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ABSTRACT
During the last decade, traditional data-driven deep learning (DL)
has shown remarkable success in essential natural language process-
ing tasks, such as relation extraction. Yet, challenges remain in de-
veloping artificial intelligence (AI) methods in real-world cases that
require explainability through human interpretable and traceable
outcomes. The scarcity of labeled data for downstream supervised
tasks and entangled embeddings produced as an outcome of self-
supervised pre-training objectives also hinders interpretability and
explainability. Additionally, data labeling in multiple unstructured
domains, particularly healthcare and education, is computationally
expensive as it requires a pool of human expertise. Consider Educa-
tion Technology, where AI systems fall along a “capability spectrum”
depending on how extensively they exploit various resources, such
as academic content, granularity in student engagement, academic
domain experts, and knowledge bases to identify concepts that
would help achieve knowledge mastery for student goals. Likewise,
the task of assessing human health using online conversations
raises challenges for current statistical DL methods through evolv-
ing cultural and context-specific discussions. Hence, developing
strategies that merge AI with stratified knowledge to identify con-
cepts that would delineate healthcare conversations patterns and
help healthcare professionals decide. Such technological innova-
tions are imperative as they provide consistency and explainability
in outcomes. This tutorial discusses the notion of explainability
and interpretability through the use of knowledge graphs in (1)
Healthcare on the Web, (2) Education Technology. This tutorial will
provide details of knowledge-infused learning algorithms and its
contribution to explainability for the above two applications that
can be applied to any other domain using knowledge graphs.

KEYWORDS
Knowledge infusion, Knowledge graphs, Public Health, Education
Technology, Explainability, and Traceability in AI, Responsible Data
Science.

1 GOAL AND OBJECTIVE OF THE TUTORIAL
Recently, there is increasing attention to developing methods to
enable the easy adoption of AI in practice. These methods com-
prise analyzability, interpretability, traceability, and explainability
of AI models and its prediction using statistical natural language
processing (NLP), information extraction (IE), and deep learning
(DL). At the center of this upsurge are the knowledge graphs (KG),

a large network of entities, their semantic types, properties, and
relationships between entities. For instance, Wikidata [17], DBpe-
dia [12], UMLS [1], ConceptNet [15] The utility of KG in DL is
to provide relative importance scores (or semantic weighting) to
learnable features for interpretation of the outcomes [16, 18]. A
recent study [3] leverage the Columbia-Suicide Severity Rating
Scale (C-SSRS) to clinically assess the varying suicidality on Reddit
and identify behavioral cues to extract supportive users, which
improved the recall of the overall process. Likewise, in the domain
of education, the use of deep learning and knowledge infusion
methods to extend Bayesian Knowledge Tracing (BKT) and Deep
Knowledge Tracing (DKT) pair the capability to present concept-
level masteries for easy intervention with the traditional prediction
of student’s overall mastery. Further, the student’s goal contextu-
alizes the knowledge graph with a relevant curriculum, whereas
his concept-level mastery can be used to personalize the knowl-
edge graph. Which enables the intervention layer to generate better
learning outcomes. For instance, a recent study used Blooms’ Taxon-
omy to extend the BKT model of a student to interpretably evaluate
knowledge mastery [2, 10, 11]. Such utilization of KG/taxonomies
is of immediate concentration in the domain of explainable AI and
data science, a paradigm of importance to the community in the
Big Data Analytics Conference. Through demos, implementable
details, and resources, the focus of the tutorial is to provide direc-
tions in developing AI methods involving the fusion of knowledge
for contextualizing the content, generating attention weights, and
evaluating predictions to reason over the healthcare state or learn-
ing activity of an individual for improving the human experience
with AI system. Beginners in the area of Knowledge Graphs would
learn an introduction to the knowledge graph, its construction,
and utility through knowledge-infused learning. Experts in the do-
main of Knowledge Graphs (KGs) and its application in AI would
appreciate the capability of knowledge-infused learning in gener-
ating explanations to classification problems in Healthcare on the
Web and deriving concepts mastery in Education. Moreover, the
attendees will gain in-depth understanding of the methods used
for fusing knowledge through demonstrations, theory, and concep-
tual outlining of the tutorial. The tutorial is appropriate for the
community engaging in the Conference on Big Data Analytics as
it highlights the essence of contextualized knowledge representa-
tion and knowledge-based systems in facilitating human-guided
interventions in Education and Healthcare on the Web for effective
outcomes. It will provide the community with tools to overcome
obstacles in social good domains that lack high-quality training
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data and poor interpretability. We believe the resources provided
during the tutorial will further the research in responsible data
science in healthcare and education.

2 TUTORIAL DESCRIPTION AND OUTLINE
The critical issues in healthcare, particularly mental healthcare,
such as estimating the mental health state of an individual and ed-
ucation, such as calibrating and improving knowledge mastery of
an individual, have been highlighted by research in artificial intelli-
gence. The methods focus on principles of IE(e.g., predicate inven-
tion [9]), DL (e.g., convolutional neural networks [14], deep knowl-
edge tracing using the recurrent neural networks [19]), and behav-
ioral NLP to predict either severity of mental illness or knowledge
mastery in education. No doubt, deep learning-based approaches
have achieved state-of-the-art performance in knowledge state
and mental state prediction. Still, it neither provides explicit ex-
planations of its outcome nor provides actionable suggestions on
achieving clinical relevance in healthcare or desired mastery in
education. The domain of healthcare and education technology is
stocked with publicly available data in various forms (e.g., social
media crawls, epubs/ebooks/PDFs). Leveraging such a large corpus
of unstructured text for improving counseling services in healthcare
and learning outcomes in education, a paradigm coalesced with
external curated knowledge is desired. This tutorial presents a para-
digm, Knowledge-infused Learning, which describes methodologies
of incorporating domain-knowledge in deep learning approaches
for bringing consistency and robustness in predictions. Specifi-
cally, we will provide implementable details on Shallow Infusion,
Semi-Deep Infusion, and Deep Infusion of Knowledge, which are
methods to augment auxiliary knowledge for helping the mental
healthcare providers educationist to understand key features con-
tributing to the current knowledge state or mental health state of an
individual. Further, we will discuss methods for contextualization
and abstraction of unstructured text, independently in healthcare
and education using knowledge graphs/taxonomy [3, 5, 7, 8], to
derive actionable knowledge for mental healthcare providers and
educationists. We will describe strategies for evaluating methods
of knowledge infusion with examples from mental healthcare and
online education.

2.1 Tutorial Outline
We begin with the introduction to Knowledge Graph-based Learn-
ing comprising of (a) description on the role of KGs in model inter-
pretability, traceability of predictions to a KG, in achieving explain-
ability of the outcome with examples and (b) procedure to construct
KGs and use them at scale. Following which, we would motivate the
audience on the concept of Knowledge-infused AI which would in-
clude (a) the theoretical underpinnings of knowledge-infused learn-
ing, (b) the different alternatives for combining KGs and Learning
methods, (c) KG-based AI frameworks in practice, and (d) different
evaluation strategies for such frameworks. Thereafter, we would
give a preface of using KGs towards improving learning outcomes
(e.g. Amazon Alexa, Coursera, eDX) and in healthcare informat-
ics. This introductory session would cover prior research covering
shallow and semi-deep infusion of knowledge in deep learning or
machine learning procedures [6]. Subsequently, we will take up

two key applications to provide a practical tour on the theme of
the tutorial:

(1) Knowledge-infused Learning in Education: would de-
liver insights into different KG-type resources in education,
methods of construction, and ways to infuse KG in the cur-
rent state-of-the-art knowledge tracing approaches in educa-
tion: Deep Knowledge Tracing [13]. During this part of the
tutorial, we will provide a demo of an industry use-case at
Embibe and different strategies of evaluating this use-case.

(2) Knowledge-infused Learning in Healthcare: will con-
centrate on two important use-cases of “Healthcare on the
Web”: (a) Utilization of Diagnostic Statistical Manual for
Mental Health Disorder (DSM-5) to understand Reddit com-
munication and (b) Dynamic peer-support group formation
on Reddit using this understanding. In the process of ad-
dressing research challenges in these expositions, we would
discuss methods on associating Medical Knowledge Graphs
(e.g. SNOMED-CT, UMLS [4]) with Healthcare on the Web.

3 TARGET AUDIENCE
This tutorial will bring researchers in academia, industry, humani-
tarian organizations, and healthcare practitioners at the confluence
of knowledge representation, natural language understanding, and
deep learning. Prior exposure to the basic concepts in NLP and
DL is desirable, however, there are no prerequisites for attending
the tutorial. We will cover basics and advanced techniques with
sufficient use cases and demonstrations. Newcomers in the area
will learn the basic principles of data science and the fundamentals
of knowledge-infused learning. Expert attendees will appreciate
promising, reliable, and practical approaches to overcoming familiar
technical obstacles in social good domains.
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(5) Knowledge Graphs and their Central Role in Big Data Pro-
cessing: Past, Present, and Future, Keynote at 7th ACMCoDS
and 25th COMAD 2020. (Slides13)

(6) AI in Education: Transforming education using Personal-
ized Adaptive Learning, Open Data Science Conference 2019.
(Video14)
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