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Abstract. Foundation models have emerged as powerful tools, exhibiting extraor-
dinary performance across various tasks, such as language processing, visual recog-
nition, code generation, and human-centered engagement. However, recent studies
have highlighted their limitations when grounded, abstract, and generalized reason-
ing capabilities are required. Complex tasks often involve multiple hierarchical rea-
soning steps, which are typical features of human thinking processes. In fact, in this
chapter we claim that cognitively-inspired computational models, such as the so-
called Common Model of Cognition, are key to enable complex reasoning within
foundation model-based artificial intelligence (AI) systems. We investigate neu-
rosymbolic approaches for mapping AI system components to those of the Com-
mon Model of Cognition, either fully or partially. Specifically, two pathways are
explored: (i) Given a task and its solution, we explore the effect of fine-tuning foun-
dation models on the output traces obtained through a cognitive architecture such
as ACT-R. The hypothesis is that, after fine-tuning, the foundation model will more
closely emulate the cognitive reasoning processes necessary to solve the specific
task. (ii) In the second approach, given a task, we explore mapping the solution
requirements to various components of the common model of cognition and invoke
a combination of foundation model-based pattern recognition, external knowledge
augmentation and control flow planning to facilitate cognitive reasoning for the
task. The chapter covers the background of foundation models and the common
model of cognition, a survey of the existing landscape in integrating foundation
models and cognitive architectures, and a discussion of insights from preliminary
implementations of the two neurosymbolic pathways across real-world and syn-
thetic tasks.
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1. An Introduction to Foundation Models

Foundation models are large-scale machine learning models, typically based on deep
learning architectures, that are trained on vast amounts of data and designed to be adapt-
able to a wide range of downstream tasks. These models are termed “foundation mod-
els” because they serve as a basis from which more specialized models can be derived or
fine-tuned for specific applications [1].

Perception Key features of foundation models include (i) Scale: They are often ex-
tremely large, with billions or even trillions of parameters, enabling them to capture com-
plex patterns and knowledge from the training data. (ii) Pre-training and Fine-tuning:
Foundation models are usually pre-trained on a large and diverse dataset in a self-
supervised or unsupervised manner. After pre-training, they can be fine-tuned on smaller,
domain-specific datasets to perform particular tasks, such as natural language under-
standing, image recognition, etc. (iii) Versatility: Due to their broad training, foundation
models can be adapted to perform a wide range of tasks, often with little modification.
For example, a foundation model trained on general text data might be fine-tuned for
tasks like sentiment analysis, translation, or question answering [2]. Foundation mod-
els span multiple modalities, for example, GPT (Generative Pre-trained Transformer)
text models like GPT-3 and vision models like CLIP (Contrastive Language-Image Pre-
training) [3]. Foundation Models represent a significant and disruptive advancement in
AI, providing a great starting point for a wide range of AI applications such as natural
language and vision processing tasks. We refer to such tasks as perception tasks [4].

Reasoning Despite their capabilities, foundation models can struggle with tasks in-
volving complex reasoning, often requiring the ability to “understand” abstract concepts,
draw connections between disparate pieces of information, and engage in multi-step, hi-
erarchical “thinking” or “cognition”, which we refer to as cognitive reasoning. Recent
work has exposed the lack of structured and logical reasoning capabilities in founda-
tion models [5,6]. For example, solving a complex mathematical problem often requires
multiple reasoning steps, each building on the previous one. Foundation models have
been shown to struggle with basic arithmetic and simple algebraic operations [7]. Re-
cent progress towards such reasoning has been demonstrated by augmenting foundation
models with external procedures such as policy search to enable multi-step problems, es-
pecially those involving abstract concepts like proofs or applying theorems (e.g., Deep-
mind’s AlphaGeometry and AlphaProof) [8].

Fundamentally, the limitations of foundation models lie in their inherent design.
These systems are statistical learners, optimized for pattern recognition rather than logi-
cal deduction or abstract thought [9]. While they can mimic certain aspects of reasoning
through pattern-based learning, they often lack the deeper, structured understanding re-
quired for cognitive reasoning. Figure 1 illustrates a scenario where the GPT-3.5 model
engages in problematic reasoning.

Grounding and Verifiability As mentioned, foundation models are statistical learners
that rely on patterns in the data they are trained on. However, they don’t inherently in-
clude any mechanism to verify whether those patterns are grounded in real-world facts or
reflect human-like commonsense and reasoning. As a result, they can produce logically
flawed or nonsensical outputs [11]. This behavior manifests in many concerning ways
ranging from seemingly innocuous adverse outcomes such as hallucinations – generat-
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Scenario: If there is a ball under a table, and you have a 
hockey stick, a jar of peanut butter, and a yarn of thread

How to get the ball

GPT 3.5 Output: 
Apply peanut butter to 
the edge of the string, 
dangle the string under 
the table until the ball 
sticks to the string. 
Use the hockey stick 
for assistance if this is 
proving too difficult

Figure 1. An example of problematic cognitive reasoning by GPT-3.5. The correct reasoning would result
in simply poking the ball from under the table using the hockey stick, however, GPT-3.5 insists on using all
three objects in a strange way to retrieve the ball from under the table (Example inspired-ny from Joshua B.
Tenenbaum’s AAAI 2023 Keynote Address)[10].

ing information that appears coherent and plausible but is entirely fabricated or incorrect,
to more harmful outcomes such as regurgitating harmful biases – generating biased or
discriminatory content, reflecting stereotypes and prejudices present in the training data
[12]. For instance, they might associate certain professions with a particular gender or
make assumptions based on race [13]. Fundamentally, foundation models generate con-
tent based on probabilities derived from training data, which can result in the confident
assertion of falsehoods.

2. An Introduction to The Common Model of Cognition

The Common Model of Cognition (CMC) is a theoretical framework that presents a model
of human cognition codified as a computational architecture [14]. The CMC is a brain-
inspired framework validated by large-scale neuroscience data [15]: it identifies core
components and processes fundamental to human cognition, including memory, percep-
tion, motor actions, and decision-making. The model assumes a cyclical process where
these components interact to produce intelligent behavior.

Key components of the CMC:

1. Perception: The process of acquiring and transforming raw inputs from the en-
vironment into a representation useful for solving a given task.

2. Working Memory: A temporary storage system where task-relevant information
is actively held and manipulated.

3. Long-term Memory: A more permanent storage system where factual syntactic
and semantic knowledge is maintained.

https://scholar.google.com/citations?user=rRJ9wTJMUB8C&hl=en&oi=ao
https://scholar.google.com/citations?user=rRJ9wTJMUB8C&hl=en&oi=ao
https://aaai-23.aaai.org/invited-speakers/
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4. Procedural Memory: Stores the necessary skills and procedures, formatted as
rules (e.g., if-then rules) that can be applied for solving a given task.

5. Motor or Action: Executes solutions to the given task by applying the relevant
rules from the procedural memory to the contents of the working memory.

Long Term 
Memory (LTM)

Working Memory 
(WM)

Procedural Memory 
(PM)

Perception (P) Action (A)

Factual Knowledge about 
Syntax and Semantics

Situational or Event-based 
Knowledge, typically 

formatted as rules

Intermediate and Temporary 
Information drawn from Long 

Term and Procedural 
Memories

Pattern Recognition and 
Feature Extraction Modules

Downstream Actions e.g., 
Speech Acts, Robotic 

Controls, Metadata Tagging, 
etc.

Task: POS Tagging

The goal is to assign parts of speech (e.g., noun, verb, 
adjective) to each word in the sentence “The quick brown 
fox jumps over the lazy dog”.

Applying the Common Model of Cognition:

1. Perception: The sentence is processed to result in 
the words ["The", "quick", "brown", "fox", "jumps", 
"over", "the", "lazy", "dog"].

2. Long-term Memory: Facts about the words, e.g., 
"The" is often used as a determiner (DET), "Quick" 
is commonly an adjective (ADJ), and so on .. 

3. Procedural Memory: Situational knowledge 
formatted as rules used for solving the task, e.g., if 
a determiner is encountered, expect a noun or an 
adjective followed by a noun, formatted as:  if 
(DET), then (NOUN) or (ADJ) | (NOUN)

4. Working Memory: Intermediate information, e.g., 
when process the word “The”, contents contain the 
fact that “The” is a determiner (DET), and the rule 
if (DET), then (NOUN) or (ADJ) | (NOUN) is 
applicable in this situation.

5. Motor System: Applying rules based on the 
working memory and providing tags as the final 
result. For example, the system might produce the 
output: "The/DET quick/ADJ brown/ADJ fox/NOUN 
jumps/VERB over/ADP the/DET lazy/ADJ 
dog/NOUN."

Figure 2. The Common Model of Cognition with an Illustration of Applying it to Solve Part-of-Speech Tag-
ging on the Example Sentence “The quick brown fox jumps over the lazy dog”.

The CMC provides a cognitively-grounded structured approach to problem-solving by
breaking down the reasoning process into perceiving input, storing and manipulating
information in working memory, reasoning based on available knowledge applied to the
contents of the working memory, and manifesting responses by means of motor actions
or speech acts. CMC-based reasoning processes aim to mirror how humans think about
and understand the physical and social worlds, making it an attractive framework for
building cognitively-inspired artificial intelligent systems. Figure 8 illustrates the CMC
and how it maps to the human brain. The figure also provides an example of how the
CMC is applied to solve a part-of-speech tagging task.

3. The Current Landscape of Methods for Integrating Foundation Models and
Cognitively-Inspired Systems in AI Systems

The importance of integrating cognitively-inspired mechanisms into large scale machine
learning models has been recently acknowledged by one of the key figures in deep learn-
ing, Yann LeCun: in a position paper published in 2022 [16], he described a biologically-
inspired cognitive architecture, where a so-called configurator orchestrates information
provided by different modules, such as the perception module and the world model mod-
ule, which replicate the functions emerging from prefrontal-cortical processes. Further-
more, a motivation model – designed to mimic the role of the amygdala in producing
basic emotional states like pain and pleasure – is used to compute intrinsic costs asso-
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ciated with current and future actions, a mechanism that is instrumental to inform pre-
dictive capabilities. In line with the current trend of investigating computational mod-
els of cognition in the context of large-scale neural networks, a recent blog [17] pro-
vides an overview of how large language models (LLMs) could be used to control au-
tonomous agents. In general, the mutual benefits of integrating foundation models
and cognitively-inspired systems are clear: on one hand, the former can provide the
latter with the necessary scaffolding to solve tasks at scale, a well-known limitation
of cognitive systems, which are heavily dependent on manual design and program-
ming; on the other hand, the latter - especially through the CMC framework - can
endow the former with a human-inspired computational framework for handling
tasks requiring cognitive reasoning. Thus, it follows that a synergistic integration
between the two approaches is key to support robust, highly flexible (or generalist)
and scalable task reasoning within AI systems.

Considerable effort has been devoted to bridging the processes typically associated
with neural network-based representations, such as activations and vectors. Newell in-
troduced a framework that divides a computational system into “bands” and “system-
levels,” corresponding to neural representations and traditional cognitive representa-
tions, such as chunks, symbols, high-level algorithmic descriptions, and heuristics [18].
Chunks, in this context, denote symbolic units of information communicated within a
cognitive architecture, typically using limited-capacity buffers [19]. Newell’s distinc-
tion is based on the premise that neural representations are learned from data through
prediction-focused objectives, thus representing stochastic information. In contrast, cog-
nitive representations are typically declared as production rules (which can be likened
to if-else rules) and propositional statements (chunks), representing deterministic infor-
mation. The fundamental difference between these representations—stochastic versus
declarative—presents a significant challenge in integrating neural network-based and
cognitive reasoning-based approaches [20].

Sumers et al. adopt a contemporary perspective based on LLMs, utilizing cognitive
architecture-inspired task pipelines with language agents. This approach involves mul-
tiple language models, referred to as language agents, executing tasks through opera-
tions guided by language model-driven control logic (e.g., vector similarity-based exter-
nal knowledge retrieval, function calling, or prompt-chaining) [21]. However, since con-
temporary LLMs fundamentally operate through predictive mechanisms, this approach
assumes implicitly that all cognition is achieved through an auto-regressive predictive
process. It has been demonstrated categorically that cognitive reasoning cannot be at-
tained solely through predictive mechanisms [22]. Kelly and Reitter explore an integrated
approach to bridging cognitive and neural representations using holographic declarative
memories, wherein the declarative memory (long-term memory) module of the CMC

is replaced with a distributional semantics model, such as an autoregressive language
model. They argue that tokenization, encoding, and decoding operations provide effec-
tive translations between cognitive declarative information and neural stochastic infor-
mation [23].

While we recognize the promise of the approaches discussed so far, as evidenced by
experimental data, we propose that an abstraction layer should serve as an intermediate
representation between neural and cognitive representations, rather than relying on direct
translation between the two [24]. Recent work supports this notion, showing the emer-
gence of “meta-optimizers” within LLMs and analyzing how these models operate when
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provided with instructions [25]. Simply put, a LLM executes instructions in a manner
akin to executing learned “metacognitive” rules, which follow a globally-contextualized
meta-optimization step, as opposed to a locally-contextualized optimization step con-
veyed by gradients. More precisely, this type of instruction-following procedure oper-
ates through an intermediate abstraction layer that is distinct from predictions based on
gradient information in neural representation spaces and from cognitive reasoning based
on the symbolic information contained in cognitive representations. For example, the
part-of-speech tagging task illustrated in Figure 8 provides an example of task-specific
metacognitive rules-of-thumb.

Hypothesis Statement

In this chapter, we hypothesize that cognitive reasoning can be achieved using
mechanisms similar to executing metacognitive rules-of-thumb, similar to in-
struction prompts in modern LLMs. This approach would allow us to leverage
foundation models within the CMC framework to effectively bridge neural and
cognitive representations, thereby enabling cognitive reasoning in AI systems.

In the following sections, we refine these ideas and propose a neurosymbolic frame-
work for integrating foundation models with the CMC. Specifically, we suggest lever-
aging neurosymbolic mechanisms to implement semantic reasoning processes using
metacognitive instruction-based reasoning, thereby facilitating the integration of founda-
tion models (e.g., prompts) and the CMC (e.g., procedural memory) for enabling cogni-
tive reasoning [26,27].

4. CMC-scaffolded Neurosymbolic AI for Cognitive Reasoning

Neurosymbolic AI has been conceptualized in various ways, with detailed categoriza-
tions of available implementation methods [28]. To ensure clarity, this work adopts a
categorization similar to that proposed by Sheth et al., which includes: (i) Compress-
ing cognitive representations for integration with neural representations, followed
by neural pattern recognition; and (ii) Mapping neural representations to cognitive
representations, followed by instruction-based reasoning [29]. The subsequent sec-
tions analyze specific implementations of these approaches within the CMC framework,
applied to particular tasks, and evaluate them in relation to the hypothesis statement
introduced in Section 3.

4.1. Compressing cognitive representations for integration with neural
representations

In this experiment, we utilize the LLAMA architecture for neural representations and the
ACT-R cognitive architecture for a system based on the CMC. This section first addresses
the preliminary concepts, followed by a detailed description of our experiment and the
conclusions related to the hypothesis, as presented in Section 3.
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4.1.1. The ACT-R Cognitive Architecture in Decision making

The CMC integrates essential features from various cognitive architectures, which are
computational frameworks designed to capture the invariant mechanisms of human cog-
nition (for an introduction on cognitive architectures, see [30]). These mechanisms in-
clude functions related to attention, control, learning, memory, adaptivity, perception,
and action. Cognitive architectures propose a set of fixed mechanisms to model human
behavior, functioning akin to agents and aiming for a unified representation of the mind.
By utilizing task-specific knowledge, these architectures not only simulate but also ex-
plain behavior through direct examination and real-time reasoning tracing. One repre-
sentative cognitive architectures is ACT-R [31].

ACT-R encompasses perception, memory, goal-setting, and action. It uses two pri-
mary types of knowledge representations: declarative and procedural. Declarative knowl-
edge comprises chunks of information, stored in declarative memory. Procedural knowl-
edge, on the other hand, involves performing basic operations, moving data among
buffers, and executing instructions. Over the years, ACT-R has accounted for a broad
range of tasks at a high level of fidelity, reproducing aspects of complex human behavior,
from everyday activities like event planning [32] and car driving [33], to highly techni-
cal tasks such as piloting an airplane [34], and monitoring a network to prevent cyber-
attacks [35]. The modeling approaches used include: strategy or rule-based, where dif-
ferent problem-solving strategies are implemented through various production rules, and
successful strategies emerge on the basis of suitable reward functions [36,37]; exemplar
or instance-based, an approach that relies on past experiences stored in declarative mem-
ory to solve problems [38]; hybrid, which combine rule-based and instance-based ap-
proaches [39]. ACT-R was chosen for this study to provide the intermediate representa-
tions of cognitive reasoning steps. Three key features distinguish the use of ACT-R in
creating models for decision-making tasks that involve learning:

• Self-configuration: ACT-R efficiently translates instructions into structured rules,
forming the basis for task-specific production rules that enhance the efficiency of
task execution.

• Modular design mirroring human cognition: ACT-R’s modules emulate human
cognitive functions - perceptual modules update the system’s view of the envi-
ronment, a goal module tracks progress towards objectives, a declarative module
uses past experiences for contextual understanding, and a central buffer system en-
ables communication between modules. Additionally, the central production sys-
tem recognizes patterns to initiate coordinated actions.

• Subsymbolic processes for decision-making: ACT-R excels in its ability to reliably
retrieve relevant memories and activate appropriate rules, ensuring both efficient
and adaptive performance in decision-making tasks, such as skills training. It does
so at a pace that mirrors human performance and offers the opportunity to model
learning during this process.

4.1.2. Problem Definition: Design for Manufacturing

We define the terminology that constitutes our problem. The problem setting is a pro-
totypical manufacturing production-line workflow, from supplier to customer, for which
there exists a Value Stream Map (VSM; see Figure 3), which allows for tracking the effi-
ciency at different sectors of the process and abstracts the overall problem for mathemat-
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ical modeling and optimization. Key sectors include: Body Production, Pre-Assembly,
Assembly, Honing, Washing, Testing, and Packaging. Early sectors pose potential effi-
ciency problems in the workflow and may warrant optimization (triangles), while later
stages are governed by First-In-First-Out (FIFO) processes. The metrics at each stage
include Cycle Time (CT), Overall Equipment Effectiveness (OEE), and Mean Absolute
Error (MAE); the flow progresses through each stage, aiming for efficient operation, per-
formance monitoring, and error minimization to ensure high-quality production output
and timely customer delivery.

Focused on maintaining stable output for manufacturing plants, we consider plant
managers’ feedback alongside the VSM structure to define two decision-making prob-
lems that aim to reduce Total Assembly Time (TAT) while minimizing Total Defect
Rate (TDR). An agent G is a predictive model that takes a natural language question
Q as a prompt, along with N snapshots of the sector-wise production flow data {CT,
OEE, MAE}. In a single-facet decision-making problem, G outputs a binary decision (0
or 1) on which of two sectors, pre-assembly or assembly, requires a time reduction. In
a more-challenging multi-faceted decision-making problem, G should output the same
binary decision as before, about which sector should be the optimization target, along
with an optimization strategy S. Here, S is a strategy defined by one of several decision-
making personas that govern manufacturing process management, which we refer to in
the manuscript as ‘novice’, ‘intermediate’, and ‘expert’.

Figure 3. A Value Stream Map of manufacturing process.

4.1.3. A Cognitive Model For the Manufacturing Domain

In recent work, we released VSM-ACTR 2.0 (hereafter referred to as VSM-ACTR), a
rule-based ACT-R cognitive model for decision support in manufacturing. VSM-ACTR
has incorporated the meta-cognitive processes that reflect on and evaluate the progress
of chosen strategies—with an emphasis on headcount cost evaluation, through a reward
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structure that enables a process akin to reinforcement learning. This system allows the
model to dynamically assess the impact of headcount costs on decision-making out-
comes, computing a reward or penalty for each decision cycle. These rewards or penal-
ties then propagate back to the initial production rule that initiated the decision cycle,
thereby dynamically adjusting the utility of each decision-making strategy. VSM-ACTR
integrates the prototypical decision process with insights into how cognitive models rep-
resent different levels of expertise [40,41], categorizing users into three levels of exper-
tise: novices, intermediates, and experts. Novices engage in decision-making using intu-
itive deliberative chunks. Intermediates can manage key metrics such as CT and OEE but
struggle with the systematic analysis of intertwined variables. Experts, on the other hand,
make judgments systematically. The cognitive model employs three types of knowledge
chunks: decisions, decision merits, and goals. The ‘decision chunk’ encodes eight slots
including reduction time (goal), decision-making state (novice, intermediate, expert),
and related variables. The ‘decision merits chunk’ holds information on sector weights,
defect increases by sector, and comparative defect rate increases. The ‘goal chunk’ cap-
tures the initial production conditions and the ultimate goal of achieving the optimal de-
cision. In addition, the model uses 18 procedural rules driven by goal-focused objectives
across 20 states, covering actions such as choosing strategies, actions, working memory
management, decisions, and evaluations.

Production Rule Sets Three sets of production rules represent the decision-making be-
haviors of novice, intermediate, and expert decision-makers. We use the expert produc-
tion rule set as an example, once the decision-choice center decides to activate a set of
expert decision productions, the process begins by perceiving the problem and retriev-
ing related decision-making metrics from chunks. The imaginal buffer then acts as a
working memory platform, holding and manipulating relevant information during the
decision-making process. It allows the model to construct new mental representations or
modify existing ones based on incoming data or problem-solving needs. This involves
using the imaginal buffer to assess the relationships between the decision target and de-
cision metrics, particularly considering the impact of each sector’s weight on the defect
rate change, and determining the final defect rate increase for each sector. These results
are stored in the imaginal buffer and later retrieved for comparison. This enables the
model to select the sector with the lowest defect increase. After one decision-making
cycle, the model evaluates the headcount cost, rewarding or penalizing the entire process
based on the evaluation results and decision strategy used before looping back to the next
decision-making round.

Level of Expertise Mechanism The model can learn while performing tasks through
two mechanisms leading to varying levels of expertise through differentiating knowledge
representations, as shown in figure 4. Declarative Memories: These memories store
knowledge that aligns with human intuition and expertise gained from the VSM. For
example, the green triangles in the figure represents a portion of the intuition used by
novice decision-makers. Production Rules: These rules capture the rational decision-
making processes observed in human subjects. The green lines illustrate how the imag-
inal buffer retrieves relevant portions of the novice declarative memory and feeds them
to the novice production rule set. Intermediate and expert decision-making levels fol-
low the same principle. Red and blue shapes represent their respective declarative mem-
ory chunks, and the corresponding colored arrows show the flow of information through
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Figure 4. Level of expertise mechanism in VSM-ACT-R

their production rule sets. Finally, the goal buffer utilizes the “goal focus” command to
manipulate the different phases of the task.

Beyond mimicking human behavior, the model also simulates the learning progress
achieved by the Decision-Choice Control, which manages errors, learning, and memory
through utility learning and reinforcement rewards. Novice decision-making starts with
a utility base and includes a noise setting. The intermediate and expert production rules
receive rewards when the corresponding decision-making results are achieved. The utility
of these production rules updates is based on the rewards received and the retention of
memory, which depends on the time passed since the rule last fired.

0.000 GOAL SET-BUFFER-CHUNK GOAL GOER NIL
0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-STRATEGY
0.100 PROCEDURAL PRODUCTION-FIRED DECIDE-BRUTE
0.150 PROCEDURAL PRODUCTION-FIRED BRUTE-DECISION

Dimensionality 
Reduction

VSM-ACTR full traces

… Sentence 
Transformer

(a)

(b)
Prompt: “ There are two options: reduce 

pre-assembly time (0) or reduce 
assembly time (1).\nQ: Which section 

do you choose to optimize? A: ”

LLM

VSM-ACT-R 
persona

Decision

Output

ℒ
Masked

Embedding

Clf.
🔥

Figure 5. (a) Obtaining decision representations from VSM-ACT-R. (b) LLM feature extraction for behavior
prediction.

VSM-ACTR model evaluation We ran the VSM-ACTR model across 2012 decision-
making trials and 32 problem sets to analyze its behavior [42]. Each model run comprised
15-16 trials until reach a more stable expert behavior. We encoded decision types as 0, 1,
and 2 for novice, intermediate, and expert strategies, respectively.

To assess learning, individual differences, and progression, we initially used descrip-
tive statistics to chart the average progression of decision types over 16 trials. We then
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employed a mixed linear model to evaluate the influence of trial numbers on decision
types, incorporating repeated measures and random effects to account for individual vari-
ance. Additionally, an ordered logistic regression analyzed the relationship between the
number of trials and the learning progression from novice to expert.

The results of the descriptive statistics demonstrate a significant positive impact
of trial exposure on decision-making progression, evidenced by a coefficient of 0.086
(P < 0.05). A mixed linear model regression confirms the effect of trials on decision-
making and further reveals a variance of 0.007 in the random group effects. This indicates
that while there are differences between groups, these differences are relatively small,
suggesting that the trials themselves predominantly explain the variability in decision
type.

Threshold analysis using ordered logistic regression reveals significant transition
thresholds. The transition from novice to intermediate has a significant threshold of 0.88
(P < 0.05), indicating a challenging progression to higher decision-making skills. In
contrast, the transition from intermediate to expert shows a significantly lower threshold
of 0.1 (P = 0.021), suggesting it is easier to progress from intermediate to expert than
from novice to intermediate.

4.1.4. The LLM-ACTR Framework

Figure 6. Decision augmentation using a neural-symbolic cognitive architecture approach. (1) Tasks are mod-
eled with cognitive architecture. (2) Cognitive model used to run stochastic simulation of task at scale. (3)
Synthetic data are distilled from simulation and combined with prompt requests. (4) A fine tuning pipeline is
used to calibrate open source LLM to perform decision augmentation for task in exercise.

Figure 6 illustrates the approach to creating llm-ACTR, which begins with the col-
lection of task data and documentation. The task procedures are then modeled using ACT-
R, employing stochastic simulations to analyze these tasks on a large scale. After the
simulation phase, the generated synthetic data is semi-automatically distilled and com-
bined with prompt requests. This data is subsequently used to infuse into an open source
LLM through fine-tuning, resulting in a type of cognitive LLM, named llm-ACTR.

Selecting Salient Decision Information ACT-R traces capture cognitive reasoning steps
in real-time. These traces log the operations executed by various modules at each discrete
decision point, including the activation of the goal module, the use of the imaginal buffer
for accessing working memory, procedural memory matching and firing, utility updating
driven by reinforcement learning, etc.

Preserving information from ACT-R model’s decision-making traces poses chal-
lenges. A single decision-making round can generate a vast number of traces, each times-
tamped as frequently as every 5 milliseconds. Deciding which lines to select—or whether
to preserve all lines—requires a balance between minimizing information loss and bal-
ancing computational costs. The rationale for choosing outputs from specific modules
as reliable sources within the decision representation lies in their clear correspondence
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to deterministic cognitive processes. The rationale for preserving all traces involves pro-
cesses of semantic embedding extraction and dimensional reduction.

The information used to augment decision-making in this study focuses on distilling
macro-level cognitive processes related to executive function[43], capturing the evolu-
tion of decision-making results across trials and how decisions adapt through learning
and experience. Furthermore, the decision actions are categorized into strategy levels
(novice, intermediate, expert), reflecting the learning phases.

Learning an Embedding Space of Decision Traces The next step involves converting
the traces into tensors that the LLM can process. This study explores two approaches: one
uses selected traces, and another uses full traces.

The selected traces are components distilled from macro-level cognitive processes
related to executive function. This process requires human involvement to log decision
results and strategy traces, which are then numerically encoded. For instance, ‘0’ repre-
sents a decision for reduced time in pre-assembly section, and ‘1’ for assembly. These
data are subsequently fed into the neural network as single vectors.

In contrast, the holistic traces approach (see Figure 5a) retains both macro- and
micro-level cognitive processes, with the latter including meta-cognition [44]. Meta-
cognition involves an awareness and understanding of one’s own cognitive processes, as
exhibited through model traces that demonstrate the use of the imaginal buffer for access-
ing working memory, procedural memory matching and firing, headcount cost analysis,
and the assessment of strategy effectiveness.

The investigation begins with the transformation of full traces from VSM-ACTR,
representing both cognitive and metacognitive processes, into a format that balances in-
formation retention with computational efficiency. Cognitive reasoning traces for each
task are processed through a sentence transformer to obtain semantic embeddings for
each time stamp. A Sum of Ranked Explanatory Effects (SREE) analysis is then ap-
plied to determine the number (N) of principal components that account for at least 70%
of the variance. Finally, these embeddings are reduced to N dimensions using Principal
Components Analysis (PCA)[45].

Injecting Decision Information into LLMs With the VSM-ACTR model, which repre-
sents human-like cognitive reasoning in repeated decision-making tasks, this section out-
lines the experimental settings for fine-tuning of the llm-ACTR framework. Fine-tuning,
sometimes referred to as transfer learning, involves optimizing all model weights for the
given task. The process includes parsing consistent template prompts that reflect the de-
cision making task into an open-source LLM, aligning the task for the cognitive model
using the LLM as the base model to access the last hidden layer and obtain masked
embeddings, constructing a classification layer with softmax activation on top of the
base model, using targets containing the salient decision representations of the cognitive
model and features from the masked embeddings of the base LLM, and fine-tuning the
LLM for classification using the LORA method. The key points are: (1) The targets de-
code the salient decision information from the cognitive model. (2) Use the final layer of
contextualized embeddings in transformer-based LLMs, generated through the attention
block mechanism. The attention block, a key feature of transformers, distinguishes them
from other architectures like recurrent neural networks [46]. It creates embeddings that
capture the in-context meaning of tokens by recombining them with other tokens’ em-
beddings. Successive attention blocks further refine these embeddings, producing mul-
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tiple layers of abstraction. The final layer, a blend of these refined embeddings, is used
in this pipeline because it offers the richest semantic information while balancing mini-
mal information loss and reduced computational costs for fine-tuning. (3) Use Low-Rank
Adaptation (LoRa) for its efficiency in fine-tuning, reducing the computational resources
and time required while maintaining high model performance [47].

4.1.5. Experiments

Problem Setting As an instantiation of the problem definition, above, our manufactur-
ing line has two sections with potential defect sources: pre-assembly and assembly. Pre-
assembly takes 40 seconds with an OEE rate of 88%, while assembly takes 44 seconds
with an OEE rate of 80.1%. To reduce total assembly time by 4, we must identify which
section can be shortened with minimal defect increase. We note that reducing cycle time
will also lead to an increase in headcount costs.

Implementation Details The LLAMA-2 13B model was chosen as the foundation for
this research because of its demonstrated effectiveness and efficiency in NLP tasks
(Huang et al., 2024). As a state-of-the-art large language model, LLAMA has been
trained on trillions of tokens from publicly available datasets. Unlike other transformer-
based models such as the GPT family, which can only be accessed at the user’s end,
LLAMA ’s architecture, including its pre-trained weights, is fully accessible. Further-
more, its proven capability to extract the last hidden layer for predicting behavioral dis-
crepancies has been provided[48]. These attributes collectively establish LLAMA -2 13B
as an optimal choice for this study.

To determine the dataset size that can effectively perform the task while balancing
efficacy and resource limitations, we referred to [49], who showed evidence that LLAMA

-2 13B achieves F1 scores above 0.9 in resource-limited text classification tasks, with
datasets as 1,000 rows per class. Based on this, we developed the dataset size for fine-
tuning as N (number of classes) * 1,000. The ACT-R dataset for binary decision-making
classification contains 2,012 decision-making trials, Obtained by running the developed
ACT-R model across 32 problem sets, each ACT-R persona was run for 15-16 trials until
more stable expert behavior was achieved [42].

Baseline Models This study compared the goodness-of-fit and prediction accuracy of
the resulting models using holdout data against two baselines: a random guess model and
LLAMA without fine-tuning, obtained by reading out log-probabilities of the pre-trained
LLAMA .

A random guess model serves as the most basic form of chance level baseline and
represents the simplest hypothesis for model comparison. In psychological interdisci-
plinary experiments, control conditions often employ random responses to distinguish
the effects of treatment from chance [50]. This approach allows assessing the extent to
which decisions are influenced by knowledge versus being purely stochastic.

On the other hand, using LLAMA without fine-tuning as a baseline provides a refer-
ence point to measure the impact of fine-tuning on the model’s performance. This com-
parison reveals how much the model ‘learns’ from the fine-tuning process compared to
its generic, pre-trained state.
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Research Questions Based on our framework’s components, we identify a set of re-
search questions that we answer through experiments.
1. What are the properties of a useful neural network representation of the decision-
making process in Cognitive Architectures?

Answering this question sets the groundwork for developing a context-aware domain
knowledge base for augmenting decision-making in LLMs.
2. What level of complexity in behavior representation can LLMs effectively capture?

Previous research has used LLM conceptual embeddings to predict human behavior
based on past behavioral studies [51], confirming LLMs’ ability to replicate known hu-
man patterns. However, high costs and extensive data collection efforts limit this method.
By incorporating cognitive model simulations, the study seeks to address these limita-
tions and broaden the investigation to determine the extent to which LLMs can reproduce
decision-making knowledge. This will, in turn, help define the depth of decision-making
domain knowledge that can be effectively integrated with the innate learning capabilities
of LLMs.
3. Can we inform the LLM with knowledge about the reasoning process of the cognitive
architecture?

Inspired by previous works on knowledge-injection [52,53], answering this question
offers insights into knowledge transfer from domain-specific bases to LLMs and evalu-
ates its impact on performance in holdout tasks. The method for addressing RQ1 was
introduced in the first two sections of our approach framework.

Feature Extraction for Behavior Prediction To answer RQ2: What level of complexity
in behavior representation can LLMs effectively capture? Building on previous research
that used conceptual embeddings from LLMs to predict human behavior with historical
behavioral data [51], we adopted the same method of LLM feature extraction for behavior
prediction [54]. We created datasets consisting of last contextual embeddings as features
and the corresponding different levels of VSM-ACTR decision actions representations
as targets. We obtained embeddings by passing prompts that included all the information
that VSM-ACTR had access to on a given trial through LLAMA and then extracting the
hidden activations of the final layer, as shown in Figure 5b.

The first dataset used features extracted from prompts identical to the VSM-ACTR
task, with targets being the VSM-ACTR decision-making results, where ’0’ indicates
reduced time in preassembly and ’1’ indicates assembly. The second dataset’s prompt
template added an explanation of the strategy adopted by VSM-ACTR and used com-
pound targets comprising both the decision-making results and the strategies reflecting
the learning trajectory (novice, intermediate, and expert). The targets were encoded as
follows: 0, 1, and 2 for preassembly choices using novice, intermediate, and expert strate-
gies, respectively, and 3, 4, and 5 for assembly choices following the same pattern. With
these two datasets, we fitted a regularized logistic regression model using 10-fold cross-
validation for dataset 1 and multinomial regression using 10-fold cross-validation with
L2 regularization for dataset 2. Model performance was assessed by measuring the good-
ness of fit through negative log-likelihood (NLL) and the predictive accuracy of hold-out
data.

Fine Tuning for Knowledge Transfer To answer RQ3: whether LLMs can be informed
with knowledge about the reasoning processes of cognitive architecture—we use the
fine-tuning approach of llm-ACTR Framework. The fine-tuning process employs Cross-



August 2024

Entropy as the loss function and uses Adam optimization. Training involves a train test
split of 0.2 and uses a batch size of 5 for both training and validation phases. The learning
rate is set to 1e-5, with the training spanning across 10 epochs. To ensure regularization
and prevent overfitting, a weight decay of 0.01, and a dropout of 0.5 are applied, and
gradient accumulation is set to 2. Last but not least, gradient clipping is employed to
maintain a maximum gradient norm of 1.0 for gradient explosion control. We evaluate
the model fitting and generalization quality using training loss and validation loss across
epochs, then compare the goodness of fit and prediction accuracy of the hold-out data
against the baseline models.

4.1.6. Results

Finding Useful Decision Process Embeddings The approach of distilling macro-level
cognitive processes related to executive function captures the evolution of decision-
making results across trials and how decisions adapt through learning and experience,
all represented as a sequential single vector. This format facilitates ease of use for down-
stream tasks involving knowledge transfer. However, this method retains only partial
cognitive decision-making knowledge.

In contrast, the holistic semantic preservation approach encompasses both macro
and micro-level cognition processes. However, the embeddings produced vary in shape
due to the individual differences in traces originating from stochastic simulations. They
cannot be directly fed into neural networks for downstream tasks. Nevertheless, the first
two principal components of the reduced embeddings, which correspond to the seman-
tic mapping of ACT-R’s components—including procedural, imaginal, goal knowledge,
utility updating, and decision-making—are detailed in Figure 6.

The MANOVA analysis was conducted to assess the overall effect of the indepen-
dent variables, which include label categories or ACT-R components, on the combined
dependent variables—components of reduced embeddings. This analysis reveals a sig-
nificant relationship with the semantic mapping of ACT-R’s components. For instance,
the extremely low Wilks’ lambda value (0.0004) suggests that the label or ACT-R com-
ponent categories explain nearly all the variance in the dependent variables, indicative
of a strong group effect. The statistical tests applied—Wilks’ lambda, Pillai’s trace,
Hotelling-Lawley trace, and Roy’s greatest root—all demonstrate strong significance, as
evidenced by the extremely low p-values across all tests. These findings highlight that
the principal components retained in the PCA successfully capture the essential variance
related to these cognitive processes.

This result validates that our semantic abstraction method has the potential to re-
tain the maximum semantics of neural symbolic representations at a minimal computa-
tional cost. However, further work is required to address the issue of ragged tensors for
downstream tasks.

In a preliminary experiment, we addressed the issue of ragged tensors by employ-
ing padding with value imputation. We then integrated the 240 full cognitive reason-
ing traces from the VSM-ACTR model with LLM using embedding concatenation and
conducted feature extraction for behavior prediction. Specifically, we transposed the re-
duced embeddings from each cognitive model run into a (1, X) dimension tensor and
subsequently concatenated this with the LLM’s last contextual embedding from the same
prompt. These concatenated embeddings served as resources for predicting decision-
making within the VSM-ACTR model. The prediction targets were multifaceted, includ-
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ing both the decision-making results and the strategies used. The results showed no sig-
nificant improvement in prediction accuracy with concatenated embeddings compared to
using LLM embeddings alone.

One possible explanation is the relative scale of the VSM-ACTR reduced embed-
dings compared to those of LLAMA , which is disproportionately small (1:10). Conse-
quently, the LLAMA embeddings may dominated the decision-making process within
the model due to their larger scale. A potential solution could be to generate longer VSM-
ACTR model traces, including tenfold more decision-making trials, thereby enhancing
the scale and variability of its features.

Also, the method we use to handle ragged tensors—padding followed by value im-
putation—could potentially dilute the VSM-ACTR embeddings and reduce their accu-
racy. Finding an alternative method to preserve the full embeddings from VSM-ACTR
may potentially improve the results.

Lastly, the limited dataset size could be influencing the results. The preliminary test
used only 240 complete traces. Expanding the dataset may provide more insights into
the performance of the proposed approach.

Figure 7. ACTR embedding mapping

Assessing Behavior Complexity Captured by LLMs Table 1 shows that llm-ACTR cap-
tures a single facet of decision-making, achieving an average accuracy of 0.64 across
10 validation folds in the holdout task. When decision-making targets involve multi-
ple facets—encompassing both choices and strategies that shape the learning trajec-
tory—the accuracy decreases to 0.42. While this reduction suggests that capturing com-
plex decision-making processes is less accurate, the results still show promise in han-
dling these complexities. However, the Negative Log-Likelihood (NLL) reveals greater
predictive uncertainty for multifaceted decision-making processes, as evidenced by a
significantly higher NLL of 1.18 compared to 0.65 in single-facet scenarios.

Table 1. Evaluation for Single and Multi Facets Targets

Target Type NLL Accuracy

Single Facet Target 0.63 0.64
Multi Facets Target 1.18 0.42

Table 2. Comparison of VSM-ACTR with baselines

Model NLL Accuracy

Chance-level 0.6931 0.4826
LLAMA 1.1330 0.3564
llm-ACTR(ours) 0.6534 0.6576



August 2024

Injecting LLMs with CA Decision Process We first report training and validation losses,
across 10 epochs, to reveal the fine-tuned model’s learning and generalization behavior.
Initially, the training loss begins at approximately 0.73, with a slight fluctuation observed
in subsequent epochs, peaking around epoch 2 and showing a notable dip at epoch 7. In
contrast, the validation loss starts at around 0.64 and remains remarkably stable through-
out the epochs. This consistency in validation loss, coupled with a generally downward
trend in training loss after its initial variations, suggests that the model is learning ef-
fectively. The overall trend indicates an improvement in model performance over time,
reflecting its capability to generalize well on unseen data.

We then report the comparison of the llm-ACTR with the baseline models on good-
ness of fit using negative log likelihood (NLL) and accuracy score for hold-out data. The
llm-ACTR model demonstrates significantly better performance across all metrics com-
pared to the LLAMA -only model, highlighting its effectiveness in decision-making tasks
involving sequential cognitive reasoning. Additionally, the LLAMA -only model per-
forms worse than the chance-level model. This underscores the necessity of fine-tuning
pre-trained language models like LLAMA to adapt them to specific human-aligned re-
peated decision-making tasks.

4.1.7. Discussion

The results shown in the previous section support our hypothesis that task-specific se-
mantic interpretation enables cognitive reasoning mechanisms in AI. Our experiments
demonstrate the benefits of using neuro-symbolic architectures to bridge the gap be-
tween neural pattern recognition and cognitive reasoning in AI. By leveraging task-
specific semantic interpretations through cognitive model integration, we enable en-
hanced decision-making capabilities. The results validate the hypothesis that cognitive
reasoning can be achieved using mechanisms similar to executing metacognitive rules
captured within the parametric memory of foundation models, providing a plausible
pathway for future developments in cognitively-inspired AI.

4.2. Mapping neural representations to cognitive representations, followed by
instruction-based reasoning

In the previous experiment, we adopted a design inspired by the CMC by compressing
cognitive reasoning traces into neural representations. In this section, we explore an alter-
native approach, utilizing various neural network foundation models enhanced with ex-
ternal knowledge sources for perception and grounding. This is followed by a cognitive
reasoning framework, also inspired by the CMC.

4.2.1. Preliminaries - Traditional AI components and the CMC

Figure 8 illustrates how traditional AI components correspond to the CMC components
introduced in Section 2. Neural network-based processing methods are typically em-
ployed for perception, transforming raw data into abstractions that can be utilized by
other CMC components (e.g., converting raw text in documents into noun phrases and
other grammatical or syntactic structures).

The long-term memory stores “rules,” which can be understood as sets of abstrac-
tions that, when evaluated, lead to other abstractions (e.g., if a text chunk is identified
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Figure 8. The common model of cognition [14]. The figure shows how traditional components of an AI system
map to the various components of the CMC.

as a noun phrase, the next chunk is likely to be a verb phrase). Declarative knowledge
refers to the semantics assigned to these abstractions in the procedural memory, often
derived from curated knowledge bases, graphs, and ontologies (e.g., a noun phrase is
composed of parts-of-speech such as nouns, adjectives, etc.). The working memory in-
tegrates the outputs of perception, procedural knowledge, and declarative knowledge to
perform reasoning. For instance, if the current input is classified as a noun phrase, a rule
in the procedural memory may suggest that the next chunk is likely to be a verb phrase.

4.2.2. Experimental Setup

The experimental setup focuses on activity recognition in egocentric scenes, which
involves understanding specific actions within first-person perspectives. These scenes
present a significant challenge due to the unpredictable behaviors often observed. For
instance, during a cooking task, an individual may switch to unrelated activities, such as
checking emails while waiting for food to boil. This introduces added complexity to the
activity distribution within the scene.

Motivation As illustrated in Figure 8, the perception and cognition stages of the
perception-cognition-action cycle involve an interplay between declarative, procedural,
and working memory. This interaction builds a comprehensive representation of activity
understanding, which is essential for downstream tasks. For example, in cooking-related
activities, declarative memory may store factual knowledge, such as “foods contain salt,”
potentially supplemented by external knowledge sources. Procedural memory, typically
a set of reasoning rules, could include how to answer specific video-related queries based
on facts stored in declarative memory. Working memory, with limited capacity, draws on
both declarative and procedural memory to execute the necessary reasoning steps dur-
ing runtime. To evaluate the system’s activity understanding capabilities, we designed
two tasks aimed at monitoring how the system’s activity representations are maintained
across these memory structures.
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4.2.3. Dataset-EGO4D

The dataset utilized in our experiments is EGO4D, a comprehensive collection of egocen-
tric videos [55]. It consists of 3,600 hours of densely narrated video content, accompa-
nied by detailed human annotations. The dataset covers a variety of scenarios—including
household, outdoor, workplace, and leisure settings—recorded across 74 locations in 9
different countries. The video segments include supplementary data such as audio, 3D
environmental meshes, eye gaze tracking, stereo video, and synchronized footage from
multiple egocentric cameras capturing the same event. Additionally, this dataset includes
challenges related to episodic memory recall and future event forecasting, with ground
truth annotations provided. In the context of EGO4D, the queries often focus on atypical
activity patterns. For example, a query related to “headphones” may need to be inferred
by identifying appropriate video frames, such as those depicting a person multitasking
by answering emails while cooking.

4.2.4. Methodology - Simulating the Perception-Cognition-Action Cycle in Egocentric
Activity Recognition

To simulate the perception-cognition-action cycle in our experiment, we iterate between
two tasks:

Wash 
chicken

Boil 
Chicken

Answer 
Emails 
While 
Waiting 
for Boil

Put boiled 
chicken 
on stove

Sequence of Video Frames

Natural Language Query

Episodic Memory Recall System

Where are the headphones? Answer 
Emails 
While 
Waiting 
for Boil

Episodic Memory Recall Task Illustration

Recalled Frame(s)

Figure 9. (a) Task 1 - Episodic Memory Recall.

Task 1 - Episodic Memory Recall In this task, a video scene and a natural language
query are provided as inputs. The system is expected to output a sequence of frames
from the video that likely contain the answer to the query, effectively “recalling” spe-
cific segments or “episodes” of the video. This process requires the system to establish
and retrieve memory representations of the query and the video scene, particularly their
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relationship in the context of the video’s activity patterns. Figure 9 illustrates the inputs
and outputs expected for a system performing this task. Notably, the query may involve
complex associations, such as asking about headphones in relation to an unusual activity,
like answering emails while boiling water. This presents a significant challenge for an AI
system to interpret and infer.

Wash 
chicken

Boil 
Chicken

Partial Sequence of Video Frames and Masked Next Frame

Forecasting System

Answer 
Emails 
While 
Waiting 

Put boiled 
chicken 
on stove

Forecasting Task Illustration

????
?

Constraining Factors

activity pattern: wait → put-on-stove

Not present in Task Data!!

Figure 10. (a) Task 2 - Forecasting.

Task 2 - Forecasting In this task, a partial sequence of frames from a video is given as
input, and the system must predict the action category for the next frame. Solving this
task requires the system to make informed and constrained predictions about the pos-
sible upcoming actions, despite the potentially large number of possibilities. The qual-
ity of the memory structures, particularly in capturing activity patterns, is critical to the
success of the prediction. Figure 10 illustrates this challenge, showing how the space of
potential next actions can quickly become overwhelming. Typically, some external con-
straint—beyond the task dataset—is required to manage this complexity, and memory
structures play a key role in applying these constraints.

The Perception-Cognition-Action Cycle for Activity Understanding Our proposed ap-
proach uses the CMC and components as scaffolding and maps foundation models as
needed across the components. Figure 11 illustrates the approach with an example query
and video (inputs do not contain the query in the forecasting task and only a partial clip
of the video). We note that the system is language-centric, i.e., the task execution takes
language-based inputs and produces language-based outputs. All other modalities of in-
formation are, therefore, first converted to natural language (text) before processing by
the system.
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Figure 11. CMC-inspired solution approach and system design.

Why a language-centric approach? We choose a language-based core (representation
and reasoning) for our approach for three reasons: (a) Language models are the most ex-
tensively studied foundation model, leading to better ease of access, software availabil-
ity, and widespread methods for achieving relatively lower computation footprints, a key
consideration for developing solutions to resource-bounded tasks. (b) Multimodal foun-
dation models are still in their nascent stages. Therefore, multimodal model pipelines
typically consist of projection to common representation spaces, and for reasons men-
tioned in (a), we choose language to be such a representation space. (c) Foundation mod-
els are prone to generating erroneous outputs, e.g., hallucinations, and augmenting the
model with common sense knowledge is often beneficial in mitigating such errors. Most
large-scale and publicly available knowledge bases are based on language, making lan-
guage an attractive representation choice for augmenting language models with informa-
tion from knowledge bases. The details of the individual CMC components are:

1. Perception The perception module takes the raw input, in this case, the video
and the query, and transforms the information in the video, both the visual in-
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formation and audio modalities, into text that consists of obtaining a “narration
sequence” – a frame-by-frame narration of the video. The task Figures 9 and 10
show examples of such a narration sequence, i.e., the list [Wash chicken, boil
chicken, answer emails while waiting, and put boiled chicken on stove, ...].

2. Procedural Memory In prototypical cognitive systems, procedural memory es-
sentially consists of a set of rules or instructions that tell the system how to rea-
son given an objective and the contents of the working memory. In this work,
since the reasoner is language-based, the procedural memory contains prompts
that guide or instruct the language model’s reasoning.

3. Declarative Memory The declarative memory consists of language-based video
annotations, such as video summaries and information sourced in knowledge
graphs (verbalized using a verbalizer prompt). This information is meant to aug-
ment the narration sequence information and provide additional context to the
reasoner.

4. Working Memory The working memory relies on outputs from the perception
component, and the procedural and declarative memories. It is instantiated during
reasoning to process the narration sequence, extracting task-related outputs by
using relevant declarative memory content and procedural memory prompts. Im-
portantly, the working memory is limited by the context window size of the rea-
soning LLM, a critical resource constraint. This CMC-inspired design emphasizes
creating efficient representations and instructions in declarative and procedural
memories to optimize reasoning within these constraints.

5. Motor Module The motor module consists of the language model that reasons
about the task output given the contents of the working memory: in this regard,
such module is responsible for speech acts. Accordingly, we augment the mo-
tor component with an output interpreter module that constructs a mapping of
the combined contents of the working memory and predicted task outputs to an
embedding space for visualizing task-related activity patterns.

4.2.5. Experimental Configuration

In this section, we describe the experimental configuration in detail. The CMC compo-
nents are standard across the episodic memory recall and forecasting tasks, with only
the input and output capture being slightly different (as shown in figures 9 and 10). The
episodic memory recall task uses a video sequence as input and expects a video frame
as a response to a natural language query, whereas in the forecasting task, the input is a
partial sequence of contiguous frames, and the output is predicted action categories for
the next frame. We now describe the details of the CMC components.

1. Perception The ground-truth annotations for the EGO4D dataset already consist
of narration sequences obtained using model-based translations from visual and
audio inputs. These annotations also contain the video clip time slice correspond-
ing to each narration segment.

2. Procedural Memory The procedural memory consists of prompts (such as the
one shown in Figure 11) for reasoning about events and actions in the video given
narration sequences and declarative memory information.

3. Declarative Memory For declarative memory, the EGO4D dataset includes an-
notations for video summaries. Additionally, we utilize triples from the Common

https://cskg.readthedocs.io/en/latest/
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Sense Knowledge Graph (CSKG) [56]. The triple extraction process generally
follows a three-stage pipeline: (i) Identifying action phrases in the input query
and narration sequences using the syntax parser from the Flair library [57]. (ii)
Performing keyword-based triple extraction by matching individual words in the
action phrases (using the word tokenizer from nltk) [58]. (iii) Verbalizing only the
relevant subset of triples through a language model based on a given prompt. We
also employ a third type of declarative memory, referred to as “internal” knowl-
edge. This is derived by querying the language model to further analyze the in-
put query and narration sequences, with the aim of retrieving relevant informa-
tion embedded within its parametric knowledge. The various prompts used are
available at this Github repository.
Note: During the execution of the forecasting task pipeline, we also maintain a
memory bank of videos in declarative memory – This bank is updated when the
episodic memory pipeline successfully identifies the correct video frame associ-
ated with the query, with high accuracy. Figure 10 shows how a constraint speci-
fication is essential to assist the system with predicting plausible next-action cat-
egories. This memory bank (i.e., the action distributions across the videos in this
bank) acts as such a constraint specification.
Metacognitive Instruction-based Prompting The steps involving procedural
memory construction from declarative memory elements, mainly the various
types of knowledge sources, denote the core of the metacognitive rule construc-
tion, where we aim to accurately specify a robust semantic interpretation of the
task in the prompt (seen as a rule) to engender cognitive reasoning by the foun-
dation model during prompt execution.

4. Working Memory The working memory is simply a text string that is a com-
bination of the query (the input), the narration sequence (from the perception
component), the context (from the declarative memory), and the appropriate
prompt (from the procedural memory). The size of the text string is limited by the
context-window lengths of the language models used in the motor component.
In the forecasting task, the working memory involves an information retrieval
mechanism to retrieve a set of top-k similar videos from the memory bank in the
declarative memory to constrain the set of possible next-action categories (k is
set to 3 in our experiments, and the retrieval method used is RAPTOR [59]).

5. Motor The language models that we experiment with are LLAMA 3-8b-8192,
mixtral-8x7b-32768, and gemma-7b-it, accessed using the GROQ API. The ‘x’b
part of the name denotes the number of parameters in billions, and the third part
of the name after the ’-’ denotes the context window lengths in terms of no. of
tokens (each token is roughly equal to a word).

4.2.6. Results and Discussion

Episodic Memory Task Tables 3, 4, and 5 present performance across different declar-
ative memory options. Due to the complex action distributions in EGO4D, such as
“answering emails while wearing headphones during cooking,” the internal knowledge
within the LLM is less effective for inference. In contrast, human-annotated video sum-
maries perform best, with CSKG triples nearly matching their accuracy. Additionally,
models with larger context windows tend to perform better overall.

https://cskg.readthedocs.io/en/latest/
https://cskg.readthedocs.io/en/latest/
https://cskg.readthedocs.io/en/latest/
https://flairnlp.github.io/
https://www.nltk.org/
https://github.com/kauroy1994/Bosch_Research_Summer_2024
https://groq.com/
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Table 3. Evaluation of Episodic Memory Task with In-
ternal Knowledge.

LLM Accuracy Precision Recall F1-score

gemma-7b-it 0.3962 0.4999 0.3962 0.4363
LLAMA 3.1-8b 0.5869 0.6749 0.5869 0.6203
mixtral-8x7b 0.6291 0.7444 0.6291 0.6736

Table 4. Evaluation of Episodic Memory Task with Video Summary Knowledge.

LLM Accuracy Precision Recall F1-score

gemma-7b-it 0.5999 0.6999 0.5999 0.6444
LLAMA 3.1-8b 0.7962 0.8999 0.7962 0.8363
mixtral-8x7b 0.7999 0.9999 0.7999 0.8888

Table 5. Evaluation of Episodic Memory Task with CSKG Knowledge.

LLM Accuracy Precision Recall F1-score

gemma-7b-it 0.5749 0.5493 0.5899 0.6076
LLAMA 3.1-8b 0.7523 0.7886 0.8274 0.7000
mixtral-8x7b 0.7269 0.8666 0.7799 0.8133

Forecasting Task - In the forecasting task, Tables 6-8 demonstrate that, without clarity
on plausible next-action distributions as constraints, the performance of the declarative
knowledge sources is quite poor. An exception to this is the summary knowledge, which
performs better as it is annotated by humans. However, when information about similar
videos is retrieved from the memory bank, the results are notably improved, as evidenced
by Table 9.

Table 6. Evaluation of Forecasting Task with Internal Knowledge.

LLM Accuracy Precision Recall F1-score

gemma-7b-it 0.21 0.23 0.2899 0.30
LLAMA 3.1-8b 0.223 0.26 0.265 0.3
mixtral-8x7b 0.286 0.3 0.33 0.21

Table 7. Evaluation of Forecasting Task with Video Summary Knowledge.

LLM Accuracy Precision Recall F1-score

gemma-7b-it 0.66 0.7333 0.78 0.69
LLAMA 3.1-8b 0.63 0.78 0.779 0.78
mixtral-8x7b 0.75 0.93 0.81 0.87
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Table 8. Evaluation of Forecasting Task with CSKG Knowledge.

LLM Accuracy Precision Recall F1-score

gemma-7b-it 0.13 0.14 0.20 0.33
LLAMA 3.1-8b 0.23 0.27 0.30 0.23
mixtral-8x7b 0.28 0.29 0.258 0.29

Table 9. Evaluation of Forecasting Task with Information Retrieval

LLM Accuracy Precision Recall F1-score

gemma-7b-it 0.52 0.6212 0.55 0.49
LLAMA 3.1-8b 0.65 0.71 0.633 0.69
mixtral-8x7b 0.68 0.733 0.6412 0.7111

5. Conclusion and Validity of the Hypothesis Statement

This chapter introduces a novel CMC-inspired approach to foundation model-based neu-
rosymbolic cognitive AI systems with improved cognitive reasoning. The experiments
conducted show that either strategy—compressing cognitive representations for inte-
gration with neural networks or mapping neural to cognitive representations followed
by instruction-based reasoning—yield promising results. A CMC-based framework im-
proves cognitive reasoning in foundation models, particularly by enabling metacognitive
instruction-following behavior, supporting the main hypothesis.
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