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Transactions Letters 

Variable-Complexity Trellis Decoding of Binary Convolutional Codes 
David W. Matolak and Stephen G. Wilslon 

Abstract- We consider trellis decoding of convolutional codes 
with selectable effort, as measured by decoder complexity. De- 
coding is described for single parent codes with a variety of 
complexities, with performance “near” that of the optimal fixed 
receiver complexity coding system. Effective free distance is ex- 
amined. Criteria are proposed for ranking parent codes, and some 
codes found to be best according to the criteria are tabulated. 
Several codes with effective free distance better than the best 
code of comparable complexity were found. Asymptotic (high 
SNR) performance analysis and error propagation are discussed. 
Simulation results are also provided. 

I. INTRODUCTION 
EDUCED complexity decoding techniques have attracted R much attention in recent years. For code trellises with 

large numbers of states, reduced-state sequence estimation 
(RSSE) has been studied as a means of performing near-ML 
detection with significantly smaller complexity than the con- 
ventional Viterbi algorithm (VA). This has been particularly 
successful in the IS1 channel [1]-[3]. 

Previously, most trellis-coded communication schemes were 
designed to optimize performance at some fixed receiver 
complexity, typically on an AWGN channel. Usually free dis- 
tance is the optimization criterion, supplemented with weight 
spectrum information. In the scheme proposed here, a single 
(universal) convolutional encoder is employed at the transmit- 
ter, but various receiver decoding complexities are possible. 
This may be attractive in allowing a family of decoders, with 
cost proportional to complexity, or possibly in allowing a 
single processor to be time-shared with other processing tasks 
from time to time to optinuze use of processor resources 
andor decoding delay. The trade-off, as usual, is between 
performance and complexity. We refer to this setting as 
variable complexity trellis decoding (VCTD). 

Anderson and Offer [4] have recently considered the use 
of RSSE for binary convolutional codes and found that RSSE 
on (good) codes does not produce better schemes (in terms 
of free distance) than are obtainable with best codes at a 
given complexity. Using a more detailed definition of decoder 
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complexity, which takes into account trellis connectivity, 
we have found several codes which are better in terms of 
effective free distance than the best known codes of the same 
complexity. Also, our search has uncovered parent codes that 
can be decoded withi a range of decoder complexities, all the 
while offering “good” performance, relative to the comparable 
best code at that complexity. 

Here, we measure decoder complexity C as the number 
of branch metrics computed per decoded bit. Specifically, a 
(binary) encoder which takes in k bits per unit time has a 
trellis which has 2k branches entering or leaving each state, 
and its decoder must output k information bits per unit time. 
So, C = S(2”IC). For encoders with equal values of k , S  
is a sufficient measure of complexity. For encoders of equal 
S ,  however, C increases with IC beyond 2 s  when IC > 2. The 
encoders studied here have k = 1. 

The method of RSSE we consider is that in [2]:  groups of 
states in the full trellis are treated as a single subset state, 
or reduced-trellis (RT) state. These subsets contain 2P,p = 
1 ,2 ,  - - .  , full trellis states. Thus, = S/2P states exist in 
the RT. Decoding 11s accomplished via a modified Viterbi 
algorithm, wherein one survivor per subset state is retained 
at each time stage. 

The remainder of this paper discusses these issues in more 
detail. Section I1 reviews the method of RSSE, introduces the 
relevant notation, and defines reduced trellis parameters. Rate 
1/n codes are the focus. Section I1 also describes the ranking 
method we use for these codes and discusses performance. 
Section I11 tabulates the resulting best VCTD convolutional 
codes found by computer search and contains some simulation 
results. 

11. RSSE: METHOD AND REDUCED TRELLIS CONSIDERATIONS 
The method and notation used here are best illustrated 

by example. Fig. 1 shows a diagram of a rate 1/n = l / 2 ,  
memory m = 3, S = 2m = 8 state encoder, and its trellis. 

( 0 )  (1) Trellis branches are labeled by uk;xk ,xk , the single input 
and its associated n. = 2 outputs. The outputs at any time 
instant I C ,  (xf), z r ) ) ~ ,  are described by the convolution of the 
sequence ti with the encoder generator vectors, g(O) and g(’). 
For the encoder in Fig. 1, these generators, in octal, right- 
justified notation arc: (16, 15). The state of this encoder at 
time IC is denoted cr,+ = (uk-1, Uk-2, u k - 3 ) ,  ranging here from 
zero to seven (decimal equivalent). 

For state reduction by a factor of two, to yield S = S / 2  = 4 
states in the reduced trellis, the states are grouped in pairs. This 
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Fig. 1. 
its trellis diagram. 
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Fig. 2. Illustratiop of subset grouping on the trellis of Fig. 1 to obtain a 
reduced trellis of S = S/2 states. (a) Grouping in full trellis; (b) equivalent 
reduced trellis. 

grouping is done in a natural way: state 0 is grouped with 
state 1; state 2 with state 3 ,  and so on. Thus, only the oldest 
bit uk--3 is removed from the state description. The RT state 
at time k is then & = (uk-1,uk-z) (Fig. 2). In this manner, 
by grouping 2 P  consecutive full trellis (FT) states together 
to form each reduced trellis state, any full trellis of S states 
may be reduced to one having S = S/2P states. The reduced 
trellis state description then consists of the first (most recent) 
m’ = m - p bits in the encoder; the other p bits represent a 
portion of the path history of each subset state, an estimate 
of which is needed by the decoder to determine which branch 
symbols to hypothesize. 

To decode in the reduced trellis, the VA uses the p estimated 
bit(s) of the path history, along with the RT state description 
(effectively the estimated FT state), to address the branch 
symbols to be used for the next time stage. For example, 
at time k in the reduced trellis diagram of Fig. 2, the state 
Zrk = (0,O) may correspond to either full trellis state (0, 0, 
0) or (0, 0, l), depending on which path survives at time 
k. If the solid line path (Path t )  survives, corresponding to 
either of the solid line paths into full trellis state (0, 0, 0) 
in the associated full trellis diagram, the estimated full trellis 
state is (0, 0, 0), and the branch symbols (xf), xf)) = (0,O) 
are hypothesized. Similarly, if the dashed path 0 survives, the 
branch symbols (xf), x t ) )  = ( 0 , l )  are hypothesized. The 
remaining VA operations (add, compare, select for each state) 
proceed as usual. 

In the reduced trellis, we define &,, as the minimum 
Hamming distance between paths which diverge from the same 

subset state and remerge subsequently at a subset state, given 
that the correct path history is used to label all branches. Thus, 

dfree = min [wt(z)] (1) 
U ~ U 1 # 0  

as long as branches are labeled correctly. Subsequently we call 
this the effective free distance. This condition that branches 
be labeled correctly simply means using the RT states and 
their path histories as the estimates of the FT states and 
labeling branches according to estimated FT state transitions. 
For reduction by a factor of 2 P ,  we denote df,,, as li::?. As 
in full-trellis decoding, this free distance is used to estimate 
asymptotic [high signal-to-noise (SNR)] performance. For the 
case of state reduction by a factor of two ( p  = 1), the 
following theorem applies. 

Theorem: For a binary, rate l ln ,  memory m convolutional 
encoder, with generator vectors {g ( ’ ) }  and free distance dfree, 
the effective free distance in the reduced trellis of S = ,912 = 

states is given by the following formula: 2m-1 

Proofi The Hamming distance between any two paths in 
the reduced trellis is the full trellis distance, decreased by the 
Hamming distance between the transitions of the final, merging 
branches of the corresponding full-trellis paths. This Hamming 
distance is easily computed by noting that a difference in code 
bits (IC:’) for these branches appears only where gk) is a 
one, since only in this bit do the FT states differ. The loss 
of Hamming distance, associated with the loss of the final 
merging transitions of the full-trellis paths, is described by the 

0 
For state reduction by a factor larger than two ( p  > l), dfree 

can be bounded. For p = 2,3,4,  . . . , a lower bound is obtained 
via 

weight of the vector of gk), which yields (2). 

7 

where r = 1 , 2 , .  “ p  - 1, addition of the weights is 
conventional integer addition, and 3, is defined as x, = 
(IC,”, x i ,  . x,”-l) with components computed from 

x; = gk-, @gkn-,+1ul@gk-,+,u2G3.. .@gh-lu,-l@gRu, 

and the @ denotes modulo-2 addition. 

modification of Heller’s bound, as follows: 
An upper bound on li;,:) can be obtained by a simple 

(4) 

To rank these encoders, we define the state contour vec- 
tor S = [S, S/2 ,S /4 , .  . . S/2.], and its associated distance 

ranking parameter, A d  is then computed by comparing the 
elements of d to the best dfree achieved with full trellis 
decoding, at the corresponding state size (and complexity) 

contour vector d = [dfree, dfree, ”(2) dfree, “(4) . . . dfree -(2*) 1. An overall 

V m s r  

p=o 
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where d":::, is the free distance of the optimal free distance 
(OFD) code of a states. Thus, Ad represents the sum of 
the losses (or gains) in free distance with respect to the 
OFD codes achievable at the same complexity, and, we 
suggest, a simple measure of a code's strength under various 
decoding complexities. For example, for a state contour S = 
[256,128,64,32,16], the corresponding full-trellis distance 
contour of the optimal rate-l/2 free distance codes is d = 
doFD = [la,  10,10,8,7]. (Note that this represents five 
different encoders.) For the single encoder with S = 256 states 
and generators (472, 557), we have found d = [12,11,9,8,6] 
(see Table I). Thus Ad = 1. The bound of (3) is achieved for 
this code, i.e., equality holds in (3) for all the elements of d.  

The significance of d"free is in predicting high SNR error 
performance, analogous to full trellis decoding. We first define 
P f e ( k )  as the probability that the decoder discards the correct 
(RT) path for the first time at time k .  For any finite depth into 
the trellis, say time k ,  the distances to all error paths range 
from ifree to imaX(k) .  With a union bound argument, we can 
bound Pfe(k) as follows: 

M 

d Ad ( UI, (I), P I ,  "3 
(12,16,15,17),(16,16,13,15) [12,10,7] 1 

[16,12,10,7] 1 (25,33,35,37) 
[ I  8,14,12,10,7] 3 (5 1,65,73,77),(51,67,73,75),(53,67,71,75)o 

where P2(d") is the two-codeword error probability for code- 
words a distance d" apart, Nz is the number of paths at distance 
d, and we have defined the second sum as P f e .  At high signal- 
to-noise ratios, the sum in (6) is dominated by its first term, 
a function of &,,. So, a good approximation to the first error 
event probability (at any time k )  may be obtained by using 
only this first term. 

An RT error event occurs when the decoder chooses a path 
which diverges from and then remerges with the correct RT 
path. A general error event probability can also be defined, 
without regard to the notion of a "first event" [9]. The 
probability of an error event at any time k ,  Pe,(k) is the 
probability that the decoder selects an incorrect path at time 
k .  Note that if a prior error event has occurred, the decoder 
is no longer selecting between the overall correct and an 
incorrect path, but between two incorrect paths. In the FT, 
this is of little consequence, since the (VA) decoder always 
selects the maximum likelihood path, and an error event 
always terminates on the true FT state. But, in RT decoding, 
the occurrence of an error event may in fact increase the 
probability of subsequent error events, at least until the true 
FT state is recovered. This error propagation ultimately affects 
the bit error probability. 

In many cases Pfe may be the parameter of interest, for 
example, in cases where the frame or block error probability 
is most important. For a frame of length N stages, we define 
the frame error probability, P F ( N ) ,  as the probability that 
any error event occurs in the length-N frame. (Note that this 
probability approaches unity at any finite SNR as N becomes 
large.) We may overbound this probability by a union bound 
also, using the quantities in (6) 

N 

1 123 

TABLE I 
d CONTOURS, Ad VALUES, AND GENERATOR VECTORS FOR BEST 

R = 112, R = 113, AND R = 114 VCTD CODES. THE GENERATORS 

COMPLEXITY ARE ASTERISKED. GENERATORS WHICH YIELD OFD (0) OR 
WHICH YIELD BETTER THAN ANY KNOWN CODE OF THE SAME 

OPTIMUM-DISTANCE-PROFILE ( P )  CODES OF s STATES ARE ALSO NOTED 

a) rate 1/2 codes, S =[ l024,5 12,2t;~6,128,64,32,16,8,4,2], d~e=[l4,I3,12,11,10,8,8,6,5,4] 
dom=[14,12,12, IO, 10,8,7,6,5,3] 

,',,,,,>,, 
(51,67,75),(51,73,75),(53,71,75),(57,65,7l) 

(125,163,167),(127,l63,l65) 
(127,153,171),(135,151,173), (151,153,175) 

This bound may lbe rather loose, but at high SNR, and 
for modest values of N ,  a good approximation to P F ( N )  
may be obtained by using only the first term in P f e ,  i.e., 
~ F ( N )  N N J ~ ~ ~ ~  . Pz(&ree). 

111. (CODE SEARCH RESULTS 

Tables 1-111 present the results of a code search. The table 
entries are the RT effective free distance contours d, figure of 
merit Ad, and encoder generator vectors (octal, right justified). 
Also listed for comparison are the upper bounds on the free 
distances (dHB-Heller's bound for rate 1 /n  codes and dUB 
for the rate k / n  codes) and the OFD distance contours doFD. 
The search was exhaustive. 

It is worth noting that these OFD codes are all the "conven- 
tional" type, i.e., the encoder takes in k bits per unit time and 
outputs n bits, for k and n relatively prime. Codes which 
have larger k and 72 but the same rate k /n ,  have higher 
connectivity and hence higher complexity. In [lo], Lee found 
several unit-memory codes which meet the upper bound on 
free distance when the conventional codes do not. These codes 
all have complexity (7 > 2S, whereas the codes here all have 
complexity C = 2s (see Section I). 

Table I contains results for rate 1/2 codes of memory order 
m from three to 10, rate 1/3 codes of memory order three to 
six, and rate 114 codes of memory order three to five. The 
codes were selected first on the basis of minimal Ad; among 
codes with the same Ad, the ones with the largest dfree at the 
smallest S were judged best. Often these turned out to be the 
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m 
3 

TABLE II 
d CONTOURS, A d  VALUES, GENERATOR VECTORS AND PUNCTURING MATRICES 

FOR BEST R = 213 VCTD CODES DERIVED FROM R = 112 ORIGINAL 
CODES, S = [256,128,64,32,16,8, 4],dUB = [8,8; 8,6;  6,4,4] ,  

~ O F D  = [8,8,7,6,5,4,31 
d Ad ( (01, (1 P 

[4,3] 0 (14,13),(14,15) 10 
11 

5 

6 

7 

8 

11 

11 

10 

11 
[8,6,5,4,3,J 4 (225,373),(251,337) 10 

11 
[8,7,5,5,4,,J 5 (666,515),(666,545) 10 

1 1  

[6,5,4,31 0 (44,731 10 

[6,5,5,4,31 2 (165,13 1) 11 

(131,165) 10 

TABLE JII 
d CONTOURS, A d  VALUES, GENERATOR VECTORS AND PUNCTURING MATRICES 
FOR BEST R = 314 VCTD CODES DERIVED FROM R = 112 ORIGINAL CODES 
s = [128,64,32,16,8], dUB = [8 ,8,6,6,4,4] ,  doFD = [7 ,6 ,6 ,  5.4,4] 

I 111 

codes with the largest dfree as well. We kept p 5 5 to keep 
the computation time reasonable. As an example of reading 
Table I, for m = 6, the rate 112 code with generators (132, 
163) has an effective free distance contour of d = [9,8,6,6,5] 
for a state contour of S = [64,32,16,8,4]; the 64-state and 16- 
state dfree values are each one less than the OFD values, hence 
by (3, A d  = 2. For all rates and many values of memory 
order, several codes achieve the same Ad. The main results 
of note in Table I are that the first rate-1/2, memory eight code 
listed achieves the bound (ifree = 11) for S/2 = 128 states 
whereas the OFD code of S = 128 states does not; a similar 
statement applies to the rate-112, memory 10 codes, where 
dfree = 13 for S /2  = 512 states. Thus, asymptotically, the 
first event error probability for these codes should be better 
than their full trellis counterparts. 

Table I1 contains results for punctured rate 2/3 codes for 
memory order m from three to eight. These codes were 

1.El 

1.E2 

P F O  

1 . 6 3  

1.@4 

0.0 1.0 20 3.0 4.0 5.0 6.0 7.0 8.0 

Fig. 3. Frame exor probability PF (N)  versus Eb /No for rate 112 encoders 
using binary antipodal signaling on the AWGN channel, and frames of 
N = 256 bits. Solid curves are OFD encoder results of eight, four, and 
two states, with dfree of six, five, and three, respectively; dashed lines are 
reduced-trellis decoding results for the best m = 3 encoder (of Fig. 1) with 
eight, four, and two states, and d = [dfree, ii:2e, 2&)e] = [6,5,3]. 

obtained by puncturing rate 1/2 codes of the given memory 
order. The puncturing matrices are also listed. The vector of 
upper bounds d u ~  [ 111 and the achieved optimal free distance 
vector &FD [12] pertain to arzy (conventional) rate 213 code, 
not only punctured codes, so the values achieved for A d  
are not as good as they might be for comparison with only 
punctured codes. Table 111 presents similar results for rate 3/4 
codes of memory order three to seven. Variable-complexity 
decoding of the rate 213 and 314 codes is done in a way 
analogous to the rate 1/n case. 

Unfortunately, none of the best rate 112 code generators 
also appears as original code generators for the other rates. 
Thus, no rate-compatible [13] VCTD codes (rate-compatible 
across only two rates here) have yet been found. Moreover, 
for no rates other than 112 were effective free distances found 
which exceeded the full trellis OFD values. Nonetheless, these 
rate-2/3 and rate-314 encoders offer the flexibility of VCTD. 

To confirm the expected performance, some simulations 
were conducted. Results for the S = 8 state code of Fig. 1 
are shown in Fig. 3, which plots P F ( N )  versus Eb/No for 
antipodal signaling on the AWGN channel using frames of 
N = 256 bits. Soft-decision decoding was used, with a 30- 
bit decoding delay. Two codes with the same effective free 
distance should have, asymptotically at least, the same frame 
error probability. In this figure, the solid curves represent the 
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1 .OE4 

1 .OK6 
0 1 2 3 4 5 6 7 8  

Eb/NO (dB) 
Fig. 4. Pb versus &/No for rate 112 encoders using binary antipodal signal- 
ing on the AWGN channel. Solid curves are OFD encoder results of eight, four, 
and two states, with df,,, of six, five, and three, respectively; dashed lines 
are reduced-trellis decoding results for the best m = 3 encoder (of Fig. 1) 
with eight, four, and two states, and d = [df,,,, 4:ie, = [ 6 , 5 , 3 ] .  

decoding performance of the three OFD encoderldecoders of 
S = 8,4,and 2 states  do^^ = [6,5,3]). The three dashed 
curves represent the results of VCTD on the encoder of Fig. 1. 
As noted in Table I, d =  do^^ for this code, so its first event 
error probability performance should be asymptotically equiv- 
alent to that of the OFD codes; the differences in frame error 
probability at P F ( N )  M lo-* - are in good agreement 
with what is expected due to the increased multipliers ( N J )  of 
the VCTD trellises. (For S = [8,4,2], these VCTD Ni’s are 
[5, 5, 21, respectively. The corresponding multipliers for the 
OFD codes are all one.) In addition, as mentioned following 
(7), using the dominant term of P f e  should yield a good 
approximation to the frame error probability Pp(N = 256). 
This holds true for this case, and Table IV compares the 
approximation and simulation results for the highest-SNR 
points of each curve on Fig. 3. The bit error probability 
performance, shown in Fig. 4, is also as expected at high SNR. 
The effect of error propagation appears at low @,/No (say <7 
dB) in Fig. 4, where for S = 2, the VCTD code’s performance 
is more than 2 dB worse than that of the OFD code for 
a given Pb. We also observed no change in performance 
when the decoding delay was reduced proportionally to the 
effective encoder memory m’, supporting the idea of a variable 
decoding delay, along with variable complexity. 

Simulations were also performed on the rate 1/2, m = 8 
best VCTD code mentioned previously. As noted in Table I 

1.OM 

1.0J3l 

1.0152 

PFOV) 

1 .053 

1.OM 

1.055 
0 0.5 I 1.5 2 2.5 3 3.5 4 4.5 

Fig. 5. Frame error probability P,(N) versus Eb/No for rate 1/2 encoders 
using binary antipodal ,signaling on the AWGN channel, and frames of 
N = 256 bits. Solid curves are OFD encoder results of S = 256 states 
(df,,, = 12), and S == 128 states (dfree = lo) ,  and the dashed lines 
are reduced-trellis decoding results for $e best m = 8 encoder (asterisked 
in Table I) with S = 256 states and S = 128 states, with corresponding 

-(2) d = [dfree,dfree] = [1:2,11]. 

TABLE IV 

APPROXIMATION PF ( N )  AND SIMULATED FRAME ERROR 
PROBABILITY F~DR THE CODES OF FIG. 3, WITH N = 256 

COMPARISON OF FRAME ERROR PROBABILITY 

the generators are (472, 557), with an effective free distance 
of Jfie = 11 for S I= S/2 = 128 states, better by one than the 
OFD code of the same complexity. Fig. 5 plots the frame error 
probability for this code, decoded with S = 256 and S = 128 
states (dashed lines ), and the corresponding results obtained 
with the two OFD codes of the same complexity (solid 
lines). As can be wen, for these error rates, the improvement 
suggested by the larger effective free distance is not realized. 
This is due to the probably larger error multipliers of the 
VCTD code, and to the fact that the asymptotic regime is 
not yet attained at tlhese SNR’s. In addition, the performance 
difference between the full-trellis-decoded S = 256 state and 
S = 128 state codes is not nearly its asymptotic value of 
0.8 dB (10 log (12/10)), illustrating the significant effect of 
the multipliers at these SNR’s .  Similar results obtain for Pb, 
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Fig. 6. Pb versus Eb/No for rate 112 encoders using binary antipodal 
signaling on the AWGN channel. Solid curves are OFD encoder results of 
S = 256 states (dfree = 12),  & S = 128 states (dfree = 10); and 
the dashed lines are reduced-trellis decoding results for the best m = 8 
encoder (asterisked in Table I) with S = 256 states and S = 128 states, with 
corresponding d = [dfreer 2;,!2J = [12,11]. 

shown in Fig. 6. At higher SNR’s though, the first error event 
probability of the VCTD code should be slightly better than 
its full-trellis counterpart. 

IV. CONCLUSIONS 

A method of variable-complexity trellis decoding of bi- 
nary convolutional codes has been described, allowing a 
single convolutional code to be decoded with various receiver 
decoder complexities, yielding good performance at each 
level of complexity. We examined effective free distance, 

the parameter which predicts asymptotic first error event 
probability, and obtained bounds on this distance for rate l / n  
codes. A ranking method was devised for code comparison, 
and the best VCTD codes of rate l / n ,n  = 2, 3,  4 for short 
memory order were tabulated. Rate- 112 codes which have 
effective free distances better than the best codes of the same 
complexity were found. Extension of the VCTD idea to codes 
of rate 213 and 314 was made by puncturing rate 112 codes. 
The bit error probability of these VCTD codes is degraded by 
error propagation at low SNR. Asymptotically though, their 
performance can be as good as, or possibly better, than that 
of their full-trellis-decoded counterparts, especially in frame 
error probability. 
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