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International society of sports nutrition
position stand: nutrient timing
Chad M. Kerksick1, Shawn Arent2, Brad J. Schoenfeld3, Jeffrey R. Stout4, Bill Campbell5, Colin D. Wilborn6, Lem Taylor6,
Doug Kalman7, Abbie E. Smith-Ryan8, Richard B. Kreider9, Darryn Willoughby10, Paul J. Arciero11, Trisha A. VanDusseldorp12,
Michael J. Ormsbee13,14, Robert Wildman15, Mike Greenwood9, Tim N. Ziegenfuss16, Alan A. Aragon17

and Jose Antonio18*

Abstract

Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review
regarding the timing of macronutrients in reference to healthy, exercising adults and in particular highly trained
individuals on exercise performance and body composition. The following points summarize the position of the ISSN:

1. Nutrient timing incorporates theuseofmethodical planning andeatingofwhole foods, fortified foods anddietary
supplements. The timingof energy intake and the ratio of certain ingestedmacronutrientsmayenhance recovery and
tissue repair, augmentmuscle protein synthesis (MPS), and improvemood states followinghigh-volumeor intense exercise.

2. Endogenous glycogen stores are maximized by following a high-carbohydrate diet (8–12 g of carbohydrate/kg/
day [g/kg/day]); moreover, these stores are depleted most by high volume exercise.

3. If rapid restoration of glycogen is required (< 4 h of recovery time) then the following strategies should be considered:

a) aggressive carbohydrate refeeding (1.2 g/kg/h) with a preference towards carbohydrate sources that have a
high (> 70) glycemic index

b) the addition of caffeine (3–8 mg/kg)
c) combining carbohydrates (0.8 g/kg/h) with protein (0.2–0.4 g/kg/h)

4. Extended (> 60 min) bouts of high intensity (> 70% VO2max) exercise challenge fuel supply and fluid regulation,
thus carbohydrate should be consumed at a rate of ~30–60 g of carbohydrate/h in a 6–8% carbohydrate-
electrolyte solution (6–12 fluid ounces) every 10–15 min throughout the entire exercise bout, particularly in those
exercise bouts that span beyond 70 min. When carbohydrate delivery is inadequate, adding protein may help
increase performance, ameliorate muscle damage, promote euglycemia and facilitate glycogen re-synthesis.

5. Carbohydrate ingestion throughout resistance exercise (e.g., 3–6 sets of 8–12 repetition maximum [RM] using
multiple exercises targeting all major muscle groups) has been shown to promote euglycemia and higher glycogen
stores. Consuming carbohydrate solely or in combination with protein during resistance exercise increases muscle
glycogen stores, ameliorates muscle damage, and facilitates greater acute and chronic training adaptations.

6. Meeting the total daily intake of protein, preferably with evenly spaced protein feedings (approximately every 3 h
during the day), should be viewed as a primary area of emphasis for exercising individuals.

7. Ingestion of essential amino acids (EAA; approximately 10 g)either in free form or as part of a protein bolus of
approximately 20–40 g has been shown to maximally stimulate muscle protein synthesis (MPS).

(Continued on next page)
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8. Pre- and/or post-exercise nutritional interventions (carbohydrate + protein or protein alone) may operate as an
effective strategy to support increases in strength and improvements in body composition. However, the size
and timing of a pre-exercise meal may impact the extent to which post-exercise protein feeding is required.

9. Post-exercise ingestion (immediately to 2-h post) of high-quality protein sources stimulates robust increases in MPS.
10.In non-exercising scenarios, changing the frequency of meals has shown limited impact on weight loss and

body composition, with stronger evidence to indicate meal frequency can favorably improve appetite and
satiety. More research is needed to determine the influence of combining an exercise program with altered
meal frequencies on weight loss and body composition with preliminary research indicating a potential
benefit.

11.Ingesting a 20–40 g protein dose (0.25–0.40 g/kg body mass/dose) of a high-quality source every three to 4 h
appears to most favorably affect MPS rates when compared to other dietary patterns and is associated with
improved body composition and performance outcomes.

12.Consuming casein protein (~ 30–40 g) prior to sleep can acutely increase MPS and metabolic rate throughout
the night without influencing lipolysis.

Keywords: Position stand, Exercise, Nutrition, Timing, Macronutrients, Performance, Micronutrients, Nutrients

Background
The International Society of Sports Nutrition (ISSN) pub-
lished the first position stand devoted to the practice of
nutrient timing in 2008 [1]. Consequently, this paper has
been accessed approximately 122,000 times. In the past
nine years, multiple lines of research have explored ques-
tions directly related to the timing of nutrients that further
refines information about evidence-based nutritional rec-
ommendations. Nutrient timing involves the purposeful
ingestion of all types of nutrients at various times
throughout the day to favorably impact the adaptive re-
sponse to acute and chronic exercise (i.e., muscle strength
and power, body composition, substrate utilization, and
physical performance, etc.). Importantly, much of the
interest and available research centers upon outcomes
related to those who are regularly competing in some
form of aerobic or anaerobic exercise; however, nutrient
timing strategies may offer favorable outcomes for non-
athletic and clinical populations.
From a historical perspective, nutrient timing was first

conceptualized in the 1970s and 1980s with the initial
work that examined the effects of increased carbohy-
drate feedings on glycogen status and exercise perform-
ance [2, 3]. Ivy and colleagues [4] were one of the first
groups to illustrate that carbohydrate timing can influ-
ence post-exercise rates of glycogen resynthesis. While
strategies surrounding carbohydrates were the first to be
explored, there has been a growing body of research
over the last several years that has examined the effect
of protein and amino acids, with and without carbohy-
drates, as a nutrient timing strategy [1, 5].
Due to the volume of research investigating this con-

cept, the need to revise and update the original docu-
ment is evident. In line with the previous publication,

the updated version focuses on timing considerations for
two macronutrients: carbohydrates and proteins. When
considering fat, research examining a specific timing
question has yet to take shape. As researchers continue
to explore the manipulation of fat and carbohydrate
intake (e.g., ‘train low, perform high’) [6], it is possible
that future recommendations may include the timing of
fat intake. It is exciting to note that new research has
begun to examine the impact of timed calcium (a micro-
nutrient) intake on its ability to affect markers of bone
resorption during prolonged cycling exercise [7–10] and
animal models have explored the potential role of timing
iron intake on various health-related outcomes [11, 12].
This research, however, is in its infancy and more studies
are needed to better understand these implications. Fur-
thermore, future versions of this position stand may
need to consider expanding the document’s scope to in-
clude other ergogenic aids. For instance, research related
to caffeine [13], creatine [14–16] and bicarbonate [17]
have indicated that timing may affect the acute and
chronic response to exercise. Therefore, the primary
purpose of this updated position stand is to refine rec-
ommendations made related to the timed consumption
of carbohydrates and protein and how this can poten-
tially affect the adaptive response to exercise.
To expand upon the previous version, the current pos-

ition stand now discusses research and recommendations
related to meal patterns, timing, and distribution of pro-
tein, meal frequency and nighttime eating. It is the con-
tention of the ISSN that these topics also fall under the
purview of nutrient timing. Additionally, non-athletic or
specialized clinical populations may also derive benefit
from these strategies. Throughout each section, an at-
tempt has been made to first highlight outcomes from

(Continued from previous page)
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acute studies before discussing those derived from training
studies spanning several weeks or more.

Carbohydrate
Moderate to high intensity (e.g., 65–80% VO2max) en-
durance activities as well as resistance-based workouts
(e.g., three to four sets using ~ 6–20 repetition max-
imum [RM] loads) rely extensively upon carbohydrate as
a fuel source; consequently, endogenous (liver: ~ 80–
100 g and skeletal muscle: 300–400 g) glycogen stores
are of critical importance. It is well documented that
glycogen stores are limited [18, 19] and operate as a pre-
dominant source of fuel for up to a few hours during
moderate to high-intensity aerobic exercise (e.g., 65–
85% VO2max) [20, 21]. During resistance training, per-
forming six sets of 12RM leg extension exercise has been
shown to reduce glycogen stores in the vastus lateralis
by 39% [22]. Importantly, as glycogen levels decline, the
ability of an athlete to maintain exercise intensity and
work output also decreases [19] while rates of tissue
breakdown increase [23, 24]. The simplest guideline to
maximize endogenous glycogen stores is for a high-
performance athlete to ingest appropriate amounts of
carbohydrate relative to their intensity and volume of
training. Recommended daily intakes of carbohydrate
are commonly reported to be 5–12 g/kg/day, with the
upper end of this range (8–10 g/kg/day) reserved for
those athletes that are training at moderate to high in-
tensities (≥ 70% VO2max) upwards of 12 h per week
[25–27]. In the absence of considerable muscle damage,
this carbohydrate intake level has been shown to
maximize glycogen storage. Percentage-based recom-
mendations (60–70% carbohydrates of total daily caloric
intake) have fallen out of favor due to their inability to
appropriately prescribe required carbohydrate amounts
in athletes eating high amounts of food or in those who
may be following a restricted energy intake.
It should be noted that most of the recommendations

for carbohydrate intake are based on the needs of endur-
ance athletes, and in particular, male endurance athletes.
Moreover, studies have indicated that trained female ath-
letes do not oxidize fat and carbohydrate at the same
rates as males and may deplete endogenous glycogen
stores to different degrees [28–31]. Perhaps those in-
volved in strength-power sports need a lower intake of
carbohydrate and instead should focus more on priori-
tizing their carbohydrate intake in the days leading up to
competition, but more research is required as this topic
has been critically evaluated in a review by Escobar et al.
[32]. It should be noted that athletes often fail to meet
recommended amounts of energy and carbohydrate;
consequently [33], strategies to replenish carbohydrate
stores may take priority toprepare for maximal perform-
ance in the next competition.

Endurance training
The first nutrient timing strategy centered solely upon
the strategic intake of carbohydrate as part of “carbohy-
drate loading” protocols in the days leading up to pro-
longed endurance competitions. Initial work by Karlsson
and Saltin in the 1970s reported that a period of high-
volume exercise training while consuming limited
amounts of carbohydrates for three to four days followed
by a diet providing > 70% carbohydrate (~ 8 to 10 g/kg/
day), while sharply reducing training volume, facilitated
supersaturation of muscle glycogen and an improved
pace of training for more prolonged periods of time [3].
Sherman and colleagues [2, 34] also demonstrated suc-
cess at maximizing intramuscular glycogen stores using
similar approaches. Alternatively, Bussau et al. [35] re-
quired study participants to ingest high-glycemic carbo-
hydrate (10 g/kg/day) for one day after completing a
Wingate anaerobic capacity test which resulted in a near
doubling of baseline muscle glycogen concentrations. A
similar approach by Fairchild et al. [36] yielded similar
results and highlights the ability to forgo a “glycogen de-
pletion” phase and instead to simply reduce training
volume for three to four days while simultaneously con-
suming a very high-carbohydrate diet (8–10 g/kg/day)
for one to three days to maximize intramuscular glycogen
levels. Overall, the ability of carbohydrate loading stra-
tegies to rapidly increase and maximize muscle glycogen
levels is currently unquestioned, and many athletes and
coaches are encouraged to consider making use of such a
dietary regimen in the days leading up to a competitive
event, particularly if their activity will significantly deplete
endogenous skeletal muscle glycogen. It is important to
mention that due to noted sex differences related to
carbohydrate metabolism and the supercompensation of
glycogen stores, female athletes may need to significantly
increase total caloric intake over these “loading days” to
achieve effects similar to males [31].
The hours leading up to competition are often a highly

prioritized period of feeding and studies have indicated
that strategic fuel consumption can help to maximize
muscle and liver glycogen levels. Carbohydrate feedings
during this time increase endogenous glycogen stores
while also helping to maintain blood glucose levels. Not-
ably, Coyle et al. [19] reported that consumption of a
high-carbohydrate meal 4 h before 105 min of cycling ex-
ercise at 70% VO2max after an overnight fast significantly
increased both muscle and liver glycogen while also in-
creasing rates of carbohydrate oxidation and utilization of
muscle glycogen. In addition to increasing stored glyco-
gen, other studies have reported significant improvements
in aerobic exercise performance [37–39]. However, not all
studies have demonstrated a performance-enhancing ef-
fect. Nonetheless, it is commonly recommended to con-
sume snacks or meals high in carbohydrate (1–4 g/kg/

Kerksick et al. Journal of the International Society of Sports Nutrition  (2017) 14:33 Page 3 of 21



day) for several hours before higher-intensity (≥ 70%
VO2max), longer duration (> 90 min) exercise. Addition-
ally, and as a measure of practical importance, the need to
ingest a pre-exercise meal or snacks high in carbohydrate
goes up when the athlete has consumed relatively small
amounts of carbohydrate in the days leading up to a com-
petition or has not allowed for appropriate amounts of
rest and recovery [20, 24].
In the final (< 4) hours before a competition, the ath-

lete’s priority should still be to maximize or maintain op-
timal levels of muscle and liver glycogen. In this respect,
another priority becomes maintaining a favorable bal-
ance with the digestive system and avoiding the con-
sumption of too much food or fluid before competition.
Practically speaking, many endurance events begin in
the early morning hours and finding an adequate bal-
ance between rest and fuel must be considered. In this
respect, two studies have reported that solid or liquid
forms of carbohydrates similarly promote glycogen re-
synthesis allowing athletes more flexibility when select-
ing food sources [40, 41]. A certain degree of dogma still
clouds the recommendation to ingest certain types of
carbohydrate, or avoid carbohydrate altogether, in the
final few hours before an event. The source of this prac-
tice stems from initial findings of Foster and colleagues
[42] who reported a negative, hypoglycemic response to
carbohydrate ingestion directly preceding (< 60 min) ex-
ercise. From these findings, it has been surmised that ex-
cessive carbohydrate consumption, and in particular
fructose consumption, in the initial hours before exercise
may negatively impact exercise performance perhaps
due to rebound hypoglycemia. Indeed, given the rise in
insulin due to carbohydrate ingestion coupled with up-
regulation of GLUT-4 transporters from the initiated
exercise stimulus, there may be a decrease, rather than
increase, in blood glucose at the onset of activity that
could negatively impact performance. However, while a
number of athletes may be affected by this phenomenon,
a study by Moseley et al. [43] demonstrated that any “re-
bound hypoglycemia” response is effectively negated by
what would be the equivalent of a proper warm-up and
that shifting carbohydrate intake closer (15 min vs.
75 min) to when the exercise bout is scheduled to begin
can minimize the likelihood of these symptoms. A 1997
review by Hawley and Burke summarized the results of
several studies that provided some form of carbohydrate
at least 60 min before exercise. They found no adverse
impact on performance. In fact, multiple studies re-
ported performance increases of 7–20% [44]. Moreover,
Galloway and colleagues [45] used a double-blind,
placebo-controlled approach to compare performance
outcomes related to ingestion of a placebo or a 6.4%
carbohydrate beverage either 30 min or 120 min before
a controlled bout of cycling at 90% peak power.

Ingesting carbohydrate 30 min before exercise led to
greater increases in exercise capacity. In contrast, two
studies were completed by Febrraio [46, 47] that re-
quired the ingestion of high or low-glycemic carbohy-
drates 30–45 min before completing bouts of exercise
that spanned 135–150 min at approximately 70%
VO2max. They concluded that performance was similar
for both types of carbohydrate.
The delivery of carbohydrate remains a priority once a

workout or competition commences. Most research has
employed study designs that integrate some form of con-
tinuous aerobic exercise, and within these studies it has
been consistently demonstrated that providing carbohy-
drate (230–350 mL of a 6–8% carbohydrate solution) at
regular intervals (every 10–12 min) can optimize per-
formance and maintain blood glucose levels [48, 49].
Several studies have indicated that the pattern or timing
of carbohydrate feedings surrounding endurance exer-
cise may be important. For example, Fielding and col-
leagues [50] required cyclists to ingest the same dose of
carbohydrate every 30 min or every 60 min over the
course of a four-hour exercise bout. When carbohydrate
was ingested more frequently, performance was im-
proved. Two contrasting papers that operate as exten-
sions of this work include work by Schweitzer et al. [51]
who concluded that preferentially delivering carbohy-
drate during the first or second half of a controlled cyc-
ling exercise bout offered no enhancement of
performance, while a similar study design by Heesch and
colleagues [52] indicated that providing carbohydrate
consistently throughout or in the latter half of a 2-h cyc-
ling exercise bout at 62% of peak power decreased the
time it took to cover a prescribed distance (10-km) while
cycling. It is important to realize that key differences
such as the duration of the exercise bout, the nature of
the performance assessment (fixed distance vs. time-to-
exhaustion) and amount of carbohydrate that was deliv-
ered all differed between these studies and can help to
explain the differences in outcomes being reported.
A classic paper by Widrick et al. [53] examined the

impact of pre-exercise muscle glycogen status with
carbohydrate feeding throughout a prolonged bout of
exercise. Briefly, participants commenced a 70-km self-
paced time trial with high or low muscle glycogen levels,
which was then combined with either a carbohydrate
(9% fructose) or placebo (non-caloric sweetener) bever-
age regularly (2.35 ml/kg/feeding every 10-km providing
a total of 1.5 g/kg/trial) throughout the exercise bout.
Increased power outputs were recorded when exercise
began with high muscle glycogen levels, and even greater
power was achieved when carbohydrate was frequently
provided throughout the exercise protocol. A similar
outcome was demonstrated by Febbraio and colleagues
[54] where they required participants to complete four
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carbohydrate feedings and exercise conditions in con-
junction with a two-hour bout of steady-state (SS) cyc-
ling exercise at 63% of their peak power, followed by a
time trial using a standardized load. The four feeding
conditions were: a) placebo beverage 30 min before and
a 6.4% carbohydrate solution at a dosage of 2 g/kg
throughout SS exercise, b) a 25.7% carbohydrate solution
at a dosage of 2 g/kg 30 min before and placebo
throughout SS exercise, c) a 25.7% carbohydrate solution
at a dosage of 2 g/kg before and a 6.4% carbohydrate so-
lution at a dosage of 2 g/kg throughout SS, and d) a
6.4% carbohydrate solution at a dosage of 2 g/kg
throughout the SS exercise bout. As with the findings of
Widrick et al., it was determined that pre-exercise stra-
tegies to support glycogen or blood glucose levels increase
exercise performance when carbohydrate ingestion con-
tinued throughout the prescribed exercise bouts. Collect-
ively, these findings somewhat prioritize carbohydrate
feeding during the exercise session and could lead some
to argue that if pre-exercise carbohydrate feeding stra-
tegies are neglected, then delivering appropriate carbo-
hydrate throughout an exercise bout may help offset the
potential for performance decrement. However, one must
cautiously explore this approach as to avoid overwhelming
the gastrointestinal system potentially leading to
cramping and discomfort once exercise begins. In this
respect one should consider the findings of Newell et
al. [55] who had 20 well-trained, experienced cyclists
perform four different feeding conditions (no carbohy-
drate [0 g/h] control, 20 g/h, 39 g/h or 64 g/h) through-
out completion of a two-hour cycling bout at 95%
lactate threshold (185 ± 25 watts) followed by comple-
tion of a standardized time trial. When carbohydrates
were ingested at a dosage of 39 or 64 g/h, time trial per-
formance was significantly improved compared to the
control group. Importantly, no differences in performance
were found between these two feeding strategies suggest-
ing that for those athletes who may not be able to tolerate
higher doses of carbohydrates, a moderate regimen of
carbohydrate feeding throughout a prolonged bout of ex-
ercise can still promote similar improvements in perform-
ance. Other important considerations related to the
potential ergogenic impact of carbohydrates have been
critically highlighted in recent reviews by Colombani et al.
[56] and later by Pochmuller et al. [57]. In both papers,
the authors contend that the ability of carbohydrate ad-
ministration during bouts of exercise spanning less than
70 min to operate in an ergogenic fashion is largely mixed
in the literature. It was further suggested that not until ex-
ercise durations meet or exceed 90 min does the adminis-
tration of a ~ 6–8% carbohydrate solution exert a
consistent ergogenic benefit particularly when exercise is
commenced in a fed state as opposed to the fasted state
that is so often studied in this body of literature.

Whether or not these results translate to intermittent
sports remains to be thoroughly investigated. A 2011
review by Phillips and colleagues [58] supports the no-
tion that carbohydrate administration throughout inter-
mittent, team-sport activities improves certain types of
performance as well as general indicators of mental
drive and acuity, but evidence regarding benefits of
acute deviations in timing is still lacking. Clarke and
colleagues [59] tested the hypothesis that ingesting iso-
volumetric amounts of a carbohydrate-electrolyte solu-
tion either in two large volumes (7 mL/kg at 0 and
45 min of exercise) or more frequent (every 15 min
over the entire course of a 75-min exercise bout) feed-
ings of smaller volumes to achieve the same total dose
can favorably impact metabolic responses. No perform-
ance or capacity measurements were made, but the au-
thors did report that either feeding pattern was able to
maintain glucose, insulin, glycerol, non-esterified fatty
acid, and epinephrine levels. More recently, Mizuno
and colleagues [60] concluded that timing the intake of
a carbohydrate gel (1.0 g/kg) did not impact the inflam-
matory response or exercise performance throughout
completion of two 45-min bouts of intermittent (4–
16 km/h) running.
The recovery of lost muscle glycogen operates as a key

nutritional goal, and post-exercise ingestion of carbohy-
drate continues to be a popular and efficient nutrient
timing strategy to maximize replenishment of lost
muscle glycogen. In what is known as potentially the
first study to examine an actual nutrient timing ques-
tion, Ivy and colleagues [61] showed that restoration of
muscle glycogen was 50% faster and more complete over
a four-hour post-exercise period when a carbohydrate
bolus (2 g/kg of a 25% carbohydrate solution) was deliv-
ered within 30 min versus waiting until two hours after
completion of a cycling exercise bout (70 min at 68%
VO2max followed 6 × 2-min intervals at 88% VO2max).
Subsequent work has since refined conclusions sur-
rounding this topic, namely that the timing of post-
exercise carbohydrate administration holds the highest
level of importance under two primary situations: 1)
when rapid restoration of muscle glycogen is a primary
goal and 2) when inadequate amounts of carbohydrate
are being delivered. In light of these considerations,
muscle glycogen levels can be rapidly and maximally
restored using an aggressive post-exercise feeding regi-
men of carbohydrates. Ingesting 0.6 to 1.0 g/kg body
mass within the first 30 min of completing a glycogen
depleting exercise bout and again every two hours for
the next four to six hours [62, 63], has been shown to
promote maximal glycogen replenishment. Similarly, fa-
vorable outcomes have also been shown when 1.2 g/kg
of carbohydrate were ingested every 30 min over a 3.5-h
period [27, 64].
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Outside of situations where rapid recovery is truly
needed, and daily carbohydrate intake is matching en-
ergy demands, the importance of timed carbohydrate
ingestion is notably decreased. However, in no situation
has timed carbohydrate ingestion been shown to nega-
tively impact performance or recovery. If an athlete
participating in heavy exercise is not able, or even not
sure if they will be able to appropriately consume the
required amounts of carbohydrate throughout the day
then the strategically timed ingestion of carbohydrate
may accelerate muscle glycogen re-synthesis. When
prolonged endurance exercise is completed, carbohy-
drate ingestion may also help promote a favorable hor-
monal environment [65, 66]. Finally, studies in elite
athletes undergoing high volumes of training have
shown that maximal glycogen levels are restored within
24 h if a diet contains ≥8 g/kg/day, and only moderate
levels of muscle damage are present [41]. In support,
Nicholas and colleagues [67] concluded that a daily
carbohydrate intake of 9–10 g/kg/day in six trained
men participating in soccer, rugby, hockey, or basket-
ball, sufficiently replenished muscle glycogen following
consecutive days of prolonged (85–90 min), intense,
interval exercise.

Resistance training
Studies employing resistance exercise that examined
some aspect of carbohydrate timing are limited. Mul-
tiple studies have demonstrated that resistance exercise
can significantly decrease muscle glycogen concentra-
tion [22, 68–70], though these decreases are modest in
comparison to exhaustive endurance exercise. However,
the provision of pre-exercise carbohydrate to individ-
uals performing resistance-style exercise in a moderately
glycogen depleted state may not have an ergogenic effect.
To date, one study has indicated that carbohydrate admin-
istration before and during bouts of resistance exercise
can improve performance, but these ergogenic outcomes
were only seen in the second session of resistance exercise
performed on the same day [71]. In contrast, multiple
studies have failed to report an improvement in resistance
exercise performance [72–74]. One study involving pre-
exercise and during exercise delivery of carbohydrate
throughout a bout of resistance exercise has been shown
to minimize the loss of muscle glycogen. Briefly, study
participants were given a carbohydrate dose of 1.0 g/kg
pre-workout and a 0.5 g/kg carbohydrate every 10 min
throughout a 40-min resistance exercise bout and found
that muscle glycogen losses were reduced by 49% when
compared to glycogen changes with ingestion of a placebo
drink; however, isokinetic muscle performance was not
influenced [73].
In reviewing all of the timing considerations related to

carbohydrate intake, strategies to maximize muscle and

liver glycogen levels should first consist of following a
brief period of reduced training volume in conjunction
with a high daily intake of carbohydrate (≥ 8 g/kg/day).
In the hours leading up to competition, glycogen levels
are best maintained or increased by consuming high
carbohydrate (1–4 g/kg/day) meals or snacks for several
hours before commencement of training or competition.
Athletes are encouraged to continue consuming small
amounts of a carbohydrate solution or small snacks
(bars, gels, etc.) to maintain liver glycogen levels and to
help prevent hypoglycemia. Ingestion of carbohydrate
during endurance type exercise maintains blood glucose
levels, spares glycogen [75], and will likely enhance
performance. Post-exercise consumption of carbohydrate
is necessary and in situations where minimal recovery
time is available, aggressive carbohydrate feeding is
recommended. Although preliminary, initial work in
intermittent, high-intensity activities suggest that carbo-
hydrate timing may support metabolic outcomes, while
performance results remain mixed, as do studies involv-
ing resistance exercise. For further inquiry, excellent re-
views on the topic of carbohydrate and performance are
available [20, 21, 48, 49, 76].

Carbohydrate + protein
Endurance training
Carbohydrate + protein combinations are a traditional
strategy employed by endurance as well as strength-
power athletes to increase exercise performance, pro-
mote glycogen repletion, minimize muscle damage, and
promote a positive nitrogen balance. A small number of
studies have examined pre-endurance exercise ingestion
of carbohydrate + protein on performance as well as
metabolic outcomes, but very few have directly investi-
gated the impact of altering the timing of when nutrients
were administered. Ivy and colleagues [77] recruited
trained cyclists to complete a three-hour bout of cycling
exercise at an intensity of 45–75% VO2max before exer-
cising to exhaustion at 85% VO2max. In a crossover
fashion, participants ingested either a 7.75% carbohydrate
or a 7.75% carbohydrate + 1.94% protein solution. When
protein was added to carbohydrate, endurance was signifi-
cantly improved. In a similar fashion, Saunders and col-
leagues [78] had participants cycle to exhaustion on two
separate occasions (75–85% VO2max) within 24 h while
ingesting a carbohydrate or a carbohydrate + protein so-
lution throughout the exercise bout (1.8 mL/kg every
15 min) followed by a single bolus dose (10 mL/kg) im-
mediately after exhaustion. The carbohydrate + protein
combination resulted in significantly improved perform-
ance as well as a reduction in muscle damage. The same
research group [79] used a nutrient gel and again reported
that ingestion of a carbohydrate (0.146 g/kg) + protein
(0.0365 g/kg) combination throughout an exhaustive bout
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of cycling exercise significantly improved cycling perform-
ance. While none of these studies directly examined a tim-
ing comparison, they all demonstrate that pre-exercise
administration of carbohydrate + protein combinations
can favorably impact endurance performance. Further-
more, the addition of protein (to carbohydrate) has been
shown to increase the speed of glycogen recovery when a
short recovery window is available or if sub-optimal
amounts of carbohydrate have been delivered and can also
help to reduce symptoms of muscle damage [80]. Notably,
no studies have demonstrated that addition of protein to
carbohydrate to a pre-exercise feeding in these amounts
may hinder exercise performance. Similarly, Rustad and
colleagues [81] reported that adding protein (0.4 g/kg/h)
to carbohydrate (0.8 g/kg/h) within 2 h of completing an
initial exhaustive bout of cycling exercise led to a signifi-
cant increase in cycling performance the next morning
when compared to ingesting just carbohydrate alone, thus
suggesting improved recovery.
To support recovery upon completion of exercise

bouts that can deplete stored fuels and may cause sig-
nificant damage to the muscle tissue, post-exercise nutri-
ent timing strategies are of great interest. Ivy et al. [82]
required cyclists to complete a 2.5-h bout of cycling
(65–75% VO2max) before consuming a combination of
carbohydrate + protein (80 g carbohydrate + 28 g pro-
tein + 6 g fat) or two different doses (High: 108 g of
carbohydrate + 6 g fat or Low: 80 g carbohydrate + 6 g
fat) of carbohydrate immediately after and 2 h after
completing the exercise session. While timing was not
specifically investigated, the carbohydrate + protein
combination led to greater glycogen recovery during the
four-hour investigative window employed by the re-
search team. These findings replicated previous findings
[83] by this research group and led them to conclude
that the addition of protein favorably promoted early
phases of glycogen recovery. Berardi et al. later pub-
lished two similar studies [84, 85] that also showed that
the provision of a combination of carbohydrate + pro-
tein facilitated greater recovery of muscle glycogen when
ingested soon after the completion of a workout and be-
fore a subsequent endurance exercise bout.
As more research has been completed on the topic,

the potential benefits of adding protein have been ques-
tioned. For example, Jentjens and colleagues [63] failed
to show an improvement in muscle glycogen restoration
with a combination of carbohydrate (1.2 g/kg/h) + pro-
tein (0.4 g/kg/h) in comparison to ingesting only the
carbohydrate dose over a three-hour recovery period.
Howarth and colleagues [86] later came to a similar
conclusion regarding the addition of protein and ex-
tended these findings also to report that a higher dose of
carbohydrate (1.6 g/kg/h) did not further promote glyco-
gen resynthesis. Thus, it appears that protein addition

augments glycogen recovery when carbohydrate inges-
tion is < 1.2 g/kg/h.

Resistance exercise
A small number of studies are available that examined
the effect of ingesting carbohydrate + protein before re-
sistance exercise. For example, Kraemer and colleagues
[87] had participants ingest a combination of carbohy-
drate, protein, and fat or an isoenergetic maltodextrin
placebo for seven days before two consecutive days of
resistance exercise. On both occasions, the supplement
was ingested 30 min before beginning the exercise bout,
and the multi-nutrient supplement significantly im-
proved vertical jump power and the number of repeti-
tions performed at 80% 1RM. A similar outcome was
reported by Baty and colleagues [88] where they had 34
males complete an acute bout of heavy resistance train-
ing (3 sets × 8 reps @ 90% 1RM) while consuming either
a carbohydrate (6.2% carbohydrate) or a carbohydrate +
protein (6.2% carbohydrate + 1.5% protein) solution be-
fore, during, and after the exercise bout. While perform-
ance was not affected, significantly greater levels of
insulin and lower levels of cortisol were found when the
carbohydrate + protein combination was ingested. More-
over, markers of muscle damage (e.g., myoglobin and
creatine kinase) were reduced throughout the first 24 h
of recovery when the carbohydrate + protein combin-
ation was consumed. These two studies provided a com-
bination of carbohydrate + protein at some point before
the resistance exercise sessions, however these studies
were not designed to examine whether pre-exercise
feeding of carbohydrate + protein was responsible for
improved exercise performance or adaptations.
Tipton and colleagues [89] completed one of the first

studies to directly examine whether the timing of carbo-
hydrates + EAA altered MPS rates. In this investigation,
research participants completed a single bout of lower-
body resistance exercise while ingesting the same com-
bination of carbohydrate (35 g of sucrose) + 6 g EAA
either immediately before or immediately after comple-
tion of the exercise bout. Nutrient ingestion immediately
before the exercise bout increased MPS significantly
more than when the carbohydrate + EAA combination
was consumed after the resistance exercise session. A
few years later, however, Fujita and colleagues [90]
attempted to replicate their study findings and instead
determined that MPS rates were similar between pre-
exercise and post-exercise ingestion. While many people
use the Fujita paper to discount the pre-exercise period,
it should be noted that significant increases in MPS rates
occurred when nutrients were administered before and
after the resistance training bout in comparison to a
non-energetic control suggesting that nutrient delivery
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itself, as opposed to timing of delivery, should be a larger
priority. White and colleagues [91] conducted a study to
specifically examine if timed ingestion of carbohydrate +
protein timing influenced force production and markers
of muscle damage. For this study, 27 adult participants
ingested either a non-caloric sweetener or a carbohy-
drate (75 g) + protein (23 g) combination 15 min before
or 15 min after a bout of damaging resistance exercise
and found that neither the nutrients themselves, nor
their timing, influenced changes in force production or
blood levels of muscle damage markers. The results sug-
gest that MPS rates can be acutely increased if a com-
bination of carbohydrate + protein is consumed either
before or after, but changes in force production or
muscle damage may not be impacted by timed ingestion
of a carbohydrate + protein combination.
The acute effect of ingesting a carbohydrate + protein

or EAA combination throughout resistance exercise has
been studied [92–96]; however, as with other time pe-
riods, no studies have truly examined the question of
timing. In this respect, a series of studies published by
Bird and colleagues [93–96] has investigated the in-
fluence of consuming either carbohydrate or carbo-
hydrate + EAA on measures of acute performance,
hormonal responses and circulating levels of blood pro-
teins associated with muscle damage. In the first study,
32 participants were randomized to ingest either a 6%
carbohydrate solution, a 6% carbohydrate solution + 6 g
of EAA or a non-nutritive placebo regularly throughout
a 60-min bout of resistance training. Findings from this
study indicated that serum cortisol levels were reduced
when either a 6% carbohydrate solution or a 6% carbo-
hydrate + 6 g EAA solution were ingested in comparison
to a non-energetic placebo [94]. A later publication from
this investigation reported that urinary muscle protein
breakdown markers were reduced by 27% when the
carbohydrate + EAA combination was consumed while
the placebo group experienced a 56% increase [95].
A later study by Bird et al. [93] used a ‘triphasic’ ap-

proach where they delivered a combination of carbohy-
drate + amino acids before, during and after a single
bout of resistance exercise. Using a crossover study de-
sign, participants also ingested a placebo that consisted
of water flavored with a non-nutritive sweetener in simi-
lar volumes at the same times. They reported that deliv-
ering nutrients (versus none at all) did significantly
increase the volume of exercise completed and reduced
concentrations of serum proteins indicative of muscle
damage. Along these lines, Beelen and colleagues [92]
also completed an acute study design that required study
participants to ingest in a fed state a carbohydrate + hy-
drolyzed casein protein combination at a dose of 0.15 g/
kg body mass before initiating a two-hour resistance-
training session and at 15-min intervals throughout the

bout. Compared to placebo, the carbohydrate + protein
combination significantly lowered rates of protein break-
down and increased fractional synthetic rates of muscle
proteins by 49 ± 22%, resulting in a five-fold increase in
protein balance.
Chronic studies examining carbohydrate + protein

ingestion with resistance training have also been con-
ducted. Bird et al. [96] examined the impact of consuming
a 6% carbohydrate +6 g EAA solution throughout bouts
(two bouts per week) of resistance exercise over a 12-week
period. Urinary concentrations of 3-methyl-histidine were
reduced by 26% when the carbohydrate + EAA combin-
ation was ingested, which was significantly different from
the 52% increase observed in the placebo group. Also, the
cross-sectional areas of type I, IIa, and IIb muscle fibers
increased in comparison to the changes seen when solu-
tions containing either just carbohydrate (6%) or EAA
(6 g) were ingested. While these findings are encouraging,
the studies are limited by the dosage of EAA provided as
other studies have indicated that higher EAA doses (up to
12 g) may maximally stimulate MPS. As such, future re-
search in this area should identify if different doses of
EAA or combining a carbohydrate solution with varying
doses of intact proteins consumed during resistance exer-
cise bouts can further impact performance and resistance
training adaptations. In this respect, when sufficient pro-
tein is supplied, it may be that carbohydrate has no add-
itional adaptive benefit. As an example of this, Hulmi and
colleagues [97] showed no benefit in resistance training
adaptations when a combination of maltodextrin carbohy-
drate (34.5 g) + whey protein concentrate (37.5 g) was
ingested immediately following each workout of a regi-
mented 12-week resistance training protocol as compared
to consuming the protein supplement alone. Cribb and
Hayes [16] randomized trained male participants to ingest
identical amounts of carbohydrate + protein + creatine ei-
ther immediately before and immediately after resistance
training or in the morning and evening during a 10-week
resistance-training program. Changes in strength, hyper-
trophy, and body composition were assessed, and signifi-
cant increases in lean body mass, 1RM strength, type II
muscle fiber cross-sectional area, and higher muscle creat-
ine and glycogen levels were found when the supplements
were consumed immediately before and after workouts as
opposed to consuming them in the morning and evening.
While seemingly different than the results of Hulmi, these
results indicate that close temporal ingestion of a combin-
ation of carbohydrate + protein + creatine may afford fa-
vorable outcomes relative to resistance training
adaptations and does not necessarily state that a carbo-
hydrate + protein combination is better than simply
ingesting similar amounts of protein. Furthermore,
Cribb and Hayes also provided creatine while the other
studies did not, which has been shown in multiple
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investigative scenarios to augment the muscular adap-
tations seen while resistance training [98–100].
Carbohydrate + protein combinations while resistance

training are suggested to augment muscle development
via an increased insulin response. Specifically, insulin
promotes anti-catabolic effects in muscle [101], thereby
shifting protein balance to favor anabolism. However,
insulin-mediated effects on reducing proteolysis plateau
within a range of ~ 15–30 μIU/mL [102, 103], and these
levels are achieved by consuming a 45 g bolus of whey
protein isolate alone [104]. This would suggest that
post-workout carbohydrate supplementation likely exerts
minimal influence from a muscle development stand-
point provided adequate protein is consumed. Towards
this end, Staples and colleagues [105] compared the
impact of a carbohydrate (50 g maltodextrin) + protein
(25 g whey protein) combination on rates of MPS ob-
served after completing a single bout of lower-body
resistance exercise. The authors reported that the car-
bohydrate + protein combination failed to further stimu-
late increases in MPSwhen compared to ingesting only
protein. Furthermore, Rasmussen and colleagues [106]
found no difference in amino acid balance when 35 g of
sucrose + 6 g of EAA were ingested either 1 h or 3 h
after completion of a bout of resistance training.
In summary, ingestion of carbohydrate + protein (or

amino acids) in close temporal proximity to or through-
out both endurance and resistance exercise may operate
as an effective strategy to favorably affect performance
of a subsequent exercise bout as well as adaptations
from regular bouts of training. Towards this end, en-
hancements in endurance performance, as well as im-
proved recovery of reduced muscle glycogen have also
been consistently reported when carbohydrate + protein
combinations have been consumed surrounding exercise
bouts, particularly if lower quantities of carbohydrate are
consumed. However, when optimal carbohydrate is de-
livered the impact of adding protein (irrespective of
when it is provided) appears to offer little to no add-
itional benefit on endurance or resistance exercise per-
formance as well as the recovery of reduced muscle
glycogen. Much like the work on glycogen recovery,
studies involving resistance training and optimization of
adaptations seen from resistance training also point to-
wards a higher priority being given towards the total
amount of protein consumed during the day. Therefore,
if total protein needs are met, the importance of adding
carbohydrate (and even more so in a timed fashion) may
be limited. A key point of discussion, however, lies with
whether or not total energy needs are also being met,
particularly in athletes undergoing large volumes of
training and more so in those athletes that have high
amounts of lean as well as body mass. In these situa-
tions, it certainly remains possible that the addition of

carbohydrate to a protein feeding may help the athlete
achieve an appropriate energy intake, which certainly
may go on to impact the extent to which adaptations
occur. For athletes who are likely combining resistance
training sessions with sport-specific training, the
provision of carbohydrate + protein in close proximity
to each session would be warranted in order to optimize
recovery for subsequent bouts and adaptation.

Protein
Endurance training
The role of amino acids and/or protein consumption
with regards to endurance exercise is not well known.
Pasiakos and colleagues [107] had cyclists complete two
different bouts of exercise (60 min at 60% VO2peak)
while ingesting a solution containing 10 g of the EAA
with varying levels (1.87 or 3.5 g) of leucine. In response
to EAA ingestion and independent of leucine content,
MPS rates and several signaling proteins related to
muscle hypertrophy (i.e., Akt, mTOR, p70s6k, etc.) were
significantly increased. While more research certainly
needs to be conducted to better identify the potential
impact and role of protein intake before endurance exer-
cise, the priority for an endurance athlete in the hours
leading up to competition should be focused on appro-
priate carbohydrate intake to fully maximize endogenous
production of glycogen.

Resistance training
As with endurance exercise, the majority of studies that
have employed some form of protein or amino acid
ingestion before bouts of resistance exercise have done
so in conjunction with an identical dose during the post-
exercise period as well. For example, Tipton and
colleagues [108] used an acute resistance exercise and
feeding model to report that MPS rates were similar
when a 20-g dose of whey protein was ingested immedi-
ately before or immediately after a bout of lower body
resistance training. Andersen et al. [109] were one of the
first to examine the effects of ingesting protein immedi-
ately before and immediately after resistance exercise
over multiple weeks. In this study, participants were ran-
domized to ingest either 25 g of a protein blend (16.6 g
whey, 2.8 g casein, 2.8 g egg white, 2.8 g glutamine) or
maltodextrin immediately before and immediately after
each workout over the course of 14 weeks. In the group
that consumed the protein-amino acid blend, type I and
type II muscle fibers experienced a significant increase
in size. Also, the protein-amino acid group experienced
a significant increase in squat jump height while no
changes occurred in the carbohydrate group. Using a
similar study design, Hoffman and colleagues [110] had
collegiate football players who had been regularly
performing resistance-training ingest 42 g of hydrolyzed
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collagen protein either immediately before and
immediately after exercise, or in the morning and
evening over the course of ten weeks of resistance
training. In this study, the timing of protein intake did
not impact changes in strength, power and body
composition experienced from the resistance-training
program.
When examining the discrepant findings, one must

consider a few things. First, the protein source in the
Hoffman et al. study was mostly a collagen hydrolysate
(i.e., not the highest quality protein source); moreover,
changes in body composition were determined by dual-
energy x-ray absorptiometry (DEXA), which does not
have the same sensitivity to identify subtle hypertrophic
alterations [111] as the histochemical approaches
employed by Andersen et al. [109]. Finally, the study
participants in the Andersen et al. study were consuming
approximately 20% more calories per day (~ 36.6 kcals/
kg/day) than the participants in the Hoffman study (who
consumed only 30.4 kcals/kg/day) which offers some
level of explanation for the different outcomes reported
in these two studies. More recently, Schoenfeld and col-
leagues [112] published the first longitudinal study to
directly compare the effects of ingesting 25 g of whey
protein isolate either immediately before or immediately
after each workout. For this study, 21 resistance-trained
men (> 1-year experience) followed a 10-week, three day
per week whole-body heavy resistance training program
(3 sets of 8 – 12RM) and concluded there were no dif-
ferences in muscle mass or strength changes when the
dose of whey protein was consumed pre- or post-
training. This study is significant as it is the first investi-
gation to attempt to compare pre versus post-workout
ingestion of protein. The authors raised the question
that the size, composition, and timing of a pre-exercise
meal may impact the extent to which adaptations are
seen in these studies. However, a key limitation of this
investigation is the very limited training volumes these
subjects performed. The total training sessions over the
10-week treatment period was 30 sessions (i.e., total of
30 h assuming each session lasted 1 h). One would
speculate that the individuals who would most likely
benefit from peri-workout nutrition are those who train
at much higher volumes. For instance, American colle-
giate athletes per NCAA regulations (NCAA Bylaw 2.14)
are limited to a maximum of 4 h per day and a 20-h
training schedule per week [113]. Thus, the average
college athlete trains more in two weeks than most sub-
jects train during an entire treatment period in studies
in this category.
In one of the only studies to use older participants,

Candow and colleagues [15] assigned 38 men between
the ages of 59–76 years to ingest a 0.3 g/kg protein dose
before or after each workout over the course of a 12-

week resistance training program. While protein admin-
istration did favorably improve resistance-training adap-
tations, the timing of protein (before or after workouts)
did not invoke any differential change. An important
point to consider with the results of this study is the
sub-optimal dose of protein (approximately 26 g of whey
protein) versus the known anabolic resistance that has
been demonstrated in the skeletal muscle of elderly indi-
viduals [114]. In this respect, the anabolic stimulus from
a 26-g dose of whey protein may not have sufficiently
stimulated muscle protein synthesis or have been of ap-
propriate magnitude to induce differences between con-
ditions. Clearly, more research is needed to determine if
a greater dose of protein delivered before or after a
workout may exert an impact on adaptations seen dur-
ing resistance training in an elderly population.
Limited studies are available that have examined the

effect of providing protein throughout an acute bout of
resistance exercise, particularly studies designed to expli-
citly determine if protein administration during exercise
was more favorable than other times of administration.
As discussed previously as part of the carbohydrate +
protein section, research by Bird and colleagues [94, 95]
had participants ingest a 6-g solution of EAA through-
out a bout of resistance exercise and reported increases
in post-exercise insulin levels and reductions in urinary
levels of 3-methyl-histidine and serum levels of cortisol.
However, when examined over the course of 12 weeks,
the increases in fiber size seen after ingesting a solution
containing 6 g of EAA alone was less than when it was
combined with carbohydrate [96].
The post-exercise time period has been aggressively

studied for its ability to heighten various training out-
comes. While a large number of acute exercise and nu-
trient administration studies have provided multiple
mechanistic explanations for why post-exercise feeding
may be advantageous [115–119], other studies suggest
this study model may not be directly reflective of adapta-
tions seen over the course of several weeks or months
[120]. As highlighted throughout the pre-exercise protein
timing section, the majority of studies that have examined
some aspect of post-exercise protein timing have done so
while also administering an identical dose of protein
immediately before each workout [16, 109, 110, 121]. Of
these studies, protein [109] or carbohydrate + protein [16]
consumption immediately before and immediately after
resistance exercise has been shown to positively affect
resistance training adaptations. These results, however, are
not universal as Hoffman et al. [110] reported no impact
of timing when 42 g of hydrolyzed collagen protein was
ingested before and after several weeks of resistance ti-
ming. Of note, participants in the Hoffman study were all
highly-trained collegiate athletes who reported consuming
a hypoenergetic diet. Candow et al. [15] reported that sub-
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optimal doses of whey protein ingestion (0.3 g/kg, ~ 26 g)
in elderly males (59–76 years) before or after resistance
training workouts exerted no impact on strength and body
composition changes. As mentioned previously, it is pos-
sible that the dose of protein may not have been an appro-
priate amount to properly stimulate anabolism.
In this respect, a small number of studies have exam-

ined the impact of solely ingesting protein after exercise.
As discussed earlier, Tipton and colleagues [108] used an
acute model to determine changes in MPS rates when a
20-g bolus of whey protein was ingested immediately
before or immediately after a single bout of lower-body
resistance training. MPS rates were significantly, and
similarly, increased under both conditions. Until re-
cently, the only study that examined the effects of post-
exercise protein timing in a longitudinal manner was the
2001 work of Esmarck et al. [122]. In this study, 13 el-
derly men (average age of 74 years) consumed a small
combination of carbohydrates (7 g), protein (10 g) and
fat (3 g) either immediately (within 30 min) or 2 h after
each bout of resistance exercise done three times per
week for 12 weeks. Changes in strength and muscle size
were measured, and it was concluded that ingesting nu-
trients immediately after each workout led to greater im-
provements in strength and muscle cross-sectional area
than when the same nutrients were ingested 2 h later.
While interesting, the inability of the group that delayed
supplementation but still completed the resistance train-
ing program to experience any measurable increase in
muscle cross-sectional area has led some to question the
outcomes resulting from this study [5, 123]. Further and
as discussed previously with the results of Candow et al.
[15], the dose of protein (10 g) was likely an inadequate
dose for a population of this age. Schoenfeld and col-
leagues [124] published results that directly examined
the impact of ingesting 25 g of whey protein immedi-
ately before or immediately after bouts of resistance-
training. All study participants trained three times each
week targeting all major muscle groups over a 10-week
period, and the authors concluded no differences in
strength and hypertrophy were seen between the two
protein ingestion groups. These findings lend support to
the hypothesis that ingestion of whey protein immedi-
ately before or immediately after workouts can promote
improvements in strength and hypertrophy, but the time
upon which nutrients are ingested does not necessarily
trump other feeding strategies.
Reviews by Aragon and Schoenfeld [125] and

Schoenfeld et al. [126] critically examined the efficacy
surrounding post-exercise protein administration. The au-
thors suggested that when recommended levels of protein
are consumed, the effect of timing appears to be, at best,
minimal. Indeed, research shows that muscles remain sen-
sitized to protein ingestion for at least 24 h following a

resistance training bout [127] leading the authors to sug-
gest that the timing, size and composition of any feeding
episode before a workout may exert some level of impact
on the resulting adaptations. In addition to these consider-
ations, recent work by MacNaughton and colleagues [128]
reported that the acute ingestion of a 40-g dose (versus
20-g) of whey protein resulted in significantly greater
increases in MPS in young subjects who completed an in-
tense, high volume bout of resistance exercise that tar-
geted all major muscle groups. While seemingly a protein
dose question (and not necessarily a timing question per
se), these findings are significant from a timing perspective
as the extent to which this higher dose interacts with the
muscle’s ability to respond to a subsequent dose of amino
acid or protein (alone or as a mixed meal) feedings re-
mains undetermined. Notwithstanding these conclusions,
the number of studies that have truly examined a timing
question is rather scant. Moreover, recommendations
must capture the needs of a wide range of individuals, and
to this point, a very small number of studies have exam-
ined the impact of nutrient timing using highly trained
athletes. From a practical standpoint, some athletes may
struggle, particularly those with high body masses, to con-
sume enough protein to meet their required daily needs.
Therefore, due to the known sensitization that occurs in
skeletal muscle to protein ingestion for ~ 24 h, the prag-
matic recommendation is for an athlete to feed as soon as
possible after a workout. In this respect, not eating does
not offer any benefit regarding skeletal muscle hyper-
trophy and recovery from endurance and/or strength-
power exercise.

Timing and distribution of meals - time of day
considerations
Evidence has surfaced that suggests what part of the day
the majority of calories are consumed may affect one’s
health, weight loss or body composition changes. As a
starting point, it is important to highlight that most of
the available research on this topic has largely used non-
athletic, untrained populations except two recent publi-
cations using trained men and women [129, 130].
Whether or not these findings apply to highly trained,
athletic populations remains to be seen. Keim and col-
leagues [131] required study participants to complete
two six-week diet periods that delivered similar calories
(~ 1950 kcals) and a similar macronutrient composition.
In one scenario, the participants were required to con-
sume 70% of their prescribed dietary intake during the
morning meal, while in the other study group partici-
pants were required to consume 70% of their prescribed
dietary intake with their evening meals. Changes in
weight loss and body composition were compared, and
slightly greater weight loss occurred when the majority
of calories was consumed in the morning. As a caveat to
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what is seemingly greater weight loss when more calo-
ries are shifted to the morning meals, higher amounts of
fat-free mass were lost as well, leading to questions sur-
rounding the long-term efficacy of this strategy regar-
ding weight management and metabolic activity.
Notably, this last point speaks to the importance of
evenly spreading out calories across the day and avoiding
extended periods of time where no food, protein in par-
ticular, is consumed. A large observational study [132]
examined the food intake of 867 free-living individuals
(375 males and 492 females),and a follow-up study from
the same study cohort [133] reported that the timing of
food consumption (earlier vs. later in the day) was cor-
related to the total daily caloric intake. These findings
indicate that consuming a greater proportion of one’s
total daily calories earlier in the day was associated with
lower daily caloric intake while shifting more of the daily
caloric consumption to evening meals increased one’s
total caloric intake. Indeed, one must cautiously inter-
pret these results as they are not offering any insight
into how these eating patterns may influence body com-
position changes or even loss of body mass, but none-
theless, provide interesting initial data on how “when”
certain foods are consumed may impact total daily
caloric intake.
Wu and colleagues [134] reported that meals later in

the day lead to increased rates of lipogenesis and adipose
tissue accumulation in an animal model and, while lim-
ited, human research has also provided support. Previ-
ously it has been shown that people who skip breakfast
display a delayed activation of lipolysis along with an
increase in adipose tissue production [135, 136]. More
recently, Jakubowicz and colleagues [137] had over-
weight and obese women consume 1400 cal each day for
a 12-week period. A portion of the study participants
consumed 50% of their daily calories (700 kcals) during
breakfast, 35% during lunch (500 kcals) and 15% during
dinner (200 kcals), while the other portion of study par-
ticipants consumed the exact opposite distribution 15%
for breakfast (200 kcals), 35% for lunch (500 kcals) and
50% for dinner (700 kcals). Approximately 2.5 times
more weight was lost, and significantly greater changes
in waist circumference and body mass index values were
observed, when the majority of calories were consumed
at breakfast. Also, triglyceride levels decreased by 34%,
greater improvements in glucose and insulin were ob-
served, and feelings of satiety were improved in the
group that consumed the majority of their calories at
breakfast [137]. While these results provide insight into
how calories could be more optimally distributed
throughout the day, a key perspective is that these stud-
ies were performed in sedentary populations without any
form of exercise intervention. Thus, their relevance to
athletes or highly active populations might be limited.

Furthermore, the current research approach has failed to
explore the influence of more evenly distributed meal
patterns throughout the day.

Meal frequency
Meal frequency is commonly defined as the number of
feeding episodes that take place each day. For years, rec-
ommendations have indicated that increasing meal fre-
quency may serve as an effective way to influence weight
loss, weight maintenance, and body composition. These
assertions were based upon the epidemiological work of
Fabry and colleagues [138, 139] who reported that mean
skinfold thickness was inversely related to the frequency
of meals. One of these studies involved 379 overweight
individuals between 60 and 64 years of age while the
other investigation involved 80 participants between the
ages of 30–50 years of age. An even larger study pub-
lished by Metzner and colleagues [140] reported that in
a sample of 2000 men and women between 35 and
60 years of age, meal frequency and adiposity were in-
versely related. While intriguing, the observational na-
ture of these studies does not agree with more
controlled experiments. For example, a 2005 study by
Farshchi et al. [141] required individuals over a 14-day
period to consume either a regular, consistent pattern of
six daily meals or eat anywhere from three to nine meals
per day. The irregular meal pattern was found to result
in increased levels of appetite, and hunger leading one
to question if the energy provided in each meal was in-
adequate or if the energy content of each meal could
have been better matched to limit these feelings while
still promoting weight loss. Furthermore, Cameron and
investigators [142] published what is one of the first
studies to directly compare a greater meal frequency to
a lower frequency. In this study, 16 obese men and
women reduced their energy intake by 700 kcals per day
and were assigned to one of two isocaloric groups: one
group was instructed to consume six meals per day
(three traditional meals and three snacks), while the
other group was instructed to consume three meals per
day for an eight-week period. Changes in body mass,
obesity indices, appetite, and ghrelin were measured at
the end of the eight-week study, and no significant dif-
ferences in any of the measured endpoints were found
between conditions. These results also align with more
recent results by Alencar [143] who compared the im-
pact of consuming isocaloric diets consisting of two
meals per day or six meals per day for 14 days in over-
weight women on weight loss, body composition, serum
hormones (ghrelin, insulin), and metabolic (glucose)
markers. No differences between groups in any of the
measured outcomes were observed. A review by Kulovitz
et al. [144] concluded that when total energy intake is
controlled, and when caloric restriction is employed, the
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influence of meal frequency on weight loss and improv-
ing one’s body composition is secondary to the total
daily caloric intake. Similar conclusions were drawn in a
meta-analysis by Schoenfeld and colleagues [145] that
examined the impact of meal frequency on weight loss
and body composition. Although initial results suggested
a potential advantage for higher meal frequencies on
body composition, sub-analysis indicated that findings
were confounded by a single study, casting doubt as to
whether the strategy confers any beneficial effects. How-
ever, it is important to note that this “outlier” study was
the only one to include an exercise regimen and only
lasted for two weeks. From this, one might conclude that
greater meal frequency may, indeed, favorably influence
weight loss and body composition changes if used in
combination with an exercise program for a short period
of time. Certainly, more research is needed in this area,
particularly studies that manipulate meal frequency in
combination with an exercise program in non-athletic as
well as athletic populations. Finally, other endpoints re-
lated to meal frequency (i.e., glucose/insulin homeosta-
sis, hunger and appetite levels, energy levels, etc.) may
be of interest to different populations, but they extend
beyond the scope of this position stand. The interested
reader is referred to the ISSN’s position stand on meal
frequency [146].

Timing and distribution of protein feeding
An extension of altering the patterns or frequency of
when meals are consumed is to examine the pattern
upon which protein feedings occur. Researchers have
clearly illustrated that upon ingestion of a meal contain-
ing protein and/or amino acids, serum levels of amino
acids as well as MPS rates will rise and stay elevated for
three to 5 h depending on bolus size [147, 148]. Moore
and colleagues [149] examined the differences in protein
turnover and synthesis rates when participants ingested
different patterns, in a randomized order, of an 80-g
total dose of protein over a 12-h measurement period
following a bout of lower body resistance exercise. One
of the protein feeding patterns required participants to
consume two 40-g doses of whey protein isolate ap-
proximately 6 h apart. Another condition required the
consumption of four, 20-g doses of whey protein isolate
every 3 h. The final condition required the participants
to consume eight, 10-g doses of whey protein isolate
every 90 min. Rates of muscle protein turnover, synthe-
sis, and breakdown were compared, and the authors
concluded that protein turnover and synthesis rates were
greatest when intermediate-sized (20-g) doses of whey
protein isolate were consumed every 3 h. One of the
caveats of this investigation was the very low total dose
of protein consumed. Eighty grams of protein over a 12-
h period would be grossly inadequate for athletes

performing high volumes of training as well as those
who are extremely heavy (e.g., American football players,
sumo wrestlers, field athletes, etc.). A follow-up study
one year later from the same research group determined
myofibrillar protein synthesis rates after randomizing
participants into three different protein ingestion pat-
terns and examined how altering the pattern of protein
administration affected protein synthesis rates after a
bout of resistance exercise [150]. Two key outcomes
were identified. First, rates of myofibrillar protein syn-
thesis rates increased in all three groups. Second, when
four, 20-g doses of whey protein isolate were consumed
every 3 h over a 12-h post-exercise period, significantly
greater (in comparison to the other two patterns of pro-
tein ingestion) rates of myofibrillar protein synthesis
occurred. In combining the results of both studies, one
can conclude that ingestion of intermediate protein
doses (20 g) consumed every 3 h creates more favorable
changes in both whole-body as well as myofibrillar pro-
tein synthesis [149, 150]. Although both studies
employed short-term methodology and other patterns or
doses have yet to be examined, the results thus far con-
sistently suggest that the timing or pattern in which
high-quality protein is ingested may favorably impact
net protein balance as well as rates of myofibrillar pro-
tein synthesis.
An important caveat to these findings is that supple-

mentation (in most cases) was provided in exclusion of
other macronutrients over the duration of the study.
Consumption of mixed meals delays gastric emptying
and thus may result in different metabolic effects. More-
over, the fact that whey is a fast-absorbing protein
source [151] further confounds the ability to generalize
results to traditional mixed-meal diets, as the potential
for oxidation is increased with larger dosages, particu-
larly in the absence of other macronutrients. Whether
acute MPS responses translate to longitudinal changes
in hypertrophy or fiber composition also remains to be
determined [120]. In addition to these aforementioned
studies, extensive work by Arciero and colleagues has
directly examined the combined effect of meal frequency
and timing along with the distribution of protein intake
with [129, 130, 152–156] and without [157, 158] exercise
training in both short-term (3 months) and longer-term
(> 1 year) interventions using a “protein pacing” model.
Protein pacing involves the consumption of 20–40 g
servings of high-quality protein, from both whole food
and protein supplementation, evenly spaced throughout
the day, approximately every 3 h. The first meal is con-
sumed within 60 min of waking in the morning, and the
last meal is eaten within 3 h of going to sleep at night.
Arciero and colleagues [129, 130] have most recently
demonstrated increased muscular strength and power in
exercise-trained physically fit men and women using
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protein pacing compared to ingestion of similar sized
meals at similar times but different protein contents,
both of which included the same multi-component exer-
cise training during a 12-week intervention.
In this respect and in consideration of alterations in

the time between protein feedings, one must also con-
sider the impact of the “muscle full” effect introduced by
Millward et al. [159] and later refined by Atherton et al.
[160] where it was speculated that a sensing mechanism
was present in muscle that governed overall rates of
muscle protein growth. In support of this theory one
can point to the well characterized changes seen in peak
MPS rates within 90 min after oral ingestion of protein
[160] and the return of MPS rates to baseline levels in
approximately 90 min despite elevations in serum amino
acid levels [161]. Thus if efficacious protein feedings are
placed too close together it remains possible that the
ability of skeletal muscle anabolism to be fully activated
might be limited. While no clear consensus exists as to
the acceptance of this theory, conflicting findings exist
between longitudinal studies that did provide protein
feedings in close proximity to each other [16, 110, 153],
making this an area that requires more investigation. Fi-
nally, while the mechanistic implications of pulsed vs.
bolus protein feedings and their effect on MPS rates
may help ultimately guide application, the practical im-
portance has yet to be demonstrated.

Pre-sleep protein intake
Eating before sleep has long been controversial [162–164].
However, methodological considerations in the original
studies such as the population used, time of feeding, and
size of the pre-sleep meal confounds any conclusions that
can be drawn. Recent work using protein-centric be-
verages consumed 30-min before sleep and 2 h after the
last meal (dinner) have identified pre-sleep protein con-
sumption as advantageous to MPS, muscle recovery, and
overall metabolism in both acute and long-term studies
[165, 166]. For example, data indicate that 30–40 g of ca-
sein protein ingested 30-min prior to sleep [167] or via
nasogastric tubing [168] increased overnight MPS in both
young and old men, respectively.
Likewise, in an acute setting, 30 g of whey protein,

30 g of casein protein, and 33 g of carbohydrate con-
sumption 30-min pre-sleep resulted in elevated morning
resting metabolic rate in fit young men compared to a
non-caloric placebo [169]. Similarly, although not statis-
tically significant, morning increases in resting metabolic
rate were reported in young overweight and/or obese
women [170]. Of particular interest is that Madzima et
al. [169] reported that the respiratory quotient (RQ) the
morning after pre-sleep nutrient intake was similar for
the placebo and casein protein trials, while both
carbohydrate and whey protein producedincreasedRQ

compared to placebo. This infers that casein protein
consumed pre-sleep maintains overnight lipolysis and
fat oxidation. This finding was verifiedwhen Kinsey et al.
[171] designed a study using the microdialysis technique
to measure interstitial glycerol concentrations overnight
from the subcutaneous abdominal adipose tissue following
30 g of casein or a flavor and sensory-matched noncaloric
placebo in obese men. It was concluded that pre-sleep
casein did not blunt overnight lipolysis or fat oxidation.
Similar to Madzima et al. [169] who compared pre-sleep
ingestion of either casein or carbohydrate, Kinsey et al.
[171] also concluded that pre-sleep casein did not result
in elevated insulin the next morning along with decreased
ratings of hunger in an overweight population. Of note, it
appears that previous exercise training completely ame-
liorates any rise in insulin when eating at night before
sleep [172] and the combination of pre-sleep protein and
exercise has been shown to reduce blood pressure and
arterial stiffness in young obese women with prehyperten-
sion and hypertension [173].
To date, only two studies involving nighttime protein

have been carried out for longer than four weeks. Snijders
et al. [174], randomly assigned young men (22 ± 1 years
old) to consume a protein-centric supplement (27.5 g of
casein protein, 15 g of carbohydrate, and 0.1-g of fat) or a
noncaloric placebo every night before sleep while also
completing a 12-week progressive resistance exercise
training program (3 times per week). The group receiving
the protein-centric supplement each night before sleep
had greater improvements in muscle mass and strength
over the 12-weeks. Of note, this study was non-nitrogen
balanced and the protein group received approximately
1.9 g/kg/day of protein compared to 1.3 g/kg/day in the
placebo group. More recently, in a nitrogen-balanced de-
sign using young healthy men and women, Antonio et al.
[175] supplemented participants with 54 g of casein pro-
tein for eight weeks either in the morning (any time before
12 pm) or in the evening (90 min or less before sleep) and
compared changes in body composition, strength per-
formance outcomes. All subjects maintained their usual
exercise program. The authors reported no differences in
body composition or performance between the morning
and evening casein supplementation groups. A potential
explanation for the lack of findings might stem from the
already high intake of protein by the study participants be-
fore the study commenced. However, it is worth noting
that although not statistically significant, the morning
group added 0.4 kg of lean body mass compared to 1.2 kg
in the evening group even though the habitual diet of the
trained subjects in this study was reported to be 1.7 to
1.9 g/kg/day of protein. Thus, it appears that protein con-
sumption in the evening before sleep represents another
opportunity to consume protein and other nutrients. Cer-
tainly more research is needed to determine if timing per
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se, or the mere addition of total daily protein can affect
body composition or recovery via nighttime feeding.

Conclusions
Nutrient timing is an area of research that continues to
gather interest from researchers, coaches, and con-
sumers. In reviewing the literature, two key consider-
ations should be made. First, all findings surrounding
nutrient timing require appropriate context because fac-
tors such as age, sex, fitness level, previous fueling sta-
tus, dietary status, training volume, training intensity,
program design, and time before the next training bout
or competition can influence the extent to which timing
may play a role in the adaptive response to exercise. Sec-
ond, nearly all research within this topic requires further
investigation. The reader must keep in perspective that
in its simplest form nutrient timing is a feeding strategy
that in nearly all situations may be helpful towards the
promotion of recovery and adaptations towards training.
This context is important because many nutrient timing
studies demonstrate favorable changes that do not meet
statistical thresholds of significance thereby leaving the
reader to interpret the level of practical significance that
exists from the findings. In this respect, it is the position
of the ISSN that when a strategy may either help or have
a neutral effect and fits within that individual’s daily
schedule and ability to comply, then from a purely prac-
tical perspective, it is worth employing. It is noteworthy
that differences in real-world athletic performances can
be so small that even strategies that offer a modicum of
benefit are still worth pursuing. One must remember
that the overarching purpose of any nutritional strategy
is to enhance the adaptive response to acute and/or
chronic exercise. In nearly all such situations, this ap-
proach results in an athlete receiving a combination of
nutrients at specific times that may be helpful and has
not yet shown to be harmful. This perspective also has
the added advantage of offering more flexibility to the
fueling considerations a coach or athlete may employ.
Using this approach, when both situations (timed or
non-timed ingestion of nutrients) offer positive out-
comes then our perspective is to advise an athlete to fol-
low whatever strategy offers the most convenience or
compliance if for no other reason than to deliver vital
nutrients in amounts at a time that will support the
physiological response to exercise.
Finally, it is advisable to remind the reader that due to

the complexity, cost and invasiveness required to answer
some of these fundamental questions, research studies
often employ small numbers of study participants. Also,
for the most part studies have primarily evaluated men.
This latter point is particularly important as researchers
have documented that females oxidize more fat when
compared to men, and also seem to utilize endogenous

fuel sources to different degrees [28–30]. Furthermore,
the size of potential effects tends to be small, and when
small potential effects are combined with small numbers
of study participants, the ability to determine statistical
significance remains low. Nonetheless, this consideration
remains relevant because it underscores the need for
more research to better understand the possibility of the
group and individual changes that can be expected when
the timing of nutrients is manipulated.

Practical applications

� In many situations, the efficacy of nutrient timing is
inherently tied to the concept of optimal fueling.
Thus, the importance of adequate energy,
carbohydrate, and protein intake must be
emphasized to ensure athletes are properly fueled
for optimal performance as well as to maximize
potential adaptations to exercise training.

� Prolonged exercise (> 60 – 90 min) of moderate to
high intensity (65–80% VO2max) relies heavily upon
endogenous carbohydrate stores, and timing strategies
to maximize these stores (carbohydrate loading or
glycogen supercompensation strategies) have been
shown to facilitate recovery and offset these changes.

� High-intensity exercise (particularly in hot and
humid conditions) demands aggressive carbohydrate
and fluid replacement. Consumption of 1.5–2 cups
(12–16 fluid ounces) of a 6–8% carbohydrate
solution (6–8 g carbohydrate per 100 mL of fluid)
has been shown as an effective strategy to replace
fluid, sustain blood glucose levels and promote
performance. The need for carbohydrate
replacement increases in importance as training and
competition extend beyond 70 min of activity and
the need for carbohydrate during shorter durations
is less established.

� Rapid ingestion of high amounts of carbohydrates
(≥ 1.2 g/kg/h) for four to 6 h soon after exhausting
exercise can rapidly stimulate replenishment of
muscle glycogen.

� Adding protein (0.2–0.5 g/kg/h) to carbohydrate
increases the rate of glycogen resynthesis when
ingesting < 1.2 g/kg/h of carbohydrate. Moreover,
the additional protein may minimize muscle
damage, promote favorable hormone balance and
accelerate recovery from intense exercise.

� For athletes completing high volumes (i.e., ≥ 8 h) of
exercise per week and subsequently requiring the
need to continually and rapidly replenish endogenous
glycogen stores, the single most effective strategy to
maximize endogenous glycogen stores is the
consumption of a daily diet high in carbohydrate
(8–12 g/kg/day).
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� The use of a 20–40-g dose of a high-quality protein
source that contains approximately 10–12 g of the
EAA maximizes MPS rates that remain elevated for
three to four hours following exercise.

� Protein consumption during the peri-workout period
is a pragmatic and sensible strategy for athletes,
particularly those who perform high volumes of
exercise. Not consuming protein post-workout
(e.g., waiting for several hours post-exercise) offers
no benefits.

� The impact of delivering a dose of protein (with
or without carbohydrates) during the peri-workout
period over the course of several weeks may operate
as a strategy to heighten adaptations to exercise.
Key factors that may influence the overall outcomes
include one’s total daily protein intake, an
individual’s training status and when their last
dose of protein was consumed.

� Like carbohydrate, timing related considerations
for protein appear to be of lower priority than the
ingestion of optimal amounts of daily protein
(1.4–2.0 g/kg/day).

� In the face of restricting caloric intake for weight
loss, altering meal frequency has shown limited
effects on body composition. However, more
frequent meals may be more beneficial when
accompanied by an exercise program. The impact
of altering meal frequency in combination with an
exercise program in non-athlete or athlete
populations warrants further investigation. It is
established that altering meal frequency (outside
of an exercise program) may help with controlling
hunger, appetite and satiety.

� Nutrient timing strategies that involve changing the
distribution of intermediate-sized protein doses
(20–40 g or 0.25–0.40 g/kg/dose) every three to 4 h
best supports increased MPS rates across the day
and favorably enhances body composition and
physical performance outcomes. One must also
consider that other factors such as the type of
exercise stimulus, training status, and consumption
of mixed macronutrient meals versus sole protein
feedings can all impact how protein is metabolized
across the day.

� When consumed within 30 min before sleep,
30–40 g of casein may increase MPS rates and
improve strength and muscle hypertrophy. In
addition, protein ingestion prior to sleep may
increase morning metabolic rate while exerting
minimal influence over lipolysis rates. In addition,
pre-sleep protein intake can operate as an
effective way to meet daily protein needs while
also providing a metabolic stimulus for muscle
adaptation.

� Altering the timing of energy intake (i.e., total
calories over the course of a day) may improve
weight loss, body composition changes, and health-
related markers, particularly when a greater
proportion of calories are consumed during
breakfast and to a greater extent when this meal
provides higher amounts of dietary protein.
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