context (user preferences concerning genre,
artists, etc). In the real world, the context is often multi-relational but most CB
algorithms do not model multi-relational context and instead use flat feature vec-
tors that contain attribute-value pairs [2]. While relational modeling allows us to
enrich user context, it further complicates the exploration-exploitation problem
due to the introduction of a much larger context space. Initially, when much of
the space of context-arm configurations are unexplored, aggressive exploitation
may yield sub-optimal total regret. Hence, a principled exploration-exploitation
strategy that encodes high uncertainty initially that tapers off with more infor-
mation is required to effectively achieve near-optimal total regret. The Upper-
Confidence-Bound (UCB) algorithm uses an additional term to model initial
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uncertainty that tapers off during each arm pull [3]. However, though the UCB
provides a reasonable generalized heuristic, the exploration strategy can further
be improved with more information about the reward distribution, for example,
if it is known that the expected reward follows a Gaussian distribution. This
is what Thompson Sampling does - incorporates a prior distribution over the
expected rewards for each arm and updates a Bayesian posterior [4]. If external
knowledge is available the posterior can be reshaped with knowledge infusion [5].
An example of this knowledge for the IMDB dataset described in Section 7 can be
seen in Figure 1 and the detailed formulation for the knowledge used is described
in Section 4. A couple of issues arise with posterior reshaping: a) The choice of
reshaping function is difficult to determine in a principled manner, and b) The
form of the prior and posterior is usually chosen to exploit a likelihood-conjugate
before analytically compute posterior estimates as sampling is typically ineffi-
cient. Similarly, the choice of reshaping function needs to either be amenable
to efficient sampling for exploration or analytically computed. Thus, we observe
that we can instead directly optimize for the optimal arm choice through policy
gradient methods [6]. Using a Bayesian formulation for optimization of policy in
functional space, we can see that the knowledge infused reshape function can be
automatically learned by an adaption of the Knowledge Infused Policy Gradi-
ents (KIPG) algorithm for the Reinforcement Learning (RL) setting to the CB
setting [7], which takes as input a state and knowledge, and outputs an action.

The CB setting presents a unique challenge for knowledge infusion. Since

Fig. 1: Example of expert knowledge in the IMDB dataset. This says that if a
director directed a movie in which an actor acted, there is a chance that the
actor worked under the director.

arm pulling happens in an online fashion, the human knowledge about the user
is uncertain until the human observes some arm choices. First, we adapt the
KIPG algorithm from the RL to the CB setting and then we improve upon it
to make it less aggressive in its knowledge infusion strategy when the human is
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still uncertain about the user’s preferences. For this reason, we develop a UCB
style uncertainty measure that considers the initial uncertainty as the human
gathers more information about the user context, before providing knowledge.
Thus, we develop a Knowledge Infused Policy Gradient Upper Confidence Bound
(KIPGUCB) algorithm to incorporate human uncertainty in providing knowl-
edge in the knowledge infusion strategy. Our methodological contributions are
as follows:

– We adapt KIPG for the RL setting to the CB setting to reduce the total
regret with high-quality knowledge.

– We develop a novel relational CB algorithm KIPGUCB that reduces regret
through knowledge infusion with both high-quality and noisy knowledge us-
ing exploration.

– Theoretically, we observe that KIPG is fundamentally a gradient ascent
method and derive a regret bound that depends on the knowledge. We also
derive a confidence bound for when the knowledge is noisy.

– Empirically, through experiments on various real-life datasets, we perform
analysis of settings where KIPGUCB achieves a drastic reduction in total
regret. We compare KIPGUCB to KIPG without a confidence bound and
compare against the Relational Boosted Bandits algorithm (RB2) [8], a state-
of-the-art contextual bandit algorithm for relational domains.

2 Problem Setting

We consider the problem setting of Bernoulli Contextual Bandits with relational
features. Formally, at each step k, when an arm i ∈ [N ] := {1, 2, ..., N} is
pulled from among N arms, the reward rk(i) ∈ {0, 1} is Bernoulli. Also, pulling
an arm i depends on a relational context ck(i). Since πk(i), which represents
the probability of choosing arm i given context ck(i), is expected to be high if
P (rk(i) = 1|c(i)) is high, we directly maximize the total reward over K arm

choices,
∑K
k=1 πk(i)rk(i). Here πk(i) = σ(Ψk(i)), and σ is the sigmoid function.

Ψk(i) is a relational function that includes the relational context ck(i).

3 Knowledge Infused Policy Gradients

In this section, we develop the formulation for the KIPG adaptation to the CB
setting. We first describe policy gradients for CB, extend it to functional spaces
and then use Bayes rule to derive the KIPG formulation. In next section, we
show the connection of KIPG to Thompson Sampling with posterior reshaping
and the Exponential Weight for Exploration and Exploitation (Exp3) algorithm
[9], which is also derived from a gradient ascent procedure (mirror ascent) that
can be seen as an instance of KIPG.
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Policy Gradients for Contextual Bandits with Flat Feature Vectors
In policy gradient methods the probability of picking an arm i given context
c(i), is parameterized as π(i) = σ(θ(i)T c(i)). We want to maximize the expected

reward over K arm pulls
∑K
k=1 πk(i)rk(i). We update the parameters for arm i,

at each k+ 1, using gradient ascent as θk+1(i) = θk(i) + η∇θk(i)(
∑
k πk(i)rk(i)).

Here we note that the gradient ∇θk(i)πk(i) = πk(i)∇θk(i) log(πk(i)) and thus we
optimize:

θk+1(i) = θk(i) + η(
∑
k

πk(i)∇θk(i) log(πk(i))rk(i))

Policy Gradients for Contextual Bandits in Functional Space In func-
tional space the θ(i)T c(i) is replaced by a function Ψ(i) i.e. π(i) = σ(Ψ(i)), where
Ψ(i) is a relational function that includes context c(i). Thus, the policy gradient
update becomes

Ψk(i) = Ψk(i) + η(
∑
k

πk(i)∇Ψk(i) log(πk(i))rk(i)).

Here, Ψk(i) at each iteration of policy gradients is grown stage wise. We start

with a Ψ0(i) and update ΨK(i) = Ψ0(i) +
∑K
k=1 ηδk(i), where each δk(i) fits a

function to πk(i)∇Ψk(i) log(πk(i))rk(i) [10]. In our experiments this function is a
TILDE regression tree [11]. However, we derive a Bayesian formulation for πk(i)
for knowledge infusion. Thus, After pulling an arm i at step k, and observing
rewards rk(i), and context ck(i), using Bayes rule we can write

P (Ψk(i)|rk(i)) =
P (rk(i)|Ψk(i))P (Ψk(i))∫

Ψk(i)
P (rk(i)|Ψk(i))P (Ψk(i))

.

Using the sigmoid function we can set P (rk(i)|Ψk(i)) = σ(Ψk(i)) = eΨk(i)

(1+eΨk(i))

and use the Bayesian posterior to obtain a prior informed policy as

πk(i) =
σ(Ψk(i))P (Ψk(i))∫

Ψk(i)
σ(Ψk(i))P (Ψk(i))

.

To optimize using policy gradients, again we note that ∇Ψk(i)(πk(i)) =
πk(i)∇Ψk(i) log(πk(i)) If we use a form for P (Ψk(i)), for which the normaliza-
tion doesn’t depend on Ψk(i) such as a Laplace or a Gaussian distribution, we
can take the log on both sides without loss of generality to derive the gradient
∇Ψk(i) log(πk(i)):

log(πk(i)) ∝ log(σ(Ψk(i))) + log(P (Ψk(i))),

taking the gradient gives us

(Ik(i)− σ(Ψk(i))) +∇Ψk(i) log(P (Ψk(i))),

where Ik(i) is the indicator function representing if arm i was chosen at step k.
Now we can employ functional gradient ascent by fitting a weak learner (such as a



Title Suppressed Due to Excessive Length 5

TILDE tree for relational context, or linear function for propositional context) to
the gradient πk(i)∇Ψk(i) log(πk(i)). Note here that log(P (Ψk(i))) will determine
the nature of knowledge infused into the policy gradient learning setup at each
k. We call this approach Knowledge Infused Policy Gradients (KIPG).

4 Formulation of Knowledge Infusion

At each k, the prior over functions Ψk(i) for each arm P (Ψk(i)) determines
the knowledge infusion process. We now show the formulation for infusing arm
preferences as knowledge as we use this in our experiments. Depending on the
problem needs, the user may pick their choice of P (Ψk(i)) to be any distribution.
Since our knowledge is given as weighted preferences over arm choices, we will
cover two intuitive ways to formulate the knowledge and derive the formulation
we use in our experiments.

P (Ψk(i)) = Normal(µ,Σ): Given a context included in Ψk(i), if we want to
prefer the arm choice i, we can specify this knowledge using a two step proce-
dure. First we set Ψk(i)knowledge = α, where α ≥ 1. Then we set P (Ψk(i)) =
Normal(µ = Ψk(i)knowledge − σ(Ψk(i)), Σ = I). Similarly if the arm choice i
is not preferred, Ψk(i)knowledge = −α. Here α controls how quickly knowledge
infusion takes place.

P (Ψk(i)) = Laplace(x, b): Specifying α is a tricky thing to do for a human and
we would like them to able to just simply specify preference over arm choice
given a context instead, if they are an expert. To model an expert

– First we set Ψk(i)knowledge = LUB{α}, where LUB{α} stands for the least
upper bound from among a set of α ∈ {α}. The interpretation is that α has
to be at least that high to qualify as expert knowledge. We set LUB{α} =
K ·maxπk(i)∇Ψk(i) log(πk(i))rk(i) = K · 1 ·K = K2 as the maximum value
of πk(i) = 1 and the maximum value of ∇Ψk(i) log(πk(i)) · rk(i) is 1 · K
as the maximum value of

∑K
k=1 rk(i) = K. Thus we set Ψk(i)knowledge =

LUB{α} = K2. The interpretation is the human has to be at least as sure
as the correction required to the error in arm choice i.e. the max gradient to
qualify as an expert. Therefore to prefer arm i, α = K2 and if arm i is not
preferred, α = −K2.

– Next, we replace the Normal(µ,Σ) distribution with the Laplace(x =
|Ψk(i)knowledge − Ψk|, b = 1) distribution. Thus, we obtain that
∇Ψk(i) log(P (Ψk(i)) = sign(Ψk(i)knowledge − σ(Ψk(i))) = ±1. If the expert
prefers the arm i, δk(i) = δk(i) + 1 and if the expert does not prefer the
arm i, δk(i) = δk(i) − 1. This is very intuitive as it means that the Ψk(i),
representing chance of arm i being pulled is simply increased or decreased
by an additive factor depending on expert’s preference, thus preventing the
need to carefully specify α.
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Algorithm 1 Knowledge Infused Policy Gradients - KIPG

1: Initialize Ψ0(i) = 0 ∀ arms i
2: for k ← 1 to K do
3: set πk(i) = σ(Ψk−1(i))
4: Draw arm i∗ = arg maxi i ∼ πk(i) . observe reward rk(i∗) and context ck(i∗)
5: Compute ∇Ψk(i∗) log(πk(i∗)) as . ± Depending on preference

(Ik(i∗)− πk(i∗)± 1)

6: Compute gradient as πk(i∗)∇Ψk(i∗) log(πk(i∗))(rk(i∗) + 1) . add 1 smoothing
7: Fit δk(i∗) to gradient using TILDE tree
8: Set Ψk(i∗) = Ψk−1(i∗) + ηδk(i∗)

9: return πK(i)

– With this insight, it suffices for the human expert to specify knowledge as a
tuple

knowledge : (ck(i),prefer(i) = {0,1}),

which simply means that at step k, given the context ck(i), arm i is ei-
ther preferred (prefer(i) = 1)) or not preferred (prefer(i) = 0). This is
much more natural and easy for the expert human to specify. Note that if
the human had a reason to specify α quantifying how quickly they want
the knowledge infusion to take place depending on how sure they are (ex-
pert level), we can use the Normal or Laplace distribution form to specify
without the use of LUB{α}. Algorithm 1 shows the pseudocode for KIPG
with expert knowledge infusion. Also, we add 1 to rk(i) so that the gradient
doesn’t vanish when r(i) = 0.

Example of knowledge in the IMDB dataset using the Lapla-
cian Formulation At a step k, we can define knowledge over the actors
set A = x{actor1, actor2, actor3, ..} with respect to a directors set D =
{director1, director2, ..} and a movies set M = {movie1,movie2, ..} as,

(directed(D,M) ∧ actedIn(A,M),prefer(workedUnder(A,D)) = 1).

This means that The set of actors A, worked under the set of directors D, in
the movies in the set M. In this example, (directed(D,M) ∧ actedIn(A,M) is
the context c(i), i is the arm label workedUnder.

Connection with Previous Work on Relational Preferences Odom et
al. [12] have previously specified relational preference knowledge in supervised
learning and imitation learning settings. Using their approach, at step k, the
knowledge would be incorporated by an additive term to the gradient term
(Ik(i) − σ(Ψk(i))). This term is nk(i)t − nk(i)f , where nk(i)t is the number of
knowledge sources that prefer arm i and nk(i)f is the number of knowledge
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sources that do not prefer arm i, at step k. We prove in Theorem 1 that the
approach of Odom et al. [12] is a specific instance of KIPG with multiple knowl-
edge sources. For our experiments, we specify only a single source of knowledge
at all steps k.

Theorem 1. At step k, For S multiple knowledge sources, that either pre-
fer or don’t prefer arm i, k1, k2, ..kS, assuming independence, let P (Ψk(i)) =∏S
s=1 Laplace(|Ψk(i) − Ψk(i)ks|, b = 1). Here Ψk(i)ks = Ψk(i)knowledge ∀s ∈ S.

Then we have ∇Ψk
log(πk(i)) = nk(i)t − nk(i)f .

Proof. We know that with assuming a Laplace(x, b) distribution and setting
Ψk(i)ks = Ψk(i)knowledge = LUB{α} ∀s ∈ S, we get ∇Ψk(i) log(P (Ψk(i))) =∑S
s=1 sign(LUB{α}− σ(Ψk(i))). We know also that sign(LUB{α}− σ(Ψk(i))) =

±1 depending on if the expert prefers the arm i or not. Thus we
get,

∑S
s=1 sign(LUB{α} − σ(Ψk(i))) = nk(i)t − nk(i)f .

Connection with Thompson Sampling We now formalize the connection be-
tween Thompson Sampling with posterior reshaping and KIPG. For arm i ∈ [N ],
at every step of arm pulling k ∈ [K], a reward rk(i) and a context ck(i) is emit-
ted. In Thompson Sampling, the posterior P (Θk(i)|rk(i), ck(i)) for parameter
Θk(i) representing P (rk(i)|ck(i)) is updated at each step k as

P (rk(i)|Θk(i), ck(i)) Pr(Θk(i)|ck(i))∫
Θk(i)

P (rk(i)|Θk(i), ck(i)) Pr(Θk(i)|ck(i))
.

Finally, the optimal arm choice corresponds to the arm that has the max
among the sampled Θk(i) ∼ P (Θk(i)|rk(i), ck(i)) for each arm i. The poste-
rior P (Θk(i)|rk(i), ck(i)), can be reshaped for example by using P (Θk(i) =
F(Θk(i)|rk(i), ck(i)). The reshaping changes the sufficient statistics such as
mean, variance, etc. This F can be informed by some knowledge of the domain.
We encounter a couple of issues with Posterior Reshaping for knowledge infusion.
First, that the choice of F is difficult to determine in a principled manner. Sec-
ond, the choice of F must be determined such that it is amenable to sampling
for exploration. Sampling itself is very inefficient for problems of appreciable
size. Thus, we observe that we can instead directly optimize for the optimal
arm choice through policy gradient methods. Using a Bayesian formulation for
optimization of policy in functional space, we can see that the reshaped poste-
rior after K iterations of arm pulling (where K is sufficiently high), corresponds
to learning an optimal function Ψ(i) since Ψ(i) is high if F(Θk(i)|rk(i), ck(i)),
representing P (r(i) = 1|c(i)), is high.

Connection with Exp3 Exp3 maximizes the total expected reward over K
arm pulls f =

∑K
k=1 πk(i)rk(i). Using the proximal definition of gradient descent

and deriving the mirror descent objective after each arm pull, we have

πk(i) = arg max
π(i)

((γ · π(i) · ∇πk−1(i)(f)) +D(πk−1(i), π(i))).
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, where γ is the learning rate. Choosing D(π(i), πk−1(i)) = Φ(πk−1(i)) −
(Φ(π(i)) +∇Φ(πk−1(i))(πk−1(i)− π(i))), where Φ is a convex function, we get

∇Φ(πk(i)) = ∇Φ(πk(i)) + γ · ∇πk−1(i)(f).

Since π is a probability we need to choose a convex Φ such that it works with
probability measures. So we will choose Φ(π) =

∑
i π(i) log π(i) to be negative

entropy and we have

log(πk(i)) = log(πk−1(i)) + γ · ∇πk−1(i)(f).

Setting πk−1(i) = σ(Ψk(i)), we get,

log(πk(i)) ∝ log(σ(Ψk(i))) + log(eγ·∇πk−1(i)(f)),

where logP (Ψk(i)) = log(eγ·∇πk−1(i)(f)). Thus we see that Exp3 can be seen as
a case of applying a specific prior probability in KIPG.

5 Regret Bound for KIPG

We now derive a bound for the total regret after K steps of KIPG to un-
derstand the convergence of KIPG towards the optimal arm choice. Since
KIPG is fundamentally a gradient ascent approach, we can use analysis sim-
ilar to the regret analysis for online gradient ascent to derive the regret bound
[13]. Using a2 − (a − b)2 = 2ab − b2 and letting a = (Ψk(i) − Ψ∗(i)) and

b = ∇Ψ(i)k

∑K
k=1 πk(i)rk(i), We know that for a sequence over K gradient ascent

iterations, {Ψk(i)|k ∈ [K]}, we have

(Ψk(i)− Ψ∗(i))2 ≤ (Ψk−1(i)− Ψ∗(i))2 − 2γ(πk(i)rk(i)− π∗(i)r(i∗)) + γ2L

where L ≥ ∇Ψk(i)
∑K
k=1 πk(i)rk(i) is an upper bound on the gradient (Lipschitz

constant) and γ is the learning rate. Using a telescoping sum over K iterations
we have

(ΨK(i)− Ψ∗(i))2 ≤ (Ψ0(i)− Ψ∗(i))2 − 2

K∑
k=1

(γ(πk(i)rk(i)− π∗(i)r(i∗))) +

K∑
k=1

γ2L

and therefore
K∑
k=1

(γ(πk(i)rk(i)− π∗(i)r(i∗))) ≤
maxΨk(i)(Ψk(i)− Ψ∗(i))2 + L2

∑K
k=1 γ

2

2
∑K
k=1 γ

.

Solving for γ by setting ∇γ(R.H.S) = 0, we finally have our total regret bound
over K steps as:

K∑
k=1

(γ(πk(i)rk(i)− π∗(i)r(i∗))) ≤
maxΨk(i)(Ψk(i)− Ψ∗(i))2L

√
K

.

This regret bound has a very intuitive form. It shows that the regret is bounded
by how far off the learned Ψ(i) from the true Ψ∗(i) for each arm i. Thus we expect
that in the experiments, with quality knowledge infusion this gap is drastically
reduced over K steps to result in a low total regret.
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6 KIPG-Upper Confidence Bound

So far we have developed KIPG for the Bandit Setting and derived a regret
bound. Since KIPG estimates π(i) after each arm pull, we can sample from π(i)
and choose the max like in Thompson Sampling. However, since the arm to pull
is being learned online, the uncertainty in the arm choice even with knowledge
needs to be modeled. The human providing knowledge needs to observe a few
user-arm pulls to gradually improve their confidence in the knowledge provided.
As the data is not available offline to study by the human, it is unlikely that
the knowledge provided is perfect initially. Thus, we now derive a confidence
bound to quantify the uncertainty in the arm choice. At step k, let the arm
choice be denoted by i∗. First we notice that Z = |πk(i∗)− π∗(i∗)|, is binomial
distributed at step k. Also, πk(i∗) is binomial distributed. However, for both we
will use a Gaussian approximation and note that for this Gaussian, µ(Z) = 0
and σ(Z) ≤ E[(πk(i∗)−π∗(i∗))2], thus making this a sub-Gaussian[14, 15]. Using
Markov’s inequality we have [16]:

P (Z > ε) ≤ e−kεE[kZ] =⇒ P (ekZ > ekε) ≤ E[ekZ ] · e−kε

where ekZ is the moment-generating-function for Z. We know that ekZ is convex
and thus ekZ ≤ γ(ekb) + (1− γ)eka for Z ∈ [a, b] and γ ∈ [0, 1]. Thus we obtain
Z ≤ γb+ (1− γ)a, which gives us γ ≥ Z−a

b−a , therefore we know

ekZ ≤ −ae
kb + beka

b− a
+
Z(ekb − eka)

b− a
.

Taking expectation on both sides we get E[ekZ ] ≤ −aekb+beka
b−a . Let eg(k) =

−aekb+beka
b−a , we get g(k) = ka+ log(b−aek(b−a))− log(b−a). Using Taylor series

expansion for g(k) upto the second order term as g(0) +∇(g(k))k + ∇2(g(k))k2

2 ,
we get

∇2(g(k)) =
ab(b− a)2(−ek(b−a))

(aek(b−a) − b)2
.

We note that aet(b−a) ≥ a =⇒ aet(b−a) − b ≥ a − b =⇒ (aet(b−a) − b)−2 ≤
(b− a)−2. We know −ek(b−a) ≤ −1, therefore we obtain

∇2(g(k)) ≤ −ab(b− a)2

(b− a)2
= −ab ≤ (b− a)2

4
=⇒ g(k) ≤ (b− a)2

4

k2

2
.

We know that E[ekZ ] ≤ eg(k) =⇒ E[ekZ ] ≤ e
k2(b−a)2

8 . Once again from the
Markov inequality, we have

P (Z > ε) ≤ e−kεE[kZ] =⇒ P (|πk(i∗)− π∗(i∗)| > ε) ≤ e−kε+
k2(b−a)2

8 .

Using k = 4ε
(b−a)2 , by solving for the minimum of e−kε+

k2(b−a)2
8 we get P (|πk(i∗)−

π∗(i∗)| > ε) ≤ e
−2ε2

(b−a)2 . As 0 ≤ (b − a) ≤ 1, we have P (|πk(i∗) − π∗(i∗)| > ε) ≤
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e−2ε
2

and, after K time steps,

P (|πK(i∗)− π∗(i∗)| > ε) ≤ e−2Kε
2

.

Solving for ε we get, ε ≤ − log(P (|πK(i∗)−π∗(i∗)|>ε))
2K . Thus, we draw the next

optimal arm choice i at k + 1 as follows:

arg max
i

{
i ∼ πk+1(i) = σ(Ψk(i) +

− log(P (Z > ε))

2k
)

}
,

where Z = |πk(i∗)−π∗(i∗)|. This confidence bound also has an intuitive form as
it is reasonable that the expectation E(I(|πk(i∗)−π∗(i∗)| > ε)) gets closer to the
truth (less probable) as more arms are pulled, where I is the indicator function.
Since we never actually know π∗(i∗), we set to the current best arm choice. We
expect that knowledge infusion will allow the error between the current best arm
choice and π∗(i∗) to get smaller. As P is usually initially set high and decayed
as k increases causing log(P ) to increase, we achieve this effect by simply using
− log(|πk(i∗) − π∗(i∗)|). Algorithm 2 shows how a simple modification to the
pseudocode in Algorithm 1 can incorporate the bound derived.

Algorithm 2 KIPG Upper Confidence Bound - KIPGUCB

1: Initialize Ψ0(i) = 0 ∀ arms i
2: for k ← 1 to K do
3: set πk(i) = σ(Ψk−1(i))
4: Draw arm i∗ = arg maxi i ∼ πk(i) . observe reward rk(i∗) and context ck(i∗)
5: Set π∗(i∗) = I(πk(i∗) = i∗)
6: Compute ∇Ψk(i∗) log(πk(i∗)) as . ± Depending on preference(

Ik(i∗)− πk(i∗)± 1− log(|πk(i∗)− π∗(i∗)|)
2k

)
7: Compute gradient as πk(i∗)∇Ψk(i∗) log(πk(i∗))(rk(i∗) + 1) . add 1 smoothing
8: Fit δk(i∗) to gradient using TILDE tree
9: Set Ψk(i∗) = Ψk−1(i∗) + ηδk(i∗)

10: return πK(i)

7 Experiments

The knowledge used in our experiments comes from domain experts, an example
of which is seen in Section 4. We aim to answer the following questions:

1. How effective is the knowledge for bandit arm selection?
2. How effective is the UCB exploration strategy for bandit arm selection?
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Fig. 2: Illustration of the Entity-Relationship Schema diagram for the Music
Recommendation system being simulated (b) and a particular instantiation (a).
Users listen to songs by artists. M Users can listen to N Songs, N Songs can be
written by 1 Artist and Artists and Songs can be popular among Users.

7.1 Simulated Domains

Simulation model: We perform experiments on a simulated music recommen-
dation dataset. The dataset simulates songs, artists, users, and albums where
there are the following user behaviors:

– Behavior A: The users are fans of one of the artists in the dataset.
– Behavior B: The users follow the most popular song.
– Behavior C: They follow the most popular artist.

We will denote the set of behaviors by Behaviors. Figure 2(b) shows an illustra-
tion for the Schema for the simulation model depicting that M users can listen
to N songs and N songs can be sung by N artists, etc. Artists and Songs have
attributes “Popular” denoting if a particular artist or a song is popular among
users.

Context Induction: Once the simulation model is used to generate different
users based on a predefined behavior ∈ Behaviors. We need now to generate
different possible user contexts from this dataset. Since the whole dataset is
not available to us offline, we construct a dataset by 50 random arm choices to
induce contexts. The contexts will be represented using predicate logic clauses:
antecedent (∧ preconditions representing possible user context) =⇒ consequent
(user song choice). For this, an inductive bias needs to be provided to induce
sensible clauses. Such an inductive bias is included as background knowledge to
the induction program. We use the method in Hayes et al. [17] to automatically
construct the inductive bias from the schema in Figure 2(b). The clauses induced
are kept if they satisfy minimum information criteria i.e. if they discriminate at
least one user from another in their song choice, in the dataset. The clauses
induced using the provided inductive bias and are as follows:



12 F. Author et al.

– sungBy(B,C) ∧ ¬ popular(C) =⇒ listens(A,B). This context says User A
listens to song B if song B is sungBy artist C. Also, C is not a popular
artist, which describes behavior A.

– sungBy(B,C) ∧ popular(C) =⇒ listens(A,B). This context says User A lis-
tens to song B if song B is sungBy a popular artist C, which describes be-
havior C.

– listened(C,B) =⇒ listens(A,B). This context says user A listens to song B
if user C listened to B, which describes behavior B.

We use satisfiability of these clause antecedents as features for TILDE regression
tree stumps. Figure 3 shows an example, where sigmoid of the regression values
represents arm choice probability π(i).

Fig. 3: Example of a TILDE regression tree stump for song choice. The tree
depicts that if if song B is sungBy artist C and also, C is not a popular artist,
User A listens to B with probability σ(0.806). Else, User A listens to B with
probability σ(−0.796).

Results We compare the RB2 algorithm with KIPG and KIPGUCB. For each
type of user, at time step k, a recommendation is provided depending on the
algorithm used. The regret drawn from comparison to the ground truth (GT)
recommendation is recorded. The regret equation for an algorithm A is:

RA =

K∑
k=1

(rGT − πk(i∗)Ark(i∗)),

where i∗ is the optimal arm drawn from arg max over π(i) samples at step k
(See Algorithm 1,2 - line 4). rGT is the reward if the ground truth optimal arm
is drawn at k.

Perfect Knowledge: The human providing knowledge may have some previous
knowledge about a user in the system. In this case, it is expected that the knowl-
edge is pretty good from the start. In this setting, we expect the regret is ordered
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as RKIPG < RKIPGUCB < RRB2 for most k = 1 to K.We expected this trend
since RB2 uses no knowledge and KIPGUCB moves slower towards knowledge
initially. Given that the knowledge is perfect, we expect KIPG to perform the
best. We set K = 500. Figure 4 shows that the experiments corroborate this.

(a) Behavior A (b) Behavior B (c) Behavior C

Fig. 4: Shows comparison ofRRB2,RKIPG,RKIPGUCB for the perfect knowledge
setting for all their behaviors. As expected we see that RKIPG < RKIPGUCB <
RRB2 for most k = 1 to K.

(a) Behavior A (b) Behavior B (c) Behavior C

Fig. 5: Shows comparison of RRB2, RKIPG, RKIPGUCB for the nearly perfect
knowledge setting for all three behaviors. As expected we see that RKIPG <
RKIPGUCB < RRB2 for most k = 1 to K.

Noisy Knowledge: In this setting the human again observes some user arm
interactions to improve the knowledge that they provide. In this case however,
the humans observation skills are less sharp. We simulate this scenario by using
noisy knowledge for k = 1 to 50, where perfect knowledge is provided 60% of the
time instead of 80%. Here, we expect that for most k = 1toK, where K = 500,
RKIPGUCB < RKIPG < RRB2. We expect this as a perfection rate of 60%
means that the tempering of Knowledge Infusion by KIPGUCB initially leads
to better total regret for KIPGUCB. Figure 6 shows this result.
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(a) Behavior A (b) Behavior B (c) Behavior C

Fig. 6: Shows comparison of RRB2, RKIPG, RKIPGUCB for the noisy knowledge
setting for all three behaviors. As expected we see that RKIPGUCB < RKIPG <
RRB2 for most k = 1 to K.

7.2 Real-World Datasets

We also evaluate the algorithms in the following real-world datasets:

– The Movie Lens dataset with relations such as user age, movietype, movie
rating, etc, where the arm label is the genre of a movie. The dataset has
166486 relational instances [18].

– The Drug-Drug Interaction (DDI) dataset with relations such as Enzyme,
Transporter, EnzymeInducer, etc, where the arm label is the interaction
between two drugs. The dataset has 1774 relational instances [19].

– The ICML Co-author dataset with relations such as affiliation, research in-
terests, location, etc, where the arm label represents whether two persons
worked together on a paper. The dataset has 1395 relational instances [20].

– The IMDB dataset with relations such as Gender, Genre, Movie, Director,
etc, where the arm label is WorkUnder, i.e., if an actor works under a direc-
tor. The dataset has 938 relational instances [21].

– The Never Ending Language Learner (NELL) data set with relations such as
players, sports, league information, etc, where the arm label represents which
specific sport does a particular team plays. The dataset has 7824 relational
instances [22].

We used 10 boosted trees for all the experiments and results are averaged over
5 runs. It is seen that while the total regret remains high for all the datasets over
several steps of learning, both the expert knowledge and the exploration strategy
using the UCB method are effective in increasing performance. The performance
increase is more pronounced in the Movie Lens and IMDB datasets as the expert
knowledge are relatively easier to provide for human experts. For the DDI dataset
and the ICML Co-authors dataset, it is not straightforward to specify which
drugs might interact or which authors may work together in a diverse academic
setting. Since the knowledge comes from an expert and systematically targets
faster convergence to the optimal distribution, knowledge infusion is expected
to perform better. If the knowledge were noisy, the error accumulation over time
may have lead to sub-optimal results. In the NELL-sports dataset, it can be seen
that RB2 initially outperforms both KIPG and KIPGUCB.
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Fig. 7: Performance plots computed using total regret of RB2, KIPG, and
KIPGUCB for the datasets for k = 1 to K. We see that KIPG and KIPG-UCB
perform significantly better with expert knowledge in Movie Lens and IMDB
compared to others. This is because it is relatively easier for an expert to pro-
vide knowledge in these domains. On the contrary, in the NELL-Sports, because
of noisy knowledge, initially, the performance of KIPGUCB dips compared to
RB2, but it increased thereafter.

8 Conclusion and Future Work

In this study, we develop a novel algorithm KIPGUCB to perform knowledge in-
fusion in CB settings. We show that the regret bound depends on the knowledge
and hence the total regret can be reduced if the right knowledge is available.
Furthermore, we develop a confidence bound to account for initial uncertainty
in provided knowledge in online settings. Though we have developed a general
framework for knowledge infusion, we have yet to explore knowledge forms be-
yond preference knowledge. Furthermore, the knowledge may depend on latent
behaviors that cannot be modeled such as a bias by an actor towards a particu-
lar director. Also, the actor’s bias towards directors may keep changing as more
data is seen. This type of non-stationarity and partial observability in context
will be interesting to model. Also, if knowledge is noisy and fails to lower total
regret, identifying the right descriptive question to ask the human to elicit new
knowledge is an interesting future direction. Relational descriptions make tack-
ling this issue plausible. Finally, it will be interesting to mathematically evaluate
when the knowledge should be incorporated at all. We aim to tackle these issues
in future work.
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