University of South Carolina Scholar Commons

Faculty Publications

Biological Sciences, Department of

2010

Evolution of an MHC Class La Gene Fragment in Four North American *Morone* Species

J. X. Liu

Bert Ely University of South Carolina - Columbia, ely@sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/biol_facpub

Part of the Biology Commons

Publication Info

Postprint version. Published in *Journal of Fish Biology*, Volume 76, 2010, pages 1984-1994.

This Article is brought to you by the Biological Sciences, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.

1	Evolution of an MHC class Ia gene fragment in four North American Morone
2	species
3	Jin-Xian Liu, Bert Ely*
4	Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
5	
6	*Author to whom correspondence should be addressed
7	Tel.: 803-777-2768; Fax: 803-777-4002; email: <u>ely@sc.edu</u>
8	
9	Running head: Complex MHC evolution in Morone species
10	

11 Abstract

12

13 The deep evolutionary history of MHC allelic lineages provides an opportunity to study 14 the accumulation of mutations over a long time scale. In the present study, a sequence analysis of 15 a fragment of an MHC class Ia gene was performed in four North American *Morone* species and 16 39 flanking region alleles was identified among 45 individuals. Furthermore, an analysis of the 17 evolutionary dynamics of these alleles along with two microsatellite loci (SB83 and SB84) in 18 this region provided evidence for gene duplications and extensive trans-species polymorphism. 19 Although high levels of polymorphism were detected in *M. saxatilis* (striped bass), *M. americana* (white perch), and *M. mississippiensis* (yellow bass), extremely low levels of MHC diversity 20 21 were detected in *M. chrysops* (white bass), suggesting the possibility of a severe population 22 bottleneck for this species. The perfect microsatellite, SB83, showed extensive length variability 23 among alleles. Polarity of base substitutions within repeats of SB83 was also detected. The 24 structure of the short interrupted compound locus, SB84, also has evolved primarily by repeat 25 duplications. Unlike SB83, however, the alleles of SB84 correlate with the microsatellite 26 flanking region allelic lineages, indicating that SB84 has evolved more slowly than SB83. 27 28 Key words: MHC, *Morone*, microsatellite, trans-species polymorphism, gene duplication, 29 population bottleneck 30 31 Introduction 32 33 34 The major histocompatibility complex (MHC) of jawed vertebrates is a multigene family

35 involved in antigen presentation to immune system (Klein, 1986). A striking feature of MHC is

the extensive allelic polymorphism found in many of its genes that is thought to be maintained by pathogen-driven balancing selection (Hughes & Yeager, 1998). Allelic lineages of MHC can persist over long periods of evolutionary time, even across multiple speciation events, resulting in trans-species polymorphisms (Klein *et al.*, 1998a). The deep evolutionary history of the MHC allelic lineages provides an opportunity to study the historical accumulation of mutations over a long time scale.

42 Microsatellites are short tandemly repeated sequence motifs (1-6 nucleotides) found 43 throughout the genomes of many higher organisms (Tautz, 1993; Schlötterer, 2000; Ellegren, 44 2004). Due to their hypervariability and ubiquitous occurrence, microsatellites are widely used in 45 an impressive number of biological applications such as parentage analysis, gene mapping, and 46 assessments of population structure (Schlötterer & Pemberton, 1994; Goldstein & Schlötterer, 47 1999). In recent years, much has been learned about the complex mutational process of 48 microsatellites. DNA replication slippage has been described as the primary mechanism causing 49 variation in the repeat number of microsatellites (Schlötterer & Tautz, 1992; Ellegren, 2000). 50 Base substitution has played an essential role in microsatellite contractions, by breaking long 51 repeat arrays into smaller units (Kruglyak et al., 1998), but few studies have elucidated the 52 nature of base substitutions (interruptions) in microsatellite evolution (Brohede & Ellegren, 1999; 53 Varela et al., 2008). Moreover, the genesis of microsatellites still remains a matter of debate 54 (Schlötterer, 2000; Buschiazzo & Gemmell, 2006). Microsatellites are assumed to arise via the 55 creation of a proto-microsatellite, i.e. a short intermediate stage with as few as 3 or 4 repeat units, 56 which is thought to be the substrate for further expansion (Schlötterer, 2000; Buschiazzo & 57 Gemmell, 2006). The mechanism underlying the genesis and length expansion of short proto-58 microsatellites, however, is still not fully understood. Results of early studies indicated that short

proto-microsatellites are highly stable and do not mutate by DNA replication slippage (Messier *et al.*, 1996; Rose & Falush, 1998). Further studies, however, concluded that microsatellites with
few repeats could gain and lose repeat units (Pupko & Graur, 1999; Zhu *et al.*, 2000; Dieringer &
Schlötterer, 2003).

63 The genus *Morone* is comprised of four species found in North America, including a pair 64 of closely related species, Morone americana (Gmelin) and Morone mississippiensis Jordan & 65 Eigenmann, and their relatives *Morone saxatilis* (Walbaum) and *Morone chrysops* (Rafinesque). 66 The *Morone* species supported valuable commercial and recreational fisheries. The diversity of 67 MHC is important in the immune diversity of populations. However, no analysis of MHC diversity has been conducted in Morone species. In this study, a sequence analysis of a fragment 68 69 of an MHC class Ia gene was performed in the four Morone species. The fragment was from a 70 genomic clone of striped bass, initially developed as a marker for population genetic analysis 71 (Leclerc *et al.*, 1996). When the sequence was subjected to a homology search against the five 72 available ENSEMBL teleost whole genome database, hits on 3' downstream sequences of 73 multiple MHC class Ia genes on groupX of the three-spined stickleback, Gasterosteus aculeatus 74 L. genome were detected. The sequence was then blasted against the NCBI EST database, it was 75 found that the whole fragment was transcripted, and the ESTs were from European seabass 76 Dicentrarchus labrax L. tissues infected with V. anguillarum or Nodavius. All evidence 77 demonstrated that the fragment was in the 3' untranslated region of an Morone MHC class Ia 78 gene. Two microsatellite loci were identified in this region. One, designated SB83, is a perfect 79 microsatellite and the other, designated SB84, is a short interrupted compound repeat (Fig. 1). 80 The primary objectives of this study were: 1) to analyze the allelic variation of the MHC 81 class Ia fragment in the four *Morone* species; 2) to test whether there is trans-species evolution

82	among the Morone species; 3) to investigate patterns of mutations of the two closely linked
83	microsatellite loci by superimposing the microsatellite sequence onto a phylogenetic tree
84	constructed from the microsatellite flanking regions (MFR).
85	
86	Materials and methods
87	
88	Sample collection and DNA extraction
89	
90	Striped bass, <i>M. saxatilis</i> (n=17), were collected from the Congaree River in South
91	Carolina during the spawning season of 1994 and the Hudson River in New York in 1997. White
92	bass, <i>M. chrysops</i> (n=10), were sampled from North Carolina in 1992 and from the Ohio River in
93	Ohio in 2000. White perch, <i>M. americana</i> (n=13), were collected from North Carolina in 2000,
94	from the Choptank River in Maryland and from the Congaree River in South Carolina in 1992.
95	Yellow bass, <i>M. mississippiensis</i> (n=5) were obtained from Caddo Lake in Texas in 2008 and
96	from the Mississippi River in Louisiana during the spring of 1991. A specimen of European
97	Seabass, Dicentrarchus labrax, L. collected from Marseilles, France in 1995 was included as an
98	outgroup in the phylogenetic analysis. Genomic DNA was isolated from fin clips by DNAzol
99	Genomic DNA Isolation Reagent (DN 127, Molecular Research Center, Cincinnati, Ohio) after a
100	proteinase K digest.
101	
102	SB83 microsatellite analysis

104	Replication errors occurred during the amplification of perfect microsatellites due to
105	Slipped-Strand Mispairing. To assist defining of the alleles, a primer pair (FT38, 5' -
106	TGGGCCTGATTGGAATCAAAA - 3' and FT36, 5' - GATAGGTTGTATCAATGTTGC - 3')
107	was developed to amplify a fragment containing the SB83 microsatellite and 140 bp of the
108	flanking region (Fig. 1). Polymerase chain reaction (PCR) amplification was carried out in a 25
109	μ L reaction containing 1.0 μ L DNA, 2.5 μ L 10× buffer (New England Biolabs, Beverly, MA),
110	1mM MgCl ₂ , 50 μ M of each dNTP, 0.2 μ M forward primer (FT38 with a 5' fluorescent FAM
111	label; Integrated DNA Technologies, Coralville, IA), 0.2 μ M reverse primer (FT36), and 1.0 U
112	Taq DNA polymerase (New England Biolabs, Beverly, MA). Thermal cycling parameters were:
113	95 °C for 3 min, then 35 cycles each at 94 °C for 20 s, 54 °C for 20 s and 72 °C for 30s, followed
114	by 1 cycle of final elongation at 72 °C for 10 min. Amplified products were run on an ABI
115	PRISM 3130 DNA analyzer with a CXR size standard (Promega, Madison, WI). Allele scoring
116	was performed using GENEMAPPER software version 4.0 (Applied Biosystems, Foster City,
117	CA).
118	
119	Amplification, cloning and sequencing of the SB83/84 region
120	
121	The entire region encompassing both microsatellite loci and their flanking regions was
122	amplified using primers FT38N 5' - CCCAAGCTTGGGGCCTGATTGGAATCAAAA - 3' and
123	FT16N 5'- CCGGAATTCCGGCACTTCCTATACGTACATAGT - 3', with restriction-sites for
124	EcoRI or HindIII (sequence underlined) near the 5'-ends (Fig. 1). The primers were designed
125	according to a striped bass genomic clone sequence (Leclerc et al., 1996). PCR was carried out
126	in 50µL reactions containing 1.0 µL DNA, 10.0 µL 5× Phusion HF buffer, 50 µM of each dNTP,

127 0.2 µM forward and reverse primers, and 1.0 U Physion high-fidelity DNA polymerase 128 (FINNZYMES, Espoo, Finland). The thermal cycling profile was 98 °C for 30 s, then 30 cycles 129 each at 98 °C for 10 s, 54 °C for 20 s and 72 °C for 20 s, plus a final extension step at 72 °C for 5 130 min. Amplification products were purified by GenElute PCR DNA Purification Kit (SIGMA, St. 131 Louis, MO) and double digested with *Eco*RI and *Hind*III (New England Biolabs, Beverly, MA). 132 The double digest product was purified by GenElute PCR DNA Purification Kit and ligated into 133 pBluescript II SK + vector with T4 DNA ligase (New England Biolabs, Beverly, MA). Ligated 134 product was transformed into Escherichia coli strain XL1-Blue (Stratagene, La Jolla, CA) and 135 plated on LB agar containing 100 mg/L ampicillin, spread with 40 mL of 40 mg/mL X-gal and 136 40 mL of 100 mM IPTG. Eight to eighteen white clones were randomly picked for each sample 137 and grown in 2 mL LB medium at 37 °C for 24 hours. The plasmid DNA was isolated by 138 GenElute Plasmid Mini-Prep Kit (SIGMA, St. Louis, MO), and the insert was sequenced using 139 BigDye terminator Cycle Sequencing Kit with both M13 and M13 reverse primers on a 3730 140 DNA analyzer (Applied Biosystems, Foster City, CA). 141 142 Sequence analysis 143 144 Nucleotide sequences were aligned and edited using DNAStar software (DNAStar, 145 Madison, WI). Discrepancies in the number of repeat units in the SB83 microsatellite occurred 146 because of replication errors that occurred during amplification. Therefore, the result from the 147 prior SB83 microsatellite analysis was considered to be the correct number of repeats since no 148 cloning was involved in that analysis. The single base changes arising during PCR and the

149 products produced by PCR-mediated recombination were identified by repeating the cloning and

150	sequencing experiments. Clones produced in each of the two independent experiments were
151	considered to represent true alleles. The nucleotide sequences of the 39 confirmed flanking
152	region alleles and the European seabass sequence have been deposited in GenBank (accession
153	numbers (GQ497674- GQ497713).
154	
155	Phylogenetic trees were reconstructed using the neighbor-joining method implemented in
156	MEGA 4.0 software (Tamura et al., 2007). Since microsatellite loci are subject to recurrent
157	mutation, only the flanking region sequences were used to infer phylogenetic relationships
158	among alleles. The neighbor-joining tree was reconstructed based on Kimura's two-parameter
159	distances and the pairwise deletion option. Bootstrap tests (2000 replicates) were performed to
160	establish the reliability of the inferred topologies.
161	
162	Results
163	
164	Molecular diversity of the SB83-SB84 region
165	
166	A total of 547 clones derived from the genomic DNA of 45 individuals from the four
167	species of Morone were analyzed. A total of 39 microsatellite flanking region (MFR) alleles
168	were detected. Extensive sequence diversity was detected both within and among individuals in
169	the genera M. saxatilis, M. americana, and M. mississippiensis. The number of different alleles
170	per individual ranged from 1 to 4 in <i>M. saxatilis</i> and <i>M. americana</i> , and 2 to 3 in <i>M</i> .
171	mississippiensis suggesting that the locus might be duplicated in these species (Table I). In
172	contrast, the sequence diversity in <i>M. chrysops</i> was comparatively low with only two MFR

173	alleles that differed at a single nucleotide position observed in ten individuals. Only one allele
174	was detected in the single specimen of <i>D. labrax</i> that was analyzed to provide an outgroup.
175	Phylogenetic analysis of the Morone MFR alleles indicated trans-species polymorphisms, with
176	both allelic lineages and alleles shared between species (Fig. 2).
177	
178	Microsatellite evolution
179	
180	The perfect microsatellite SB83 is highly polymorphic and mutates at a faster rate than
181	the associated MFR. SB83 showed extensive length variability both within MFR allelic lineages
182	and among individuals with the same MFR allele (Fig. 2). The number of uninterrupted repeat
183	units varied from 7 to 33. In addition to length variation, five distinct interrupted repeats
184	resulting from six different base substitutions were detected in 10 individuals among the Morone
185	species sampled (Fig. 2). A preference for base substitution of G residues compared to T residues
186	in the repeat was observed. Of the six base substitutions observed, five involved substitutions of
187	a G and only one involved a substitution of a T (Fig. 2).
188	
189	Sequencing analysis revealed 15 alleles of the SB84 microsatellite that included four
190	variable parts: (GT)x, GCYY, (GT)y, and (AT)z. The number of repeat units in the (GT)x
191	component ranged from 3 to 6. An (AT \rightarrow GT) mutation at the 5' flanking region resulted in the
192	addition of one repeat unit to the (GT)5 and (GT)6 alleles. The GCYY segment included two
193	different transitions in the last two nucleotides of the GCYY sequence resulting in 3 different 4-
194	base sequences. In addition, the GCYY segment was absent from the MFR MameMmis03 allele.
195	The number of uninterrupted repeat units in the (GT)y component of SB84 varied from 0 to 9.

	Interruptions resulting from base substitutions in (GT)y were detected in three SB84 alleles.
197	Similarly, the terminal (AT)z sequence contained 0 to 3 repeats. Three alleles of SB84 lacked
198	both the (GT)y and (AT)z segments entirely. Unlike SB83, the alleles of SB84 correlate with the
199	MFR allelic lineages (Fig. 2). Thus, SB84 has a slower mutation rate than the perfect SB83
200	repeat. The exception to the MFR lineage correlation was that three alleles of SB84 were found
201	in more than one MFR allelic lineage, perhaps due to recombination between alleles. The
202	number of alleles of SB84 was high in <i>M. saxatilis</i> (7), <i>M. americana</i> (10), and <i>M.</i>
203	mississippiensis (6). However, only one SB84 allele was detected in 10 M. chrysops individuals
204	(Fig. 2).
205	
206	Discussion
207	
208	The phylogenetic analysis of the SB83 and SB84 flanking region sequences revealed
209	extensive trans-species polymorphisms, which is a typical feature of MHC genes (Klein et al.,
210	1998a). Trans-species persistence of allelic lineages at the MHC loci has also been documented
211	in other teleost fishes such as cichlids (Figueroa <i>et al.</i> 2000), cyprinids (Graser <i>et al.</i> 1996;
	in other tereost rishes, such as creatings (Figuerou et al., 2000), cyprintes (Gruser et al., 1990,
212	Ottová <i>et al.</i> , 2005), and salmonids (Aguilar & Garza, 2007). In addition, gene duplication has
212 213	Ottová <i>et al.</i> , 2005), and salmonids (Aguilar & Garza, 2007). In addition, gene duplication has played a crucial role during the evolution of the MHC gene family. The MHC genes have been
212 213 214	Ottová <i>et al.</i> , 2005), and salmonids (Aguilar & Garza, 2007). In addition, gene duplication has played a crucial role during the evolution of the MHC gene family. The MHC genes have been subjected to repeated cycles of expansions and contractions during their evolution, and as a
212 213 214 215	Ottová <i>et al.</i> , 2005), and salmonids (Aguilar & Garza, 2007). In addition, gene duplication has played a crucial role during the evolution of the MHC gene family. The MHC genes have been subjected to repeated cycles of expansions and contractions during their evolution, and as a consequence, a given region may harbor multiple highly related genes (Klein <i>et al.</i> , 1993).
 212 213 214 215 216 	Ottová <i>et al.</i> , 2005), and salmonids (Aguilar & Garza, 2007). In addition, gene duplication has played a crucial role during the evolution of the MHC gene family. The MHC genes have been subjected to repeated cycles of expansions and contractions during their evolution, and as a consequence, a given region may harbor multiple highly related genes (Klein <i>et al.</i> , 1993). Furthermore, the number of genes in each MHC class and subclass has been shown to vary
 212 213 214 215 216 217 	Ottová <i>et al.</i> , 2005), and salmonids (Aguilar & Garza, 2007). In addition, gene duplication has played a crucial role during the evolution of the MHC gene family. The MHC genes have been subjected to repeated cycles of expansions and contractions during their evolution, and as a consequence, a given region may harbor multiple highly related genes (Klein <i>et al.</i> , 1993). Furthermore, the number of genes in each MHC class and subclass has been shown to vary considerably from species to species, and often within species (Klein <i>et al.</i> , 1998b). Genomic

teleost fish species (Clark *et al.*, 2001). For example, in East African cichlid fishes, the number
of MHC class II B loci per haplotype varies from individual to individual, ranging from 1 to 13
(Málaga-Trillo *et al.*, 1998). Similarly, more than two alleles per individual were detected in
some individuals of *M. saxatilis*, *M. americana*, and *M. mississippiensis*, indicating that this
locus was duplicated either in some individuals or in all individuals in these species.

224

225 Both striped bass and white bass have low levels of polymorphisms compared to other 226 species of fish (Rogier et al., 1985; Leclerc et al., 1996; Diaz et al., 1998; White, 2000; Han & 227 Ely, 2002). However, the level of polymorphism is five times lower in white bass than in striped 228 bass (Han & Ely, 2002). Similar results were obtained in this study where white bass had 229 extremely lower levels of polymorphism than any of the other *Morone* species. In most species, a 230 high level of genetic diversity has been maintained at the MHC locus by balancing selection 231 (Hughes & Yeager, 1998). The lower levels of polymorphism suggest that a dramatic population 232 bottleneck may have reduced the MHC diversity in white bass. Low levels of MHC 233 polymorphism have been reported among other species known to have gone through population 234 bottlenecks (Mikko & Andersson, 1995; Mikko et al., 1999; Miller & Lambert, 2004; Wan et al., 235 2006; Mainguy et al., 2007).

236

Identical numbers of SB83 repeats were observed in different MFR allelic lineages both in the same species and in different *Morone* species (Fig. 2). Thus, contemporary SB83 allele sizes cannot be used to reconstruct the evolutionary history of this complex locus. Polarity of base substitutions within the repeats of SB83 also was observed. Two substitutions occurred at a terminal repeat and the other three substitutions occurred in the fourth or fifth repeat from an end.

242 Similar results were reported in previous studies focusing on base substitution within 243 microsatellite repeat arrays. Through sequence analysis of 22 orthologous bovine and ovine 244 (CA)n loci, Brohede & Ellegren (1999) found that the substitution rate in the end of 245 microsatellites was significantly higher than that in the middle of repeat regions. These authors 246 proposed three models that could account for the relatively high mutation rate at the ends of the 247 arrays, all of which were associated with the inefficiency of the mismatch repair system during 248 either replication or recombination. Varela et al. (2008) explored the distribution of interruptions 249 in dinucleotide repeats from the human genome and found that the interruptions tended to be 250 towards the ends of microsatellites as well. Another feature of SB83 is that five of the six 251 observed base substitutions occurred at a G in the SB83 microsatellite. A similar result was 252 observed in dinucleotide repeats of human genome. Varela et al. (2008) found that mutations 253 involving the substitution of C were approximately 3 times more frequent than those involving 254 substitutions of A in (AC)10.

255

In contrast to SB83, SB84 is a compound system of repeats with a complex mutation pattern and a slower rate of evolution. Several alleles of SB84 were found in more than one species suggesting that the complexity at this locus predates speciation. Also, three SB84 alleles were shared by distantly-related flanking region alleles suggesting that intragenic recombination may play a role in generating diversity in the SB83/SB84 region as well.

261

In conclusion, high levels of allelic diversity and gene duplication were detected in the MHC class Ia fragment of *M. saxatilis*, *M. americana*, and *M. mississippiensis*. Extremely low levels of diversity were detected in *M. chrysops*, which could be the result of severe population

265	bottleneck. Extensive trans-species polymorphisms were demonstrated among the Morone
266	species. Theses results suggested that patterns of allelic variation of the MHC class Ia fragment
267	in the Morone species were regulated by balancing selection. Both repeat duplications and
268	polarity of base substitutions were detected in the perfect microsatellite locus, SB83. However,
269	the short interrupted compound locus, SB84, evolved primarily by repeat duplications and more
270	slowly than SB83.
271	
272	Acknowledgements
273	
274	We thank Jeremy Dietrick and Kurt Ash for technical assistance, Billy Carter for
275	providing yellow bass samples, and the two anonymous reviewers for their valuable comments.
276	This work was supported in part by FISHTEC grant NOAA-NMFS RT/F-1.
277	
278	References
279	Aguilar, A. & Garza, J.C. (2007) Patterns of historical balancing selection on the salmonid major
280	histocompatibility complex class II β gene. <i>Journal of Molecular Evolution</i> , 65 , 34-43.
281	doi: 10.1007/s00239-006-0222-8
282	Brohede, J. & Ellegren, H. (1999) Microsatellite evolution: polarity of substitutions within
283	repeats and neutrality of flanking sequences. Proceedings of the Royal Society of London.
284	Serials B: Biological Sciences 266, 825-833.
285	Buschiazzo, E. & Gemmell, N.J. (2006) The rise, fall and renaissance of microsatellites in
286	eukaryotic genomes. BioEssays 28, 1040-1050. doi: 10.1002/bies.20470

288	I region of the Japanese pufferfish (Fugu rubripes). Immunogenetics 52, 174-185. doi:
289	10.1007/s002510000285
290	Diaz, M., Macpherson, J. & Ely, B. (1998) Striped bass population subdivision within the
291	Santee-Cooper system, South Carolina. Molecular Marrine Biology and Biotechnology
292	7(3), 191-196.
293	Dieringer, D. & Schlötterer, C. (2003) Two distinct modes of microsatellite mutation processes:
294	evidence from the complete genomic sequences of nine species. Genome Research 13,
295	2242-2251. doi: 10.1101/gr.1416703
296	Ellegren, H. (2000) Microsatellite mutations in the germline: implications for evolutionary
297	inference. Trends in Genetics 16, 551-558. doi: 10.1016/S0168-9525(00)02139-9
298	Ellegren, H. (2004) Microsatellites: simple sequences with complex evolution. Nature Review
299	Genetics 5, 435-445. doi: 10.1038/nrg1348
300	Figueroa, F., Mayer, W.E., Sültmann, H., O'hUigin, C., Tichy, H., Satta, Y., Takezaki, N.,
301	Takahata, N. & Klein, J. (2000) Mhc class II B gene evolution in East African cichlid
302	fishes. Immunogenetics 51, 556-575. doi: 10.1007/s002510000181
303	Goldstein, D.B. & Schlötterer, C. (1999) Microsatellites: Evolution and Applications. Oxford
304	University Press, USA.
305	Graser, R., O'hUigin, C., Vincek, V., Meyer, A. & Klein, J (1996) Trans-species polymorphism
306	of class II Mhc loci in danio fishes. Immunogenetics 44, 36-48. doi: 10.1007/BF02602655
307	Han, K. & Ely, B. (2002) Use of AFLP analyses to assess genetic variation in Morone and
308	Thunnus species. Marine Biotechnology 4, 141-145. doi: 10.1007/s10126-001-0080-8

Clark, M.S., Shaw, L., Kelly, A., Snell, P. & Elger, G. (2001) Characterization of the MHC class

309	Hughes, A.L. & Yeager, M. (1998) Natural selection at major histocompatibility complex loci of					
310	vertebrates. Annual Review of Genetics 32, 415-435. doi: 10.1146/annurev.genet.32.1.41					
311	Klein, J. (1986) Natural history of the Major Histocompatibility Complex. New York: Wiley.					
312	Klein, J., Ono, H., Klein, D. & O'hUigin, C. (1993) The accordion model of Mhc evolution. In:					
313	Gergely, J., Petranyi, G. (Eds), Progress in Immunology. Heidelberg: Springer-Verlag, pp.					
314	137-143					
315	Klein, J., Sato, A., Nagl, S. & O'hUigin, C. (1998a) Molecular trans-species polymorphism.					
316	Annual Review of Ecology and Systematics 29, 1-21. doi: 10.1146/annurev.ecolsys.29.1.1					
317	Klein, J., Sato, A. & O'hUigin, C. (1998b) Evolution by gene duplication in the major					
318	histocompatibility complex. Cytogenetics and Cell Genetics 80, 123-127. doi:					
319	10.1159/000014967					
320	Kruglyak, S., Durrett, R.T., Schug, M.D. & Aquadro, C.F. (1998) Equilibrium distributions of					
321	microsatellite repeat length resulting from a balance between slippage events and point					
322	mutations. Proceedings of the National Academy of Sciences of the United States of					
323	America 95 , 10774-10778.					
324	Leclerc, G.M., Diaz, M. & Ely, B. (1996) Use of PCR-RFLP assays to detect genetic variation at					
325	single copy nuclear loci in striped bass (Morone saxatilis). Molecular Marine Biology					
326	and Biotechnology 5(2), 138-144.					
327	Mainguy, J., Worley, K., Côté SD. & Coltman, D.W. (2007) Low MHC DRB class II diversity in					
328	the mountain goat: past bottlenecks and possible role of pathogens and parasites.					
329	Conservation Genetics 8, 885-891. doi: 10.1007/s10592-006-9243-5					

- 330 Málaga-Trillo, E., Zaleska-Rutczynska, Z., McAndrew, B., Vincek, V., Figueroa, F., Sültmann,
- H. & Klein, J. (1998) Linkage relationships and haplotype polymorphism among cichlid
 MHC class II B loci. *Genetics* 149, 1527-1537.
- 333 Messier, W., Li, S.H. & Stewart, C.B. 1996. The birth of microsatellites. *Nature* 381, 483.
- 334 Mikko, S. & Andersson, L. (1995) Low major histocompatibility complex class II diversity in
- European and North American moose. *Proceedings of the National Academy of Sciences*of the United States of America **92**, 4259-4263.
- 337 Mikko, S., Røed, K., Schmutz, S. & Andersson, L. (1999) Monomorphism and polymorphism at
- 338 Mhc DRB loci in domestic and wild ruminants. *Immunological Reviews* **167**, 169-178.
- doi: 10.1111/j.1600-065X.1999.tb01390.x
- 340 Miller, H.C. & Lambert, D.M. (2004) Genetic drift outweighs balancing selection in shaping
 341 post-bottleneck major histocompatibility complex variation in New Zealand robins
- 342 (Petroicidae). *Molecular Ecology* **13**, 3709-3721. doi: 10.1111/j.1365-
- 343 294X.2004.02368.x
- 344 Ottová, E., Šimková, A., Martin, J-F., Bellocq, J.G.de, Gelnar, M., Allienne, J.F. & Morand, S.
- 345 (2005) Evolution and trans-species polymorphism of MHC class IIβ genes in cyprinid
- 346 fish. Fish & Shellfish Immunology 18, 199-222. doi: 10.1016/j.fsi.2004.07.004
- 347 Pupko, T. & Graur, D. (1999) Evolution of microsatellites in the yeast *Sacharomyces cerevisiae*:
- role of length and number of repeated units. *Journal of Molecular Evolution* 48, 313-316.
 doi: 10.1007/PL00006474
- 350 Rogier, C.G., Ney, J.J. & Turner, B.J. (1985) Electrophoretic analysis of genetic variability in a
- 351 landlocked striped bass population. *Transactions of the American Fisheries Society* **114**,
- 352 244-249.

353	Rose, O. & Falush, D. (1998) A threshold size for microsatellite expansion. <i>Molecular Biology</i>				
354	and Evolution 15,613-615.				
355	Schlötterer, C. & Tautz, D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids				
356	Research 20, 211-215.				
357	Schlötterer, C. & Pemberton, J. (1994) The use of microsatellites for genetic analysis of natural				
358	populations. In: Schierwater, B., Streit, B., Wagner, G., DeSalle, R., (Eds), Molecular				
359	ecology and evolution: approaches and applications. Birkhäuser Verlag, Basel,				
360	Switzerland, pp. 203-214.				
361	Schlötterer, C. (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365-371				
362	doi: 10.1007/s004120000089				
363	Tautz, D. (1993) Notes on the definition and nomenclature of tandemly repetitive DNA				
364	sequences. In: Pena, S.D.J., Chakraborty, R., Epplen, J.T., Jeffreys, A.J., (Eds), DNA				
365	fingerprinting: State of the Science. Birkhäuser Verlag, Basel, Switzerland, pp. 21-28.				
366	Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetic				
367	Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596-1599				
368	Varela, M.A., Sanmiguel, R., Gonzalez-Tizon, A. & Martinez-Lage, A. (2008) Heterogeneous				
369	nature and distribution of interruptions in dinucleotides may indicate the existence of				
370	biased substitutions underlying microsatellite evolution. Journal of Molecular Evolution				
371	66, 575-580. doi: 10.1007/s00239-008-9107-3				

- Wan, Q.H., Zhu, L., Wu, H. & Fang, S.G. (2006) Major histocompatibility complex class II
 variation in the giant panda (*Ailuropoda melanoleuca*). *Molecular Ecology* 15, 2441-
- 374 2450. doi: 10.1111/j.1365-294X.2006.02966.x

- White, M.M. (2000) Genetic variation in white bass. *Transactions of the American Fisheries Society* 129, 879-885.
- 377 Zhu, Y., Strassmann, J.E. & Queller, D.C. (2000) Insertions, substitutions, and the origin of
- 378 microsatellites. *Genetical Research* **76**, 227-236.

379

Table I, List of samples analyzed in the present study. The number of clones sequenced, alleles,
and name of Microsatellite flanking region (MFR) alleles were also shown. The MFR sequence
designations were defined by their organism origins. Species are designated by four-letter
abbreviations of the Latin names (one from the first letter of genus name and three from the first
three letters of species name, e.g. *Msax* for *Morone saxatilis*).

Specimen	Sample location	Numb er clones sequen ced	Numb er of alleles	Name of MFR alleles
М.				
mississippiensis-	Mississippi River,			
01	LA	12	3	Mmis04, Mmis01, MsaxMmis01
М.				
mississippiensis-	Mississippi River,			
02	LA	8	2	Mmis04
<i>M</i> .				
mississippiensis-		10		Mmis03, MameMmis01,
03	Caddo Lake, TX	12	3	MameMmis03
<i>M</i> .				
mississippiensis-	Cadda Laka TV	10	2	Mmis02 MameMmis01, MohrMmis01
04 M	Caudo Lake, 1A	10	3	Michrieffiniso1,
mississinniensis-				MameMmis()1 MameMmis()2
05	Caddo Lake, TX	12	3	MchrMmis01, Mamemmis02, MchrMmis01.
M. chrysops-01	North Carolina	10	1	Mchr01
M. chrysops-02	North Carolina	8	1	Mchr01
M. chrysops-03	North Carolina	8	2	MchrMmis01. Mchr01
M. chrysops-04	North Carolina	8	1	MchrMmis01
M. chrysops-05	North Carolina	8	1	Mchr01
M. chrysops-06	North Carolina	8	2	Mchr01
M. chrysops-07	North Carolina	8	1	MchrMmis01
M. chrysops-08	Ohio River, OH	8	2	Mchr01
M. chrysops-09	Ohio River, OH	8	1	Mchr01
M. chrysops-10	Ohio River, OH	8	2	MchrMmis01
<i>J</i> 1	Congaree River,			
M. americana-01	SC	12	2	Mame1, Mame16
Mamoriaan = 02	Congaree River,	10	2	
<i>M</i> . <i>americana</i> -02	SC Congaroo Piyor	10	2	MameMmis01, Mame11
M. americana-03	SC	8	1	Mame06

M americana-04	Congaree River,	12	3	Mame07 Mame08 MameMmis03
m. americana 04	Congaree River,	12	5	MameO', MameO', MameMinisos MameMiso1, Mame4, Mame5,
M. americana-05	SC	12	4	Mame9
M. americana-06	North Carolina	12	3	Mame01, Mame16
M. americana-07	North Carolina	10	3	Mame02, Mame12, Mame15
M. americana-08	North Carolina	12	2	Mame03, MameMmis03
	Choptank River,			
M. americana-09	MD	14	4	Mame10, Mame16, MameMmis03
M amaricana 10	Choptank River,	1.4	4	MameMmis02, Mame13, Mame14,
M. americana-10	MD Choptank River	14	4	MameMmis03 MameMmis02 Mame16
M. americana-11	MD	12	3	MameMmis02, Mame10, MameMmis03
	Choptank River.	12	5	mamemmisos
M. americana-12	MD	8	4	MameMmis02, MameMmis03
	Choptank River,			
M. americana-13	MD	10	3	Mame02, Mame12, Mame15
M	Congaree River,		2	
M. saxatilis-01	SC Comorana Direct	24	3	Msax08, Msax13
M savatilis-02	Congaree River,	22	3	Msar04 Msar07 Msar00
111. Saxaiiiis 02	Congaree River	22	5	Msax04, Msax07, Msax09
M. saxatilis-03	SC	24	2	Msax04, Msax13
	Congaree River,			
M. saxatilis-04	SC	12	2	Msax04, MsaxMmis01
	Congaree River,			
M. saxatilis-05	SC	23	2	Msax12, Msax13
M savatilis_06	Congaree River,	12	2	Maar 14 Maar 12
т. залиннз-00	SC Congaree River	12	Z	MISUX04, MISUX15
M. saxatilis-07	SC	12	2	Msax09. Msax11
	Congaree River,		_	
M. saxatilis-08	SC	12	2	Msax09, Msax11
	Congaree River,			
M. saxatilis-09	SC	8	2	Msax02, Msax03
M savatilis 10	Hudson River,	12	2	Manage Manage 1
<i>IVI. SUXUIIIIS</i> -10	IN I Hudson River	12	2	MSax08, MSaxMMIS01
M. saxatilis-11	NY	12	3	Msax07. Msax08. MsaxMmis01
	Hudson River,		U	
M. saxatilis-12	NY	12	3	Msax05, Msax09
	Hudson River,			
M. saxatilis-13	NY	12	2	Msax09, Msax10
Manuallia 14	Hudson River,	10		
M. saxatilis-14	NY Uudaan Diwan	12	1	Msax01
M. saxatilis-15	NY	18	4	Msar05 Msar07 Msar09
	Hudson River.	10	т	moundo, moundo, moundo
M. saxatilis-16	NY	16	3	Msax06, Msax09, Msax10
	Hudson River,			
M. saxatilis-17	NY	12	2	Msax04, Msax09
D. labrax-01	Marseilles, France	10	1	Dlab01
		Total.		
		547		

2	0	0
J	7	7

	SB83	<u>SB84</u>	<u># obser</u> ved
	(GT)21	(GT)4GCCT(GT)4AT	1
Mame16	(GT)19.22	(GT)4GCCT	3
Mame13	(GT)19	(GT)4GCCT	1
Mame15		GT16GCCT	1
MameMmis03	(GT)18.21.29	(GT)5GCCT	5(5/0)
MameMmis03	(GT)18.20.25	(GT)6AT	6(5/1)
Mame10	(GT)15	(GT)4GCCT	1
MameMmis02	(GT)15.20	(GT)5GCCT	5(4/1)
Mame12	(GT)4CT(GT)25	(GT)4GCCT(GT)2CT(GT)3(AT)2	1
Mame11	(GT)21	(GT)5GCCT	1
[Mame09	(GT)17	(GT)5GCCT	1
1 - Mame08	(GT)17	(GT)5GCCT	1
L Mame07	(GT)22GC	(GT)4GCCT	3
Mame06	(GT)18	(GT)4GCCTGTAT	1
, Mmis04	(GT)8.11	(GT)4GCCT(GT)4AT	3
	(GT)12.13	(GT)4GCCT(GT)4AT	3
98 Mame04	(GT)13	(GT)4GCCT(GT)4AT	1
	Mame03(GT)10	GT14GCCT(GT16(AT12	1
- Mchr01	(GT)21,26	GT14GCCTGT12CTGT13(AT12	8
	(GT)21,22,24, 26	GT14GCCT(GT12CT(GT13(AT12	8(6/2)
□ ⁹⁹	(GT)24	GT)4GCCT(GT)2CT(GT)3(AT)2	1
Mame02	(GT)18	(GT)3GCCT(GT)2CT(GT)3(AT)2	1
MameMmis01	(GT)13,21	(GT)3GCCT(GT)2CT(GT)3(AT)2	5(2/3)
100 Mame01	(GT)22	(GT)3GCCT(GT)2CT(GT)3(AT)2	1
Mmis02	(GT)20	(GT)3GCCT(GT)2CT(GT)3(AT)2	1
⁸² Mmis01	(GT)7	(GT)4GCCT(GT)4AT	1
Msax13	(GT)13	(GT)4GCCT(GT)4AT	4
Msax12	(GT)21	(GT)4GCCT(GT)4AT	1
MsaxMmis01	(GT)19,21	(GT)4GCCT(GT)4AT	3(2/1)
98 [¬] Msa×Mmis01	(GT)23	(GT)4GCCT(GT)6(AT)2	1(1/0)
Msax09	(GT)14,19,21,24,29	(GT)4GCCT(GT)4AT	9
	(GT)14	(GT)4GCCT(GT)4AT	2
Msax11	(GT)24	(GT)4GCCT(GT)4AT	2
Msax08	(GT)11,12	(GT)4GCCT(GT)6(AT)2	4
Msax07	(GT)10AT(GT)2AT	(GT)4GCCT(GT)6AT	3
99 88 Msax06	(GT)10AT(GT)2AT	(GT)4GCCT(GT)3(AT)2	1
Msax05	(GT)13,15,29	(GT)4GCTT(GT)6(AT)3	3
	(GT)29	(GT)4GCTT(GT)6(AT)2	5
Msax03	(GT)17TT(GT)3	(GT)4GCCT(GT)9(AT)2	1
Msax02	(GT)33AT	(GT)4GCCC(GT)5TT(GT)4TT(AT)2	1
97 Msax01	(GT)17	(GT)4GCCC(GT)5TT(GT)4TT(AT)2	1
į	D/ab01TT(GT)14GCGTAT	(GT)3GCGCCT(GT)3TT(GT)2	1

Figure 2. Neighbor-joining tree based on 39 MFR sequences with both microsatellite sequences
superimposed. Observed instances of each flanking region sequence are shown. Nomenclature of
the flanking region alleles were designated as in Table I. Numbers in brackets indicates observed
numbers of MFR sequence in each species that shared that sequence.