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G E N E T I C S

Proteomic profiling platforms head to head: Leveraging 
genetics and clinical traits to compare aptamer- and 
antibody-based methods
Daniel H. Katz1, Jeremy M. Robbins1, Shuliang Deng1, Usman A. Tahir1, Alexander G. Bick2, 
Akhil Pampana2, Zhi Yu2, Debby Ngo1, Mark D. Benson1, Zsu-Zsu Chen1, Daniel E. Cruz1, 
Dongxiao Shen1, Yan Gao3, Claude Bouchard4, Mark A. Sarzynski5, Adolfo Correa3, 
Pradeep Natarajan2,6,7, James G. Wilson1, Robert E. Gerszten1,2*

High-throughput proteomic profiling using antibody or aptamer-based affinity reagents is used increasingly in 
human studies. However, direct analyses to address the relative strengths and weaknesses of these platforms are 
lacking. We assessed findings from the SomaScan1.3K (N = 1301 reagents), the SomaScan5K platform (N = 4979 
reagents), and the Olink Explore (N = 1472 reagents) profiling techniques in 568 adults from the Jackson Heart 
Study and 219 participants in the HERITAGE Family Study across four performance domains: precision, accuracy, 
analytic breadth, and phenotypic associations leveraging detailed clinical phenotyping and genetic data. Across 
these studies, we show evidence supporting more reliable protein target specificity and a higher number of pheno-
typic associations for the Olink platform, while the Soma platforms benefit from greater measurement precision 
and analytic breadth across the proteome.

INTRODUCTION
The advent of high-throughput proteomic profiling has greatly en-
hanced our ability to investigate disease, as proteins are not only 
mediators of disease but also clinical biomarkers used to diagnose 
and guide treatment (e.g., B-type natriuretic peptide and troponin) 
(1–3). New technologies based on affinity reagents for capture and 
detection of specific proteins are receiving increasing attention in 
plasma proteomics due to their performance characteristics, cost, and 
usability. In particular, platforms using paired, nucleotide-labeled 
antibody probes (Olink) and single-strand DNA aptamer reagents 
with slow off-rate kinetics (SomaScan) can be automated for effi-
cient multiplexing of thousands of proteins at high sample through-
put (4–7). While these platforms have streamlined workflows as 
compared to liquid chromatography–mass spectrometry (LC-MS)–
based methods, this comes at the cost of decreased specificity for 
molecular characterization (8). Proteomic profiling with these affinity 
platforms has already been performed in many cohort studies and 
clinical trials (1, 2, 9–15). As investigators begin to analyze findings 
from this body of established work and as more studies use these 
platforms, it is critical to understand the relative strengths and weak-
nesses of the available technologies. At the same time, independent 
verification of test performance relative to a gold standard for each 
of the thousands of proteins on these platforms is limited by cost 
and time. Alternatively, comparison of available platforms to one 
another offers an opportunity for high-throughput assessment. 
Earlier comparisons have been limited by sample size and the num-
ber of proteins measured at the time of comparison (16, 17) but did 

suggest differences in platform characteristics and reproducibility. 
More recently, a larger effort to compare these platforms (N = 485 
overlapping samples) demonstrated very poor correlation between 
a large number of reagents targeting the same protein (18). While 
some differences were explained by a variety of platform and protein 
factors, an assessment of comparative accuracy was absent. Further 
characterization of these platforms under direct comparison is needed.

The Jackson Heart Study (JHS) and HERITAGE Family Study 
are ideally suited for platform comparison. In addition to the many 
clinical traits ascertained in JHS, whole-genome sequencing (WGS) 
is available on a large subset of participants, permitting assessment 
of rare or ancestry-specific genetic variants with a variety of effects 
on circulating proteins. As a cohort of Black adults, there is greater 
genetic diversity owing to increased African ancestry (19, 20). Our 
group has previously described the genetic architecture of the circu-
lating plasma proteome from JHS, leveraging the SomaScan1.3K 
(1301 aptamers, herein “Soma1.3K”) platform for discovery and the 
Olink Explore (1472 probes, herein “Olink”) platform for validation 
(21), expanding previous work in this area to a cohort with substan-
tial African ancestry (13, 22–26). While this previous work de-
scribed genetic associations with plasma protein levels as measured 
by these platforms, such data provide an opportunity to compare 
these platforms directly, instead of showcasing discovery and vali-
dation of gene-protein relationships. Specifically, matched data with 
profiling on both platforms can assess proteomic reagent specificity 
through the identification of variants near the target gene that affect 
measured levels of the target protein [termed cis protein quantita-
tive trait loci (cis pQTLs)]. Thus, we profiled a subset of JHS partici-
pants (N = 568) using both aptamer-based and antibody-based 
methods and compared their performance with specific attention to 
precision, accuracy, analytic breadth across the proteome, and pheno-
typic associations. In the HERITAGE Family Study, we also compare 
the expanded SomaScan platform with ~5000 proteins (“Soma5K”) 
with the Olink platform in 219 individuals, leveraging the rigorous 
clinical phenotyping performed in that study.
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RESULTS
Given the large amount of published proteomic profiling data on 
the original Soma1.3K platform, we began by comparing the Olink 
and Soma1.3K platforms in 568 individuals from JHS. The means ± 
SD age of the cohort was 59 ± 12 years, 59% were female, mean body 
mass index (BMI) was 32 ± 8 kg/m2, and mean estimated glomeru-
lar filtration rate (eGFR) was 83 ± 19 ml/min/1.73 m2 (table S1). As 
some unique reagents on each platform detect the same protein or 
protein multimers, Olink profiling included 1472 unique reagents 
mapping to 1466 unique UniProt identifiers (IDs), while Soma1.3K 
profiling included 1301 unique reagents mapping to 1297 unique 
UniProt IDs. Platform reagents were matched on the basis of their 
target UniProt proteins, revealing 591 overlapping proteins map-
ping to 602 Soma1.3K aptamers and 597 Olink probes (Fig. 1 and 
table S2). This merging resulted in 616 unique Soma1.3K-Olink re-
agent pairs. The platforms were compared, with specific attention 
to the overlapping proteins, across four domains: precision, accura-
cy, analytical breadth, and phenotypic association.

Precision: Coefficients of variation
To assess the precision (i.e., reproducibility) of repeated protein 
measurements, the coefficient of variation (CV) for each reagent 
was measured using standard pooled plasma samples, which are in-
cluded on each plate of each platform (different pooled plasma was 
used for each platform). Each platform measures 88 samples per 
plate and thus requires multiple plates for all samples to be run: 
Intra-assay CVs reflect precision within a given plate, while inter-
assay CVs reflect precision between plates. As shown in Fig. 2, while 
most of the protein measurements on both platforms had inter-
assay CVs below 20% (81% of the platform for Olink and 99% for 
Soma1.3K), Soma1.3K CVs were overall lower, whether comparing 
the full platform or overlapping proteins. Median intra-assay CVs 
were also lower on Soma1.3K (2%) compared to Olink (10%). As 
modeled in Fig.  2B, as CV increases, the required sample size to 
detect a given percent difference in mean protein levels between 
groups also increases.

Accuracy: Platform correlation and cis pQTLs
To understand the accuracy or specificity of a given protein measure-
ment on either platform without using LC-MS—the gold standard—
an “orthogonal” method can provide supportive evidence. For a 
small number of proteins, we can compare proteomic measurements 
to an established enzyme-linked immunosorbent assay (ELISA; fig. S1), 
but these are only available in a very limited number of cases. When 

a protein is measured by both platforms, high correlation between 
the two suggests accuracy. The distribution of Spearman correla-
tions for all overlapping protein targets is shown in Fig.  3A. K-
means clustering supports three categories of paired reagents by the 
elbow method: high correlation (N = 236 reagent pairs), medium 
correlation (N = 173), and low correlation (N = 207).

While high correlation between the distinct assays suggests spec-
ificity, for proteins with weaker correlation or those that do not 
overlap between the platforms, we leveraged WGS data to help fur-
ther inform each reagent’s specificity. If a protein’s measure by a 
given platform is associated with genetic variation near the cognate 
gene (i.e., cis pQTLs), this supports the protein assay’s accuracy. 
WGS was available in 489 of the JHS participants, and a validated 
computational pipeline for variant-protein association analysis—
matching that previously described for pQTL identification—was 
used in the present analysis (21). Many of the proteins for which cis 
pQTLs were identified in the present analysis also have cis pQTLs 
that were previously identified in the literature in populations with 
predominantly European ancestry: 425 target proteins have previ-
ously known cis pQTLs, although these were not necessarily specific 
to Olink or Soma1.3K (table S2). Conversely, we identified previ-
ously unknown cis pQTLs for 373 protein targets by this method. 
Cis pQTLs could be identified for 595 of 1472 (40%) of the reagents 
on the Olink platform and 370 of 1301 (28%) of reagents on the 
Soma1.3K platform at a P < 1 × 10−5 (table S2). At this threshold, 
164 of the reagent pairs show a cis pQTL for both reagents. If a 
genome-wide significance threshold is used (5 × 10−8), cis pQTLs 
are observed for 368 of 1472 (25%) Olink reagents and 206 of 1301 
(16%) Soma1.3K reagents. At this threshold, 98 reagent pairs have 
cis pQTLs for both reagents. Figure 3B shows the presence of pQTLs 
on either platform for matched reagents, relative to their correlation. 
While highly correlated reagents were both likely to demonstrate a 
cis pQTL, proteins with a lower correlation were more likely to 
show a cis pQTL for the Olink reagent only (Table 1).

Analytical breadth: Protein classifications and PCA
To capture the breadth of known proteomic biology captured by the 
Olink and Soma1.3K, Fig. 4 shows measured protein distribution 
for four protein classification systems. Overall, each platform mea-
sured similar numbers of proteins in each subcategory. Notable 
exceptions include expanded coverage of the immunoglobulin re-
ceptor superfamily on the Olink platform and more serine/threonine 
protein kinases on the Soma1.3K platform. Despite targeting fewer 
proteins than Olink, a nominally larger percentage of Soma1.3K tar-
gets had PANTHER annotations (92% versus 87%). Soma1.3K had 
more representation than Olink among the largest subcategories, 
whereas Olink proteins were more often classified in low-frequency 
subcategories (fig. S2).

While Olink and Soma1.3K measure a similar number of pro-
teins from standard protein categories, we sought to understand the 
variety of captured biology in an unsupervised fashion. Thus, each 
full platform was decomposed by principal components analysis (PCA). 
By aligning protein variation along multiple orthogonal axes of 
variation, PCA captures statistical variety. As seen in Fig. 5A, more 
than 30% of total variation in the Olink platform is explained in the 
first two principal components (PCs), compared to approximately 
15% of total variation for the Soma1.3K platform. Ultimately, 95% 
of total variation in Olink is explained in fewer PCs (Fig. 5B). To 
understand whether certain demographic or clinical factors explain 

Soma1.3K
706

Olink
875

591

Fig. 1. Unique proteins identified by each platform in analysis of JHS. Venn 
diagram depicts the overlap between unique UniProt IDs targeted by the Olink 
Explore and Soma1.3K platforms. Pairing Olink and Soma1.3K reagents based on 
UniProt target identifies 616 unique reagent pairs.
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the top two PCs, Fig. 5C shows age, sex, and kidney function as as-
sessed by the eGFR overlayed on the top two PCs from each plat-
form. Across Olink, a gradient of both eGFR and age is apparent 
across PCs 1 and 2, while only PC 2 from Soma1.3K appears associated 
with eGFR and age. The relationship between Soma1.3K PC 2 and 
renal function manifests in the top proteins associated with this PC, 
which include cystatin C and 2-microglobulin (fig. S3), two well-
established markers of renal function (27). Sex was not associated 
with PC 1 or 2 on either platform.

Phenotypic association
A principal goal of proteomic profiling is to detect and understand 
novel disease mediators and biomarkers. The present analysis showed 
many expected, previously described phenotypic associations on both 
platforms including cystatin C with eGFR (28), leptin with BMI 
(29), B-type natriuretic peptide with systolic blood pressure (30), 
and interleukin-18 receptor 1 with hemoglobin A1c (31) (tables S3 
and S4). Figure 6A shows the number of significant associations for 
eight important clinical traits, at three common significance cutoffs, 

Fig. 2. Intra- and inter-assay CVs. (A) CVs shown are for each reagent on each platform. Intra-assay CVs were calculated using two standard pooled plasma samples in-
cluded on each plate of a given profiling batch and averaged across all plates. Inter-assay CVs were calculated using 14 pooled plasma samples from seven Olink plates 
and 10 calibrator samples from five Soma1.3K plates (batch 1 samples only). The CV corresponding to each percentile is shown in the table below the plot. Reagents that 
have overlapping protein targets are highlighted in darker blue. (B) Shown are a family of curves for each platform showing the relationship between the difference in 
mean protein level between two groups and the sample size required to detect that difference for a given CV. The mean inter-assay CV for each platform is indicated by 
the solid line, and the 5th percentile CV and 95th percentile CVs are indicated by the limits of the shaded regions. As CV increases, the required sample size to detect a 
given percent difference in mean protein levels between groups also increases.
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across each full platform. The Olink platform, with a slightly greater 
number of reagents than the Soma1.3K, demonstrated a higher number 
of associations with each trait, regardless of the significance thresh-
old used. When only overlapping proteins were considered, Olink 
maintained more phenotypic associations, particularly among those 
reagents which correlated poorly with Soma1.3K (Fig. 6B). For ex-
ample, when considering proteins associated with BMI in the low 
correlation cluster of 207 reagent pairs, 106 Olink reagents associated 
with BMI at P < 0.05, versus only 44 Soma1.3K reagents.

To examine protein associations that increase the total number 
of associations but do not expand the total variance explained in the 
phenotype of interest (a result, possibly, of measuring multiple, 
highly correlated proteins, sometimes linked in the same biological 
pathway), we performed separate Lasso regression for each platform 
and trait (Table 2 and fig. S4). Despite measuring more proteins, the 
antibody-based platform did not explain more total variance in each 
phenotype, and overall, the total variance explained by the Olink 
versus Soma1.3K platform was similar.

Soma5K compared to Olink in HERITAGE
We next extended our analyses from JHS to the HERITAGE Family 
Study to assess whether our observations of the Soma1.3K would 
also apply to the Soma5K platform. Thus, we profiled 219 subjects 
from the HERITAGE Family Study (clinical characteristics in table 
S5) with the Soma5K and the Olink platforms (Fig. 7). There were 
1137 protein targets overlapping both platforms. Despite the smaller 
sample, similar patterns to the Soma1.3K comparison emerged. 
The correlation distribution between matched reagents on the 
Soma5K and Olink platforms was comparable to that of the 
Soma1.3K comparison, although the median Spearman’s correlation 
was lower (0.35 for the Soma5K and 0.44 for the Soma1.3K), with a 
similar overall distribution (Fig. 7B). The expanded Soma5K plat-
form provided a larger number of protein assays associated with 
available clinical traits (Fig. 7C); for instance, there were 1044 asso-
ciations with BMI and 787 associations with total/high-density 
lipoprotein (HDL) cholesterol (compared to 439 and 243 on the 
Soma1.3K platform, respectively). When assessing the clinical trait 

Median rho 0.454

0

10

20

30

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cluster

Low correlation
Med correlation
High correlation

A

0

10

20

30

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Spearman's rho

Platforms

Olink
Olink & Soma1.3K
Soma1.3K
Neither

B

Fig. 3. Spearman correlations between Olink and Soma1.3K reagents, which measure the same protein. (A) K-means clustering of correlations into three levels of 
correlation. (B) Colored bars indicate number of proteins on each platform in that correlation bin that have cis pQTLs, defined as a variant-protein association with 
P < 1 × 10–5 within 1 Mb of the transcription start site for the cognate gene.
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associations for overlapping protein targets only, the pattern was 
similar to the comparison between Olink and Soma1.3K: The antibody-
based platform demonstrated a larger number of associations over-
all, particularly among proteins with weaker correlations (rho < 0.3) 
between the two platforms (Fig. 7D). For example, when considering 
proteins associated with BMI in the low correlation cluster of 467 
reagent pairs, 174 Olink reagents associated with BMI at P < 0.05, 
versus only 122 Soma1.3K reagents. Lasso regression for traits in 
HERITAGE again showed that additional protein measurements 
did not necessarily increase the variance explained in derived models 
(table S6), although reduced sample size makes these estimates 
less stable.

Reagent validation with ELISA
As previously noted, high-affinity reagent platforms for protein 
quantification show substantial gains in efficiency, albeit at a cost to 
accuracy. Together, the preceding data suggest that when reagents 
cannot be individually tested against a gold standard, strong cor-
relation to a paired reagent on another platform, the presence of a 
cis pQTL, or a significant association with a clinical trait can high-
light the accuracy or value of a given reagent. To better delineate 
this, we selected reagents for four protein targets for further testing 
against a well-validated commercial ELISA. For each protein, one 

of the two reagents had either a clinical association or a cis pQTL 
(or both), while the other did not. CD97 showed in our data a pre-
viously unknown association with hemoglobin A1c when measured by 
the Olink reagent [ (95% confidence interval) = 1.06 (0.81 to 1.31), 
P = 2.6 × 10−13] as well as a cis pQTL, whereas the Soma1.3K reagent 
did not. Mesothelin showed an Olink-specific novel association with 
the atherosclerotic cardiovascular disease (ASCVD) risk score when 
measured with the Olink reagent [ = 0.017 (0.006 to 0.027), P = 0.002) 
as well as a cis pQTL for Olink. Heat shock protein, 70 kDa (HSP70) 
had an association with BMI when measured by the Olink reagent 
[ = 1.51 (0.68 to 2.34), P = 4.0 × 10−4]. Last, angiopoietin-like 3 
(ANGPTL3) as measured by Olink also showed an association with 
BMI [ = 2.37 (1.05 to 3.69), P = 4.7 × 10−4), one previously suggested 
in the literature (32), as well as an Olink cis pQTL.

When each protein was measured in 60 random samples from either 
HERITAGE or JHS using the ELISA, the reagent with these clinical 
and/or genetic associations had a strong positive correlation with 
the ELISA, while the other did not, suggesting that the reagent with 
the associations was in fact measuring the protein in question (Fig. 8). 
Further, in the case of ANGPTL3, where the aptamer reagent was 
updated from Soma1.3K to Soma5K, we were further able to show 
that correlations with the ELISA and the Olink reagent also im-
proved (Fig. 8E).

Table 1. pQTLs for each platform by correlation cluster.  

Cluster Olink Soma1.3K Olink and Soma1.3K Neither Total

Low correlation 66 13 19 109 207

Medium correlation 36 15 38 84 173

High correlation 21 26 107 82 236

Total 123 54 164 275 616
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DISCUSSION
A deeper understanding of the proteomic profiles of disease is crucial 
for future research efforts, and cohorts focused on cardiovascular 
phenotypes are among the largest to leverage these platforms thus 
far (2, 9, 13, 33). Proteomic insights can improve disease prediction, 
uncover novel pathways, and identify drug targets (2, 22, 34). Com-
pared to previous proteomic platform comparisons, which were 
limited by sample size (16), a key strength of our data is that they 
provide a more comprehensive investigation across multiple domains 
for two of the most widely used profiling platforms available within 
two large, well-phenotyped cohorts. Using these data, researchers 
may be better equipped to interpret existing proteomic data and/or 
plan future investigations with a clearer understanding of the rela-
tive strengths and limitations of each platform.

Our data help illuminate the advantages afforded by each plat-
form. Aptamer-based protein measurements are more consistent 
over repeated measures, whether examining intra-assay or inter-assay 
CVs, consistent with previous work (1, 4, 35, 36). The CVs on the 
Olink platform may be improved if more pooled plasma measure-
ments were used; however, the Soma1.3K platform still outperformed 
Olink when limited to two pooled plasma measurements. The rea-
son for these differences remains unclear but may in part be related 
to the exquisitely small sample volume used for Olink, which, in some 
cases, may itself be considered an advantage, in the case of limited 
sample availability. Olink antibody reagents are also sometimes 

polyclonal, which could affect precision but may also make them 
more resistant to binding interference. When planning studies with 
Olink data, greater sample sizes or larger protein effect sizes may be 
needed to overcome the observed measurement variability, com-
pared to SomaScan.

To draw strong biological conclusions from proteomic analysis, 
accuracy is paramount. To this end, use of a gold standard is opti-
mal, and we and others have worked to verify a small but important 
subset of platform reagents using LC-MS (1, 25). In the absence of a 
cost/time-effective gold standard for these platforms, comparing 
the platforms to each other and to available genetics data can help 
inform specificity. The correlations between reagents on each plat-
form revealed a picture of three clusters of proteins. In one cluster, 
the two measurements are highly correlated, suggesting specificity 
for both. In another cluster, the mean correlation is near zero, im-
plying that the platforms are not measuring the same target and one 
or both assays may be inaccurate. Last, there is a distinct middle ground. 
We hypothesize that many of these medium correlation reagents are 
measuring the same target protein, likely the correct one, but the reagents 
on one or both platforms may be affected differentially by interac-
tions with another protein or some posttranslational modification.

Genetic variation provides a useful initial orthogonal tool to support 
specificity. Genetic variation in or near the gene that codes for a pro-
tein can affect plasma protein levels (13, 22–25), such that identifying 
these cis pQTLs for a reagent can indicate that they are accurately 
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Fig. 5. PCA of each platform. (A) Total platform variance explained by each of the top 10 PCs on each platform. (B) Total cumulative variance explained with 95% variance 
marked by the black horizontal line. (C) Scatterplot of each participant showing their top 2 PCs and overlaid with eGFR, age, or sex.
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targeting the stated protein. In this assessment, Olink held an advantage, 
as a higher percentage of proteins on that platform had cis pQTLs. 
Among overlapping proteins at low correlation, the Olink platform 
showed more pQTLs, suggesting that in a cluster where there is un-
certainty about each platform’s specificity, Olink was more likely 

binding the specified protein. Furthermore, it is notable that the speci-
ficity of antibody-based reagents is more readily confirmed with alter-
nate biochemical methods, as compared to aptamer-based reagents.

Both proteomic platforms are presently expanding: SomaScan 
has already made available a 7K platform with even greater breadth 
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Fig. 6. Phenotypic associations by platform. (A) Number of associations on each platform across eight phenotypes and at three different significance thresholds. 
(B) Associations at P < 0.05 for the same eight phenotypes but limited to overlapping proteins from each platform. The associations are shown on the same distribution 
of Spearman correlations as seen in Fig. 3. ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index (kg/m2); eGFR, estimated glomerular filtration rate 
(ml/min/1.73 m2); FEV1, Forced expiratory volume in the first second (L); HbA1c, hemoglobin A1c (%); SBP, systolic blood pressure (mmHg), total cholesterol/HDL, total 
cholesterol divided by high-density lipoprotein cholesterol; FDR, false discovery rate.
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than the Soma5K assessed here. Although Olink and the Soma1.3K 
measure similar numbers of proteins, our PCA suggests that the 
aptamer-based platform captures more statistical variation in the 
proteome. Further, Soma1.3K measures more protein kinases, a 
particularly important subclass given their utility as drug targets—
although the roles of circulating kinases in the plasma are of less clear con-
sequence. Together, our data suggest that the aptamer-based platforms, 
including the Soma5K, capture a larger statistical and biological breadth 
of information. Expansions of the Olink platform are also underway 
and should be compared to the expanded SomaScan7K.

PCA revealed the notable impact of age and eGFR on protein 
levels, accounting for substantial variation on both platforms, although 
the effect was smaller for the Soma1.3K platform. This suggests that 
caution should be taken when extrapolating findings from a cohort 
with renal dysfunction and highlights the importance of adjusting 
protein measurements for these variables.

Ultimately, precision, accuracy, and breadth influence each plat-
form’s ability to detect meaningful biological associations and in-
sights. Conversely, reagents that capture more noise than variation 
in protein abundance are unlikely to associate with well-measured 
clinical variables. The breadth of the Soma5K increases the number 
of associations detected and, coupled with its larger statistical and 
biological coverage, may provide a valuable advantage for prelimi-
nary or discovery screens. Critically, however, when only over-
lapping proteins were considered, the Olink platform detected 
more associations across phenotypes of interest, particularly in the 
region of low inter-platform correlation, overcoming the slightly 
lower precision of the platform overall. This pattern was observed 

when comparing Olink to either the Soma1.3K or the Soma5K. These 
data, when considered with correlation and genetic information, 
suggest that at least across overlapping reagents, Olink’s specificity 
may increase the likelihood of finding reliable phenotypic associations.

It is important to note, however, that more associations do not 
always translate into more information. Despite measuring fewer 
protein targets, the earlier Soma1.3K platform was able to explain 
nearly as much, if not more, total variance in the phenotypes of interest, 
a feature that could draw benefit in outcome prediction or assessing 
a wider variety of disease states. Alternatively, multiple, accurately 
identified proteins tagging the same biological pathway could add 
weight to a pathway analysis and biological inference. The preferred 
profile depends on the research goals. Future work assessing these 
ever expanding and improving platforms will be necessary to ensure 
their optimal application.

Our ELISA-based experiments support the hypothesis that using 
genetics or phenotype associations to infer specificity or usability as 
described above is valid. Across four protein targets, the reagent with 
the cis pQTL or the phenotypic association also showed strong agree-
ment with the ELISA-based assay, while the other reagent did not. 
In our four examples, this reagent was always the antibody-based 
reagent, although there is absolutely no reason to suspect an aptamer 
with the same characteristics would not show the same pattern. Notably, 
while HSP70 had the stronger phenotypic association for the Olink 
reagent, which, in turn, was better correlated to the ELISA measure-
ment, there is a weak cis pQTL for the Soma1.3K aptamer (table S2). 
Close investigation showed that this variant, chr6:32604567:G:GA, 
is actually in the major histocompatibility complex region of chro-
mosome 6. We and others note this to be a region of high linkage 
disequilibrium, which can interfere with cis pQTL identification 
(21, 22). We suspect this variant is not a true cis pQTL for HSP70.

Our work has important limitations. We did not have repeated 
measurements from participant samples (rather than pooled sam-
ples), which would allow for more accurate CVs and the ability to 
calculate intraclass correlations, another important metric of preci-
sion. The number of participants for whom the Soma5K platform 
overlaps with Olink is limited, and a greater sample size would en-
hance the veracity of our observations. Determinations of reagent 
specificity are inferred without direct verification with LC-MS, 
which remains the “gold standard,” and as reagents are gradually 
verified by this approach, those results should likely supersede con-
clusions drawn from the data presented here (25). We are not able 
to independently determine lower limit of detection or quantifica-
tion for each reagent given cost and time constraints, although these 
data are available from each manufacturer. In our validation experi-
ments with ELISAs, each reagent was able to quantify at least as low 
as the lowest levels as measured by the ELISA.

In summary, our data provide a comprehensive comparison of 
large-scale plasma proteomic profiling platforms. The antibody-based 
platform appears to confer a protein-for-protein edge in specificity 
and phenotypic association, while the aptamer-based approach demon-
strates more reproducible measurements and greater breadth of 
measurement across the proteome. When choosing a platform, other 
factors, not directly comparable, may also bear consideration, such 
as required sample volume, scalability, and cost. Both have provided 
excellent biological insights in multiple investigations and likely 
will continue to do so, particularly when profiling with LC-MS, de-
spite notable recent improvement (37), cannot presently provide 
the necessary sample throughput.

Table 2. Lasso regression models in JHS. Lasso regression models are 
shown for eight phenotypes derived from all proteins available on each 
platform across 568 samples in JHS. The variance explained by the model 
and the number of proteins required to achieve that level of variance are 
shown. FEV1, Forced expiratory volume in the first second. HDL, high-density 
lipoprotein; ASCVD, atherosclerotic coronary risk score. ASCVD risk score 
is based on the pooled cohort equation. 

Phenotypes R2 Olink 
(SD)

R2 
Soma1.3K 

(SD)

No. of 
proteins 

Olink

No. of 
proteins 

Soma1.3K

Body mass 
index

0.758 
(0.026)

0.718 
(0.037) 152 131

Estimated 
glomerular 
filtration rate

0.655 
(0.058)

0.643 
(0.053) 87 144

Hemoglobin 
A1c

0.613 
(0.056) 0.55 (0.075) 137 178

Height 0.544 
(0.045)

0.517 
(0.038) 143 99

FEV1 0.575 
(0.052)

0.579 
(0.049) 97 49

Total 
cholesterol/
HDL

0.587 
(0.071)

0.596 
(0.062) 69 65

Systolic 
blood 
pressure

0.217 
(0.055)

0.162 
(0.057) 51 68

ASCVD risk 
score

0.567 
(0.041)

0.535 
(0.034) 81 84
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MATERIALS AND METHODS
Study approval
The JHS study was approved by Jackson State University, Tougaloo 
College, and the University of Mississippi Medical Center institutional 
review boards, and all participants provided written informed con-
sent. The human study protocols were approved by the institutional 
review boards of Beth Israel Deaconess Medical Center, University 
of Washington, and the four clinical centers of HERITAGE.

Cohorts
The JHS and the HERITAGE Family Study have been described 
(38, 39). Briefly, the JHS is a community-based longitudinal cohort 
study begun in 2000 of 5306 self-identified Black individuals from 
the Jackson, Mississippi metropolitan statistical area (38). Included 
in the present study are samples collected at visit 1 between 2000 
and 2004 from 568 individuals. Clinical traits in JHS have been de-
fined previously (40). Resting blood pressure was measured by re-
cording two measurements in the seated position with a Hawksley 
random zero sphygmomanometer using one of four cuff sizes selected 
by measuring arm circumference. Hypertension was defined as use of 
blood pressure lowering medication or blood pressure > 140/90 mmHg. 
Hypertensive treatment was determined by patient medication in-
ventory or self-report of taking blood pressure medication. Routine 
laboratory measurements were made at visit 1 using standard veni-
puncture and laboratory techniques. Glomerular filtration rate 

was estimated using the Chronic Kidney Disease Epidemiology 
Collaboration equation (41). An ASCVD 10-year risk was estimated 
from the pooled cohort equations (42). Summary statistics are pre-
sented as means ± SD.

HERITAGE enrolled a combination of self-identified white and Black 
family units, totaling 763 sedentary participants (62% white) between 
the ages of 17 and 65 years in a 20-week, graded endurance exercise 
training study across four clinical centers in the United States and Canada 
in 1992 to 1997 (39). Included in the present study is a subset of 219 
individuals demographically representative of the overall HERITAGE 
cohort with baseline (pretraining), fasted plasma samples. The HERI-
TAGE phenotype measurement protocols have been described (39). 
Resting blood pressure was measured twice in the fasted state after at 
least 5 min acclimating to a quiet environment using an appropriately 
sized automated unit (Colin STBP-780, Colin Medical Instruments, 
San Antonio, TX) and subsequently averaged. Standard laboratory 
assessments were performed using 12-hour fasting, morning samples.

SomaScan proteomic profiling
JHS plasma samples were collected at visit 1  in EDTA tubes and 
then maintained in −70°C freezers (40). Proteomic measurements 
were performed using Soma1.3K, a single-stranded DNA aptamer-
based proteomic platform, which contained 1305 aptamers (43). 
Nonhuman proteins were excluded from analysis (N = 4) for a final 
count of 1301. Samples were run in two separate batches.

Fig. 7. Comparison between Soma5K and Olink Explore in HERITAGE. Plasma profiling was performed on a random subset of HERITAGE (N = 219). (A) Overlap be-
tween unique UniProt targets between the two platforms. (B) Spearman correlations between overlapping reagents on Olink and Soma5K. K-means clustering divided 
the distribution into three clusters. (C) Phenotypic associations between all reagents on each platform and four phenotypes at P < 0.05. (D) Associations at P < 0.05 for the 
same four phenotypes but limited to overlapping proteins from each platform. The associations are shown on the same distribution of Spearman correlations as seen in (B).
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Fig. 8. Correlations between ELISA and both Olink and Soma. In 60 random samples from either JHS or HERITAGE (according to sample availability), protein levels 
were assayed by ELISA and compared to measurements from each affinity platform. Shown here are the normalized data and Spearman correlations for (A) CD97, 
(B) mesothelin, (C) HSP70, and (D and E) ANGPTL3. In the case of (A) to (D), aptamers are those featured on the Soma1.3K, while (E) features a new ANGPTL3 aptamer, 
upgraded on the Soma5K platform. Absolute concentrations by ELISA are shown on a log scale axis, while affinity reagent measurements are log2-transformed and scaled.
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In HERITAGE, plasma samples were collected in EDTA tubes and 
stored at −80°C, then were diluted in three different concentrations 
(40, 1, and 0.05%), and profiled using the expanded Soma5K platform 
(4979 aptamers) in a single batch. Plasma samples had either zero or 
one freeze-thaw cycle before proteomic profiling.

Assays were performed using SomaScan reagents according to 
the manufacturer’s detailed protocol (43). Briefly, a SomaScan re-
agent is a single-stranded DNA-based aptamer that is chemically 
modified to enhance binding to conformational protein epitopes. 
In addition, the aptamers are flourophore-tagged to allow detection 
by standard oligoarray readers. The assay measures proteins directly 
from plasma using a multistep capture, release, and recapture enrich-
ment process. Plasma proteins first bind to the bead-immobilized 
aptamers. Aptamer-bound proteins are then biotinylated. Aptamer-
protein complexes are next released by a photocleavage process. 
Biotinylated proteins are then bound to a second set of streptavidin 
beads. Following a washing step, aptamers are released from the 
protein targets and collected. The fluorophore-tagged modified nu-
cleotides are quantitated using an oligoarray plate reader providing 
relative fluorescent unit readout, which is proportional to protein 
concentration in the sample. The assay was performed on 96-well 
plates with 85 wells on each plate dedicated to study samples and 11 
wells used for quality controls (QCs). QC samples include seven 
“calibrator” plasma samples from a single “pool” that are used by 
the manufacturer to assess intra-assay CVs and standardize across 
experiments; four samples from a distinct “QC” plasma pool are used 
to assess inter-assay CVs across plates. Sample data were normal-
ized to remove hybridization variation within an oligoarray reader 
set followed by median normalization across all samples to remove 
other assay biases within the run and lastly calibrated to remove 
assay differences between runs. Samples are log2-transformed and 
scaled to mean of 0 and SD of 1. This is done within batch if samples 
were run in batches, which was the case in JHS but not HERITAGE.  
Outlier analysis was performed by PCA (see below); no outliers 
were identified.

Olink Explore proteomic profiling
Profiling was performed in a single batch in JHS and two batches of 
N = 88 and N = 121 in HERITAGE using the Olink Explore panel 
(Olink Proteomics AB, Uppsala, Sweden) according to the manu-
facturer’s instructions using separate aliquots. The Proximity Extension 
Assay technology used for the Olink protocol has been described 
(5), and Olink enables analysis using 2.8 l of each sample. Briefly, 
pairs of oligonucleotide-labeled antibody probes bind to their tar-
geted protein, and if the two probes are brought in close proximity, 
the oligonucleotides hybridize in a pair-wise manner. The addition 
of a DNA polymerase leads to a proximity-dependent DNA polym-
erization event, generating a unique double-stranded DNA barcode 
for each specific antigen. The resulting DNA sequence is subse-
quently detected and quantified using next-generation sequencing 
(Illumina NovaSeq). Data are then quality-controlled and normal-
ized using an internal extension control and a plate control, to 
adjust for intra- and interrun variation. The final assay readout is 
presented in Normalized Protein eXpression (NPX) values, which 
is log2-transformed ratio of sample assay counts to extension con-
trol counts; a higher value corresponds to a higher protein expres-
sion. Internal controls for incubation, extension, and amplification 
are included on each plate. Outlier analysis was performed by PCA; 
two samples were removed across all JHS analyses resulting in the 

present N = 568 of the present study. No samples were excluded in 
HERITAGE analyses. All assay validation data (detection limits, 
intra- and inter-assay precision data, etc.) are available on manufac-
turer’s website (www.olinkexplore.com).

Pairing platform reagents by protein targets
Protein targets are identified here by their UniProt ID (www.uniprot.
org), which uniquely identifies a peptide sequence. As proteins are 
commonly found in multimers, some affinity reagents target multiple 
UniProt IDs. Conversely, on both platforms, there are instances where 
multiple reagents target the same protein. Thus, reagents on each plat-
form were paired to one another for direct comparison if they target 
the same UniProt ID. These reagents are identified as “overlapping.”

Comparing CVs
While Soma1.3K plates include several replicates for calculating CVs 
(see above), for the direct comparison described here, calculations 
of CV on the Soma1.3K platform were limited to the first two QC 
samples on each plate to match the number of pooled plasma sam-
ples on Olink plates. Intra-assay CVs were calculated using those two 
standard pooled plasma samples on each plate and then averaged 
across all plates. Inter-assay CVs were calculated using 14 pooled 
plasma samples from Olink (two each from seven plates) and 10 pooled 
plasma samples from Soma1.3K (two each from five plates, batch 1 
samples only). The median CV was determined for each platform, 
as well as the 10, 25, 75, and 90 percentile CVs. Because Olink NPX 
values are log2-transformed, CVs were calculated using the equa-

tion recommended by Olink: ​CV = ​ √ 
_______________

  ​e​​ ​(ln(2)×​​ NexusNPX​​)​​ 2​​ − 1 ​ ​compared 

to CV =  ÷  for Soma1.3K.

Correlation of matched reagents
For reagents on each platform targeting the same UniProt protein, 
Spearman correlation was calculated using log2-transformed and 
scaled measurements. K-means clustering was used to identify sub-
groups of correlation. Three clusters were created on the basis of the 
elbow method.

Genotyping and imputation
WGS in JHS has been previously described (44, 45). Included in the 
present study are participants included in Freeze 6 of the Trans-
Omics for Precision Medicine (TOPMed) project, sequenced at the 
Northwest Genome Center at University of Washington. Samples 
underwent >30× WGS. Genotype calling with vt (46) and QC were 
performed by the Informatics Resource Center at the University 
of Michigan (44).

WGS association analysis in JHS
Log-transformed and scaled (to mean = 0 and SD = 1) Soma1.3K 
measurements were residualized on age, sex, batch, and PCs of an-
cestry 1 to 10 as determined by GENetic EStimation and Inference 
in Structured samples (47). The resulting residuals were then inverse 
normalized. Olink protein measurements underwent the same normal-
ization but did not require adjustment for batch. The association between 
these values and genetic variants was tested using linear mixed effects 
models adjusted for age, sex, the genetic relationship matrix, and PCs 1 
to 10 using the fastGWA model implemented in the Genome-wide 
Complex Trait Analysis (GCTA) software package (version 1.93.2beta/
gcta64) (48). Repeat adjustment for covariates was implemented to 
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reduce type I error and improve statistical power (49). Variants 
with a minor allele count less than five were excluded from analysis.

Identifying cis pQTLs
Cis pQTLs were defined as variants associated with protein mea-
surement and located within 1 megabase (Mb) of the transcription 
start site of the cognate gene of the target protein. A P value threshold 
was set at 1 × 10−5. Given that genome-wide significance accounts 
for 3 billion bases, adjusting genome-wide significance to the 2-Mb 
window gives 5 × 10−8 × (3 × 109/2 × 106) = 7.5 × 10−5. Thus, 1 × 10−5 is 
a conservative threshold.

Identifying previously identified cis pQTLs in PhenoScanner
To determine whether pQTLs were previously unknown, we used the 
PhenoScanner package (version 2) for R (50, 51). For each protein-
locus association identified above, we divided the locus into 1 Mb 
or less segments (maximum permitted by PhenoScanner application 
programming interface) if needed. The resulting region or regions 
were then passed to the phenoscanner function in R, with the fol-
lowing arguments: build was set to “38,” P value to 1 × 10−5, catalog 
to “pQTL,” proxies set to “None” (query date 5 April 2022). To sup-
plement PhenoScanner, we reviewed the literature for additional 
studies using SomaScan or Olink to identify the genetic architec-
ture of the plasma proteome, and we identified that three are not in 
the PhenoScanner (2, 13, 25). Results from these studies were con-
sidered using the same criteria as above.

Protein annotation using PANTHER
The PANTHER classification system (http://pantherdb.org/) was 
used to annotate each protein, using the complete set of UniProt 
IDs covered by each platform, and protein counts for each category 
on each platform are displayed. Categories are arranged by the total 
number of proteins from either platform.

Principal components analysis
After log2 transformation and scaling of measurements were per-
formed on each platform to achieve normal values as above, missing 
values on the Olink platform (0.2% of all measurements) were imputed 
by substituting the mean value for that protein. There were no missing 
values in the Soma1.3K data. PCA was performed on each full plat-
form using the “tidymodels” package in R 4.0.2 (Vienna, Austria). 
The percent variation explained by each PC and the number of PCs 
to explain 95% of the total platform variation were determined.

Clinical trait associations
Associations between clinical traits (dependent variable) and log2-
transformed and scaled proteins (independent variable) on each 
platform were determined by linear regression. Models were adjusted 
for age and sex. Models for Soma1.3K proteins were also adjusted 
for batch. Lasso models were fit for each trait-platform combina-
tion with age, sex, and batch (for Soma1.3K in JHS), and all proteins 
were entered into the model. The tuning parameter giving the mini-
mum integrated mean squared error was identified by fivefold 
cross-validation repeated five times.

Validation against ELISA
Four proteins (ANGPTL3, CD97, HSP70, and mesothelin) were 
selected on the basis of ELISA availability and the criteria that 
one reagent for the protein had a cis pQTL and/or a phenotypic 

association, while the other reagent did not. Sixty random samples 
from JHS or HERITAGE or both when sample availability allowed 
were selected, and protein levels were measured by ELISA using 
commercially available kits. Kits for ANGPTL3 (#EH29RB) and 
HSP70 (#BMS2087) are from Thermo Fisher Scientific, and kits for 
CD97 (#ab213763) and mesothelin (#ab216168) are from Abcam. 
Standard curves were run with protein standards serially diluted in 
buffers according to the manufacturer’s instruction. Spearman’s 
correlation rho () was calculated for ELISA versus Olink, ELISA 
versus Soma, and Soma versus Olink within the 60 samples. For 
proteins measured in HERITAGE samples, where aptamer mea-
surements come from the Soma5K platform, the same aptamer is 
used as on the Soma1.3K platform, with the exception of ANGPTL3 
that had an updated aptamer on the Soma5K platform. ANGPTL3 
ELISA measurements were thus done in JHS (Soma1.3K) and 
HERITAGE (Soma5K) for comparison.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm5164

View/request a protocol for this paper from Bio-protocol.
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