Short, Strong Halogen Bonding in Co-Crystals of Pyridyl Bis-Urea Macrocycles and Iodoperfluorocarbons

M. F. Geer
J. Mazzuca
Mark D. Smith
Linda S. Shimizu

Follow this and additional works at: http://scholarcommons.sc.edu/chem_facpub
Part of the Materials Chemistry Commons

Publication Info
© CrystEngComm 2013, Royal Society of Chemistry
http://dx.doi.org/10.1039/C3CE41413B
Short, strong halogen bonding in co-crystals of pyridyl bis-urea macrocycles and iodoperfluorocarbons†

Michael F. Geer, James Mazzuca, Mark D. Smith and Linda S. Shimizu*

Co-crystals formed from pyridyl bis-urea macrocycles and iodopentafluorobenzene or diiodotetrafluoroethane show surprisingly short, strong halogen bonds. The shortest interactions were observed between the carbonyl oxygen and the iodide and were 78% of the sum of the van der Waals radii for O⋯I, with distances ranging from 2.719(2) to 2.745(2) Å.

Introduction

Halogen bonding is an important organizing strategy for materials such as liquid crystalline materials,1–6 organic semiconductors,2,7 and in the assembly of proteins and nucleic acids.8–12 This manuscript explores the propensity of the pyridyl bis-urea macrocycle to act as a Lewis base (R–B) and form halogen bonding interactions with a series of halogen bond donors (R–X) from moderate (diiodobenzene and iodobenzene) to strong (diiodotetrafluorobenzene, diiodotetrafluoroethane, and iodopentafluorobenzene). Crystalization of the pyridyl macrocycle 1 (Fig. 1) with iodopentafluorobenzene or diiodotetrafluoroethane by slow evaporation from methylene chloride solutions affords X-ray quality crystals that show short, strong halogen bonds with these halogen bond donors. The R–X⋯B distances range from 2.719(2) to 2.745(2) Å, or 78% of the sum of the van der Waals radii for O⋯I. Through systematic DFT calculations using PBE exchange-correlation, we estimate association energies of 7.381 kcal mol⁻¹ for iodopentafluorobenzene and 10.331 kcal mol⁻¹ for diiodotetrafluoroethane.

In organic halides, the electron density is anisotropically distributed around the halogen resulting in a region of positive electrostatic potential along the axis of the covalent bond, termed the “σ-hole.”13 This σ-hole gives the halogen a Lewis acid type nature that promotes interaction with Lewis bases, such as nitrogen and oxygen lone electron pairs, in close contact resulting in a halogen bond. The strongest examples of this are seen in the nitro-oxide–iodoperfluorocarbon interactions reported by Metrangolo and Resnati.14 Our group utilizes bis-urea macrocycles that typically assemble through the three-centered urea hydrogen bonding motif into columnar structures and can incorporate guests within these inherently porous channels.15–18 In contrast, the pyridyl macrocycle 2 forms columnar assemblies through two separate hydrogen bonding interactions between the urea N–H’s and two different acceptors: the urea carbonyl oxygen and the pyridine nitrogen.19 The electrostatic potential distributions of these macrocycles highlight these basic sites (shown in red) that are primarily localized on the urea oxygens and the pyridine nitrogens. We set out to examine the propensity of pyridyl bis-ureas 1 and 2 to co-crystallize with halogen bond donors. Specifically, we wanted to test the strength of the interactions that can be formed through the urea oxygen’s lone pair and halogens. This manuscript reports crystal structures of halogen bond donors with pyridyl bis-urea 1, the more soluble macrocycle. We investigate the strength of these hydrogen bonding interactions through DFT calculations. The crystal structures display neutral molecules with very short and strong halogen bonds that are shorter than analogous charged species with nitro-oxide compounds.

Results and discussion

Macrocycle 1 was synthesized as reported from 2,6-dibromomethylpyridine and triazinanone.19 This protected pyridyl bis-urea macrocycle lacks the urea N–H hydrogen bond donors that drive the self-assembly in other bis-urea macrocycles to afford columnar structures. Thus, it is more soluble in typical organic solvents and provides a building block for co-crystal formation that can act only as a halogen bond or hydrogen bond acceptor. The triazinanone protecting groups can be readily deprotected to afford macrocycle 2. Ureas have a high propensity for self-assembly and accordingly tend to have low solubility. This is true for 2, which shows low solubility in most organic solvents.
We sought to compare the ability of hosts 1 and 2 to act as halogen bond acceptors. The crystal structures of these compounds have been reported. We first examined these known structures by importing their X-ray coordinates (.cif files) into Spartan10™. We truncated the structure to a single macrocycle and deleted the solvent molecules. The structures were then evaluated through DFT calculations at the 6-31+G* level of theory, and the electrostatic potential was examined. Fig. 1 compares the resulting potential maps of the two structures. As expected, both show a strong electronegative potential localized at the carbonyl oxygen sites. Interestingly, the free uras in macrocycle 2 displayed a greater electronegative potential due to the removal of the electron-withdrawing protecting group. Given the X-ray structures and electrostatic potential distributions, we conclude that 1) both macrocycles contain basic oxygen sites that could act as halogen bond acceptors, 2) the pyridine nitrogens are sterically crowded in the interior and are unlikely to interact and 3) macrocycle 2 displays a higher electronegative potential at the carbonyl oxygen versus macrocycle 1 as seen by the more intense red color. Therefore, we expect that 2 will act as a slightly stronger acceptor with its free uras versus macrocycle 1.

We next selected a series of five halogen bond donors to co-crystallize with macrocycles 1 and 2. Chart 1 lists the five donor compounds. Diiodotetrafluoroethane (3), diiodoperfluorobenzene (4), and perfluorodiiodobenzene (5) are strong halogen bond donors. In comparison, diiodobenzene (6) and iodobenzene (7) are considered medium halogen bond donors.

A weak halogen bond donor would include compounds such as bromo and chloro compounds.

To investigate the feasibility of forming co-crystals of macrocycles 1 and 2 and halogen bond donors, host–halide mixtures were prepared in 1:1 and 1:2 molar ratio in suitable solvents. Solutions of the more soluble macrocycle 1 were prepared in CH₂Cl₂, chloroform and THF (40 mM) in separate scintillation vials. The low solubility of 2 necessitated the use of DMSO and DMF solutions (2–5 mM). Then, to each solution, the halogenated compounds 3–7 were added, and the vials were capped loosely and allowed to slowly evaporate. For 1, crystals were obtained from CH₂Cl₂, while precipitates were observed from the other solutions. X-ray quality crystals have not yet been obtained for 2 with these halides. The solutions of macrocycle 1 with p-diodobenzene and iodobenzene gave none of the desired co-crystals and instead afforded solvates of macrocycle 1 and dichloromethane solvent. This suggests that the halogen bond donor capabilities of the iodo compounds were not sufficient to overcome the solvent interactions with the macrocycle. X-ray quality crystals were obtained from solutions of macrocycle 1 with perfluorodiiodobenzene in dichloromethane, diiodotetrafluoroethane in dichloromethane (two structures) and chloroform, and perfluorodiiodobenzene in chloroform.

Macrocycles 1:pentafluoriodobenzene [(C₂₃H₂₆N₄O₂)(C₆F₅I)]

Slow evaporation of a 1:2 mixture of 1 (40 mM in CH₂Cl₂) and pentafluoriodobenzene afforded a colorless mass of block crystals with the formula (C₂₃H₂₆N₄O₂)(C₆F₅I). The compound crystallized in the space group P1 of the triclinic system, consisting of one macrocycle and three independent pentafluoriodobenzene molecules (Fig. 2). The macrocycle adopts a bowl-shaped conformation where the pyridyl nitrogens are both pointed toward the triazinanone protecting groups. The macrocycle forms three separate halogen bonds with the iodine atoms of three pentafluoriodobenzenes. Two of these short, strong halogen bonding interactions occur between the iodide and the carbonyl oxygen. The first, to the

![Fig. 2](image-url)
left of the macrocycle in the figure, displays an I⋯O distance of 2.719(2) Å and a C–I⋯O angle of 173.71(9)°. The second, to the right of the macrocycle, shows an I⋯O distance of 2.745(2) Å and a C–I⋯O angle of 177.13(9)°. The third halogen bond is formed with one of the triazinanone nitrogens with an I⋯N distance of 3.001(2) Å and a C–I⋯N angle of 169.32(9)°.

Interestingly, the two halogen bonds formed between the iodine of the pentafluoriodobenzene and the carbonyl oxygens are only 77.7 and 78.4% of the sum of the van der Waals radii for iodine and oxygen (3.50 Å), suggesting a very strong halogen bond. Indeed, these bonds are shorter than those reported by Resnati et al. that formed an O⋯I halogen bond between a nitro-oxide and iodo compound with an O⋯I distance of 2.745 Å.21 The third halogen bond is also a very short contact being only 85.0% of the van der Waals radii for nitrogen and iodine (3.53 Å). No halogen bonds were formed with the pyridyl nitrogens as they point inwards in a conformation that is sterically disfavoured towards further interactions.

Each macrocycle further forms a “dimer” assisted by offset aryl–aryl stacking (closest C–C distance between the parallel rings = 3.37 Å, Fig. 2 inset). The dimers of macrocycle 1 are separated by four “stacks” of three of the iodo compounds 5 assisted by aryl stacking with distances (center–center) of 4.01 and 3.70 Å. The dimers of 1 are halogen bonded to two iodo compounds in the two stacks (down the c-axis) with the third halogen bonded to the nitrogen of an adjacent dimer of 1 (Fig. 3).

Macrocycle 1-tetrafluorodiiodoethane [(C$_{28}$H$_{40}$N$_{8}$O$_{2}$)(C$_{2}$F$_{4}$I$_{2}$)]

Slow evaporation of a 1:1 mixture of 1 (40 mM in CH$_2$Cl$_2$) and pentafluoriodobenzene in the dark afforded colorless block crystals with the formula (C$_{28}$H$_{40}$N$_{8}$O$_{2}$)(C$_{2}$F$_{4}$I$_{2}$). The compound crystallized in the triclinic system (P1 space group) consisting of one macrocycle 1 and diiodotetrafluoroethane molecule, both located on crystallographic inversion centers. The macrocycle adopts the typical planar and anti-parallel urea orientation (Fig. 4) observed in other bis-urea macrocycles such as the m-xylene.17,22,23 The two carbonyl oxygens are involved in halogen bonds with separate but equivalent diiodotetrafluoroethane molecules with an I⋯O distance of 2.737(2) Å and a C–I⋯O angle of 175.9(1)°. The I⋯O distance is 78.2% of the van der Waals radii sum, which suggests a very strong halogen bond. Also, the second lone pair of electrons of the carbonyl oxygen is involved in a weak C–H⋯O hydrogen bond with the methylene C–H of an adjacent macrocycle (C–H⋯O distance of 3.414 Å and C–O⋯H angle of 140.4°).

In comparison to literature examples of co-crystals of diiodotetrafluoroethane with oxygen acceptors such as 1,4-dioxane, hexamethylphosphoramide (HMPA) or N-methylmorpholine, this halogen bonding interaction is shorter.24,25 However, in the study of Chu et al., both lone pairs of the single oxygen HMPA acceptor in these structures are involved in the interactions with separate C$_2$F$_4$I$_2$ donors with an I⋯O distance of 2.864(1) Å and 2.835(1) Å, respectively.25

Fig. 5 Crystal structure of macrocycle 1-diiodotetrafluoroethane. a) A space-filling model of the linear chains formed by the halogen bonding interactions. b) The crystal packing with an overlay of the linear chain. (Ellipsoids drawn at the 50% probability level, C—black, O—red, N—blue, I—purple, F—yellow; hydrogens have been removed for clarity.)
shows linear chains forming ribbons packed together. Between the ribs, there is offset aryl-aryl stacking between two adjacent pyridyl macrocycles that displays a ring centroid-centroid distance of 4.04 Å between the parallel rings, with the closest C-C distance being 3.82 Å that aids in the packing.

Ionic salts of pyridyl bis-urea macrocycles

Macrocyle 1·diiodotetrafluoroethane and light

[(C28H38N8O2)(I)2·(C2F4I2)·(CDCl3)]. The slow evaporation of a 1:1 mixture of 1 (40 mM in CHCl3) diiodotetrafluoroethane under ambient light resulted in colorless block crystals of [(C28H38N8O2)(I)2·(C2F4I2)·(CDCl3)] shown in Fig. 6. The dicaticonic macrocycle crystallizes in the triclinic space group P1. The asymmetric unit of the crystal consists of one half of macrocycle 1 dication and one iodide anion and one half of a diiodotetrafluoroethane molecule. The asymmetric unit also contains one half of a disordered chloroform molecule with the dication and the diiodotetrafluoroethane species located on crystallographic inversion centers. While the formation of the dication and iodide anion was surprising, light-induced elimination of the labile iodine across a double bond is a known and reversible reaction. Iodine can oxidize alcohols, sugars and imines to form ketones, glucosamines and diacaticonic salts. For example, molecular iodine oxidizes 1-methyl-imidazole-2-thione in a CH2Cl2 solution at the tertiary carbon resulting in a dicaticonic salt that is useful in thyroid medication. We surmise that the elimination reaction likely results in the formation of tetrafluoroethene (TFE), which is low boiling (bp = −76.3 °C) and would be lost under the ambient conditions of the crystallization. The iodine generated likely oxidizes the triazinanone group resulting in the reduced iodide anion and the imine cation observed in the X-ray structure (Fig. 6a & b). A carbon in the triazinanone shows the characteristics of an sp² hybridization and a double bond character with a C-N bond length with the urea nitrogen of 1.289(9) Å and a C-N bond length with the second nitrogen of 1.342(10) Å. The bonding angle of the carbon is 120.6(7)°. The bond length, association with the iodine anion, and bond angles suggest that the one carbon of the triazinanone group now has a positive character.

The iodide anions form an ionic bond with the C in the triazinanone with a C···I distance of 3.46 Å (Fig. 6c). The two iodide anions are involved in halogen bonds with one diiodotetrafluoroethane. Two halogen bonds formed between the iodide anions and the tetrafluorodiiodoethane molecule with an I···I distance of 3.449 Å and a C···I···I angle of 173.80°. This is 87.3% of the sum of the van der Waals radii of the iodine and iodide anion (3.96 Å). Fig. 7 shows the crystal packing which has the macrocycles resembling a body-centered cubic arrangement interspersed with the chloroform, diiodotetrafluoroethane and iodide anions.

Computational examination of halogen bonds

Our crystal structures demonstrate the formation of short, strong halogen bonds between the urea oxygens of 1 and iodides. To further investigate the strengths of the halogen bonding in this complex, electronic structure calculations were performed at the PBE/LANL2DZ level of theory, using the experimentally acquired crystal structures of macrocycle 1·3 and macrocycle 1·5 complexes. By separating the system into fragments (Fig. 8 and 9) and performing single-point energy calculations, the stabilization energy of each halogen bond was determined.

The first calculations were performed on the macrocycle 1·5 complex. In the case where both halogen bonding sites were occupied, the halogen bond energy due to group 1 (Fig. 8, G1)

![Fig. 6](image-url) Selected crystal structure features of [(C28H38N8O2)(I)2·(C2F4I2)·(CDCl3)].

- **a)** Schematic representation and crystal structure of deprotonated triazinanone group showing the double bond characteristics formed.
- **b)** The iodide anion halogen bonds formed with diiodotetrafluoroethane with an association distance of 3.449 Å.
- **c)** The iodide anion halogen bonds with one diiodotetrafluoroethane species located on crystallographic inversion centers.

![Fig. 7](image-url) Crystal packing of [(C28H38N8O2)(I)2·(C2F4I2)·(CDCl3)] showing the body-centered cubic arrangement of macrocycle 1.

9926 | CrystEngComm, 2013, 15, 9923–9929

This journal is © The Royal Society of Chemistry 2013
was calculated to be 7.465 kcal mol$^{-1}$. For group 2 (Fig. 8, G2), the halogen bond energy was calculated to be 7.296 kcal mol$^{-1}$ with an average halogen bond energy for the fully saturated system of 7.381 kcal mol$^{-1}$. Alternately, if only one halogen bonding site is occupied, the bonding energy is slightly different. In this case, the bonding energy of one substrate is 6.939 kcal mol$^{-1}$, and the other is 6.769 kcal mol$^{-1}$, producing an average of 6.984 kcal mol$^{-1}$. This suggests that the halogen bonds in the saturated complex are on average 0.527 kcal mol$^{-1}$ stronger than the unsaturated complex (Table 1).

The same computational approach was applied to the macrocycle 1-3 complex. The resulting halogen bond energies for the saturated system were calculated to be 10.332 and 10.330 kcal mol$^{-1}$ with an average of 10.331 kcal mol$^{-1}$. For the unsaturated system, the halogen bond energies due to group 1 and group 2 (Fig. 9) were 9.973 and 9.971 kcal mol$^{-1}$, respectively, with an average of 9.972 kcal mol$^{-1}$. Both complexes have calculated energies that are on the higher end of the halogen bond spectrum as reported by Metrangolo et al. and as seen in the extremely short contact distances.13,32 Also of interest is the stabilization effect each substrate has on the other, each of 0.359 and 0.527 kcal mol$^{-1}$ showing a possible inductive effect through the pyridyl macrocycle that each halogen bond has on the other.

Experimental

All chemicals were used as received from commercial sources.

General crystallization procedures

The macrocycle was dissolved in CH$_2$Cl$_2$, chloroform and THF (40 mM) in separate scintillation vials and mixed with the halogenated compounds in a 1:1 or a 1:2 molar ratio. The vials were then capped loosely and allowed to slowly evaporate.

X-ray crystal structure determination of protected pyridyl bis-urea macrocycle-pentafluoroiodobenzene complex [(C$_{28}$H$_{40}$N$_8$O$_2$)(C$_6$F$_5$I)$_3$]. X-ray intensity data from an irregular colorless crystal were collected at 100(2) K using a Bruker SMART APEX diffractometer (Mo K$_\alpha$ radiation, $\lambda = 0.71073$ Å). The data crystal was cleaved from an undifferentiated mass of crystalline solid. The raw area detector data frames were reduced and corrected for absorption effects with the SAINT+ and SADABS programs. The final unit cell parameters were determined by least-squares refinement of 6627 reflections from the data set. Direct method structure solution, difference Fourier calculations and full-matrix least-squares refinement against F^2 were performed with SHELXS/L as implemented in OLEX2.37

The compound crystallizes in the triclinic system (Table 2). The space group $P\bar{1}$ (no. 2) was confirmed by the successful solution and refinement of the structure. The asymmetric unit consists of one C$_{28}$H$_{40}$N$_8$O$_2$ molecule and three independent C$_6$F$_5$I$_3$ molecules. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in geometrically idealized positions and included as riding atoms. The largest residual electron density peaks of ca. 1 e Å$^{-3}$ are located <1 Å from the three independent iodine atoms.

X-ray crystal structure determination of protected pyridyl bis-urea macrocycle-diiodotetrafluoroethane complex [(C$_{28}$H$_{40}$N$_8$O$_2$)(C$_2$F$_4$I)$_3$]. X-ray intensity data from a colorless platelike crystal were collected at 100(2) K using a Bruker SMART APEX diffractometer (Mo K$_\alpha$ radiation, $\lambda = 0.71073$ Å). The raw area detector data frames were reduced and corrected for absorption effects with the SAINT+ and SADABS programs. The final unit cell parameters were determined by least-squares refinement of 4619 reflections from the data set. Direct method structure solution, difference Fourier calculations and full-matrix least-squares refinement against F^2 were performed with SHELXS/L as implemented in OLEX2.37

The compound crystallizes in the triclinic system (Table 2). The space group $P\bar{1}$ (no. 2) was determined by structure

Table 1 Computed energies of the halogen bonds (kcal mol$^{-1}$)

<table>
<thead>
<tr>
<th>Complex</th>
<th>Macrocycle 1-5</th>
<th>Macrocycle 1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated average</td>
<td>7.381</td>
<td>10.331</td>
</tr>
<tr>
<td>Unsaturated average</td>
<td>6.984</td>
<td>9.972</td>
</tr>
<tr>
<td>Difference</td>
<td>0.327</td>
<td>0.359</td>
</tr>
</tbody>
</table>
solution. The asymmetric unit consists of half of one C_{28}H_{40}N_{8}O_{2} molecule and half of one C_{2}F_{2}I_{2} molecule, both of which are located on crystallographic inversion centers. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in geometrically idealized positions and included as riding atoms. The largest residual electron density peak of 1.85 e Å^{-3} in the final difference map is located 0.92 Å from the unique iodine atom I(1).

X-ray crystal structure determination of protected pyridyl bis-urea macrocycle-diiodotetrafluoroethane complex [(C_{28}H_{40}N_{8}O_{2})I]_{2}(C_{2}F_{2}I_{2})]. X-ray intensity data from a colorless blocklike crystal were collected at 100(2) K using a Bruker SMART APEX diffractometer (Mo Kα radiation, λ = 0.71073 Å). The raw area detector data frames were reduced and corrected for absorption effects with the SAINT+ and SADABS programs. The final unit cell parameters were determined by least-squares refinement of 2405 reflections from the data set. Direct method structure solution, difference Fourier calculations and full-matrix least-squares refinement against F^2 were performed with SHELXS/L as implemented in OLEX2.37

The compound crystallizes in the triclinic system (Table 2). The space group P1 (no. 2) was confirmed by the successful solution and refinement of the structure. The asymmetric unit consists of half of one C_{28}H_{38}N_{4}O_{2} I^{2−} cationic cycle located on a crystallographic inversion center, one iodide anion, half of one C_{2}F_{2}I_{2} molecule also located on a crystallographic inversion center, and an essentially continuously disordered volume of electron density running parallel to the crystallographic a axis direction, centered at y = 0.5, z = 0. Based on trial refinements of the strongest peaks in the region, this electron density represents one C_{2}F_{2}I_{2} molecule per cycle. Attempts to model this density with discrete C_{2}F_{2}I_{2} groups failed, and it was therefore modeled with a total of five fractionally occupied iodine atom positions, eight fluorine positions and three carbon atom positions. Free refinement of the occupancy values of the five iodine positions yielded 1.94I per cycle, supporting the reported stoichiometry. Occupancies of the C, F, and I sites were constrained to a sum of one C_{2}F_{2}I_{2} molecule per cycle, and atoms of the same kind were assigned a common isotropic displacement parameter. No restraints were applied to simulate the expected molecular geometry or bond distances for these atoms. All other non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to carbon were located in difference maps before being placed in geometrically idealized positions and included as riding atoms. The largest residual electron density peak in the final difference map is located 1.0 Å from the iodide anion I(1).

Conclusions

The co-crystallization of the pyridyl bis-urea macrocycle with two halogen bond donors, diiodotetrafluoroethane and iodopentafluorobenzene, by slow evaporation from dichloromethane resulted in very strong halogen bonds. The bonds formed with the carbonyl oxygen of the urea in macrocycle 1 and were an average of 78% of the van der Waals radii for I⋯O (3.50 Å). The halogen bonds formed with host 1 are shorter than charged analogs reported by Metrangolo and Resnati. Indeed, if we equate bond length with bond strength, co-crystal formation host 1 with electrophilic halides affords among the strongest halogen bonding motif surveyed by Metrangolo in the CSD.38 Through DFT calculation, we estimated these energies to be 7.381 kcal mol^{-1} for the iodopentafluorobenzene halogen bond and 10.331 kcal mol^{-1} for the iodotetrafluoroethane halogen bond. We are currently investigating the strength of these interactions through NMR and X-ray photoelectron spectroscopy studies and hope to report on these in due course. We expect that the propensity for strong halogen bond formation will be
conserved upon the deprotection of the triazinanone groups on the self-assembling urea. This new assembly unit combines both hydrogen bonding donors and multiple acceptors for hydrogen or halogen bonds and should result in cocrystalline materials that preorganize and enhance the chemical and electronic properties.

Acknowledgements

The authors gratefully acknowledge partial support for this work from NSF grants CHE-1012298, CHE-1048629 (computational center) and CHE-1056188 (for J.M.). M.F.G. acknowledges a Dissertation Fellowship.

References