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ARTICLE OPEN

MaterialsAtlas.org: a materials informatics web app platform
for materials discovery and survey of state-of-the-art
Jianjun Hu 1✉, Stanislav Stefanov1, Yuqi Song1, Sadman Sadeed Omee 1, Steph-Yves Louis1, Edirisuriya M. D. Siriwardane 1,2,
Yong Zhao1 and Lai Wei1

The availability and easy access of large-scale experimental and computational materials data have enabled the emergence of
accelerated development of algorithms and models for materials property prediction, structure prediction, and generative design
of materials. However, the lack of user-friendly materials informatics web servers has severely constrained the wide adoption of
such tools in the daily practice of materials screening, tinkering, and design space exploration by materials scientists. Herein we first
survey current materials informatics web apps and then propose and develop MaterialsAtlas.org, a web-based materials informatics
toolbox for materials discovery, which includes a variety of routinely needed tools for exploratory materials discovery, including
material’s composition and structure validity check (e.g. charge neutrality, electronegativity balance, dynamic stability, Pauling
rules), materials property prediction (e.g. band gap, elastic moduli, hardness, and thermal conductivity), search for hypothetical
materials, and utility tools. These user-friendly tools can be freely accessed at http://www.materialsatlas.org. We argue that such
materials informatics apps should be widely developed by the community to speed up materials discovery processes.

npj Computational Materials            (2022) 8:65 ; https://doi.org/10.1038/s41524-022-00750-6

INTRODUCTION
Machine learning (ML) models and algorithms are increasingly
applied in materials science for a wide variety of tasks ranging
from materials characterization, property prediction, and to
structure/composition generation design as reviewed in1–11. These
data-driven algorithms have dramatically sped up the exploration
in the vast chemical design space and have helped to discover
many novel functional materials12. However, compared to the
mature bioinformatics field with thousands of web servers
(>9000)13,14, the ecosystem of materials informatics is still in the
embryo stage with <100 web servers, most of them being data
infrastructures15. This can also be seen in our survey in Table 1
which focuses on inorganic crystal materials. We also find that the
ecosystem of chemical informatics web apps is also in the
primitive stage as reviewed in16. In contrast, the bioinformatics
field even has a search engine named bio.tools which indexes and
tracks biological scientific web servers throughout their lifetime.
Here we argue that despite the increased sharing of data,

programs or source code in the materials informatics community,
the missing web apps for these tools have significantly impeded
the progress of our field as most experimental teams do not have
the expertise to implement, train and deploy these tools locally
and many of the proposed materials informatics algorithms are
under-used. Furthermore, compared to bioinformatics, materials
informatics web tools are much fewer in terms of quantity,
diversity, and quality. Developing and providing web servers can
make complex algorithms accessible to a broad research and user
community. In addition to providing user-friendly services to
materials researchers, a recent study has found that there exists a
positive association between the number of citations and the
probability of a web server being reachable14.
Currently, the most widely used web services in materials

include Materials Project(MP)17, Aflow-lib18, and OQMD19, which
are all mainly used as data sources. Even though these major

databases come with several related analysis tools, there are many
missing web apps that are strongly needed in exploratory
materials discovery research. This process can be generally divided
into four major stages each needing specific convenient web
apps: characterization, property prediction, synthesis, theory
discovery, and materials design20.
Starting from the composition exploration, one would need

tools and models that can check the charge neutrality and
electronegativity balance and estimate its formation energy.
Composition-based prediction of crystal symmetry or lattice
constants or even crystal structures is also highly desirable. When
structures can be predicted or obtained via element substitution,
tools such as structural relaxation, formation energy calculation, e-
above-hull energy calculation, Pauling rule check, phonon
calculation, and synthesizability are all useful to evaluate the
feasibility of the candidate materials. The second major category
of tools needed is property prediction web apps as provided by
several existing servers18,21. However, many of these property
prediction web apps do not support screening multiple inputs,
which limits their usage in high-throughput screening for new
materials. Nowadays, the modern deep generative materials
design models can easily generate millions of candidate
compositions22 and structures23. Also, many of these tools do
not support a convenient download of the prediction results. In
addition, it is desirable that databases of hypothetical new
materials can be made available for users to find novel functional
materials.
In this paper, we first survey current state-of-the-art (SOTA) web

services in the inorganic materials community and identify the
requirements of a sufficient materials web app and the limitations
of current web apps. We then introduce MaterialsAtlas.org, our
materials informatics web app platform for supporting the whole
life cycle of materials discovery. It includes multiple candidate
materials composition and structure validations/checks, materials
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property prediction modules, hypothetical materials databases,
and utility tools. Our web apps are developed with high-
throughput materials discovery processes in mind with a user-
friendly web interface and an easy download of results.

RESULTS
Survey of existing web apps for materials discovery
While there are many known AI or ML studies applied to the
materials discovery process10,24, many of them do not offer or
share their code, programs, web apps, or even datasets, which
significantly lower their potentials in materials research. Compared
to thousands of bioinformatics web apps, the number of materials

informatics web apps is much fewer and are developed in an ad
hoc way without considering the high-throughput screening
requirement from the materials discovery process. Table 1 shows a
list of web apps and tools that support the materials discovery
process.
Materials characterization is a key step in experimental analysis

which is especially true with the progress of high-throughput
materials characterization that generates huge amounts of data.
There are an increasing number of algorithmic studies on phase
mapping of X-ray diffraction data25,26, symmetry determination in
electron diffraction27, predicting crystallographic dimensionality
and space group from a limited number of thin-film XRD
patterns28, predicting accurate scale factor, lattice parameter
and crystallite size maps for all phases29, and tuning of parameters

Table 1. Survey of current web apps for materials discovery.

App name URL Institute App functions Comment

MaterialsAtlas www.materialsatlas.org UofSC Composition/structure validation, property
prediction, screening of materials, ML,
composition enumeration, and more

This work.

Easy to use.

Materials project17 materialsproject.org Lawrence Berkeley
National Lab

Crystal toolkit, structure predictor, phase
diagram, Pourbaix Diagram, reaction calculator,
interface reaction, nanoporous materials
analysis, and synthesis description search

Major public repository.

Good web apps.

Aflowlib18 aflowlib.org Duke Elastic, thermal, prototype, chull, aflow-ML for
superconductor Tc, free energy and entropy,
metal/insulator classification, band gap energy,
bulk/shear moduli, Debye temperature, and
heat capacities

Outdated descriptor
methods

OQMD19 oqmd.org/analysis Northwestern Univ. Phase diagram, structure visualizer, and ground
state analysis

Limited analysis web apps

JARVIS21 jarvis.nist.gov NIST Web ML tools for diverse property predictions
(regression/classifications)

Account needs approval.

CFID descriptors.

Crystal.AI31 crystals.ai UCSD Prediction models of formation energy,
bandgap, elastic constants, perovskite/garnet
stability, and coordination from X-ray
absorption spectroscopy

Characterization and
property prediction

Matgenie38 matgenie.
materialsvirtuallab.org

UCSD Materials analysis web app. Structure file format
conversion;symmetry analysis; structure
similarity comparison; XRD calculation; and
surface generation

Utility tools

Materials Cloud39 materialscloud.org/
work/tools

EPFL QE input generator, chemical shift, molecular
polarizability, phonon visualizer, synthesis
condiction finder, predicting oxidation states,
atomic environment finder, electron transport,
and simulation in cloud (AiiDA)

Mainly utility tools

Bilbao crystallographic
server111

www.cryst.ehu.es Univ. of Basque
Country

Show Wyckoff positions, symmetry, and
structure utility

Utility tools

Thermoelectric33 thermoelectrics.
citrination.com

Citrine Predict thermoelectric materials properties Commercial solution

NIMS34 mits.nims.go.jp/en/ Japan Nat. inst. of
Mat. Sci.

Various databases and Composite Design &
Property Prediction System

Rich databases & Data
Conversion Tools

SUNCAT41 catalysis-hub.org Stanford Univ. Database and tools for interface science and
catalysis design

Diagrams, ML models, and
diverse tools

Polymer design40 reccr.chem.rpi.edu/
polymerdesign

RPI ML for polymer design Materials design tool

Matlearn36 matlearn.org Univ.of Houston Predict Formation energy and create
composition diagrams using ML to guide
synthetic chemistry

Inorganic materials
design tool

USPEX42 uspex-team.org/en Skoltech Crystal structure prediction Binary program

CALYPSO43 calypso.cn/cdg Jilin Univ. China Crystal structure prediction Binary program

JAMIP112 www.jamip-code.com/ Jilin Univ. China Platform for feature engineering, data
preprocessing, ML model building, property
calculation, hpc computing management

Not web server.

Tool to run DFT jobs ML

J. Hu et al.
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in the Rietveld method30. However, most of these studies provide
user-friendly web services. In our survey, only USCD team provides
a web tool for coordination environment prediction from X-ray
absorption spectroscopy31.
The second major category of web tools is for materials

property prediction. This includes aflow-ML18, Javis-ML21, Crystal.
AI32, thermoelectric predictor33, NIMS tools34, SUNCAT catalysis
property predictor35, and matlearn36. These web apps cover a
variety of material’s properties. For example, JARVIS-ML from NIST
can predict formation energies, exfoliation energies, bandgaps,
magnetic moments, refractive index, dielectric, thermoelectric,
and maximum piezoelectric and infrared modes. However, many
of these web apps are developed in an ad hoc way; they usually
only accept one composition or structure at a time and cannot be
used for screening. They usually do not come up with a
performance measure to indicate the prediction confidence. More
importantly, many of the algorithms or descriptors are outdated.
For example, a recent benchmark study37 showed that the best
algorithms for formation energy and bandgap prediction are
based on Graph Neural Networks (GNN), which are all much better
than other structural descriptor-based methods as used in18 and21.
The third category of web apps is diverse utility tools for

structure and composition analysis including crystal toolkit, phase
diagram, and others from Materials projects17, prototype finder
from aflowlib18, phase diagram tool from OQMD19, analysis tools
from JARVIS21, Matgenie from USCD38, phonon visualizer from
MaterialsCloud39, and crystal symmetry tool from Bilbao crystal-
lographic server.
The fourth category of web tools is the materials design tools

including polymer designer40, Matlearn composition explorer36,
SUNCAT catalysis designer41, and heterostructure designer in
JARVIS21.

There are several offline tools that are very useful for materials
discovery including the crystal structure prediction softwares such
as USPEX42 and CALYPSO43. There are also platform tools such as
JAMIP which includes property ML models and first-principle
calculation job managements.

MaterialsAtlas: platform of materials discovery tools
The MaterialsAtlas platform includes four types of web apps for
supporting exploratory materials discovery including: composition
and structure check and validation, materials property prediction,
screening of hypothetical materials, and utility tools.

TOOLS FOR COMPOSITION AND STRUCTURE VALIDATION
Chemical validity check
Given a predicted or generated material composition or structure,
there are several steps to verify their physical feasibility. The first
quick check of the chemical validity is the charge neutrality and
electronegativity balance check (Fig. 1). These two check
algorithms are based on the SMACT package44 with improve-
ments to speed up the enumeration and search process. For both
checks, only composition information is needed. Another chemical
validation check is the Pauling rules check. Here we only check the
input structure against the first three Pauling rules45.

Formation energy and e-above-hull energy check
Another structure validation step is to check the thermodynamical
stability in terms of formation energy calculation. This step is
usually done by DFT relaxation and then the calculation of their
total energy and formation energy. However, this computation is
expensive for a large amount of structures. Here, we can first

Fig. 1 Tools for composition and structure validation and check.
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optimize input materials using Bayesian optimization with
symmetry relaxation as introduced by Zuo et al.46. Here, we
implemented two ML models for formation energy prediction, one
is based on the Roost algorithm47 with only the composition as
input. This model has demonstrated exceptionally good perfor-
mance for compound stability prediction among composition-
only ML models48. The other structure-based energy prediction
model is based on our deep global attention graph neural
networks (DeeperGATGNN)49 due to its exceptional performance
based on our systematic benchmark studies. The e-above-hull
energy prediction module has been implemented based on
Pymatgen APIs: given an input materials composition and its total
energy, it will report the e-above-hull energy.

Prediction of crystal symmetry (space group and crystal
systems) and lattice parameters
Given a materials composition, predicting its structure is very
valuable as its many macro-properties such as ion conductivity,
thermal conductivity, band gap, and formation energy can be
calculated using first-principle calculations. However, currently
crystal structure prediction is an unsolved problem. In this case,
predicting the crystal symmetry such as crystal systems or space
groups can be very useful to estimate some of its properties. Here
we implement neural network models for space group and crystal
system prediction50 which have achieved SOTA performance.
Another important structure information of crystals is the unit cell
parameters, whose precise estimation can greatly help the crystal
structure prediction step. Here we implemented a deep neural
network model for lattice parameter estimation, which has
demonstrated exceptionally good performance for cubic systems
and reasonably good results for other crystal systems51.

Template-based crystal structure prediction
We have developed and implemented a template-based crystal
structure prediction algorithm TCSP for fast structure determina-
tion52. By exploiting the vast known crystal structures, our
algorithm has demonstrated good performance in CSP as
benchmarked on the Materials Project dataset. The only input to
this app is a material formula with an optional space group
parameter, it will then generate multiple hypothetical crystal
structures along with the template information used.

MATERIALS PROPERTY PREDICTION WITH COMPOSITION OR
STRUCTURES
Depending on the types of features used to train the algorithm,
we can categorize the ML properties predictive models as either
composition-based or structure-based. Composition-based pre-
diction algorithms have been demonstrated to be reliable,
accurate, and even preferred at times53. The composition-based
category includes models that primarily use chemical
composition-induced descriptors such as elemental representa-
tion or chemical composition features54,55. Algorithms used in
these composition-based ML models range from basic ML
techniques such as decision trees56 to more complex deep
learning algorithms such as Convolutional Neural Networks57 or
Graph Neural Networks47.
Composition-based ML models for property prediction come

with both advantages and disadvantages. Because these models
only use chemical composition descriptors as inputs, their
predictive performance heavily relies on the quality of these
features and the dataset. Therefore, the application of these
models requires careful curative steps53. As the composition ML
models omit the structural information of the materials, these
models generally offer results with inferior predictive performance
compared to structure-based ML models, especially when the size
of the dataset is sufficiently large37,58. However, thanks to this

omission of structural information, composition-based models are
more computationally efficient than structure-based ones and can
be used to screen much larger chemical space as material
compositions are much easier to acquire than crystal structure
data47. This omission can be very beneficial in some scenarios
since structural-feature extraction is generally very complex and
need to be symmetrically invariant53. With just composition
descriptors, composition-based ML models can adapt any simple
ML algorithms such as decision trees and support vector machines
and still obtain accurate results53. Composition-based models can
also adapt more robust ML algorithms from Deep Learning as
shown in several deep learning models for property prediction
including ElemNet (17 fully-connected layers)58, Roost (GNN)47,
and Periodic-table based Convolutional Neural Network59. We
note that composition-based predictors have one inherent
limitation due to the polymorphic structures that may correspond
to a given composition, which may bring bias to these models.
Another category of ML models for materials property

prediction is structure-based ML models. As almost all materials
properties are heavily dependent on their structures, the
structure-based ML models for materials property prediction
usually achieve greater accuracy than composition-based ML
models60,61. Structure-based models use structure-based descrip-
tors or features learned from raw structure information60,62,63.
Structure Graph, Voxel Grids64, Coulomb Matrix65, and Voronoi
Tessellation12 are some of the most popular techniques to
represent materials based on knowledge of their structure.
Although models of this category accomplish better prediction
results, they can only predict properties of materials whose
structures are already known from repositories like Inorganic
Crystal Structure Database (≈165,000 materials)66 or Materials
Project Database (≈125,000 materials)17 (whereas the cardinality
of chemical materials is infinite) and hypothetical materials
generated using generative models22,67.
Recent studies have shown that when structural descriptors are

learned by deep neural network models, they can predict
materials properties with much better accuracy than methods
that use descriptors based on physicochemical information37,68.
For doing this, GNN models have been intensively used as they
have shown great success in this task60,63,69. GNN models have
been found to achieve SOTA performance for various materials
property prediction tasks. CGCNN60, MEGNet63, GATGNN68,
SchNet69, and MPNN70 are some of the well-known GNN models
for materials property prediction that use graph representation
learning. One of the problems of these existing GNN models is
that they cannot go deep, i.e., their performance decreases with
increasing number of graph convolution layers as the representa-
tion of all the node vectors becomes indistinguishable. This
problem is known as the over-smoothing problem71–74, and
almost all the GNN models are victims of it. But recently, we
designed a deeper and much improved version of the GATGNN
model (DeeperGATGNN49) using Differentiable Group Normal-
ization (DGN)75 and skip-connections76,77 which allows our
DeeperGATGNN to use a large number of graph convolution
layers to predict materials property with better accuracy than all
the above mentioned GNN models for the five datasets used in a
recent large-scale benchmark study37 and the Band Gap dataset
from Materials Project Database. In our current system, the
structure-based formation energy predictor is based on CGCNN
and the structure-based predictors for band gap, elastic moduli,
hardness, thermal conductivity are based on our DeeperGATGNN
trained with samples from Materials Project. The details of the
datasets used to train our DeeperGATGNN models are presented
in Table 2.
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MATERIALS PROPERTY PREDICTION TOOLS
Predicting 2D materials from composition
We train a Random Forest classification model to predict whether
a given composition forms a 2D or layered structure78. As for the
training data, 6351 2D materials (positive samples) are collected
from the 2DMatPedia dataset79; 15,959 negative samples are
gathered from The Materials Project by removing 2D materials.
After training, our model achieves a classification accuracy of
88.98%. For a given input formula, our model outputs a predicted
label (True or False) with corresponding probability in the
downloaded results file. Inputs of multiple formulas are also
supported either as a CSV file or by typing them into the input box
separated by a comma or space. Clicking the ’Check now’ button
will show the found 2D materials; clicking the ’Download results’
link, the detailed results will be downloaded.

Predicting noncentrosymmetric materials from composition
A Random Forest classification model is trained to predict whether
a material is noncentrosymmetric80. For training this model, a total
of 82,506 samples are collected from the Materials Project by
removing those compositions belonging to multiple space groups
with conflicting centrosymmetric tendencies; here, 60,687 of them
are positive samples and 21,919 are negative samples. The
predicted accuracy reaches 84.8%. The input format and output
form are the same as the above method.

Predicting band gap from composition or structure
The band gap prediction models are trained with the dataset
downloaded from the Materials Project. There are a total of
36,837 samples downloaded. The composition ML model is based
on the CrabNet81, which uses a transformer self-attention
mechanism82 in the compositionally restricted attention-based
network for materials property prediction. Evaluations of over 28
datasets have shown good performance compared to other
models. The structure-based band gap predictor is based on the
dataset downloaded from the Materials Project and trained using
the DeeperGATGNN graph attention network model49. For a given
input formula, this model outputs the predicted band gap values.

Predicting elastic moduli from composition or structure
We trained two types of prediction models for elastic moduli
prediction: composition-based prediction models and structure-
based ones. The former type are Roost neural network models47

trained with only materials compositions. Our structure-based
elastic Moduli prediction models are based on our recent work of
DeeperGATGNN algorithm49, which is a global attention-based
scalable deep graph neural network model with the state-of-the-
art performance for structure-based materials property prediction.
Both types of models are trained using the known materials with

elastic information in the MaterialsProject database. For each
category, we train four models to predict bulk modulus, shear
modulus, Young’s modulus, and poisson ratio based on the
composition or structure information.

Predicting hardness from composition or structure
The most recent study uses deep learning for hardness prediction
which has shown good performance83. Another study84 uses 1062
experimentally measured load-dependent Vickers hardness data
extracted from the literature to train the XGBoost ML algorithm
using composition-only descriptors with boosting with excellent
accuracy (R2= 0.97). In a related study85, XGBoost has been
applied to build a temperature-dependent Vickers hardness
prediction model with R2= 0.91 performance using only 593
labeled samples. Here we trained a Roost ML model for
composition-based hardness prediction and trained a graph
neural network model for structure-based hardness prediction
using our DeeperGATGNN algorithm49.

Predicting thermal conductivity from composition or structure
The most recent study on thermal conductivity prediction is
from86 in which GNNs (CGCNN) and random forest approaches are
combined to build the prediction model. The prediction model is
trained with 2668 ordered and stoichiometric inorganic structures
from the ICSD. Here we build a graph neural network model
Roost47 model for a composition-based prediction model and a
CGCNN graph neural network model60 for structure-based
predictions. The dataset is downloaded from87, which contains
thermal conductivity values for 2701 crystal structures contained
in the ICSD database. Due to the limited data size, the prediction
performance is only for experimental purposes.

Predicting superconductor transition temperature from
composition
We also train a random forest model and a CrabNet model to
predict the superconductor transition temperature. The dataset is
collected from the superCon database88.
In our current implementation of materials predictors, all

models only generate a single-point prediction without uncer-
tainty estimation as shown in almost all materials prediction
algorithms37. However, in practice, it is desirable to obtain robust
predictions with accurate uncertainty estimation89, which can be
achieved via methods such as ensemble90, Bayesian91, or
evidential deep learning regression models92. While such methods
have been rarely used in materials property predictions, we expect
their wider adoption in the future and will be added to our models
in future upgrades.

GENERATIVE DESIGN AND SCREENING FOR MATERIALS
DISCOVERY
Deep generative design of materials compositions/formulas
Generative models, such as variational autoencoder (VAE)93 and
Wasserstein generative adversarial network(WGAN)94, play an
important part in computer vision, audio processing, natural
language processing, and molecular science. However, limited
works have focused on using generative models to generate
virtual inorganic materials (e.g., compositions and crystal struc-
tures). There are mainly two directions that researchers use
generative models in material science. The first is we use
generative models to generate compositions22,95. Dan et al.
propose22 to use WGAN models to generate hypothetical
materials compositions that are trained using the ICSD dataset.
Their models not only can rediscover most compositions from
existing materials databases but also generate many novel

Table 2. Datasets used for training structure-based DeeperGATGNN
models.

Dataset Source # of elements # of samples

Bulk materials
band gap

MaterialsProject 87 36,837

Hardness MaterialsProject 85 12,854

Bulk modulus MaterialsProject 89 13,176

Shear modulus MaterialsProject 89 13,176

Young’s modulus MaterialsProject 85 12,854

Thermal conductivity MaterialsProject 38 2701

Poisson ratio MaterialsProject 85 12,858
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compositions that are chemically valid. Here we provide the
screening tools for such hypothetical materials.

Deep generative design of cubic crystal materials
Compared to generating virtual materials compositions, generat-
ing virtual crystal structures is more helpful for practitioners to find
novel materials since many materials’ properties can only be
calculated with structural information. Several works96–98 based
on VAE and23,67,99,100 based on GAN have been proposed to
generate material structures. CubicGAN proposed by Zhao et al.23

is the first method that can achieve the large-scale generative
design of novel cubic materials. The authors not only can
rediscover most of the cubic materials in The Materials Project
and ICSD but also can discover new prototypes with stable
materials. In their work23, they found 31 new prototypes for space
groups of Fm3m, F43m, and Pm3m, of which 4 prototypes contain
stable materials. A total of 506 cubic materials have been verified
stable by phonon dispersion calculation. Here in our web app
platform, we provide the search function for those materials
(Table 3 and Fig. 2).

Tools for hypothetical materials screening
One of the major goals for the materials informatics community is
to expand the existing materials repositories in terms of materials
compositions, structures, and properties, which can help accel-
erate materials with novel functions. Using our recently developed
materials composition generative models (MATGAN)22, we have
generated a large number of hypothetical material compositions
which are deposited to the database for screening, hence the
Hypothetical composition database (Fig. 3). For convenience, we
also selected those lithium compound candidates and built the
Hypothetical lithium materials database. Using our crystal
structure generator, the CubicGAN23, we have created a cubic
materials database for screening. Hypothetical materials composi-
tions can also be combined with element substitution based
structure prediction to generate new materials database. Finally,
we trained a 2D materials classifier which is used to screen the
whole hypothetical compositions generated by MATGAN, which
are then deposited as the hypothetical 2d materials database.

UTILITY TOOLS
Several utility tools (Fig. 4) to assist the materials discovery process
have been developed and deployed on our platform. This includes

chemical composition enumeration tool, feature generation and
click-and-run machine learning models for users’ datasets,
composition and structure search, and supercell generator and
structure file format converter.

Composition enumerator
Given several elements, what are the possible chemically valid
formulas that can be synthesized and stable? Based on the SMACT
materials informatics package44,101, we develop this composition
enumerator to generate target materials compositions given a set
of elements or an existing formula with one or more dopant
elements. Due to the oxidation preferences, the number of
possibilities is limited and this tool can help the investigator to
narrow down the search space. A case study on how to use this
module for discovering new materials is reported in our work52.
With the hypothetical compositions, one can then apply crystal
structure prediction to get their crystal structure and then predict
their properties using composition-based or structure-based
predictors.

Feature generation
The very first step for developing materials property prediction
models is to generate and select a set of good descriptors. Here
we implemented a pipeline that allows users to choose feature
combinations from diverse feature types such as composition
features, structure features, electronic features, etc. This will
greatly simplify the steps for materials scientists without a strong
materials informatics background to develop ML models.

Composition-based ML models for user-specified property
prediction
We have built an ML pipeline that allows the user to specify the
datasets and target property values and the algorithm, the web
tool, will then build composition-based ML models and report the
prediction performance. The test input will be a group of materials
formulas.

Structure-based ML models for user-specified property
prediction
We have built a pipeline that allows the user to train a structure-
based ML model for their custom-property prediction at http://
materialsatlas.org/mlstructure which can greatly help the materials

Table 3. Summary of materials property prediction tools.

Property prediction Model Training dataset Performance Output

2D materials Random Forest 2DMatPedia Material Project 88.98% (Acc) Label

Probability

Noncentro symmetry Random Forest Material Project 84.8% (Acc) Label

Probability

Band gap Roost DeeperGATGNN Material Project 0.465 (MAE) Band gap

(eV)

Elastic moduli CrabNet DeeperGATGNN 12858 samples from MP 15.7 (MAE, Bulk) Bulk mod (GPa)

18 (MAE, Shear) Shear mod (GPa)

76.8 (MAE, Young’s) Young’s mod (psi)

8.7 (MAE, Poisson) Poisson ratio

Hardness Roost DeeperGATGNN 12854 samples from MP 2.42 (MAE) Hardness (N/mm2)

Thermal conductivity CrabNet DeeperGATGNN 2688 samples from ICSD 5.03 (MAE) Thermal conductivity (W/(mK))

Ionic conductivity under development N/A N/A Ionic conductivity

Superconductivity Random Forest CrabNet 25378 samples from supercon 4.76 (MAE) Transition temperature (K)
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scientists to try different representations and ML algorithms to get
the best performance.

Finding similar compositions and structures
In many of the tinkering and exploratory studies of the materials
design space, it is very helpful to find similar materials and explore
their property changes. We use the Earth Mover’s Distance102 to
search top N most similar formulas from different databases. For
structure similarity, we use the computed XRD features103 to
search similar structures. This search function will help with that.

For the convenience of the community, we have included other
utility tools such as structure file conversion and supercell
generation apps.

DISCUSSION
In addition to candidate materials composition and structure
validation, materials property prediction, and screening of
materials, several additional tools and services are highly desirable
for exploratory materials discovery and will be added to our
platform to lower the barrier for materials scientists in data-driven
exploratory materials discovery.

Fig. 3 Screening hypothetical materials generated by machine learning or deep learning models.

Fig. 2 Materials property prediction tools.
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Phonon prediction, synthesizablity prediction, additional
crystal structure prediction algorithms
One important validation step for newly proposed hypothetical
materials is to calculate its mechanical dynamic stability. This can
be done by calculating the phonon dispersion spectrum and
checking whether the material is dynamically stable at 0K
temperature when there are no imaginary frequencies. The
phonon dispersion relations for hypothetical materials are
important to study the k-space dependence of frequencies of
normal modes. However, first principle phonon dispersion
calculation is computationally expensive. Based on recent work
on phonon density of states prediction104 and phonon vibration
frequency prediction105, we are developing a graph neural
network model for phonon dispersion prediction aiming to use
for checking the dynamic stability of structures. Another module
under development is the material synthesizability prediction
model, which has been shown to be able to achieve good
performance for inorganic materials using semi-supervised ML
models106,107. In addition, we find that crystal structure prediction
plays an important role in exploratory materials discovery and
current DFT-based global optimization-based algorithms are
applicable only to small systems due to the inherent challenges
in crystal structure prediction. In addition to the template-based
crystal structure prediction service52, we are planning to develop
deep learning-based crystal structure algorithms by exploiting the
databases of known crystal structures.

Predicting ion conductivity from composition or structure
Due to the extremely limited datasets, prediction of ion
conductivity has been very challenging with moderate success
by using a set of hand-crafted structural descriptors108,109. This

module is under development and will be added in future to our
platform.

Extensible servers and API services
To expand the coverage of functionalities, our MaterialsAtlas web
server is open to include third-party web apps for materials
research. We welcome any investigator to collaborate with us and
deploy their applications on our platform. Only executable code or
python code in a Linux environment is needed. Another useful
feature is the REST API services so that other web services can call
our APIs to do some query or calculation, which has shown great
success in Materials Project’s Pymatgen APIs.

Visualization and interactive exploration of design space
Interactive exploration in the materials design space has big
potential to help researchers. We will add modules that support
the visualization of materials property distribution among
materials in the structural or composition space as shown in
Fig. 5. In this figure, we map the structures into a 2D space using
t-sne110 and XRD representation of the structures. We then
annotate those red dots as the samples with annotated thermal
conductivity with the dot size representing the magnitude of the
thermal conductivity. Such interactive maps will greatly facilitate
the search for high performance materials.
Despite the rapid progress of ML for materials research, a lot of

studies have only led to papers without sharing their software
while some of them shared their source code but without creating
a user-friendly web service or web apps for them. Based on the
experience of the bioinformatics field, it is critical for materials
informatics researchers to develop and share easy-to-use web
apps that wrap their developed algorithms for maximum adoption

Fig. 4 Utility tool web apps.
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and usage of such data-driven tools in real-life materials discovery
and analysis. We have surveyed the status quo of materials
informatics web apps and find that they drastically lag behind the
bioinformatics community. Here we report our MaterialsAtlas.org
web platform that implements and integrates a variety of user-
friendly tools for aiding the materials design space exploration,
generation of candidates, and validating the candidates. These
tools and those planned together will greatly decrease the barrier
for materials researchers without deep computing or ML back-
grounds to effectively exploit such tools.

METHODS
System architecture and web app
MaterialsAtlas uses Django’s built-in SQLite3 database for storing
hypothetical materials found by our generative materials design mod-
els22,23,78. Moreover, a RESTful API framework is used to send data from the

Django back-end to the Vue.js front-end and vice versa. For example, a
user will input either a chemical formula or element in one of the apps
which will then be interpreted through the Django REST framework. The
data is then queued as a job using Redis and subsequently, a Python
worker is used to input the data into the corresponding app function. Once
the worker and job have finished, the result is returned to the front-end to
be viewed by the user. MaterialsAtlas also uses Ajax for some of the
applications to communicate to our API. On a separate note, Nginx is used
as the web application’s HTTP server. Additionally, MaterialsAtlas utilizes
Nginx to proxy to the back-end and front-end server. For easier
deployment, Docker is used to assemble each web-service as containers
allowing the web application to work as a whole.

Backend models
Python is used as MaterialsAtlas’ primary back-end language to compute
each application result and write to the Django database.

Fig. 5 Interactive exploration of thermal conductivity. We map the materials by projecting their XRD spectra to 2D space. Each red point
represents a material with known thermal conductivity with the size of dots representing their thermal conductivity values. The green and
blue dots represent the materials with unknown thermal conductivity.

J. Hu et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)    65 



Job submission
When integrating a web application with any ML model, latency is a large
concern. Using Redis’ job queue and fast in-memory data storage
functionality allows a web application of this nature to run smoothly.

DATA AVAILABILITY
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available from the corresponding author upon reasonable request.

CODE AVAILABILITY
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