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Heat shock protein 90 (Hsp90) is a eukaryotic chaperone
responsible for the folding and functional activation of numer-
ous client proteins, many of which are oncoproteins. Thus,
Hsp90 inhibition has been intensely pursued, resulting in the
development of many potential Hsp90 inhibitors, not all of
which are well-characterized. Hsp90 inhibitors not only abro-
gate its chaperone functions, but also could help us gain insight
into the structure–function relationship of this chaperone.
Here, using biochemical and cell-based assays along with iso-
thermal titration calorimetry, we investigate KU-32, a derivative
of the Hsp90 inhibitor novobiocin (NB), for its ability to modu-
late Hsp90 chaperone function. Although NB and KU-32 differ
only slightly in structure, we found that upon binding, they
induce completely opposite conformational changes in Hsp90.
We observed that NB and KU-32 both bind to the C-terminal
domain of Hsp90, but surprisingly, KU-32 stimulated the chap-
erone functions of Hsp90 via allosteric modulation of its N-ter-
minal domain, responsible for the chaperone’s ATPase activity.
In vitro and in silico studies indicated that upon KU-32 binding,
Hsp90 undergoes global structural changes leading to the for-
mation of a “partially closed” intermediate that selectively binds
ATP and increases ATPase activity. We also report that KU-32
promotes HeLa cell survival and enhances the refolding of an
Hsp90 substrate inside the cell. This discovery explains the
effectiveness of KU-32 analogs in the management of neuropa-
thies and may facilitate the design of molecules that promote
cell survival by enhancing Hsp90 chaperone function and reduc-
ing the load of misfolded proteins in cells.

Hsp90 is a eukaryotic chaperone that plays a major role in
protein homoeostasis under normal conditions (1). From aid-
ing vesicular protein trafficking inside cells (2) to the formation

of purinosome complexes within the nucleus (3), Hsp90 mod-
ulates diverse cellular activities. Under stress conditions, Hsp90
and other chaperones are overexpressed to aid in the preven-
tion of apoptosis. The chaperones reduce the load of misfolded
or unfolded intermediates as well as mediate the degradation of
nonfunctional proteins via the ubiquitin-proteasome pathway
(4). Hsp90 has over 200 client proteins, including the Raf kinase,
Src family of tyrosine kinases (5), growth factor receptor tyro-
sine kinases like epidermal growth factor receptor and ErbB2
(6, 7), tumor suppressor protein p53 (8), and steroid hormone
receptors (9). Most of these substrate proteins become oncogenic
in certain types of cancer. Hence, abrogating Hsp90’s chaperone
function has been a major therapeutic paradigm for the treatment
of cancer. Alternatively, treatment of the neurodegeneration
observed in Alzheimer’s disease and Parkinson’s disease may
require excessive levels or enhanced functionality of the chaper-
ones, due to their cytoprotective role in preventing the accumula-
tion of toxic oligomers like �-amyloid, Tau, and �-synuclein (10,
11).

Compounds that can inhibit the function of Hsp90 could be
considered beneficial for the treatment of cancer, whereas
those that can stimulate its function could be considered useful
for treating neurodegenerative disorders. Thus, Hsp90 is con-
sidered a target for treating both cancer and neurodegenerative
disorders. The development and characterization of com-
pounds that modulate Hsp90’s function through either of these
mechanisms could be useful in the advancement of existing
therapies targeting cancer and neurodegeneration.

There are two major classes of Hsp90 inhibitors: those that
bind to the N-terminal domain (NTD)5 and those that bind to
the C-terminal domain (CTD) (12). Most NTD inhibitors, such
as geldanamycin (GA) and radicicol prevent Hsp90 from
hydrolyzing ATP by competitively inhibiting the binding of
ATP to the NTD of Hsp90 and thereby stall the ATP-depen-
dent Hsp90 protein-folding cycle (12, 13). Most CTD inhibi-
tors, such as NB, epigallocatechin gallate, and taxol exert their
inhibitory effect by allosterically regulating NTD’s function,
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most likely through movement of Hsp90’s middle domain (14).
Other CTD inhibitors exert their inhibitory effect by disrupting
co-chaperone binding to Hsp90 (15). Studies have shown that
NB prebound to Hsp90 prevents GA binding, whereas saturat-
ing concentrations of GA do not exert any effect on NB binding
(15, 16). These studies led to a general understanding that
small-molecule binding occurs at both of the domains and that
compounds bound to the CTD influence the binding of ATP
and inhibitors to the NTD (18, 19). Although many co-crystal
structures of ATP inhibitors bound to the NTD have been
solved (20), little structural information is available for the
CTD. Some studies claim that the CTD is responsible for Hsp90
dimerization and the binding of many important co-chaper-
ones (14). Thus, compounds that bind to the CTD and interfere
with these essential functions may be more effective at inhibit-
ing the Hsp90 chaperone machinery than NTD inhibitors. The
“KU” series of compounds are synthetic NB derivatives that
exhibit improved binding affinity for the Hsp90 CTD and man-
ifest increased anti-proliferative activity relative to NB (21–24).
KU-32, however, was observed to behave as a neuroprotective
agent in the treatment of diabetic peripheral neuropathy and
did not exert any adverse effect on pancreatic islets (25, 26).

The present study was designed to utilize biochemical and
cell-based assays to determine how KU-32 modulates the func-
tion of Hsp90 differently than its parent compound NB. In silico
studies were carried out to identify potential variations within
local structural modulations induced by the binding of KU-32
and NB and to identify their impact on the global structural
dynamics of Hsp90. Furthermore, combinatorial studies utiliz-
ing both an NTD inhibitor (GA) and a CTD binder (NB or
KU-32) were carried out to investigate their simultaneous bind-
ing events and whether allosteric constraints would modulate
their binding and subsequent effect on chaperone function.

Results

KU-32 stimulates the ATPase activity of Hsp90, whereas GA
and NB act as inhibitors

ATP hydrolysis plays a key role in the chaperone cycle of
Hsp90 by providing the requisite energy for nascent or partially
folded polypeptides to acquire their functional conformation
upon undergoing multiple cycles of binding and release (27, 28).
KU-32’s role in the Hsp90 ATPase cycle was determined using
the PK/LDH coupled assay. Binding of KU-32 to human His-
tagged recombinant Hsp90 increased ATP turnover rates when
compared with the ATPase activity of Hsp90 alone, with the
greatest stimulation (�69%) occurring at 1:1 (Hsp90 mono-
mer/KU-32) molar ratio. At the highest KU-32 concentration
of 90 �M, ATPase activity increased by 35% (Table 1 and Fig.
S1c). Compared with KU-32, NB exhibited a basal rate of inhi-
bition and reduced the ATPase activity by 40% and �50% at its
lowest and highest concentrations, respectively (Table 1 and
Fig. S1b). GA, a previously reported Hsp90 ATPase inhibitor
(29), inhibited the ATPase activity in a dose-dependent fashion,
with the lowest and highest GA concentration reducing the
ATPase activity by �59 and 81%, as compared with control
studies (Table 1 and Fig. S1a). These observations suggest that

KU-32 stimulates Hsp90 ATPase activity, whereas GA and NB
act as inhibitors.

C-terminal binders modulate GA-mediated inhibition of Hsp90
ATPase activity

To understand whether NTD and CTD binders allosterically
regulate the binding of one another and thus modulate Hsp90
ATPase activity, we conducted studies that included a combi-
nation of either GA/NB or GA/KU-32. Each study was carried
out in three different ways: Hsp90 incubated with GA followed
by further incubation with either NB or KU-32; Hsp90 incu-
bated with either NB or KU-32 followed by further incubation
with GA; and Hsp90 incubated with a mixture containing either
GA and NB or GA and KU-32. All three conditions under which
GA and NB were combined reduced the ATPase activity by
�72% and therefore exhibited a slightly greater degree of
ATPase inhibition relative to either GA (6 �M) or NB (90 �M)
alone (Table 1, Fig. 1 (a and b), and Fig. S1e). Interestingly,
KU-32, when combined with GA, interfered with GA-mediated
ATPase inhibition and manifested a similar effect as KU-32
alone, exhibiting a 26% increase in the ATPase activity of Hsp90
(Table 1, Fig. 1 (a and b), and Fig. S1d). These observations
suggest that NB appeared to partially complement GA-medi-
ated ATPase inhibition, whereas KU-32 appeared to antagonize
the inhibitory function of GA.

N- and C-terminal binders differentially modulate ATP binding
to the N terminus of Hsp90

ATP binding is a precursor to ATP hydrolysis; therefore, iso-
thermal titration calorimetry studies were performed to further

Table 1
ATP hydrolysis rates of human Hsp90� in the presence of a single com-
pound or a combination of compounds
Row 1 indicates the ATPase rate of 6 �M Hsp90 in the absence of any compounds.
Rows 2– 4 indicate the ATPase rates of 6 �M Hsp90 in the presence of compounds
acting alone. Combinatorial studies (rows 5 and 6) were carried out by incubating 6
�M Hsp90 with 6 �M GA and 90 �M of either NB or KU-32. Right arrows represent
the sequence of the addition of the compounds to the Hsp90-containing buffer. Plus
signs represent a mixture of two compounds. *, unpaired two-tailed t tests to eval-
uate significant differences between ATPase rates obtained in the presence of com-
pounds acting alone and in combination yielded p values � 0.01 in all cases except
a (p � 0.01), b (p � 0.04), and c (p � 0.08), where marginal or no significant
differences were observed.

Compounds acting
alone or in combination

Concentrations of
compounds used (�M) ATPase rate

min�1 �M�1 Hsp90
Hsp90 6 0.097 � 0.002
GA 6 0.040 � 0.003

30 0.034 � 0.002
60 0.027 � 0.001
90 0.018 � 0.002

NB 6 0.058 � 0.002
30 0.055 � 0.001
60 0.047 � 0.003
90 0.050 � 0.001

KU-32 6 0.164 � 0.006
30 0.148 � 0.006
60 0.150 � 0.005
90 0.131 � 0.006

(GA and NB)* GA3 NB 0.029 � 0.001
NB3 GA 0.027 � 0.001
GA � NB 0.028 � 0.001

(GA and KU-32)* GA3 KU-32a 0.115 � 0.008
KU-323 GAb 0.120 � 0.008
KU-32 � GAc 0.123 � 0.007

KU-32 stimulates Hsp90 chaperone function
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assist in the interpretation of the results obtained from ATPase
experiments. The binding affinities of small-molecule binders
of Hsp90 were determined. Binding of KU-32 and GA were
enthalpy-driven, whereas the binding of NB was driven by both
favorable entropy and favorable enthalpy in almost equal quan-
tities (Table 2 and Fig. 2 (a– c). Binding reactions of ADP and
ATP to Hsp90 were primarily enthalpy-driven (Table 2 and Fig.
2 (d and e)). ADP bound Hsp90 with �17 times higher affinity
as compared with ATP. The enthalpy and Gibbs free energy of
ADP binding, respectively, were �7.2 times and �5.5 times
higher than those of ATP binding. This indicates that ADP
binds Hsp90 more spontaneously than ATP. To investigate the
effect of Hsp90 binders on the binding of ATP to the NTD, ATP
was titrated against Hsp90 preincubated with either GA, NB, or
KU-32. As expected, GA abrogated ATP binding, as evidenced
by an �80 times increase in the Kd value (Table 3 and Fig. 3a).
The enthalpy and entropy of ATP binding to the Hsp90 –GA
complex decreased by �93 and �75%, respectively, as com-
pared with ATP binding to Hsp90 alone. NB has been previ-

ously shown to allosterically inhibit ATP binding to the NTD of
Hsp90 (16). Our studies also indicate that the Hsp90 –NB com-
plex did not bind ATP, as evidenced by a Kd value of �3000 �M

(Table 3 and Fig. 3b). Conversely, KU-32 did not adversely
affect the binding of ATP to Hsp90. In fact, ATP bound the
Hsp90 –KU-32 complex with an enthalpy-driven affinity very
similar to that for Hsp90 alone (Table 3 and Fig. 3c).

To determine how ATP binding was affected in the presence
of a combination of NTD and CTD binders together, ATP was
titrated against Hsp90 –GA–KU-32 and Hsp90 –GA–NB com-
plexes. In accordance with our ATPase results, ATP bound
the Hsp90 –GA–KU-32 complex with an enthalpy-driven affin-
ity similar to that of the Hsp90 –KU-32 complex (Table 3 and
Fig. 3e). ATP titration against a Hsp90 –GA–NB complex
showed further reduction in ATP binding with respect to the
Hsp90 –GA and Hsp90 –NB complexes (Table 3 and Fig. 3d).
This binding event was entropy-driven with little contribution
from enthalpy and indicated the formation of a random state that
does not favor ATP binding. Taken together, these observations
suggest that NB and GA act as inhibitors of chaperone function by
preventing ATP binding and subsequent hydrolysis. Furthermore,
they appear to behave as agonists as our ATPase results had pre-
viously indicated. Additionally, ATP-binding affinities for the
Hsp90–KU-32 and Hsp90–GA–KU-32 complexes suggest that
KU-32 binding induces conformational changes in the NTD of
Hsp90 that favor the binding of ATP but not GA.

N- and C-terminal binders allosterically modulate binding of
one another to the Hsp90 C and N terminus

Titration studies were carried out to enhance our under-
standing of the ATPase results (obtained when compounds

Figure 1. ATPase activity of Hsp90. a, hydrolysis of ATP by 6 �M Hsp90 was monitored for 60 min by measuring the relative cumulative NADH absorbance at
340 nm. ATP hydrolysis was then monitored in the presence of GA (6 �M), NB (90 �M), and KU-32 (90 �M). Finally, ATP hydrolysis was monitored when 6 �M GA
was combined with either 90 �M NB or KU-32. GA � NB and GA � KU-32 signify that mixtures of these compounds were separately prepared and then added
to a reaction mixture containing Hsp90. b, bar graph depicting ATP hydrolysis rates of Hsp90 in the presence of GA, NB, and KU-32 acting alone or in
combination relative to Hsp90 acting alone. Error bars, S.D.

Table 2
Thermodynamic parameters of small molecules binding to Hsp90 alone
20 �M recombinant human Hsp90� was titrated against 0.1 mM GA, NB, or KU-32
(rows 1–3, respectively), 1 mM ATP (row 4), and 1 mM ADP (row 5).

Compounds
titrated

against Hsp90
alone Kd T�S �H �G

�M kcal/mol kcal/mol kcal/mol
GA 0.25 � 0.01 0.42 � 0.02 �4.06 � 0.10 �4.48 � 0.12
NB 1.01 � 0.02 0.61 � 0.03 �0.90 � 0.01 �1.51 � 0.04
KU-32 0.21 � 0.04 0.29 � 0.02 �4.9 � 0.30 �5.19 � 0.32
ATP 41.2 � 3.50 0.39 � 0.02 �1.39 � 0.25 �1.78 � 0.27
ADP 2.38 � 0.04 �0.2 � 0.02 �10 � 0.97 �9.80 � 0.95

KU-32 stimulates Hsp90 chaperone function
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were sequentially incubated with Hsp90) and to investigate
whether the binding of one compound to the CTD of Hsp90
allosterically modulated the binding of a second compound to
the NTD and vice versa. The binding affinity of GA for the
Hsp90 –KU-32 complex was drastically reduced as compared

with Hsp90 alone (Kd of 52.9 �M versus 0.25 �M). The binding
event exhibited both unfavorable entropy (�340%) and
enthalpy (�60%) as compared with the binding of GA to Hsp90
alone (Table 4 and Fig. S2a). KU-32 and NB both bound the
Hsp90 –GA complex with reduced affinities compared with

Figure 2. Titration of small molecules against Hsp90. 20 �M recombinant human Hsp90� was titrated against 0.1 mM GA (a), 0.1 mM NB (b), and 0.1 mM KU-32
(c). 30 �M Hsp90� was titrated against 1 mM ATP (d) and 1 mM ADP (e). The heat of binding was calculated after subtracting the heat of dilution from control
experiments where GA, NB, KU-32, ATP, and ADP were titrated against reaction buffer only.

Table 3
Thermodynamic parameters of ATP binding to Hsp90 –small molecule complexes
30 �M recombinant human Hsp90� was mixed with an equimolar amount of either GA, NB, or KU-32 (rows 1–3, respectively) and then titrated against 1 mM ATP. A
mixture containing either 30 �M GA and 30 �M NB (row 4) or 30 �M GA and 30 �M KU-32 (row 5) was added to the buffer containing 30 �M Hsp90, and the resultant
mixture was titrated against 1 mM ATP. Unpaired two-tailed t tests to evaluate significant differences among binding affinities of ATP obtained when titrated against Hsp90
alone, Hsp90 –GA/NB/KU-32 complexes, Hsp90 � GA � NB, and Hsp90 � GA � KU-32 yielded p values � 0.05 in all cases except a (p � 0.98), b (p � 0.76), and # (p �
0.45), where no significant differences were observed.

Hsp90 – compound complex titrated against ATP Kd T�S �H �G

�M kcal/mol kcal/mol kcal/mol
Hsp90 � GA 3333.3 � 19.6 0.1 � 0.01 �0.1 � 0.07 �0.23 � 0.08
Hsp90 � NB 2879 � 17.4 0.14 � 0.03 �0.12 � 0.02 �0.26 � 0.05
Hsp90 � KU-32a,# 36.8 � 2.16 0.38 � 0.02 �1.51 � 0.23 �1.89 � 0.25
Hsp90 � GA � NB 104 � 120 0.21 � 0.02 �0.09 � 0.01 �0.30 � 0.03
Hsp90 � GA � KU-32b,# 50 � 3.45 0.38 � 0.03 �1.41 � 0.02 �1.79 � 0.05

KU-32 stimulates Hsp90 chaperone function
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Hsp90 alone, as evidenced by the Kd values of 4 and 10 �M,
respectively. These binding reactions were both entirely enthal-
py-driven (Table 4 and Figs. S2b and S3a). The binding affinity
of GA for the Hsp90 –NB complex was drastically reduced as
compared with Hsp90 alone (Kd of �30 �M versus 0.25 �M,

respectively). The binding event was enthalpy-driven, and both
�G and �H were reduced as compared with the binding reac-
tion of GA to Hsp90 alone (Table 4 and Fig. S3b). NB and KU-32
reduced the binding affinity of GA by �120 and �200 times,
respectively, whereas GA reduced the binding affinities of NB

Figure 3. ATP titration against Hsp90 bound to individual compounds and their combinations. 1 mM ATP was titrated against 30 �M recombinant human
Hsp90� preincubated with 30 �M GA (a), 30 �M NB (b), 30 �M KU-32 (c), 30 �M GA and 30 �M NB (d), and 30 �M GA and 30 �M KU-32 (e). The heat of binding was
calculated after subtracting the heat of dilution from control experiments where 1 mM ATP was titrated against reaction buffer containing only compound(s).

Table 4
Thermodynamic parameters of NTD and CTD binders binding to various Hsp90 –NTD or Hsp90 –CTD complexes
Row 1 indicates the titration of 0.1 mM NB against a complex of 20 �M Hsp90� and 20 �M GA (represented as GAc). Row 2 indicates the titration of 0.1 mM GA against a
complex of 20 �M Hsp90� and 20 �M NB (represented as NBc). Row 3 indicates the titration of 0.1 mM GA against a complex of 20 �M Hsp90� and 20 �M GA (represented
as KU-32c). Row 4 indicates the titration of 0.1 mM KU-32 against a complex of 20 �M Hsp90� and 20 �M GA (represented as GAc). Row 5 indicates the titration of 0.1 mM
NB against a complex of 20 �M Hsp90� and 20 �M KU-32 (represented as KU-32c). Unpaired two-tailed t tests to evaluate significant differences between binding affinities
of GA obtained when titrated against Hsp90 alone and Hsp90 –NB/Hsp90 –KU-32 complexes; between binding affinities of NB obtained when titrated against Hsp90 alone
and Hsp90 –GA/ Hsp90 –KU-32 complexes; and between binding affinities of KU-32 obtained when titrated against Hsp90 alone and Hsp90 –GA complex yielded p values
� 0.05 in all cases.

Compounds titrated against other Hsp90 – compound complexes Kd T�S �H �G

�M kcal/mol kcal/mol kcal/mol
GAc/NB 9.9 � 0.74 0.14 � 0.03 �5.2 � 0.67 �5.34 � 0.07
NBc/GA 30.1 � 6.80 �0.03 � 0.01 �0.96 � 0.09 �0.93 � 0.09
KU-32c/GA 52.9 � 6.35 �0.99 � 0.08 �1.76 � 0.20 �0.77 � 0.12
GAc/KU-32 4.03 � 0.62 0.003 �7.31 � 0.94 �7.31 � 0.94
KU-32c/NB 102.5 � 3.60 �0.9 � 0.10 �1.07 � 0.14 �0.17 � 0.04

KU-32 stimulates Hsp90 chaperone function
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and KU-32 by �10 and �20 times, respectively. These obser-
vations indicated negative allosteric cross-talk between both of
the Hsp90’s termini, with the function of NTD being more
strongly regulated by the CTD.

KU-32 lowers the binding affinity of ADP to Hsp90

ADP release is essential for Hsp90 to re-enter its catalytic
cycle following ATP hydrolysis, and hence, we wanted to deter-
mine whether KU-32 played a role in ADP binding and its sub-
sequent release. ADP binding to the Hsp90 –KU-32 complex
was enthalpy-driven and manifested an increase in the Kd value
(10 �M) as compared with ADP binding to Hsp90 alone (Table
5 and Fig. 4a). Reduced binding affinity of ADP to Hsp90 might
have an impact on ATP binding to the Hsp90 –KU-32–ADP
complex and could indirectly indicate ADP release. ATP bound
the Hsp90 –KU-32–ADP complex with �7 times higher affin-
ity as compared with Hsp90 alone. The binding reaction was
enthalpy-driven, and the thermodynamic parameters of bind-
ing were similar to ATP binding to Hsp90 alone (Table 5 and
Fig. 4b). This indicates that the conformation of the Hsp90
NTD in complex with KU-32 favors ADP release and subse-
quent ATP binding.

GA annuls whereas NB slightly reduces ADP binding to Hsp90

Additional titration experiments were carried out to study
the effect of Hsp90 inhibitors GA and NB on ADP binding to
the NTD of Hsp90 and determine whether they modulate the
binding of ADP and ATP differently. ADP at a concentration of
0.15 mM was unable to bind the Hsp90 –GA complex (Table 5
and Fig. S4a). This observation is in accordance with the fact
that the binding affinity of GA to the NTD of Hsp90 is higher
than that of ADP. However, ADP was able to bind the
Hsp90 –GA complex when titrated at a concentration of 1 mM

(Table 5 and Fig. S4b). The reaction was enthalpy-driven, and
ADP bound the Hsp90 –GA complex with a similar affinity as
compared with ADP binding to Hsp90 alone. This could hap-
pen when the difference in concentration between two ligands
(ADP and GA) sharing the same binding site far exceeds the
difference in their Kd value. This means that even though the
binding affinity of GA to Hsp90 is �10 times higher than that of
ADP, a �30 times excess of ADP can displace GA from its
binding site. To determine whether the CTD inhibitor NB
allosterically affects ADP binding to the NTD of Hsp90, a pre-
formed Hsp90 –NB complex was titrated against 1 mM ADP.

ADP was able to bind the Hsp90 –NB complex with a slightly
reduced binding affinity as compared with ADP binding to
Hsp90 alone (Kd �10 �M). The binding was enthalpy-driven,
and the thermodynamic parameters of binding were observed
to be similar to those of ADP titrated against the Hsp90 –KU-32
complex (Table 5 and Fig. S5). This was a surprising observa-
tion as, unlike ADP, the binding affinities of ATP and GA were
drastically reduced when Hsp90 was prebound to NB. It would
be interesting to study the conformational changes that occur
in the NTD upon KU-32 and NB binding and how these struc-
tural changes affect the accessibility of the NTD nucleotide-
binding cleft.

Hsp90 adopts a partially closed conformation upon KU-32
binding

Docking and molecular dynamics (MD) simulation studies
were carried out to observe structural perturbations that occur
upon KU-32 binding to Hsp90 and understand the contrasting
effects of KU-32 and NB on Hsp90’s function. The modeled
Hsp90� dimer structure (Fig. S6) was in complete agreement
with its closed counterpart (30). Each of the four compounds
(ATP, GA, NB, and KU-32) was docked, and their �G of bind-
ing was calculated (Table S1). In agreement with our ITC stud-
ies, KU-32 bound Hsp90 more spontaneously than NB at the
CTD. ATP bound to NTD of the modeled Hsp90� (Fig. S7a)
had an RMSD of 1.67 Å as compared with the Hsp90�–ATP
complex (PDB code 3T0Z). The Hsp90�–GA complex (Fig.
S7c) had an RMSD of 1.54 Å as compared with the Hsp90�–GA
complex (PDB code 1YET). The docking poses of NB and
KU-32 bound to Hsp90 are depicted in Fig. S7 (b and d). The
Hsp90 residues that interacted with KU-32 have been depicted
in Fig. S7e. Our docking studies indicated that KU-32 and NB
bound at a similar location within the CTD even though their
interacting residues were different. This observation was fur-
ther confirmed by titrating NB against a preformed Hsp90 –
KU-32 complex. (Table 4 and Fig. S8). As expected, the binding
affinity of NB to this complex was drastically reduced, as evi-
denced by a Kd of �100 �M.

To understand the divergent behavior of NB and KU-32 at an
atomic resolution, MD simulations were performed with the
modeled free Hsp90� or Hsp90� bound to KU-32 (alone or
with ATP bound at the NTD) or NB (Table S2). No significant
structural changes were observed for the unbound Hsp90 and
the Hsp90 –NB complex. MD simulation of the Hsp90 –KU-

Table 5
Thermodynamic parameters of adenosine nucleotides binding to Hsp90 –small molecule complexes
Row 1 indicates the titration of 1 mM ADP against 30 �M Hsp90� preincubated with 30 �M KU-32. Row 2 indicates the titration of 1 mM ATP against 30 �M Hsp90�
preincubated sequentially with 30 �M KU-32 and 30 �M ADP. Row 3 indicates the titration of 0.15 mM ADP against 30 �M Hsp90� preincubated with 30 �M GA. Row 4
indicates the titration of 30 �M Hsp90� preincubated with 30 �M NB against 1 mM ADP. Row 5 indicates the titration of 30 �M Hsp90� preincubated with 30 �M GA against
1 mM ADP. Unpaired two-tailed t tests to evaluate significant differences between binding affinities of ADP obtained when titrated against Hsp90 alone and Hsp90 –GA/
NB/KU-32 complexes yielded p values � 0.05 in all cases except # (p � 0.99), where no significant difference was observed. A similar test carried out between binding
affinities of ATP obtained when titrated against Hsp90 alone and the Hsp90-KU-32-ADP complex yielded a p value � 0.05.

Hsp90 – compound complex
�ADP �ATP

Kd T�S �H �G Kd T�S �H �G

�M kcal/mol kcal/mol kcal/mol �M kcal/mol kcal/mol kcal/mol
(Hsp90 � KU-32)# 10 � 1 �0.69 � 0.04 �15.9 � 1.70 �15.21 � 1.66
(Hsp90 � KU-32) � ADP 5.65 � 0.48 0.50 � 0.07 �1.20 � 0.26 �1.70 � 0.17
(Hsp90 � GA)
(Hsp90 � NB)# 10.1 � 1.33 �0.33 � 0.03 �10.7 � 0.65 �10.37 � 0.62
(Hsp90 � GA) 3.23 � 0.46 0.33 � 0.05 �3.6 � 0.45 �3.93 � 0.50
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32–ATP complex (Fig. S9), however, revealed an initial move-
ment of the Hsp90 monomers toward each other (Fig. 5a). The
RMSD between the NTDs of each monomer decreased from
135 to 85 Å (Fig. S10). This movement was restricted after �220
ns of simulation, when Hsp90 was somewhere between its fully
extended and fully closed states. During the rest of the simula-
tion, the NTD reoriented itself with respect to the MD to attain
an alternate conformation. In this intermediate state, the ATP-
bound region of the NTD was found to be proximal to Arg392 of
the MD (Fig. 5c), which initiates the formation of the catalytic
center comprising Arg41, Glu42, Asn46, and Arg392 (31). How-
ever, the ATP lid comprising residues Ala106–Gly130 shows no
movement, and its conformation is unconstrained, just as in the
apo-form of Hsp90 (32). KU-32 formed strong hydrogen bonds
with Ser532 and Ser586, a strong � stacking interaction between
its coumarin ring and His632, and weak � stacking interactions
with Pro588 and Pro533. Thr537 and Lys538 participated in strong
hydrogen bonds with the 4	-hydroxyl group of the sugar ring in
KU-32 (Fig. 5b). Analysis of the simulation trajectory shows

that KU-32 exerts its effect by bringing the two �-sheets com-
prising residues 525–539 in proximity to the loop comprising
residues 582–590. This effect can be observed by plotting the
distance between Ser532 (central residue in the �-sheets) and
Ser586 (central residue in the loop) (Fig. S11a). The amide bond
in KU-32 serves as a bridge to bring the serine residues closer
(Fig. 5b). The average RMSD decreases from 12 to 10 Å after the
first 150 ns of simulation, followed by a further decrease to 7 Å
at 220 ns, after which it was stable. This movement pulls the rest
of the MD closer to the CTD, which can be visualized by plot-
ting the distance between Ser586 and other residues within the
MD (e.g. Ser445, located near the end of the MD, and Lys406,
located in the center of the MD) (Fig. S11b). A sharp decrease at
220 ns followed by a stable RMSD for both pairs indicated that
the MD residues are now proximal to the CTD residues, result-
ing in a relatively compact Hsp90 structure. The RMSD was
found to decrease by �3 Å for both pairs of residues (Ser586/
Lys406 and Ser586/Ser445). Thus, there are large (�5 Å) local
conformational changes that occur within the CTD. The rela-

Figure 4. Binding of adenine nucleotides to Hsp90 –KU-32 complexes. a, 30 �M recombinant human Hsp90� was preincubated with 30 �M KU-32 and
titrated against 1 mM ADP. The heat of binding was calculated after subtracting the heat of dilution from control experiments where 1 mM ADP was
titrated against reaction buffer containing only KU-32. b, 30 �M recombinant human Hsp90� was preincubated first with 30 �M KU-32 followed by 30 �M

ADP and titrated against 1 mM ATP. The heat of binding was calculated after subtracting the heat of dilution from control experiments where 1 mM ATP
was titrated against reaction buffer containing only KU-32 and ADP.
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tively smaller, but significant, deviations between the MD and
CTD residues indicate the transfer of conformational changes
to the MD. There was negligible internal conformational
change in the MD, as indicated by a low RMSD value of 3.4 Å
throughout the trajectory (data not shown). These changes are
then relayed to the NTD, as observed by plotting the distance
between the center of masses of the NTD and the MD (Fig. S12).
After 220 ns, the global RMSD profile showed a gradual
decrease, and at 340 ns, it showed a sudden decrease of �4 Å,
after which the RMSD was negligible. This movement implied
that the NTD was stable with respect to the position of the MD.
No additional structural changes were observed upon simulat-
ing the Hsp90 –KU-32 complex without ATP.

Ser532 and Ser586 are critical for KU-32 binding

The structures of KU-32 and NB were analyzed to under-
stand the divergent conformational changes undergone by
Hsp90 when bound to either of them. Docking of NB at the

KU-32– binding site showed the benzene ring in NB to steri-
cally clash with the neighboring residues, making it impossible
for NB to attain KU-32’s conformation (Fig. S13). Further, the
amide bond in NB could not bridge the critical bond between
Ser532 and Ser586 (as opposed to KU-32), forcing Hsp90 to
remain in its open, extended conformation. To confirm the
significance of bridging the hydrogen bond between Ser532 and
Ser586, Hsp90 was mutated to substitute these two residues
with alanine. The binding conformation of KU-32 docked to
mutant (S532A/S586A) Hsp90 was not significantly different as
compared with the modeled WT Hsp90� (Fig. S14). However,
unlike the behavior of WT Hsp90 bound to KU-32, partial clos-
ing of the monomer arms was not observed during the span
of the simulation with mutated (S532A/S586A) Hsp90�.
The monomer arms remained in an open, extended state sim-
ilar to the conformation adopted by Hsp90 when bound to NB.
In silico studies have certain limitations and only depict a partial
picture of interactions between two systems under certain

Figure 5. Conformational analysis of the simulated Hsp90 –KU-32 and Hsp90 –KU-32–ATP complexes. a, a snapshot from MD of the closing of Hsp90�
upon binding of KU-32 after 420 ns. Red and yellow structures indicate conformation of Hsp90 at t � 0 ns and t � 420 ns, respectively. b, interaction diagram of
KU-32 with Hsp90 obtained from the last snapshot of the MD trajectory. KU-32 is represented in yellow. Hydrogen bonds are depicted as dotted yellow lines. c,
a snapshot of the ATP-Mg2�– bound NTD in proximity to Arg392 (depicted in pink) obtained after 340 ns of simulating the Hsp90 –KU-32–ATP complex. The ATP
lid is depicted in blue, and the Mg2� ion is depicted as a green ball.
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assumed conditions. Therefore, in vitro experiments were per-
formed to determine whether the S532A/S586A mutation
affected the binding of KU-32 to Hsp90. Isothermal titration
calorimetry revealed that KU-32 was not able to bind the
S532A/S586A mutant (Fig. S15). This indicates that Ser532 and
Ser586 are critical for KU-32 binding.

Hsp90 inhibitors reduce cell viability, whereas KU-32 exhibits a
cytoprotective role

From the biochemical studies performed, we observed a
trend where GA and NB complemented each other’s inhibition,
whereas KU-32 antagonized GA-mediated inhibition of chap-
erone function. Cytotoxicity studies were conducted on a HeLa
cell line to quantify the degree of synergy or antagonism
between the pairs by computing the dose reduction index (DRI)
and the combination index (CI) using CalcuSyn. DRI measures
the -fold reduction in the required dose of a compound admin-
istered in a combination that will manifest activity equivalent to
that elicited by the compound administered alone. CI measures
the extent of synergy or antagonism between the compounds
used in combination. CI � 1 signifies synergy, CI � 1 indicates
additive effect, and CI 
 1 indicates antagonism. Initially, EC50
values for the individual compounds were determined (Fig. S16
and Table 6). GA and NB were toxic to HeLa cells, whereas
KU-32 did not significantly affect cell viability under the range
of concentrations tested (EC50 
 0.9 mM). 3D plots were gen-
erated for all of the constant ratio combinations (C1–C3)
involving GA and NB (Fig. S17, a– c). C1 displayed �56 and
67% reduction in the EC50 value of GA and NB, respectively. C2
displayed a 76% reduction in the EC50 value of GA, and C3
displayed a 76% reduction in the EC50 value of NB (Table 6).
The highest DRI values for GA (13.8, 4.9, and 2.9) were obtained
with combinations C35, C21, and C11, respectively. The highest
DRI values for NB (5.8, 3.9, and 2.3) were obtained with com-
binations C35, C11, and C21, respectively. The CI values
obtained for these combinations were correlated with the frac-
tion of cells (fa) affected by the compound(s). This correlation
was essential to determine the combination that was most
effective at killing cancer cells. C11 (CI � 0.61) and C21 (CI �
0.64) showed moderate synergy at values of fa � 0.6, whereas
C35 (CI � 0.25) showed extremely high synergy at values of fa 

0.8 as depicted by the fa–CI plot (Fig. 6). Thus, C35 was found to

be the most effective synergistic combination not only in terms
of reducing cell viability, but also in producing the highest
reduction with respect to the effective doses of GA and NB in
combination. Nonconstant ratio combinations involving GA
and KU-32 were formed by varying the concentration of GA
while keeping the concentration of KU-32 fixed at 1 �M (C4), 10
�M (C5), and 100 �M (C6). EC50 values of GA were found to
increase by 4.5, 5.4, and 6 times in parent combinations C4, C5,
and C6, respectively, as compared with control experiments
that included GA alone (Table 6). In the case of GA, the lowest
DRI values of 0.32, 0.23, and 0.19 were obtained in the case of
combinations C45, C56, and C66, respectively. C45 (CI � 2.27)
was found to exhibit moderate antagonism, whereas C56 (CI �
4.38) and C66 (CI � 5.38) were found to exhibit a greater degree
of antagonism at fa values of 0.53, 0.54, and 0.48, respectively
(Fig. 6). This indicated a positive correlation between the dose-
dependent enhancement of cell viability (Fig. S17d) and the
degree of antagonism exhibited by these combinations. Taken
together, these observations suggest that KU-32 acts as an
antagonist to GA-mediated cytotoxicity by effectively increas-
ing both cell viability and the GA concentration required to
elicit the same cytotoxic effect elicited by GA alone.

NB and GA prevent luciferase renaturation, whereas KU-32
acts as a stimulator

To understand how Hsp90 binders affect luciferase renatur-
ation and to determine whether the changes in cell viability
observed in their presence were a result of either inactivation or
renaturation of substrate proteins, heat shock studies were car-
ried out on HeLa cells expressing firefly luciferase. Luciferase
activity decreased by �98% upon placing the cells at 50 °C for
about �6 min, without significant loss in cell viability. Upon
incubation at 37 °C, luciferase renaturation occurred in a time-
dependent fashion, with cells incubated for 3 h post heat shock
exhibiting �50% recovery (Fig. S18). HeLa cells were incubated
with varying concentrations of GA, NB, and KU-32 after being
subjected to heat shock. Luciferase activity was measured 3 h
post-heat shock. Cells incubated with GA and NB showed a
gradual reduction in luciferase activity, with the highest reduc-
tion of �70 and 65% obtained at 5 �M GA (Fig. 7a) and 100 �M

NB (represented by filled circles in Fig. 7b), respectively. Con-
versely, a gradual increase in luciferase activity was observed at
lower concentrations of KU-32. Saturation was attained at con-
centrations of 25–50 �M KU-32, which manifested a �2.5 times
increase in luciferase luminescence relative to the control
experiments (represented by filled circles in Fig. 7c). The EC50
values of GA, NB, and KU-32 were calculated to be 0.34 � 0.02,
17.96 � 4.07, and 5.71 � 0.59 �M, respectively.

NB acts as an agonist, whereas KU-32 antagonizes
GA-mediated inhibition of luciferase renaturation

To determine how NB and KU-32 affect the renaturation of
luciferase in the presence of GA, combination studies were con-
ducted using 5 �M GA and varying concentrations of either NB
or KU-32. Luciferase renaturation was partially hindered in
combinations involving GA and KU-32 as compared with
KU-32 acting alone, and no significant change was observed as
compared with the control experiments (represented by filled

Table 6
EC50 values of NTD inhibitor GA and CTD binding compounds NB and
KU-32 acting individually and in combination
C1, C2, and C3 represent combinations involving constant ratios of (EC50)
GA/(EC50) NB at 1, 1:3, and 3 respectively. C4, C5, and C6 represent combinations
involving varying concentrations of GA with concentrations of KU-32 fixed at 1, 10,
and 100 �M, respectively. *Unpaired two-tailed t-tests to evaluate significant differ-
ences between EC50 values of compounds acting alone and in combination yielded
p values � 0.01 in all cases except a and b, which showed no significance (p � 0.284)
and marginal significance (p � 0.019), respectively.
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squares in Fig. 7c). The EC50 of GA in this combination was
calculated to be 5.4 � 0.73 �M. This is significantly higher than
the value obtained for GA alone and demonstrates the antago-

nistic behavior of KU-32 with respect to GA. On the other
hand, studies involving GA and NB showed increased efficacy
in inhibiting luciferase renaturation (represented by filled

Figure 6. fa–CI plot. CI values for the best performing pairs within a parent combination were plotted against their respective fa values. C1, C2, and C3 represent
constant-ratio parent combinations (each consisting of five pairs) formed by keeping the ratio of (EC50) GA/(EC50) NB at 1, 1/3, and 3, respectively. C4, C5, and
C6 represent nonconstant ratio parent combinations (each consisting of six pairs) formed by varying the concentration of GA while keeping the concentration
of KU-32 fixed at 1, 10, and 100 �M, respectively.

Figure 7. Renaturation of luciferase in the presence of Hsp90 NTD and CTD binders acting alone and in combination. Firefly luciferase activity was measured
in the presence of individual compounds followed by studies that included a combination of either GA and NB or GA and KU-32. a, luciferase renaturation was
measured in the presence of varying concentrations (0.01–5 �M) of NTD inhibitor GA. b, luciferase renaturation was measured in the presence of varying concentra-
tions of CTD inhibitor NB (0.1–150 �M) acting alone and when combined with 5 �M GA (as represented by GAc/NB). c, luciferase renaturation was measured in the
presence of KU-32 (0.5–300 �M) acting alone and when combined with 5 �M GA (as represented by GAc/KU-32). In all experiments, luminescence was measured after
cells were allowed to renature for 180 min in the presence of compounds acting either alone or in combination. The normalized luminescence values were computed
relative to control experiments where renaturation of luciferase was measured in the absence of compound(s). Error bars, S.D.
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squares in Fig. 7b), as evidenced by a significant decrease in the
EC50 value of NB (7.37 � 0.78 �M). These results suggested that
GA enhances the inhibitory activity of NB and that GA com-
bined with NB exhibits a greater degree of efficacy in inhibiting
Hsp90 chaperone function.

Discussion

Hsp90’s chaperone function depends upon the ATP hydro-
lysis cycle that facilitates folding of nascent polypeptides, ren-
dering them biologically active. Although most of the NTD
inhibitors have been well-characterized with respect to their
inhibition of ATP binding to the NTD of Hsp90, limited infor-
mation is available about the mechanism of action of CTD
inhibitors. Our interest in KU-32 was generated because of
studies (21, 25) that indicated that KU-32 was behaving differ-
ently than any of the known inhibitors, including its parent
compound NB. It was hypothesized that detailed investigation
into its mode of action would reveal interesting features about
the molecule’s ability to alter the structure and, hence, the func-
tion of the chaperone. Differences in the structural changes
induced by the binding of KU-32 and NB to Hsp90 could lead to
a better understanding of the divergent evolution of these syn-
thetic compounds. A real-time ATP-regenerating assay was
carried out to understand the role of NTD and CTD binders in
modulating Hsp90’s ATPase cycle. We observed that GA and
NB reduced the ATPase activity in a dose-dependent and dose-
independent fashion, respectively, whereas KU-32 manifested a
significant increase in ATP hydrolysis. To determine whether
the KU-32–mediated stimulation of ATPase activity was hin-
dered in the presence of GA, we designed studies that involved
a combination of GA and either of the CTD binders, NB or
KU-32. When GA and NB were combined, they manifested a
significantly greater decrease in the Hsp90 ATPase activity rel-
ative to GA or NB alone. Interestingly, GA did not alter the
ATPase activity of the chaperone when it was co-administered
with KU-32. These data suggested that KU-32 nullifies the GA-
mediated inhibition of Hsp90’s ATPase function.

This initial study prompted a more detailed analysis of how
these ligands affect ATP binding and whether they allosterically
regulate the binding of one another. For this purpose, isother-
mal titration calorimetry studies were conducted where ATP
was titrated against Hsp90 bound to either NTD or CTD bind-
ers. Not surprisingly, ATP was unable to bind Hsp90 prebound
to GA or NB. This is because GA is a competitive inhibitor of
ATP and has a higher binding affinity, whereas NB bound to the
Hsp90 CTD allosterically inhibits ATP binding to the NTD.
This supports the previously reported negative allosteric regu-
lation of the Hsp90 NTD by the CTD (15, 18). However, KU-32
did not hinder ATP binding to Hsp90. Furthermore, ATP bind-
ing was abrogated when Hsp90 was bound to both GA and NB,
whereas it bound the Hsp90 –GA–KU-32 complex with similar
affinity as compared with the Hsp90 –KU-32 complex and
Hsp90 alone. To further validate the allosteric cross-talk medi-
ated by the CTD and the NTD binders, GA binding to
Hsp90 –NB and Hsp90 –KU-32 complexes and NB and KU-32
binding to the Hsp90 –GA complex were investigated. Both NB
and KU-32 negatively regulated GA binding to the NTD, with
KU-32 exhibiting a greater degree of regulation. These obser-

vations suggested that the Hsp90 –KU-32 complex acquires an
intermediate conformation that preferentially binds ATP but
not GA. This explains why we observed similar Hsp90 ATPase
activity when KU-32 was combined with GA as compared with
KU-32 acting alone. ATP cannot displace GA bound to the
extended, apo-state of Hsp90 but was observed to bind to this
intermediate state induced by KU-32 binding. This suggested
that the induced conformation does not resemble the apo-state
of Hsp90. Moreover, this unique conformation induced by
KU-32 binding is not consistent with the closed “tensed” state
of Hsp90, as little chance of ATP binding can occur upon
achievement of this state. Thus, we concluded that this confor-
mation lay somewhere between the open and the closed states
of the chaperone, and KU-32 binding to the CTD positively
regulates ATP binding to the NTD in an allosteric manner.
Conversely, the Hsp90 –GA complex was able to bind both
KU-32 and NB; however, their binding affinities were reduced
(10 –20 times). This suggested negative allosteric cross-talk in a
bidirectional manner with respect to the Hsp90 binders with
the negative allosteric regulation of the NTD by the CTD bind-
ers being relatively stronger. Why did we observe only a slight
reduction in Hsp90 ATPase activity in combinations involving
GA and NB when the binding affinity of GA was found to be
drastically reduced to the Hsp90 –NB complex and vice versa?
This can be explained as follows: the binding affinity of GA is far
greater than that of ATP to the Hsp90 –NB complex. One could
argue that the difference in concentration of ATP and GA in the
ATPase assay was �80 times, whereas the difference in their
respective binding affinities to the Hsp90 –NB complex was
�100 times. Hence, the event of GA binding to this complex
was slightly more probable than that of ATP binding.

We were interested to determine whether KU-32 addition-
ally affected the ADP-bound conformation of Hsp90 and
whether it could promote ADP release by mitigating ADP bind-
ing to Hsp90. Because ADP has a higher binding affinity to
Hsp90 than ATP and their binding sites overlap, Hsp90 cannot
bind ATP if it is already bound to ADP. Therefore, the indirect
release of ADP by monitoring the binding of ATP to the
Hsp90 –KU-32–ADP complex was investigated. Indeed, ATP
was observed to bind the complex with a higher affinity as com-
pared with free Hsp90, suggesting that KU-32 induced ADP
release and allowed ATP binding, thus preparing Hsp90 for
another round of ATP hydrolysis. This finding is significant in
the context of the ATPase cycle, as there could be multiple
stages at which KU-32 modulates Hsp90 function. However,
the conformation of the ADP-bound apo-state of Hsp90
(obtained in this study) could be different from the kinetic
ADP-bound intermediate in the ATPase cycle.

Studies have shown that two different classes of compounds
having different mechanisms of action could act in a synergistic
manner (33). We wanted to investigate whether a synergistic
combination of GA and NB existed that would further attenu-
ate the viability of cancerous cells. We also wanted to determine
whether KU-32 antagonized GA-induced cytotoxicity as was
observed in our prior experiments. Cells incubated with KU-32
showed negligible loss in viability. Conversely, GA and NB were
found to be cytotoxic. Certain combinations like C11 and C21,
warrant in vivo testing, as they produce high DRI values and are
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moderately synergistic. Such studies could be extended to tar-
get other chaperone systems (Hsp70/Hsp40) in the treatment
of cancer in conjunction with existing modes of therapy.
Despite GA and NB exhibiting excellent synergy and the high-
est DRI value in C35, it should not be considered a potent com-
bination, as GA at 60 �M and NB at 375 �M (7.5 and 2.5 times
their respective EC50 values) are highly toxic. Most combina-
tions involving KU-32 and GA showed a high degree of antag-
onism, which reiterates the cytoprotective role played by
KU-32.

Folding of nascent proteins or renaturation of partially
unfolded polypeptides by Hsp90 depends on its ATPase activ-
ity. Our in vitro results show that Hsp90 binders affect its
ATPase activity, and hence, we expected them to modulate the
renaturation of denatured luciferase by endogenous Hsp90.
Keeping in line with our prior results, GA and NB acted as
inhibitors, whereas KU-32 enhanced Hsp90’s ability to renature
luciferase. Combinatorial studies involving GA and NB mani-
fested enhanced inhibition as compared with either NB or GA,
but when coupled with KU-32, GA’s inhibition was ablated.

In silico studies with the modeled hHsp90� dimer provided
insights into the local and global conformational changes man-
ifested by KU-32 on the structure of the Hsp90 dimer, which
might provide clues regarding the stimulation of Hsp90’s func-
tion when bound to KU-32. It was observed that KU-32 acts to
bring the monomer arms of Hsp90 in proximity, thereby dis-
posing them to a more compact, closed state that eventually
leads to ATP hydrolysis. Our MD simulations of the Hsp90 –
KU-32–ATP complex have indicated formation of the catalytic
center that facilitates ATP hydrolysis by bringing Arg392 in
proximity to the NTD of each monomer. However, it is not yet
an active ATP-bound conformation but rather an inactive
“potentiated” ATP bound state that, upon structural transitions
of the ATP lid and the NTD loop, could reach its active state
(31, 32). The distance between the Hsp90 monomers after 420
ns of simulation is not small enough to allow interdomain inter-
actions. Interdomain interactions do not play a role in inducing
ATP hydrolysis but stabilize the transient conformation that is
capable of hydrolyzing ATP by reinforcing the cis interactions
of each monomer and stabilizing the correct NTD-MD confor-
mation (34, 35). Thus, the intermediate conformation of Hsp90
induced by KU-32 is not stable or entropically constrained
enough to induce ATP hydrolysis. The active “ready-to-hydro-
lyze ATP” state is extremely difficult to attain in a classical MD
simulation and may require quantum simulations to reach the
millisecond time scale, where such transitions could be
observed, as shown by Zhang et al. (36). This intermediate was
also unable to bind GA as inferred from our ATPase assay. This
inability to bind may result from the relatively large Van der
Waal’s volume for GA (523 Å3) as compared with ATP (341 Å3).
Such a large volume may result in steric hindrance and force
GA to be less likely to access the binding site in the KU-32–
induced conformation.

We hypothesize that the “partially closed” intermediate (Ii)
observed in our MD studies enabled Hsp90 to hydrolyze ATP at
a faster rate. This might be explained by considering that
Hsp90, when bound to KU-32, switches between this interme-
diate conformation (transition to this state from the apo-state

occurs in the nanosecond time scale in our MD simulation) and
the “closed” state, instead of undergoing transition from the
apo-state to the closed state, thereby reducing the time taken to
switch to the closed state.

We have summarized the mode of action of NB and its syn-
thetic analogue KU-32 as shown in Fig. 8 (a and b). NB alloster-
ically inhibited Hsp90 chaperone functions, whereas KU-32
was found to stimulate them. This stimulation of Hsp90 chap-
erone activity by KU-32 is a relatively novel finding and brings
about a new paradigm in the understanding of the role of CTD
binders in regulating Hsp90 function as well as in the design of
new compounds that stimulate Hsp90’s function within the
cell. The reason for this divergent behavior lies in the observa-
tion that KU-32 lacks the 4-hydroxyl coumarin moiety of NB
(37) that led to steric clashes when NB was docked at the
KU-32– binding site. Additionally, unlike KU-32, the amide
bond in NB was not able to mediate the hydrogen bond between
Ser532 and Ser586 of the CTD. Our in vitro experiments with the
Hsp90 mutant confirm that these two residues are critical for
KU-32 binding. They act as a starting point for the cascade of
conformational changes observed across the length of the pro-
tein. However, our simulations of the mutant Hsp90 –KU-32
complex showed that KU-32 bound stably to the mutant Hsp90
and did not dissociate from the CTD. The contradictory results
may be the consequence of utilizing different time scales; the
length of our simulations lay in the nanosecond time scale,
whereas the stable binding (or no binding) event monitored
through ITC lay in the millisecond time scale. Hence, it is
entirely possible that upon extending the length of the simula-
tion, one could observe the dissociation of KU-32 from its bind-
ing cavity in the mutant Hsp90.

Hsp90 plays a key role in protein quality control by maintain-
ing a balance between polypeptides that can be folded or
refolded and aggregates or misfolded intermediates that must
be degraded to prevent cell death (38 –40). Neuropathies or
neurodegenerative disorders are generally caused by accumu-
lation of misfolded proteins or toxic aggregates inside the cell
that result when this balance is altered, and the chaperone
machinery is unable to cope with the copious amount of toxic
aggregates (33, 34). Recently, a KU-32 analogue (41) has
entered Phase II trials for treating neuropathies (trial data are
confidential). We believe that KU-32 and its analogue stimulate
the chaperone function of Hsp90 and most likely reduce the load
of misfolded proteins inside the cell. This can happen either
through enhancing Hsp90’s folding ability or through enhancing
Hsp90’s binding with misfolded substrate proteins (reducing their
local concentration, which may lower their tendency to form
aggregates). However, further experiments will be required to pin-
point the mechanism of action.

Experimental procedures

Chemicals and reagents

PCR reagents were obtained from Thermo Scientific. DpnI
restriction enzyme was obtained from Agilent (catalog no.
200519-53). Primers for PCR amplification were synthesized
from Integrated DNA Technologies. Novobiocin (catalog no.
18457) and geldanamycin (catalog no. 13355) were purchased
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from Cayman Chemicals. KU-32 was a kind gift from Dr. Brian
Blagg. Cell transfection reagent Polyfect was purchased from
Qiagen (New Delhi, India) (catalog no. 301105). The Dual-Lu-
ciferase assay kit was purchased from Promega (catalog no.
E1910). Components of the ATP-regenerating system, namely
the pyruvate kinase/lactate dehydrogenase enzyme system in
50% glycerol (catalog no. P0294), NADH disodium salt hydrate
(catalog no. 43420), ATP disodium salt (catalog no. A26209),
and phosphoenolpyruvate monopotassium salt (catalog no.
P1727), were all purchased from Sigma (Bangalore, India). Cell
culture medium components were from GIBCO (Bangalore,
India). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reagent was purchased from Sisco Research Lab-
oratories Pvt. Ltd. (catalog no. 33611). All other chemicals were
obtained from HiMedia/Merck Millipore (Mumbai, India).

Drug stocks and combinations

ATPase assay—GA, NB, and KU-32 were dissolved in DMSO
to obtain stock concentrations of 9, 100, and 50 mM, respec-
tively. Final concentrations used in the ATPase assay for indi-
vidual drugs ranged from 6 to 90 �M. For combinatorial studies,
6 �M GA and 90 �M NB were used either as a mixture (com-
bined and preincubated with Hsp90) or as a sequential addition
of GA or NB first followed by an incubation period of 4 –5 min
and the addition of the other drug. A similar protocol was used
for GA (6 �M) and KU-32 (90 �M) in combinatorial studies.

In vitro cytotoxic studies—For single drug studies, GA con-
centration ranged from 50 nM to 90 �M, NB concentration
ranged from 500 nM to 800 �M, and KU-32 concentration
ranged from 50 nM to 200 �M. In the cytotoxicity assays involv-
ing single drugs, at least seven data points were used to calculate
the EC50 values. EC50 values of GA and NB were initially deter-
mined from cytotoxic studies, and three different ratios of EC50
values were used for combinatorial studies (EC50 GA/EC50
NB � 1, 3, and 0.34). Table S3 (a and b) lists the combinations
used for cytotoxicity evaluations for combinatorial studies
involving GA plus NB and GA plus KU-32, respectively.

Heat shock experiment—For individual drug studies, GA con-
centrations used ranged from 0.01 to 5 �M; KU-32 concentra-
tions used ranged from 0.5 to 300 �M, and NB concentrations
used ranged from 0.1 to 150 �M. Table S4 shows the concentra-
tion of each compound used in the combinatorial studies
involving either GA plus NB or GA plus KU-32.

Site-directed mutagenesis

Site-directed mutagenesis was performed to mutate Ser532

and Ser586 of WT Hsp90 to alanine. To create the S532A/S586A
mutant, two sets of primers were designed. The forward and
reverse primers designed for the S532A mutation were 5	-GGA-
ATTTGATGGGAAGGCCCTGGTCTCAGTTACC-3	 and

5	-GGTAACTGAGACCAGGGCCTTCCCATCAAATTCC-
3	, respectively. The forward and reverse primers designed for
the S586A mutation were 5	-CCAATAGACTTGTGGCTTC-
ACCTTGCTGCATTG-3	 and 5	-CAATGCAGCAAGGTGA-
AGCCACAAGTCTATTGG-3	, respectively. The PCR am-
plification conditions include the following steps: initial
denaturation at 95 °C (3 min), denaturation at 95 °C (30 s),
annealing at 57 °C (45 s) for S532A and at 60 °C (45 s) for S586A,
extension at 72 °C (8 min), and a final extension at 72 °C (15
min). The total number of PCR cycles was 18. The amplified
plasmid(s) was then treated with DpnI restriction enzyme (Agi-
lent) for 30 min at 37 °C to remove methylated parental DNA,
followed by deactivation of the enzyme at 65 °C for 20 min. The
amplification was confirmed on a 1% agarose gel. DpnI-treated
PCR-amplified product was subsequently transformed into
competent DH5� cells. The plasmid was isolated from the
transformed colonies, and the mutations were confirmed by
DNA sequencing.

Expression and purification

Full-length recombinant human His-tagged Hsp90� cloned
in pET-28a was kindly gifted by Dr. Johannes Buchner. It was
transformed in Escherichia coli BL21(DE3) competent cells and
purified as reported previously (34). Briefly, transformed cells
at an OD of 0.8 –1 were induced at 37 °C for 4 h by adding 1 mM

isopropyl �-D-1-thiogalactopyranoside. Cells were lysed in
buffer containing 50 mM sodium phosphate, 500 mM NaCl, 0.2
mM EDTA, 1 mM phenylmethylsulfonyl fluoride, and 1 mg/ml
lysozyme. The supernatant obtained after sonication was
loaded onto a nickel-nitrilotriacetic acid column, and the pro-
tein was eluted at 150 –200 mM imidazole. This was followed by
dialysis in buffer containing 20 mM Tris-HCl and 20 mM NaCl,
and the dialysate was loaded onto a Q-Sepharose column for
anion-exchange chromatography. The protein was eluted at
400 mM NaCl using a linear gradient. Finally, anion-exchange
chromatography fractions were pooled and loaded onto a
Superdex 200 column for gel filtration chromatography. The
pure protein thus obtained was filtered using a 0.22-�m
syringe filter and stored in buffer containing 40 mM HEPES
and 300 mM KCl. The purity of the eluted protein was
checked by SDS-PAGE. The concentration of the pure pro-
tein was determined spectrophotometrically by the Beer–
Lambert law, using the molar extinction coefficient of
Hsp90� (57,760 M�1 cm�1). The S532A/S586A mutant was
purified using the same protocol.

ATPase assay

The ATPase assay was performed using the ATP regenera-
tion system as described previously (42). Concentrations of
recombinant human Hsp90� were kept at 6 �M throughout the

Figure 8. Schematic representation of the proposed mechanism of action of Hsp90 NTD and CTD binders acting alone and in combination. a, GA and
NB inhibit ATP binding to the NTD of Hsp90 and prevent ATP hydrolysis by keeping Hsp90 in its open state. When GA and NB are combined, they complement
each other in further inhibiting ATP binding to Hsp90 and its subsequent hydrolysis. For the sake of clarity, only one of the three studied conditions of the
combination has been depicted. b, binding of KU-32 to the open “apo” Hsp90 state induces inter- and intradomain conformational change resulting in the
formation of an intermediate (Ii) state. Upon ATP binding, Hsp90 attains its closed “committed to ATP hydrolysis” conformation. Following ATP hydrolysis and
the release of ADP and Pi, Hsp90 returns to Ii instead of its apo-state, which probably explains the relatively faster rates of ATP hydrolysis in the presence of
KU-32. GA, unlike ATP, is unable to bind this intermediate conformation (when GA and KU-32 are combined) and hence cannot inhibit ATP hydrolysis. The
KU-32 molecule is represented as a yellow circle.
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experiments. For all compound studies (see “Drug stocks and
combinations”), Hsp90 was preincubated with a single or a
combination of compounds before being added to the reaction
mixture. Assays were measured in a buffer (pH 7.5) containing
50 mM HEPES, 20 mM KCl, 10 mM MgCl2, 0.5 mM ATP, 0.15 mM

NADH, PK/LDH (1⁄150 of the reaction volume), and 0.7 mM PEP
at 37 °C. Control experiments performed to negate UV-in-
duced NADH degradation did not include ATP in the reaction
mixture. The time interval between two consecutive readings
was 3 min. The decrease in NADH absorbance at 340 nm was
monitored by a microplate reader (Thermo Scientific Multi-
Skan Go). Data were recorded for 60 min and were evaluated
using the SigmaPlot software package. The raw NADH plot
obtained was converted to a relative cumulative NADH absor-
bance plot through the following equation,

(� NADH)x � (T0 � C0) � (Tx � Cx) (Eq. 1)

where the relative cumulative absorbance for time point x is
represented by (� NADH)x. T0 and Tx are test samples contain-
ing compound(s) at time points 0 and x (x � 0 and x � 20),
respectively. C0 and Cx are control samples without ATP at
time points 0 and x, respectively. The Hsp90 ATPase rate was
calculated from the following equation,

ATPase rate � �M ATP

min � �M Hsp90�

�

Rate of A340 signal loss �OD

min�
pl (cm) � extinction coefficient of NADH (�M

�1 cm�1) � Hsp90 (�M)

(Eq. 2)

where pl represents path length. The rates of A340 signal loss
were calculated from the slopes obtained after performing
global regression analysis on the fitted curves. In all cases, the
linear portion of the assay data was chosen to calculate the rate
of signal loss except for experiments involving KU-32, where
the initial exponential rate of signal loss was considered. All
assays were performed in triplicate.

Isothermal titration calorimetry

Thermodynamic parameters of ATP, ADP, and other small
molecules binding to recombinant human Hsp90� were
obtained using a MicroCal ITC200 microcalorimeter (GE
Healthcare). The calorimeter had a reaction cell volume of 200
�l and a syringe volume of 40 �l. For all titration experiments,
Hsp90 and the ligands were diluted into a buffer containing 50
mM HEPES, 20 mM KCl, and 10 mM MgCl2. The heat released or
absorbed due to the binding of 1 mM ATP or ADP to 30 �M

Hsp90 was measured at 25 °C. The ligands were injected in a
stepwise fashion into the reaction cell with an injection volume
of 1.5–2.5 �l and for a duration of 4 s. The interval between
injections was 60 –120 s. To determine the binding affinity of
various small molecules used in this study, 20 �M Hsp90 was
titrated against 100 �M of GA, NB, and KU-32. Binding of
KU-32 to S532A/S586A Hsp90 was investigated by titrating 100
�M KU-32 against a 20 �M concentration of this mutant pro-
tein. To check binding of ATP to Hsp90 in the presence of small

molecules, 30 �M Hsp90 was incubated with 30 �M GA or NB or
KU-32 and titrated against 1 mM ATP. To determine the effect
of GA on the binding of NB or KU-32 to the CTD of Hsp90, 20
�M Hsp90 was incubated with 20 �M GA and titrated against a
100 �M concentration of either NB or KU-32. To evaluate the
effect of CTD binders NB and KU-32 on the binding of GA, 20
�M Hsp90 was incubated with 20 �M NB or KU-32 and titrated
against 100 �M GA. To determine whether NB and KU-32
bound to the same region of the CTD of Hsp90, 20 �M Hsp90
was incubated with 20 �M KU-32 and titrated against 100 �M

NB. Combinatorial studies were carried out by incubating 30
�M Hsp90 with a mixture of either 30 �M GA and 30 �M KU-32
or 30 �M GA and 30 �M NB (in separate experiments), and the
complexes were subsequently titrated against 1 mM ATP. ADP
binding to Hsp90 in the presence of either NB or KU-32 was
investigated by titrating a mixture of 30 �M Hsp90 and 30 �M

NB or KU-32 against 1 mM ADP. ADP binding to the
Hsp90 –GA complex was investigated by titrating a mixture of
30 �M Hsp90 and 30 �M GA against 0.15 mM or 1 mM ADP.
ADP release upon binding of KU-32 to Hsp90 was monitored as
follows. 30 �M protein was first incubated with 30 �M of KU-32
followed by 30 �M ADP, and the mixture was titrated against 1
mM ATP. The heat released or absorbed from control experi-
ments was subtracted from the heat measured for each of the
binding reactions. The data were analyzed and fitted using
Microcal Origin software provided with the instrument. The
experimental data were fitted using a single class of sites (n �
1) model for binding of compound(s) to Hsp90. The enthalpy
of binding (�H) and the Gibbs free energy (�G) were also
determined from the heat release measurement and are inde-
pendent of the binding model. The DMSO concentration
inside the calorimeter cell and the syringe was kept at or
below 1% (v/v).

Cell culture

HeLa cells were procured from NCCS (Pune, India). Firefly
luciferase cloned in pcDNA-3 vector was kindly gifted by Dr.
William Kaelin (43). The cells were maintained in Dulbecco’s
modified Eagle’s medium containing 10% fetal bovine serum.
Transient transfections in 24-well plates were carried out when
the cells reached 80 –90% confluence. A 250-ng aliquot of plas-
mid was transfected using Polyfect transfection reagent. 24 h
post-transfection, cells were lysed using lysis buffer provided in
the Dual-Luciferase assay kit, and the lysate was collected in
100-�l volumes. Luminescence measurements were carried
out in 96-well plates using the MicroBeta scintillation unit
(PerkinElmer Life Sciences). Briefly 25 �l of luciferase assay
reagent was added to 5 �l of the lysate, and the luminescence
was measured at 550 nm. All values were normalized with
respect to control samples (only luciferase assay reagent). EC50

values obtained for luciferase renaturation in the presence of
compounds acting individually and in combination (GA/NB or
GA/KU-32) were computed using GraphPad Prism (version
6.0, GraphPad Software). The highest concentrations of GA
and NB employed in these experiments were significantly lower
than their respective EC50 values.
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Heat shock experiment

HeLa cells were subjected to heat shock as described previ-
ously (21) with certain modifications. Briefly, prewarmed
serum-free medium at 50 °C was added to the cells in 24-well
plates, and the plates were then placed for 6 min in a water bath
preheated to 50 °C. Post-heat shock, medium was discarded
and replaced with either fresh serum-free medium or a mixture
of compound(s) in serum-free medium (see “Drug stocks and
combinations”). Cells were then incubated at 37 °C in 5% CO2
for 3 h. Cells were taken out at different time points (before heat
shock, immediately after heat shock, and after 3-h incubation),
lysed, and assayed for luciferase activity. All assays were per-
formed in quadruplicate. Final DMSO concentration was �1%
(v/v) for all compounds involved in the assay.

In vitro cytotoxicity assays

To determine the effect of compounds on the viability of
HeLa cells, the MTT assay was performed. Cells were
trypsinized, washed twice with PBS, and plated in a 96-well
plate at a seeding density of 1.5 � 104 cells/well. After attaining
80 –90% confluence, the cells were treated with the compounds
(see “Drug stocks and combinations”) and kept at 37 °C in 5%
CO2 for 24 h. Postincubation, 100 �l of MTT (1 mg/ml in PBS)
was added to each well, and cells were further incubated at
37 °C in 5% CO2 for 3– 4 h. The formazan crystals formed were
then dissolved in 100 �l of DMSO, and the absorbance was
measured using a microplate reader (Thermo Scientific Multi-
Skan Go) at a sample wavelength of 570 nm and a reference
wavelength of 630 nm. The EC50 values for GA, NB, and KU-32
were determined by performing nonlinear regression of the sig-
moidal dose response curves using GraphPad Prism (version 6,
GraphPad Software). To quantify any degree of synergy or
antagonism between GA and either NB or KU-32, the CalcuSyn
tool implementing the Chou–Talalay method (44) was used.
Final DMSO concentrations were kept below 1% (v/v). All
experiments were carried out in octuplicate.

Statistical analysis

All data are presented as mean � S.D. from independent
experiments. To determine whether the ATPase rates of Hsp90
in the presence of a combination of compounds were signifi-
cantly different from the rates obtained in the presence of an
individual compound, unpaired two-tailed t tests were carried
out between two data groups, and one-way analysis of variance
(ANOVA) was carried out between five independent groups. t
tests were used to make comparisons between ATPase rates
obtained in the presence of either GA or NB alone as compared
with when they were combined. ANOVA was used to make
comparisons between ATPase rates in the presence of GA
alone, NB alone, and the two in combination. The same proto-
col was followed for combinations involving GA and KU-32.
Unpaired two-tailed t tests were carried out to determine
whether the binding affinities of ATP and ADP to the Hsp90 –
GA/NB/KU-32 complexes were significantly different from
the binding affinities of ATP and ADP obtained in the presence
of Hsp90 alone. Similar t tests were used to compare the bind-
ing affinities obtained when GA was titrated against the
Hsp90 –NB complex (and vice versa) with the binding affinities

of GA and NB to Hsp90 alone. Similar comparisons were made
between binding affinities obtained for KU-32 and GA titrated
against the Hsp90–GA and Hsp90–KU-32 complexes respec-
tively. Moreover, binding affinity of NB to the Hsp90–KU-32
complex was compared with the binding affinity of NB to Hsp90
alone. Finally, the binding affinity of ATP to the Hsp90–KU-32–
ADP complex was compared with its binding affinity to Hsp90
alone.

To determine whether the effect on the viability of HeLa cells
induced by a combination of two compounds (either GA/NB or
GA/KU-32) was significantly different as opposed to compounds
acting alone, unpaired two-tailed t tests and ANOVA were carried
out between independent groups of data. t tests were used to make
comparisons between EC50 values of compounds in combinations
(C1–C6) and individual EC50 values of GA, NB, or KU-32.
ANOVA was used to make comparisons between EC50 values of
GA and NB when acting alone as compared with them acting in
combination (C1–C3). The same protocol was followed for com-
binations involving GA and KU-32.

t tests were performed to determine whether EC50 values
obtained for luciferase renaturation in the presence of NB
and KU-32 alone were significantly different from EC50 val-
ues obtained when luciferase renaturation was studied in the
presence of a combination of compounds involving either
GA/NB or GA/KU-32.

The data were analyzed by built-in statistical analysis soft-
ware in GraphPad Prism (version 6). p values � 0.01 were con-
sidered statistically significant for the cytotoxicity and ATPase
assays, whereas p values � 0.05 were considered statistically
significant for the isothermal titration calorimetry and lucifer-
ase renaturation studies.

Docking and molecular dynamics study of hHsp90� with small
molecules

The amino acid sequence of Hsp90� was obtained from Uni-
ProtKB (accession ID P08238), and its structure was modeled
using Modeler 9.17 (45). Individual domains were modeled
using human Hsp90� crystal structures from PDB as listed in
Table S5. The loop region (residues 210 –270) joining the NTD
to the MD was modeled separately (as there was no structure
available in PDB for this region) to obtain an energy-minimized
Hsp90� monomer. The Hsp90� dimer was modeled using an
(experimentally solved) extended HtpG structure, which was
kindly provided by Dr. Agard (46). The template was found to
have 100% coverage with 39% identity and 59% similarity to the
Hsp90� sequence. The structure was subjected to a short (5-ns)
MD simulation for removing clashes and bad contacts using the
AMBER version 14 suite (47).

Binding sites were known for all of the compounds except for
KU-32, whose exact binding site at the CTD was to be deter-
mined. The rest were docked to facilitate subsequent MD sim-
ulations and confirm the accuracy of the modeled Hsp90�
dimer. NB docked to the CTD of modeled hHsp90� (48) was
used to model the binding site of NB at the CTD of the modeled
Hsp90� dimer. The 3D structures of ATP and KU-32 were
drawn using MarvinSketch followed by geometry optimization
using Gaussian 9 (49), which utilized the B3LYP/6 –31G* basis
set. Additionally, RESP partial charges for all molecules were
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calculated using Gaussian 9 software. NB, GA, and KU-32
structures thus obtained were docked to Hsp90�. Additionally,
KU-32 was docked to the S532A/S586A mutant Hsp90�. All
docking studies were performed using the ParDOCK (50) dock-
ing tool. Scoring was done using the BAPPL (51–53) scoring
function. ATP docking to the modeled Hsp90� was further
refined using the ATP-hHsp90� crystal structure (PDB 3T0Z).
Two water molecules and one magnesium ion were added (as per
the crystal structure) to each monomer of the modeled Hsp90�
dimer. Distance between Mg2�-coordinating atoms were kept
between 2 and 2.2 Å in agreement with the crystal structure.
Parameters for the final complex were prepared using MCPB (54)
methodology and made available in AMBER version 14.

MD simulations were carried out using the AMBER version
14 (47) suite 5,6 on Nvidia K20 GPU cards at the Supercomput-
ing Facility for Bioinformatics and Computational Biology (IIT
Delhi, India). All of the Hsp90�–ligand complexes were sol-
vated in cubic boxes of TIP3P (55) water molecules. The sol-
vated complex was neutralized using Na� counterions. The
study utilized periodic boundary conditions and PME summa-
tion (56) for electrostatic calculations. The shake (17) method-
ology was applied to restrict covalently bonded hydrogen
atoms. Constant pressure conditions were realized using a
Berenson thermostat (17). Time steps of 2 fs with 9-Å cut-off
for nonbonded interactions were applied to the studies. Each
system was energy-minimized using 250 steps of steepest
descent followed by 750 steps of conjugate gradient. Heating to
300 K was done, keeping the protein-ligand complexes fixed
with a force of 25 newtons. Equilibration was performed by
simulating the structure while simultaneously decreasing the
force on the protein–ligand complex in steps up to 0.1 newton.
This was followed by a fully unrestricted equilibration of 5 ns at
300 K. Convergence of energy and density was monitored. Pro-
duction was carried out for 420 ns for Hsp90�–KU-32,
Hsp90�–ATP–KU-32, and S532A/S586A Hsp90�–KU-32
complexes, whereas all other ligand–protein complexes were
subjected to 250 ns at NPT conditions.
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