Update on the Activities of the Southeastern Paleoamerican Survey (2014-2020)

Albert C. Goodyear

Follow this and additional works at: https://scholarcommons.sc.edu/sciaa_staffpub

Part of the Archaeological Anthropology Commons
Update on the Activities of the Southeastern Paleoamerican Survey (2014-2020)

By Albert C. Goodyear, Director

The Southeastern Paleoamerican Survey (SEPAS) was founded in 2005 and renamed from the former Allendale Paleoamerican Expedition (Goodyear 2006). Its purpose is to search for and discover archaeological evidence for the earliest human occupation of the Southeastern United States. The history of professional and avocational interests in what has been traditionally referred to as Paleoindian studies in South Carolina archaeology has been summarized in a book chapter (Goodyear 2016) published in Archaeology in South Carolina: the Hidden Heritage in the Palmetto State (King, ed., 2016).

To date, the focus of surveys and excavations has been on sites 12,000 years and older, including the well-known preClovis and Clovis occupations at the Topper site. Thus far, the emphasis has been on the Southeastern Coastal Plain ranging from Virginia to Florida. An edited book concerning the archaeology of this area was published in 2018 (Goodyear and Moore, eds. 2018) (see Page 16), that included a chapter providing more evidence of the artifacts and antiquity of the preClovis occupation of the Topper site, not previously published (Goodyear and Sain 2018).

Program Developments

I retired from the South Carolina Institute of South Carolina (SCIAA) at the University of South Carolina (USC) in 2014, after 40 years. I was appointed the next day as a Research Affiliate with SCIAA-USC. In 2015, Dr. Andrew A. White was hired by (SCIAA) as a research faculty member at the rank of Assistant Professor. He was made a member of the SCIAA Research Division with the expectation of developing a field project within South Carolina. His specialties are Paleoindian and Early Archaic societies, and he used collections from sites in the Midcontinent for his dissertation at the University of Michigan (White 2012). He has a continuing interest in the Kirk phase of the Early Archaic and how it spread across the eastern U.S. (White 2015a). In 2015, he began a multi-year excavation program at the Dorn site (38FA608), an alluvially buried multicomponent prehistoric site on the bank of the Broad River in Fairfield County, South Carolina (White 2015b, 2020). In the summer of 2020, Andy left SCIAA when he and his wife Dr. Elizabeth Bridges both took positions with the Illinois Archaeology Survey. Andy will be sorely missed for his considerable abilities as an archaeologist and his keen analytical insights.

In 2016, USC provided SCIAA with new facilities across campus in the first floor of Barnwell College. Andy White and I were both given space there, which has provided excellent room for office, lab, and storage for our collections. Using an Archaeological Research Trust (ART) grant, Andy began a project cataloging and analyzing artifacts of the Dr. Larry Strong collection, a gift from Strong in 1999, of well over 16,000 artifacts found in Allendale County, South Carolina (White 2016a). Much of the Topper site collections were moved there as well, allowing easy access for analysis by future researchers. Joe Wilkinson provided assistance in organizing Topper artifact collections and records resulting from several years of field research. He was given an office there to continue artifact photography and to pursue his work with private collections, which resulted in his master’s degree thesis (Wilkinson 2017) on the Early Archaic of South Carolina, and subsequently a book chapter on the Early Archaic occupation of the Coastal Plain (Wilkinson 2018).

The important work with private artifact collections initiated by Tommy Charles in the 1980’s, and forward, collections drawn from throughout the state, has resulted in a great deal of data regarding types of stone tools and their raw materials. A compilation of his work resulted in a volume by Tommy Charles and Christopher Moore entitled Prehistoric Chipped Stone Tools of South Carolina (Charles and Moore 2018). This volume provides information on the typical stone tool artifacts found throughout the state along with types and sources of lithic raw material. As such, it is an invaluable source for both professional archaeologists and members of the public who often find artifacts. Some collections were eventually donated to SCIAA as a result of Tommy’s work with collectors. Among these are the Wiles collection from Abbeville County, the Wilma Croft collection from Aiken County, the Larry Strong collection from Allendale County, and Tommy’s collection from the Manning site (38LX50). Other important collections not donated that have been inventoried include the Johnny Causey collection from Hampton County, the William F. Barnes collection from Fairfax, South Carolina, and the Dennis Hendrix collection from Barnwell, Bamberg and Orangeburg Counties. Other collections donated to SEPAS include the Lee Thomas collection (Goodyear and Wilkinson 2018), parts of the Island site (38CL102) collection of Steve Williams, and the Gene Porter collection of Barnwell County. Artifact data were also recorded from 16 private collections down the Congaree and Santee River basin (COWASEE), most of which had not been previously recorded (Goodyear 2014).

In summary, numerous private artifact collections have been donated or inventoried for the southern part of the state by SEPAS that can allow detailed geographic studies of prehistoric cultures using time sensitive artifacts such as projectile points. Advances in lithic
raw material identification and their geological sources allow the mapping of dispersion zones and probable foraging territories of prehistoric hunter-gatherers (e.g., Moore and Charles 2018). SCIAA has had a long history of working with the public and their artifact collections and sites, a powerful means of obtaining data that is commensurate with the often geographically extensive distributions of prehistoric cultural groups. For Paleoamerican studies, this has been critical for reconstructing possible macrobands for Clovis groups such as the proposed Uwharrie Mountain group of North Carolina (Daniel and Goodyear 2018) and a similar band in the southern Coastal Plain of South Carolina and southeast Georgia known as the Allendale-Brier Creek Clovis Complex (Goodyear 2018).

SEPAS Research Activities

Paleoindian points have continued to be recorded for South Carolina, a database begun by Jim Michie in the late 1960’s and substantially added to by Tommy Charles, as part of his state-wide private collections survey. The history of this survey including additions to it since Tommy retired, has been traced out in my article on the search for earliest people in South Carolina (Goodyear 2016). As of this writing, we are up to 791 points that are presumed to be non and pre-Dalton in age. More attention is now being paid to recording Dalton points throughout the state as Daltons are being seen as the end of the classic Paleoindian point technologies. Dalton may also be the first groups to be affected by sea level rise causing the loss of prime Coastal Plain wetlands, which may have necessitated intensification of hunting and gathering in the Piedmont. This has been referred to as the Dalton Piedmont Transhumance Hypothesis based on Dalton representing the first large Paleoindian sites occurring on the Fall Line and lower Piedmont (Smallwood et al. 2018).

The major use of traditional fluted points such as Clovis and Redstone has been synthesized using the Uwharrie Mountain and Allendale-Brier Creek Clovis complexes as developed by Randy Daniel and myself. Using the diagnostic lithic raw materials native to sources in both states, it is clear that two probably contemporary Clovis macrobands existed over the Carolinas. It has been shown that the northern portion of South Carolina was likely the southern portion of the Uwharrie group, based on the morphologically identical Clovis point attributes, except length. Length would naturally decrease moving geographically away from the Uwharrie Mountain sources (Daniel and Goodyear 2015). The southern macroband is identified as the Allendale-Brier Creek Clovis Complex in recognition of the high densities of Clovis points in both areas likely due to the abundant high quality Coastal Plain chert sources (Daniel and Goodyear 2018; Goodyear and Charles 1984; Goodyear 2018).

In keeping with the concept of the focus on the wider Southeastern area, a fluted point survey has been created for the state of Florida. As of this writing, the total number recorded is 451, which includes classic Clovis points, Redstones, and fluted Simpsons. Also being recorded, are Clovis point preforms that are common in the major rivers of Florida, which is also the source of the bulk of fluted points. Nearly all of these points were originally found by members of the public, especially by scuba diving in the springs and rivers. Many of these were found starting in the 1960’s and continuing up to the early 2000’s. Several of the larger well documented private collections eventually ended up in the Ike Rainey collection in Ocala, Florida (Figure 1), along with many other good examples of prehistoric Florida artifacts. While recording of fluted points is still ongoing, including the current update of our original Tampa Bay study (Goodyear et al. 1983). The plan is to eventually create a well-documented data.

![Figure 2: Clovis point from the Mark Corbitt cache from the Withlacoochee River, South Georgia. (Photos by Joe Wilkinson and drawings by Darby Erd)](image)

![Figure 3: Two Clovis polyhedral blade cores from the Mark Corbitt cache from the Withlacoochee River, South Georgia. (Photo by Joe Wilkinson)](image)
an intriguing geological context to test for Paleoamerican occupation. A paper by this group of investigators was presented at the Southeastern Archaeological Conference (SEAC) meeting in Augusta, Georgia in 2018 (Goodyear et al. 2018).

In 2019-2020, Andy White, Joe Wilkinson, and I began to research the evidence in South Carolina of what can be called buried closed Early Archaic lithic assemblages. Both Andy White and Joe Wilkinson have done considerable research on the Early Archaic with their interests with side-notched Taylor points and Kirk corner-notched points (White 2016b; Wilkinson 2018). Throughout the eastern U.S., there is widespread recognition of temporally separate horizons of side-notched points followed by corner-notched points (Tuck 1974; White 2019). We examined evidence in South Carolina for these two temporally discrete horizons by studying the best examples of what can be called “closed” assemblages where only one type of notched point was present. These would be Early Archaic sites that were sufficiently buried to eliminate as much as possible, the reoccupation and thus, mixing of these sites by later occupations. Two sites, G.S. Lewis East (Kirk) and the Topper site (Taylor), each seem to meet those expectations (Goodyear, White, and Wilkinson 2019). Our graphic treatment of Early Archaic point typology from Dalton through Kirk Stemmed is shown here as Figure 4. The radiocarbon dates found associated with these types throughout the Southeast, also bespeaks of their temporal separateness. The modes for these time periods overlap to some extent to accommodate the likelihood that during times of transition, both types could have been made. Also it is realistic to show that varieties of side- and corner-notched points probably also existed during these modes exhibiting subtle attribute differences over time and space as shown in Figure 5, based in part by Joe Wilkinson’s (2018) research.

The White Pond Human Paleoecology Project (https://www.facebook.com/WPHEP/)

In 2015, Dr. Stephen Jackson of the U.S. Department of the Interior, Southwest Climate Center, in Tucson, Arizona and the U.S. Geological Survey contacted me about their interest in coring the famous White Pond site near Elgin, South Carolina (Watts 1980). In 2002, I had gotten access to the site through the White Pond owners association who allowed a coring team from the Geology Department of USC to core there. Dr. Jackson and his colleague Dr. Teresa Krause were interested in coring the site attempting to obtain a finer resolution of the pollen assemblages and their radiocarbon dating to examine the late Pleistocene and early Holocene paleoenvironmental transition in this region of the Southeast (Moore 2015). In anticipation of their coring, archaeological investigations were initiated on the high ground immediately overlooking the south side of the pond. Archaic, Woodland, and Mississippian artifacts were found in shallow deposits (Moore 2015). The U.S.G.S. team graciously helped our team extract a core for our studies of the Pleistocene-Holocene boundary, specifically for studying the Younger Dryas Boundary and a possible Platinum anomaly, indicative of an extraterrestrial impact. In 2016, we obtained a second
larger core taken with the help of Chris Moore, geoscience colleagues from East Carolina University, and Sean Taylor from the South Carolina Department of Natural Resources (SCDNR) (Moore 2017). In 2017, extensive land excavations began further west on the south side of the lake on a slope that would facilitate human occupation and sandy sediment movement down slope. This revealed buried intact occupations of Late, Middle, and Early Archaic components. Also recovered, was a Dalton point made of orthoquartzite that revealed the presence of human blood residue (Figure 6). In 2018 and 2019, excavations continued searching for additional Dalton and Early Archaic evidence. As of May 2020, a total of 160 square-meters have been hand excavated in the adjacent shore area, directed by Chris Moore, revealing episodic occupation by Archaic through Mississippian groups with the Early Archaic notched points dominating the 12,000 years of prehistory (Figure 7). Sediment samples for Platinum analysis were collected searching for the 12,800 YDB horizon. The archaeological record from the land is an independent record of potential human responses to paleoecological conditions in the pond, particularly wet and dry conditions. The palynological studies of the climate team was published in 2018, revealing a 30,000 year record of climate and vegetation change (Krause et al.; 2018). Analysis of the pond sediments from our cores has revealed a strong Platinum signal at the 12,800 year boundary, as anticipated. This work was published in 2019 (Moore et al. 2019) in Nature Scientific Reports and represents one of the few such studies done in a lacustrine (lake) setting. White Pond is an extraordinary environmental and archaeological site that has great potential to help learn about ancient environments and climate, as well as prehistoric human responses. The owners of White Pond who have been so generous to let scientists study the pond and surrounding landscape must be acknowledged for their great stewardship of such an important place in the heritage of South Carolina.

Conclusions

At present, significant progress has been made by SEPAS and its various collaborators in the acquisition of private artifact collections, continued recording of Paleoindian fluted points, including now a data base for the state of Florida. For the Carolinas, syntheses of much of this data has been organized into complexes with the Clovis macrobands concept for the Uwharrie Mountains of North Carolina and the Allendale-Brier Creek Clovis complex of the lower Savannah River. Considerable progress has been made in identifying lithic raw materials for both regions and their geological sources, which makes such distinctions possible. With the continued recording of fluted points from the Carolinas south to Florida, eventually, artifact data will exist, which will allow geographic analyses of possible stylistic differences by latitude, potentially revealing significant demographic variation that might be expected for the Clovis populations interacting over such great distances. Current plans are to continue these studies at other places, likely to contain evidence of early Paleoamericans, such as the Mark Corbitt quarry site on the Georgia Withlacoochee River. Continued analysis and publication of the Topper site excavations are planned to provide a complete culture historical picture of groups that occupied that important site. Also needed are analyses of the other significant sites we have investigated, such as Big Pine Tree site and Charles site in Allendale County on what is now called the Archroma Corp. property, formerly known as Clariant. Toward this end, a symposium is being planned for the November 2021 SEAC conference in Durham, North Carolina, tentatively titled, The Topper Site and Beyond, where papers can be presented on Topper and these related sites.

As in the past, our ability to pursue these studies both field and lab, have relied upon private tax deductible donations to SEPAS. We are grateful for all of those contributors who have helped us sustain our work thus far, the results of which can be seen in the extensive publications that have come out in recent years. Such donations can be made to the Allendale Archaeology Fund or the Paleo Materials Lab Fund, begun by Tom Pertietta, at the USC Educational Foundation. Efforts have been made to search for a donor or foundation to endow SEPAS so that this work might go into the future. There are at least six such endowed academic Paleoamerican programs west of the Mississippi River but none in the East. The work of SEPAS, including the ground breaking research at Topper, would strongly indicate the unglaciated Southeast is a prime region of North America to continue the search for the earliest Americans.
References

Krause, Teresa R., James M. Russell, Rui Zhang, John W. Williams, and Stephen T. Jackson Figure 6: Dalton point excavated in situ at the White Pond site in 2017. (Photo by Christopher Moore, (Moore 2017-Figure 10)
2018 Late Quaternary Vegetation, Climate, and Fire History of the South Atlantic Coastal Plain Based on a 30,000yr Multi-Proxy Record from White Pond. South Carolina, USA. *Quaternary Research* (2018), 1-20. Cambridge University Press.

Moore, Christopher R.

Moore, Christopher R. and Tommy Charles

Moore, Christopher R., Mark J. Brooks, Albert C. Goodyear, Terry Ferguson et al.

Smallwood, Ashley M., Albert C. Goodyear, Thomas A. Jennings, and Douglas A. Sain

Tuck, James A.

Watts, W. A.

White, Andrew A.

Wilkinson, Joseph E.
