4-1-2007

The Paleoindian Survey and Geographic Database of Uruguay

J. Christopher Gillam
University of South Carolina - Columbia, gillamc@mailbox.sc.edu

Rafael Suárez

Follow this and additional works at: http://scholarcommons.sc.edu/sciaa_staffpub

Part of the Anthropology Commons

Publication Info
Published in Legacy, Volume 11, Issue 1, 2007, pages 1&4-5.
http://www.cas.sc.edu/sciaa/
© 2007 by The South Carolina Institute of Archaeology and Anthropology

This Article is brought to you for free and open access by the Archaeology and Anthropology, South Carolina Institute of at Scholar Commons. It has been accepted for inclusion in Faculty & Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
The Paleoindian Survey and Geographic Database of Uruguay

By J. Christopher Gillam and Rafael Suárez

Similar to South Carolina, the archaeology of Ice Age/Pleistocene Paleoindian sites in Uruguay has seen many new discoveries in recent years. The Paleoindian Period of Uruguay is characterized by two early point types, Fishtail and Pay Paso, as well as by bifacial stone tools, preforms, blades, and formal uniface tools. The well-known Fishtail points, also known as Fell's Cave or Fell points elsewhere in the Southern Cone, occur with- or without-fluting and are widely distributed in Uruguay (Fig. 1: Suárez 2000, 2006). Pay Paso points, a recent point type from northwest Uruguay, have a triangular blade, a well-defined stem with concave base, and bilateral basal thinning (Fig. 2: Suárez 2003).

Located between 30- to 35-degrees south latitude, one would think that the Ice Age environment of Uruguay would be similar to South Carolina, which falls between 32- to 35-degrees north latitude (Fig. 3). Yet, this is not the case at all. Uruguay’s interior consists of gently rolling hills with low to moderate slopes, called cuchillas, dissected by numerous rivers and streams (Fig. 4). During the Pleistocene, this region was a...
more temperature grass- and shrub-land than today, with mixed deciduous forests bordering streams. This landscape would have provided diverse plants and animals for hunting and gathering by early people in an ever-changing environment. Unlike South Carolina, this landscape had more in common with the Plains Region of North America than the open boreal forests of our Atlantic Coast during the Ice Age. Similar to South Carolina, however, little is known about the coastal adaptations of these earliest cultures as the paleo-shoreline and coastal zone is now submerged over 60 miles (100 kilometers) east of the modern Atlantic coastline (Fig. 3). Including the mouth of the La Plata Basin, the subsequent land loss for Uruguay is over 25-percent of that available to early hunter-gatherers at 11,000 radiocarbon years before present (11,000 C-14 years B.P.; approximately -246 feet or -75 meters below mean sea level; Gillam et al. 2006).

A collections survey to further document site location and cultural component information throughout the region is currently underway. In the first week of survey, Rafael recorded 12 new sites and 21 Paleoindian artifacts, including 13 Fishtail/Fell’s Cave points, five Pay Paso points, one bifacial tool, and two unifacial tools! These data will supplement 15 sites and five quarry sites previously on record and yield new data on the distribution and context of these early sites (Fig. 3). The data gathered in the survey are being integrated into a GIS database for analysis and modeling. The Geographic Information Systems (GIS) includes environmental data from the Shuttle Radar Topography Mission (SRTM) 90-meter DEM, the GLOBE, HYDRO1K, and GTOPO30 1-kilometer resolution DEM datasets, the ETOPO2 4-kilometer resolution DEM data (ETOPO2 also includes sea floor bathymetry), and VMAP. Numerous derivative datasets (e.g. slope, solar potential, and hydrologic analyses) have been developed from the SRTM 90-m DEM to enable GIS analyses of site location.

Statistical analysis and cartographic modeling techniques are being used to examine potential trail networks within and between drainages and to and from key resources, such as stone quarries (e.g. Anderson and Gillam 2000; Gillam and Tabarev 2004, 2006). Likewise, results of the current collections survey will provide a statistically valid sample of sites that will be used for predictive modeling of site location and the identification of ecological niches exploited by early hunter-gatherers (e.g. Banks et al. 2006). This research is yielding new insights into early hunter-gatherer adaptations of the region and will be used to direct future field research in Uruguay and neighboring regions of South America.

Acknowledgements

This research is sponsored by the authors’ institutions and grants from the Archaeological Research Trust Board of Trustees and the Paleolithic Research Fund of the University of South Carolina’s Educational Foundation.

References Cited

Anderson, D. G., and J. C. Gillam

Gillam, J. C., and A. Tabarev

Suárez, R.

Authors

J. Christopher Gillam, Savannah River Archaeological Research Program, S.C. Institute of Archaeology and Anthropology, University of South Carolina, 1321 Pendleton St., Columbia, SC 29208. Email: gillam@sc.edu

Rafael Suárez, Museo de Historia Natural y Antropología. División Antropología. Coronel Raíz 1107, CP 12900 Montevideo, Uruguay. Email: suarezrafael23@gmail.com