12-2014

Update on Paleolithic Research in Northern Mongolia

J. Christopher Gillam
University of South Carolina - Columbia, gillamc@mailbox.sc.edu

Sergei A. Gladyshev

Biambaa Gunchinsuren

John W. Olsen

Andrei V. Tabarev

See next page for additional authors

Follow this and additional works at: https://scholarcommons.sc.edu/sciaa_staffpub

Part of the [Anthropology Commons](https://scholarcommons.sc.edu/sciaa_staffpub)

Publication Info

http://artsandsciences.sc.edu/sciaa/

© 2014 by The South Carolina Institute of Archaeology and Anthropology

This Article is brought to you by the Archaeology and Anthropology, South Carolina Institute of at Scholar Commons. It has been accepted for inclusion in Faculty & Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Update on Paleolithic Research in Northern Mongolia

By J. Christopher Gillam¹, Sergei A. Gladyshev², Biambaa Gunchinsuren³, John W. Olsen⁴, Andrei V. Tabarev², and Evgeny P. Rybin²

¹SRARP-SCIAA-USC; ²Institute of Archaeology and Ethnography, Novosibirsk, Russia; ³Institute of Archaeology, Ulaanbaatar, Mongolia; ⁴Department of Anthropology, University of Arizona.

The 2014 field season in northern Mongolia proved to be an exciting one with 20 new Upper Paleolithic sites recorded, including one possible Middle Paleolithic site (Kharganyn-13) with potential to be the oldest stratified site north of China and east of the Altai Mountains, Russia. In the past decade, the Joint Mongolian-Russian-American Archaeological Expedition (JMRAAE) has discovered 63 sites dating to the Pleistocene and early Holocene along the Ikh Tulberiin Gol, Kharganyn Gol, and Altatyn Gol (hereafter, Tolbor, Kharganyn and Altatyn Rivers) of the greater Selenge Gol Basin (Figure 1); Gillam et al. 2012; Gladyshev et al. 2011, 2012; Olsen 2002; Tabarev et al. 2013). The region is high, cold, and dry, with little arable land; it is a mountainous forest-steppe, known as the Selenge-Orkhon Forest-Steppe, of the ancient Khangai Mountains of north-central Mongolia. It is best characterized as semiarid grasslands along valley floors and adjacent hills, with mostly barren steep mountain terrain, accompanied by larch- and birch-dominated forests on shady north- and west-facing slopes of high hills and mountains, where soil moisture is sufficient to support tree stands.

Archaeological deposits indicate an initial occupation of the region by the Early Upper Paleolithic (ca. 40,000 calendar years before present; hereafter, BP; Gladyshev et al. 2011; Zwyns et al. 2014), although the discovery of Kharganyn-13 this season may indicate an earlier Middle Paleolithic occupation (ca. 45,000 BP) containing Levallois stone tools in the region (Figure 2). Typical Early Upper Paleolithic (40,000-25,000 BP) stone artifacts include flake and blade cores, large flakes, large blades, scrapers, points, denticulates, and burins (Figure 3). The Middle Upper Paleolithic (25,000-16,000 BP) is dominated by large flake cores and a flake tool industry. Late Upper Paleolithic (16,000-12,000 BP) and Early Holocene (12,000-9,000 BP) forms are dominated by micro-blades, wedge-shaped and prismatic micro-blade cores, small flake tools, endscrapers, sidescrapers, points, and burins.

Stone raw materials are locally abundant on hillside outcrops and in streambed gravels. Each produce conchoidal fractures and are similar in texture and color, making field identification at times cumbersome, consisting of very fine-grained and dark gray: metamorphic sedimentary rocks (orthoquartzite/sandstone and, rarely, flint/chert and red jasper), foliated metamorphic sedimentary rocks (aleurolite/siltstone), and aphanitic igneous rocks (basalt and rhyolite). Chert-like aleurolite is the dominate stone-type selected for flaked stone tools, followed by very fine-grained orthoquartzite.

In 2014, excavations at the Upper Paleolithic site, Kharganyn-5, continued under the direction of Sergei Gladyshev with Evgeny Rybin, Tsedendorj Bolorbat, and others from the Institute of Archaeology and Ethnography, Novosibirsk, Russia, and Institute of

Figure 1: Map of all recorded Paleolithic and early Holocene sites (n=63) and the 10-kilometer catchment survey area. (Drawing courtesy of Christopher Gillam)
Three sites discovered along the Kharganyn River offer perhaps the greatest potential for understanding the earliest peoples of the region. Khargany-11, -12 and -13 (Figure 1) all contain potentially stratified Early Upper Paleolithic components (40k-25k BP), while Khargany-13 is possibly unique with the discovery of a probable Middle Paleolithic Levallois Point Core on the surface of the site (ca. 45k BP). The Levallois technique is most commonly associated with European Neanderthal Mousterian stone tool technology, but in recent decades has been demonstrated to have been used by archaic and early modern humans in Europe, the Near East, northern/eastern Africa and western Asia. Although some possible finds of Levallois technology have been noted in Mongolia’s Gobi Desert further south, none of those sites have stratified cultural remains to confirm their cultural affiliation. As such, Tolbor-13 has the potential to be one of the most significant cultural sites in the entire region, with global significance for understanding the complex cultural interactions and migrations of the Pleistocene (e.g., Lycett and Norton 2010). Of course, as is the norm for archaeological expeditions worldwide, this discovery was made on the final day of fieldwork, so testing of the site for stratified remains will have to wait for the next scheduled field season in 2016. We’ll keep you posted!

Acknowledgements
This research is gratefully supported by the Russian Foundation for Basic Researches (Grant #12-06-00037a), Mongolian Academy of Sciences’ Institute of Archaeology, Joint Mongolian-Russian-American Archaeological Expedition (JMRAAE) of the University of Arizona, and the Savannah River Archaeological Research Program (SRARP) of SCIAA-USC.

References Cited

Legacy, Vol. 18, No. 2, December 2014