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Probability Density Functions for SNIR in DS-CDMA
David W. Matolak, Senior Member, IEEE

Abstract—Analytical expressions for the probability density
function of block-wise signal-to-noise-plus-interference ratio for
both synchronous and asynchronous direct-sequence spread spec-
trum code-division multiple access systems are developed, for
equal average energy signals on the Gaussian and Rayleigh flat
fading channels. Using the standard Gaussian approximation
for multi-user interference, accurate density approximations are
obtained, which agree very well with computer simulation results.

Index Terms—Spread spectrum, code division multiple access.

I. INTRODUCTION

D IRECT-sequence spread spectrum (DS-SS) code-
division multiple access (CDMA) systems have seen

much attention in the literature, and also in application.
Many such systems use packet transmission, and in this
case, short-term statistics are of interest for assessing quality
of service (QoS), and potentially for advanced detection
approaches such as multi-user detection (MUD) [1].

Although there have been numerous publications on MUD
and related techniques – see for example the extensive refer-
ence lists in [1]- [3] – and much on the statistics of multi-
user interference (MUI), determination of the statistics of the
actual signal-to-noise-plus-interference ratio (SNIR) has not
been done. The history of the study of MUI statistics in DS-
SS is long, so only several well-known references are cited to
justify our use of the Gaussian approximation. Most investi-
gations employ BPSK modulation and equal received signal
energies for all users; extension to quaternary modulations and
unequal received energies (near-far conditions) has also been
performed (addressed subsequently).

One of the earliest references on MUI statistics is [4],
in which accurate bounds on the second moment of MUI
were obtained. This author notes that the standard Gaussian
approximation (SGA) is often very good, particularly when
processing gain L is not small, the number of users K is
large, and the signal-to-noise ratio (SNR) is not too large.
We use the term SGA in this paper to refer to both (1) the
approximation of the correlator output MUI, for any bit, as a
zero mean Gaussian random variable with variance dependent
upon L, K, and constants that depend upon the presence or
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absence of carrier phase and code chip alignment; and (2)
the resulting bit error probability (Pb) expression that obtains
from this approximation.

In [5]- [8], the authors derived exact statistics of MUI and
corresponding Pb bounds. These approaches are computation-
ally intensive, requiring K-2 convolutions (or K-1 integrals [8])
of a probability density function (pdf) to obtain the pdf for the
total MUI. In all these references, the SGA was cited as very
good for large K/L and moderate SNR, and was shown to be
accurate even for small K/L (e.g., 2/31) when Pb is larger than
about 10−5.

Other authors have derived accurate techniques for deter-
mining Pb with far less computation and for near-far cases.
The most widely used is [10], which employs a difference
approximation to derivatives in the Taylor series expansion of
Pb about the SGA value, yielding a weighted sum of Gaussian
tail integrals (”Q-functions”). This Pb approximation has also
been termed the improved GA (IGA), or as slightly modified
in [9], the simplified IGA (SIGA). Numerous references have
employed these versions of the SGA – a few examples include
[11]- [14] – with unanimous concurrence regarding their
accuracy for the conditions previously mentioned. Although
there have been exceptions, e.g., [15], wherein a Laplacian
density was found to better fit simulated data for small K/L,
the Gaussian MUI approximation is firmly established as a
useful and accurate approximation under the conditions for
which it was derived. To be specific, the SGA is accurate
for the ”system loading” ratio K/L larger than a value we
denote qmin. The value of qmin is approximately 0.3 [10],
and decreases slightly as L increases, and also decreases as
thermal noise increases. Use of the SGA for loading values
of qmin and larger translates to an (uncoded) error probability
on the order of 10−4 ∼ 10−3 or larger (for PSK modulation
with coherent detection); these error probabilities are lower
than those typically required of the code symbols output from
the demodulator in practical systems that employ forward error
correction coding. The SGA is even better for higher values of
system loading where error probabilities are higher, and where
practical systems may operate. When quaternary modulation
is used, the SGA is even better [16], [17], and the use of
raised-cosine filtering has also been shown not to invalidate
the above conditions on qmin [18].

Given the accuracy and usefulness of the SGA, we employ it
here for our investigation, which derives the SNIR distribution
for packet transmission using long codes. We apply the
ensemble average 2nd-order statistics for MUI to each MUI
sample to develop the block-wise (time-average) SNIR distri-
bution models, for both AWGN and slow Rayleigh flat fading
channels. These SNIR distributions are of interest for several
reasons. First, from a theoretical perspective, since in a long
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code case the MUI changes each symbol, the SNIR, computed
on a packet basis, can be modeled as a random variable whose
distribution heretofore was not described in a simple form
– deriving the distribution using exact MUI statistics (e.g.,
from [5]) would not only be prohibitively complex, but would
also improve upon our results only under conditions where the
SGA is inaccurate, i.e., low loading factors K/L and large SNR.
Second, since SNIR can be rapidly and accurately estimated
[19], it can be used in rapidly assessing signal quality of
service (QoS), even in terms of approximate error probability
performance, and the distribution of SNIR is of interest for this
assessment. Third, for some advanced detection techniques
such as MUD, where SNIR may be used for example instead
of correlator output amplitude for successive interference
cancelling (SIC) [20] or group interference cancelling (GIC)
[21], the SNIR distribution provides information usable by the
MUD for classifying user signals for processing.

Finally, other recent work has aimed at deriving SNIR
or carrier-to-interference ratio (CIR) distributions, but almost
exclusively for non-DS-SS transmission. This includes [22]
and [23] for ad hoc and downlink cases, respectively. An-
other reference [24] describes how to use SNR (averaged
over a block) for multiuser diversity. These authors assume
SNIR is estimated perfectly, but do not comment on its
distribution. They also assume near-constant fading over a
block, and block-to-block independence of fading, as we do
here, but again, for non-DS-SS transmissions. In [25], the
authors note that the pdf of SNR is of use for analyzing
cross-layer multiple-input/multiple-output (MIMO) schemes,
without providing any SNIR pdf. Last, reference [26] describes
how the SNIR distributions can be used for both power
control and data rate control, in a DS-SS CDMA system, and
does derive such a distribution, for a dispersive wide-sense
stationary, uncorrelated scattering Rayleigh fading uplink case.
This distribution is far more complex than the one derived
here, as it is expressed in terms of a set of JK individual
average powers on the J channel taps for each of the K
users, and on a set of J2(K − 1) ratios of the J desired
signal channel tap powers and the J(K-1) interfering signal
channel tap powers on all the J(K-1) interferer channel taps.
In addition, these authors neglect thermal noise, which we do
not.

II. SIGNAL MODEL

An asynchronous DS-SS CDMA system with K users and
BPSK signaling is the basic model; the conditions of carrier
phase and/or chip synchronism can easily be treated as special
cases of this model. We address this in the sequel. User
k’s baseband signal is uk(t)=Ak

∑
n bk(n)sk(t − �n/a�aT ),

with bk(n) ∈ {±1} user k’s nth bit, Ak=
√

Ebk the signal
amplitude, Ebk the bit energy, and T the bit duration. The
constant a is a positive integer with a >1 for our long code
case of interest (a=1 for short codes (periodic over T )). The
function �x� is the greatest integer less than or equal to x. The
signature sequence (spreading) waveform, unit-energy over T ,
is sk(t)=

∑N−1
m=0 ck(m)p(t−mTc)/

√
L, with binary spreading

code chips ck(m) ∈ ±1, and chip pulse shape p(t) rectangular
over the chip time Tc, with amplitude1/

√
Tc. The processing

gain is L = T/Tc, with code length N = aL for long codes

(L = N for short codes). All users employ a common data
rate Rb = 1/T , and random, long spreading codes. We cite
subsequently one multi-rate case to which our results apply.
User k’s transmitted signal is xk(t)=

√
2uk(t)cos(ωct).

The received bandpass signal is r(t) =
√

2
∑K

k=1 αkuk(t−
τk)cos(ωct−θk)+w(t) , where user k’s delay τk is modeled as
a uniform random variable on [0, T ) modulo-T, phase θk =
ωcτk + φk is also modeled as random, uniform on [0, 2π),
and w(t) is the zero-mean AWGN, with two-sided spectral
density N0/2. Variable αk is the Rayleigh fading amplitude,
with mean-square value of 1, and φk is the random channel
phase. Equal flat fading average energies are assumed for all
users, as in [27], [28]. For slow fading, we assume the fading
variables are constant over a block duration, as in [24]; the
non-fading AWGN channel case is obtained by setting the
fading amplitude variables to 1. The carrier phase synchronous
case is obtained by setting all θk = 0, and similarly, the chip
synchronous case is obtained by setting all τk = 0.

Synchronization (acquisition) is assumed for each user
signal, so after coherent downconversion, the kth user’s jth

bit correlator output is given by

yk(j)=
√

2
∫ (j+1)T+τk

jT+τk

r(t)sk(t − jT − τk)cos(ωct − θk)dt

=Akαkbk(j) + Mk(j) + wk(j) (1)

where the first term is the user-k desired component, Mk(j)
denotes the multiuser interference imposed on user k’s jth

bit, and wk(j) is the noise sample, zero mean, with variance
N0/2.

Using notation similar to that of [1], the MUI term in (1)
is

Mk(j) =
∑
i<k

Ãi[bi(j + 1)ρki + bi(j)ρik]

+
∑
i>k

Ãi[bi(j)ρki + bi(j − 1)ρik], (2)

where the first sum is over users whose delay τi < τk, and
the second sum is over users whose delay τi > τk , and
Ãi = Aiαicos(θk − θi). The partial cross correlations are
a generalized version of those defined for short codes in [1].
For long codes, the partial correlations are a function of both
the delays and the bit index j, where for τi < τk, using
δj,a = �j/a� and βj,a = �(j − 1)/a�, we have

ρik(τi, τk, j)

=

(j+1)T+τi∫
jT+τk

si(t − δj,aaT − τi)sk(t − δj,aaT − τk)dt, (3)

ρki(τi, τk, j)

=

jT+τk∫
jT+τi

si(t − δj,aaT − τi)sk(t − βj,aaT − τk)dt. (4)
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III. SNIR & PDF

For the AWGN channel, the ensemble average SNIR is
defined as Eb/(N0/2 + I0), where I0 is the variance (equal
to the mean-square) of the MUI term of (2). For the fading
channel, the SNIR expression is identical except that the
numerator is multiplied by the square of the fading amplitude,
α2

k, and I0 also incorporates the fading variables. In the block-
wise case, we compute a time-average SNIR, instead of the
ensemble average as in [1]; the time-average is something an
actual receiver can compute. This time average MUI+AWGN
energy over a packet of size Nb bits for user k is

Ik(Nb) =
1

Nb

Nb∑
j=1

(Mk(j) + wk(j))2. (5)

The actual time average SNIR for user k over these Nb bits,
SNIRk,a, is then

SNIRk,a(Nb) =
A2

kα2
k

Ik(Nb)
=

NbEb,kα2
k

Nb∑
j=1

(Mk(j) + wk(j))2
. (6)

where A2
kα2

k is the energy of the desired signal, constant
over a block. This energy is also equal to the square of the
mean of the jth correlator output conditioned on user k’s
data (bk(j)) since the MUI and AWGN are zero mean, i.e.,
A2

kα2
k = {E[yk(j)|bk(j)]2}. The MUI+AWGN energy Ik(Nb)

is the time-average conditional variance, or the time-average
corresponding to V ar[yk(j)|bk(j)] = E{[Mk(j) + wk(j)]2}.

We address the AWGN channel case first (all αk = 1). Let
Hk(j) = Mk(j) + wk(j), and note that via the SGA, Hk(j)
is Gaussian, with zero mean, and variance given by

σ2
H = (K − 1)Eb/(DL) + N0/2. (7)

This variance is obtained by averaging over the carrier
phases, delays, and random code chips, and where using
results from [7], the constant D is as follows: D = 3 for
chip and phase asynchronism; D = 1 for chip and phase syn-
chronism; D = 2 for chip synchronism, phase asynchronism;
and D = 3/2 for chip asynchronism, phase synchronism.
Asynchronism is random and uniform, as defined prior to
(1). For any of these cases, for any given random delay and
carrier phase, if the bits and code chips are random, Hk(j) is
independent of Hk(j±q), for any q other than one [7], and for
q = 1, the dependence is weak enough so that the independent
approximation is very good, as our simulation results show.
Thus, with H2

k a chi-squared variate, the MUI Ik(Nb) of (5)
is also a chi-squared variate with Nb degrees of freedom [29],
and the SNIR is the ratio of a constant Eb,k = A2

k divided
by this chi-squared variable. Via a simple transformation of
random variables [30], we obtain the pdf of SNIR as follows
[19]:

pSNIR(g) =
(A2

kNb)Nb/2

σNb

H 2Nb/2Γ(Nb/2)
g−

Nb
2 −1exp

{
−NbA

2
k

2gσ2
H

}
(8)

where g is the average SNIRk,a of (6) over Nb bits, and
Γ is the gamma function. In the case of a single user, with
MUI exactly zero, the pdf of (8) is exact (with σ2

H = N0/2).
Accounting for correlations among the adjacent MUI terms

does not appear to allow a closed-form expression for the pdf
of Ik(Nb). To find the pdf of the sum of Nb terms, one can
proceed interatively, first finding the joint pdf of two correlated
chi-squares and integrating as in [30] to find the pdf of the
sum of two terms. The joint pdf of two correlated chi-squares
is known [31]. Beyond this though, the procedure becomes
intractable, since deriving the pdf of the sum of even three
of the Nb terms requires the derivation (then integration) of
the joint pdf of the 3rd chi-square variate and the sum of the
previous two (with pdf in [31]), and this joint pdf for the three
correlated variates does not appear to be known.

For large values of block size Nb, the Central Limit Theo-
rem can be applied to the MUI+AWGN term of (5), to yield
an approximate pdf, obtained in a manner analogous to that
used to obtain (8), where with vH = 2σ4

H/Nb, we have

pSNIR,a(g) =
A2

k

g2
√

2πvH
exp

[
−

(
A2

k

g
− σ2

H

)2

/(2vH)

]
(9)

We also note that these pdf results apply to the multi-rate
case where user signals have unequal data rates, but equal
values of received power; equal power ensures the amplitudes
{Ak}K

k=1 are identical, and does not alter the derivation.
For the Rayleigh fading case, the procedure is analogous.

We again employ the SGA for MUI, as done in [14] and [20].
As noted, fading is assumed slow for all user signals, and
is modeled as constant over a packet (fading can be either
independent or correlated between blocks – this will not affect
the pdf). The mean and variance of the MUI term of (5) do not
change (recall E[α2

k]) since we are using averages and assume
independence, as in [1] and [20], so the MUI term Ik(Nb) is
modeled as the same chi-squared variate with Nb degrees of
freedom. The distribution of the numerator Eb,kα2

k is also chi-
squared, with 2 degrees of freedom, so the SNIR is the ratio
of these two chi-squared variates. Using the transformation of
a ratio of random variables [30], after some algebra we can
obtain the pdf. More directly, we can recognize the ratio of
the two chi-squareds as a scaled (Fisher) F-variate [30], and
get the same result. This pdf is as follows:

pSNIR,R(g) =
(Nb/2)Nb/2+1(A2

k/σ2
H)Nb/2[

g + NbA2
k

2σ2
H

]Nb/2+1
. (10)

This pdf can also be used to approximate the case of
Rayleigh-lognormal fading, in which the bit energies – Ebk in
the numerator of (6) and the energies within the MUI terms
of (2) – are multiplied by zkα2

k, with zk a lognormal random
variable, constant over a block. Specifically, zk is a normalized
lognormal zk=10x/10/ζ, where x is Gaussian with zero mean,
variance σ2

x, and ζ=E[10x/10]=exp{−σ2
x[ln(10)/10]2/2};

thus yielding E(z) = 1. The value σx can represent either a
shadowing standard deviation, or a Gaussian power imbalance
in dB. The exact pdf for this Rayleigh-lognormal case can not
be derived in closed form, but when the normalized lognormals
have mean one, the pdf is well approximated by that of (10).

IV. NUMERICAL RESULTS

For all simulations described here, conducted in Matlab�,
the number of trials Nt was such that the total number of
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Fig. 1. Analytical pdf, analytical approximation to pdf, and histograms from
simulations for SNIR, chip and phase asynchronous case, AWGN channel
with Nb=100 bits, processing gain L=15, K=5 users, and two values of
Eb/N0.
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Fig. 2. Analytical pdf, analytical approximation to pdf, and histograms
from simulations for SNIR, AWGN channel with Nb=100 bits, Eb/N0=7
dB, processing gain L=31, and K=10 users, for two cases: both chip and
phase asynchronous, and both chip and phase synchronous.

SNIRs gathered, KNt, is equal to 10,000. In all simulations,
Ns=4 samples/chip were used. For each trial of the simulation,
all K users are assigned a new random long code, new random
carrier phase, new random delay, new block of random data
bits, and for the fading channel results, a new fading ampli-
tude. All histograms and analytical plots use 100 points across
the domain. Figure 1 plots the analytical pdf expression of (8)
and histograms obtained for SNIR by computer simulation
for the AWGN channel, chip and phase asynchronous case.
The loading factor K/L is 5/15, the packet size is Nb=100
bits, and Eb/N0=3 dB and 7 dB. The actual block-wise SNIR
(histogram) is that obtained from the true amplitude and the
MUI+AWGN, collected in simulation as prescribed by (6). As
can be seen, the density of (8) is very well corroborated by
experiment for the smaller value of Eb/N0, but for this small
value of processing gain (L=15), agreement between analysis
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Fig. 3. Analytical pdf, analytical approximation to pdf, and histograms from
simulations for SNIR, AWGN channel with Nb=20 bits, K/L=2/31, and
several values of Eb/N0 for the chip and phase asynchronous case.
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Fig. 4. Analytical pdf, analytical approximation to pdf, and histograms
from simulations for SNIR, AWGN channel with Nb=50 bits; K/L=10/63
and Eb/N0=10 dB; and K/L=40/63 and Eb/N0=15 dB, for the chip
synchronous, phase asynchronous case.

and simulation degrades for the higher SNR value of 7 dB,
since the Gaussian MUI approximation degrades as the SNR
increases when the processing gain L is this small.

Figure 2 shows similar results for the same channel and
asynchronism conditions, and for essentially the same loading
factor but larger K and L, K/L=10/31. The block size Nb is
again 100 bits, with Eb/N0=7 dB. Similar good agreement
obtains here, and on comparison with Figure 1, it can be
seen that as K/L goes from 5/15 to 10/31, the validity of the
SGA improves and yields better agreement between analysis
and simulations. Figure 2 also shows that the analytical and
simulation results are in very good agreement for the chip and
phase synchronous case. Both Figures 1 and 2 also show that
for Nb=100 bits, the CLT approximate pdf of (9) is in good
agreement with the “exact” pdf of (8).

In Figure 3, we show AWGN channel results for the
chip and phase asynchronous case again, for a very small
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dB, chip and phase asynchronous case.

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g

p S
N

IR
(g

)

Histogram
Analytical

K/N=10/31
E

b
/N

0
=7 dB

N
b
=50

σ
x
=3 dB

σ
x
=6 dB

Fig. 6. Analytical pdf and histograms from simulations for SNIR, Rayleigh-
lognormal channel with Nb=50 bits; K/L=10/31, Eb/N0=7 dB, and two
values of the lognormal standard deviation, σx=3 and 6 dB, chip and phase
asynchronous case.

loading factor, K/L=2/31, for several values of Eb/N0, and
block size Nb=20 bits. Evident is the gradual degradation of
the agreement between analysis and simulations as the SNR
increases, but even for the rather large SNR of 15 dB, as
long as the processing gain L is large enough, the pdf of (8)
is a reasonable approximation. The poorer agreement of the
CLT approximation of (9) is also apparent in Figure 3, and is
attributable to the smaller block size of 20 bits.

Two more AWGN channel example results are shown in
Figure 4, for the chip synchronous, phase asynchronous case,
with an even larger value of processing gain L=63, with two
loading factors and two values of Eb/N0. With this value of
L, agreement is reasonably good even for the small loading
factor of K/L=10/63, as long as the SNR is not very large.
For larger loading factors, agreement is good at larger SNRs.

Two sets of Rayleigh channel results are shown in Figure

5. As with the AWGN channel case, for a loading factor K/L
equal to or larger than about 1/3, analysis and simulations
are in very good agreement, and agreement improves as
processing gain increases. One difference in the Rayleigh case
is that the SGA for MUI is good at both low and high SNR. As
with the AWGN case, for given K , L, and Eb/N0, agreement
between analysis and simulations is independent of the carrier
phase and code chip synchronism/asynchronism.

Finally, Figure 6 shows two sets of results for the Rayleigh-
lognormal case, with K/L and Nb the same as in Figure 5,
and with Eb/N0=7 dB, and two values of lognormal standard
deviation, σx=3 and 6 dB. Agreement between analysis and
simulations is nearly as good as in the case of Rayleigh fading
alone, particularly when the lognormal standard deviation
increases.

V. CONCLUSION

Analytical expressions for the probability density function
of the block-wise signal-to-noise-plus-interference ratio for
DS-SS CDMA in AWGN and Rayleigh flat fading chan-
nels were derived for the case when all user energies are
equal, and for all combinations of chip and carrier phase
synchronism/asynchronism. The pdfs employ the standard
Gaussian approximation for multi-user interference; given this
approximation, and the mild approximation that MUI terms
within a block are independent, the first AWGN pdf and
the Rayleigh pdf are exact, and the second AWGN channel
pdf employs the Central Limit Theorem to approximate the
average MUI plus Gaussian noise energy over a block as
another Gaussian. Simulation results agree very well with the
analysis for a range of parameters. Specifically, for loading
factors above approximately 0.3, because the SGA is accurate,
our pdfs model very well the simulated SNIRs as long as
Eb/N0 is not too large. As with the SGA itself, it is difficult
to be precise about all parameter settings, but some additional
observations are as follows: for a fixed value of loading factor
and Eb/N0, as processing gain increases, our pdfs become
more accurate at modeling the distribution of SNIRs. As
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loading factor increases, the largest value of SNR at which
our pdfs apply also increases. The CLT approximate pdf (9)
is generally in very good agreement with the ”exact” pdf
of (8) for block sizes above approximately 50. All these
observations apply to all four combinations of code chip and
carrier phase synchronism/asynchronism. Finally, for the case
when all signals undergo flat Rayleigh fading with the same
average energy, or with energies lognormally distributed, using
the same model for MUI as in (9), the resulting SNIR is an
F-variate [30], and the analytical pdf approximates well that
obtained in simulation, even at high SNR.
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