Enhanced Reducibility and Conductivity of Na/K-Doped SrTi$_{0.8}$Nb$_{0.2}$O$_3$

Guoliang Xiao

Sirikanda Nuansaeng

Lei Zhang

Suwit Suthirakun

Andreas Heyden

University of South Carolina - Columbia, heyden@cec.sc.edu

See next page for additional authors

Follow this and additional works at: https://scholarcommons.sc.edu/emec_facpub

Part of the Applied Mechanics Commons, Materials Science and Engineering Commons, and the Other Mechanical Engineering Commons

Publication Info

This article cannot be redistributed or further made available.

This article was first published by the Royal Society of Chemistry and can be found at http://dx.doi.org/10.1039/C3TA11631J

Enhanced reducibility and conductivity of Na/K-doped SrTi_{0.8}Nb_{0.2}O_{3}

Guoliang Xiao,a Sirikanda Nuansaeng,a Lei Zhang,a Suwit Suthirakun,b Andreas Heyden,b Hans-Conrad zur Loyec and Fanglin Chen*a

Donor and acceptor co-doped SrTiO₃ materials have shown interesting features in their conductivity and reducibility. In this work, 10 mol% Na⁺ or K⁺ as acceptor dopants have been introduced into the A-site of donor-doped strontium titanate, SrTi_{0.8}Nb_{0.2}O_{3}, and the doping impact on their properties has been studied. By doping with Na or K, the sinterability of SrTi_{0.8}Nb_{0.2}O_{3} in reducing atmospheres has been improved. Na₀.₅Sr₀.₅Ti₀.₈Nb₀.₂O₃ and K₀.₅Sr₀.₅Ti₀.₈Nb₀.₂O₃ show metallic conduction behavior after being sintered at 1400 °C in 5% H₂/N₂. Electrical conductivity reaches 1180 S cm⁻¹ at 400 °C and 272 S cm⁻¹ at 800 °C for K₀.₅Sr₀.₅Ti₀.₈Nb₀.₂O₃, which is higher than that of Sr₀.₉₉Ti₀.₈Nb₀.₂O₃ prepared under similar conditions, indicating the improved reducibility of acceptor doped SrTi_{0.8}Nb_{0.2}O_{3}. Such improvement may be attributed to the improved oxide ionic conductivity and cation mobility at high temperatures. Reduced polarization resistance is also observed using Na₀.₅Sr₀.₅Ti₀.₈Nb₀.₂O₃ and K₀.₅Sr₀.₅Ti₀.₈Nb₀.₂O₃ as anodes on YSZ electrolytes, suggesting improved catalytic activity by Na/K-doping.

1 Introduction

Mixed ionic and electronic conductors (MIECs) have been studied intensively due to their unique capability to conduct both electronic charge carriers (electrons, holes) and various ions (O²⁻, Li⁺, Ag⁺, etc.) in various applications such as batteries, fuel cells, sensors and separation membranes.1 MIECs conducting oxide ions have been considered as important cathode candidates for solid oxide fuel cells (SOFCs) because their mixed oxide ionic and electronic conduction is expected to extend the electrode reaction zone from the electrolyte/electrode interfaces potentially to the entire electrode surface. Significant reduction in polarization losses with the MIEC cathode has been reported extensively.2,3 Recently, in order to improve the durability of SOFCs when operating on practical fuels such as natural gas, coal-derived syngas, and biomass gas, numerous MIECs have been investigated as anodes due to their lower affinity to sulfur and higher coking resistance.4,5 Among the well-studied ceramic anode candidates, SrTiO₃-based materials represent an important family.

Donor-doped SrTiO₃ materials have shown impressively high n-type electronic conductivity under anodic conditions. For those doped on the A-site, LaₓSr_{1-x}TiO₃ reported by Marina et al. has exhibited an initial conductivity of 80–360 S cm⁻¹ at 1000 °C in a reducing environment and Sr₀.₉₈Y₀.₀₂TiO₃ reported by Hui et al. has also shown a high conductivity of 82 S cm⁻¹ at 800 °C under similar testing conditions.6,7 Furthermore, upon doping Nb⁵⁺ on the B-site, the electrical conductivity of Sr₀.₅Ti₀.₈Nb₀.₂O₃ has been reported to reach 340 S cm⁻¹ at 800 °C at low P₀₂.8 However, donor-doped SrTiO₃ materials may not always show high conductivity due to different charge compensation mechanisms at different P₀₂.9 Under oxidizing conditions, excess charge from the donor dopants may be compensated by strontium vacancies. In the case of Nb-doped SrTiO₃, SrO-rich phases have been observed in samples synthesized in air.10 In order to make electronic compensation dominant and increase conductivity, donor-doped SrTiO₃ materials typically need to be equilibrated at low P₀₂. Such an equilibration process involves diffusion of both Sr²⁺ and O²⁻. Sr²⁺ diffusion is known to be extremely slow below the sintering temperature. Although diffusion of oxide ions is much faster compared with the metal cations, it is still much lower in the donor doped SrTiO₃ than in the acceptor doped or un-doped SrTiO₃ due to the suppression of oxygen vacancies by the donor dopant.9 Such slow kinetics of the donor doped SrTiO₃ materials also results in a slow equilibrium process at different P₀₂. Consequently, different conductivity values have been reported depending on the material processing history. Therefore, by enhancing the oxide ion conductivity of the donor doped SrTiO₃, an accelerated equilibrium process and higher electrical conductivity during reduction can be expected.

Acceptor doping on the B-site of SrTiO₃ has been found to be an effective way to improve the oxygen ionic conductivity of the donor doped SrTiO₃. Li et al. have reported improved oxide...
ionic conductivity in La and Co/Sc co-doped SrTiO$_3$.

In our previous report, B-site doping of Ga in Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ has demonstrated improved reducibility, and higher conductivity was obtained with Sr$_{0.9}$Ti$_{0.8}$Ga$_{0.1}$Nb$_{0.2}$O$_3$ upon reduction. Neagu and Irvine systematically studied the oxygen stoichiometry and conduction behavior of La$_{0.8}$Sr$_{0.2}$Ti$_{1.1}$Ga$_{0.9}$O$_3$ and similar results have also been observed. Due to the increase in oxygen vacancies and flexible oxygen coordination of Ga, the materials with optimized composition have shown higher conductivity after being reduced under similar conditions. These experimental observations have also been supported by our recent computational calculations.

In order to test the hypothesis that the acceptor-doping is a general approach to improve the electrical property of donor-doped SrTiO$_3$, in this study, we have adopted another approach to dope suitable acceptor dopants on the A-site of 20% Nb-doped SrTiO$_3$. Since the valence state of Sr is only +2 in SrTiO$_3$, acceptor dopants on the A-site can only be alkali metal cations. Na"$^+$ and K"$^+$ have comparable ionic radii to Sr"$^{2+}$ and Hou et al. demonstrated that the substitution of K for Sr in SrFeO$_3$-based perovskite maximizes Fe-O-Fe interactions by stabilization of the untitled structure and promotes ionic conductivity at high temperatures. Therefore, 10% of strontium in 20% Nb-doped SrTiO$_3$ is substituted by Na"$^+$/K"$^+$ in this study. The impact of acceptor-doping on the crystalline phase, electrical conductivity and electrochemical performance of SrTi$_{0.8}$Nb$_{0.2}$O$_3$ has been systematically studied.

2 Experimental

2.1 Sample preparation

Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$, Na$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ and K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ samples were synthesized by solid state reactions starting from SrCO$_3$ (99%), TiO$_2$ (99.9%), Nb$_2$O$_5$ (99.9%), Na$_2$CO$_3$ (99%) and CH$_3$COOK (99%). The chemicals were weighed according to the stoichiometry and mixed in a mortar with ethanol as medium. After being dried, the mixed powder was calcined at 900 °C for 6 h in air. The powder was then ground, pressed into pellets and calcined at 1250 °C in air for 20 h. This calcination step was repeated another time to improve phase purity. The obtained powder was finally pressed into bars (about 35 × 5 × 1 mm3 after sintering) and pellets and sintered for 10 h in air or 5% H$_2$ (balanced with N$_2$) at 1400 or 1500 °C. Poly-vinyl-butyral (PVB, 1.5 wt%) was used as a binder. The P$_2$O$_5$ of the 5% H$_2$/N$_2$ used in this work was monitored using an oxygen sensor at 800 °C and the value was about 10$^{-22}$ bar. All the sintered samples exhibited high relative density (above 95%) except for the Sr$_{0.95}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ bar sample sintered in 5% H$_2$/N$_2$ at 1400 °C, which has a relative density of about 85%. A muffle furnace (MTI KSL1700X) was used for high temperature treatment in air and a tubular furnace (MTI GSL1700S) was used for high temperature reduction in this work.

2.2 Characterization

The phase purity of the samples was examined by X-ray diffraction (XRD) at 20° ≤ 2θ ≤ 80° conducted on a D/MAX-3C X-ray diffractometer equipped with a graphite monochromator and Cu Kα radiation. The lattice parameters were calculated using Jade software. The density of the sintered samples was tested by the Archimedes method. The morphology of the samples was characterized using a scanning electron microscope (SEM, FEI Quanta and XL 30) and elemental analysis of the samples was carried out using a SEM equipped with an energy dispersive X-ray spectrometer (EDX).

2.3 Electrical and electrochemical evaluation

The conductivity of the samples in air was tested on pellets with diameters around 11 mm and thickness about 1 mm after sintering. Pt paste (Heraeus CL11-5100) was used as the current collector and fired at 1000 °C for 0.5 h prior to the conductivity test. Rectangular bar samples were used for reducibility and conductivity measurements by a standard dc four-probe method. Silver conducting paste was used to assemble the silver lead wires on bar samples. The resistance of the samples was recorded using a multimeter (Keithley model 2001 7-1/2 DDM). For reducibility measurements, the bar samples were sintered in air at 1400 °C and equilibrated at 800 °C in N$_2$ (80 ml min$^{-1}$, P$_{O_2}$ ~ 10$^{-5}$ bar at 800 °C) for 20 h. Then, the gas was switched to H$_2$ (80 ml min$^{-1}$, P$_{O_2}$ ~ 10$^{-26}$ bar at 800 °C) and resistance variation with time was recorded.

The polarization resistance was tested on symmetric cells supported by a YSZ (8YSZ, Tosh) electrolyte. YSZ pellets were sintered at 1550 °C (diameter about 11 mm, thickness about 1 mm). Electrode slurry was made by mixing the sample powder with a binder (Heraeus V006) at a weight ratio of 1 : 1.5. Symmetric cells were fabricated by painting the electrode slurry on both sides of YSZ pellets and fired at 1300 °C in 5% H$_2$/N$_2$. Pt paste was used as the current collector and fired at 1000 °C for 0.5 h in 5% H$_2$/N$_2$. The impedance spectra of the symmetric cells were recorded in H$_2$ (3 vol% H$_2$O) using an electrochemistry workstation (IM6-Zahner).

3 Results and discussion

3.1 Phase development

A nonstoichiometric effect study in Y-doped SrTiO$_3$ has shown a dramatic, negative influence of excess Sr content on the conductivity. In this work, slight Sr-deficiency was adopted in Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ to prevent the number of A-site cations from being larger than that of the B-site cations (i.e., Sr/(Ti + Nb) > 1). XRD patterns of the powders synthesized at 1250 °C in air are shown in Fig. 1. According to the electro-neutrality condition, the extra charge of Nb$^{5+}$ (Nb$_5^+$ in the Nb-doped SrTiO$_3$) needs to be compensated. Under oxidizing atmospheres, it cannot be balanced by reducing Ti$^{4+}$ to Ti$^{3+}$ (Ti$_3^+$) or forming interstitial oxygen (O$_i$) in the perovskite lattice at intermediate temperatures (below the sintering temperature). Several reports suggested that strontium vacancies will form to compensate the extra charge from Nb and Sr-rich secondary phases can be observed. As shown in Fig. 1, besides the cubic perovskite phase some impurity peaks were observed in the pattern of Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ where the impurity peaks probably belong to Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$.
the phase of Sr₂Nb₂O₇ (JCPDS 48-0421). In Na⁺ or K⁺ doped samples, the extra charge of Nb⁵⁺ can be partially balanced by Na⁺ or K⁺. Consequently, less impurity peaks are shown for these two samples in Fig. 1.

As oxygen partial pressure decreases, the extra charge from the donor dopant starts to be compensated electronically by reduction of Ti⁴⁺ to Ti³⁺ (Ti⁰). The Sr-rich secondary phases will combine with the Sr vacancies formed under oxidizing conditions and finally the stoichiometric compositions will form. As shown in Fig. 2, a cubic perovskite phase was obtained after sintering the samples at 1400 °C in 5% H₂/N₂. The XRD patterns obtained from the samples sintered in air are also shown in Fig. 2. Raising the sintering temperature accelerates diffusion of cations and further improves the homogeneity of the samples. The impurity peaks even become undetectable after Sr₀.₉₉Tiₐ₈Nb₂₀₃ being sintered at 1400 °C in air. Similar results have also been reported by Gross et al.²⁰

Constraint thermodynamic calculations have shown that the stoichiometric phase is thermodynamically stable at high temperatures even in oxidizing atmospheres due to the release of the lattice oxygen.²⁰ Therefore, the phase purity may be improved during sintering. When the sample is being exposed to a lower temperature than that in the sintering process, the Sr-enriched phase tends to precipitate out but the sample may still retain the stoichiometric phase due to the extremely slow cation and oxide ion mobility of Nb-doped SrTiO₃ at low temperatures.

Lattice parameters of the samples sintered at 1400 °C in different atmospheres are summarized in Table 1. Since Sr²⁺ (158 pm) is larger than Na⁺ (153 pm) and smaller than K⁺ (178 pm),²¹ the lattice parameter of Sr₀.₉₉Ti₀.₈Nb₂₀₃ is expected to increase with K⁺ doping and decrease with Na⁺ doping according to Vegard’s law.²² As expected, the lattice parameter of the Na doped sample sintered at 1400 °C in air is smaller than those of the other two samples under the same conditions. However, the lattice parameter of the K doped sample is similar to that of the Sr₀.₉₉Ti₀.₈Nb₂₀₃ sample. Considering the low melting point of sodium and potassium oxides, evaporation of Na or K may occur during the high temperature sintering process. Consequently, one possible explanation for the smaller lattice parameter of K₀.₁Sr₀.₉Ti₀.₈Nb₂₀₃ than what is expected from Vegard’s law may be the loss of K content during sintering. This will also lead to a slight A-site deficiency in K₀.₁Sr₀.₉Ti₀.₈Nb₂₀₃ (x = 0.063 according to elemental analysis). The lattice shrinkage in Sr-deficient Nb-doped SrTiO₃ was also reported by Blennow et al.¹¹

All samples showed expansion in the lattice parameter after reduction as listed in Table 1. According to the defect chemistry of the donor doped SrTiO₃, the compensation mechanism of the extra charge of the donor dopant in reducing atmospheres is quite different from that in the oxidizing atmospheres, which has been well discussed in Y-doped SrTiO₃ by Fu et al. In the case of Nb-doped SrTiO₃, the extra charge of Nb⁺ will be compensated electronically by formation of Ti⁰ under moderately reducing conditions and donor type Vₕ will be generated due to further reduction of Ti⁺⁺ to Ti⁺⁺ under highly reducing conditions. Such electronic compensations may result in large expansion in the lattice. Particularly, Na or K doped Sr₀.₉₉Ti₀.₈Nb₂₀₃ showed even larger lattice parameters than the Sr₀.₉₉Ti₀.₈Nb₂₀₃ sample, implying that higher concentration of charge carriers, Ti³⁺, may be formed in Na₀.₁Sr₀.₉Ti₀.₈Nb₂₀₃ or K₀.₁Sr₀.₉Ti₀.₈Nb₂₀₃ samples sintered at 1400 °C under reducing conditions.

3.2 Microstructure and elemental analysis

SEM images of the bar samples sintered at 1400 °C in 5% H₂/N₂ are shown in Fig. 3. It can be clearly seen that Sr₀.₉₉Ti₀.₈Nb₂₀₃ shows low sinterability under the given conditions while the alkali metal ion doped samples look rather dense with larger particle size. This is consistent with the density of the bar samples obtained by the Archimedes method. The relative density of Sr₀.₉₉Ti₀.₈Nb₂₀₃ only achieved 85% while that of Na₀.₁Sr₀.₉Ti₀.₈Nb₂₀₃ or K₀.₁Sr₀.₉Ti₀.₈Nb₂₀₃ is above 95%. The low sinterability of donor doped SrTiO₃ has also been reported in stoichiometric La, Y-doped SrTiO₃,²³ probably due to low...
cation mobility in these compositions. Considering the low melting point of alkali metal oxides, doping with Na⁺/K⁺ may aid the sintering process of donor doped SrTiO₃.

The Na and K contents in the sintered bar samples were investigated by EDX. As the spectra show in Fig. 3d and e, sodium and potassium signals have been clearly detected. Further quantitative elemental analysis showed that the atomic ratio of alkali metal to strontium was about 1 : 13 and 1 : 15 for the Na and K doped samples, respectively. The ratios are slightly lower than the nominal ratio of 1 : 9 in the doped samples. The elemental analysis result is in agreement with the lattice shrinkage observed from the XRD analysis. Therefore, the loss of alkali metal ions during the high temperature sintering process results in slight A-site deficiency in the materials. Sr-deficiency has been demonstrated to have positive effects on sintering in different donor doped SrTiO₃. This may be another reason for the higher density achieved by Na and K doped samples sintered at 1400 °C in 5% H₂/N₂.

3.3 Electrical conductivity

Electrical conductivity in air is measured for samples sintered at 1400 °C in air and the results are shown in Fig. 4. The donor dopant introduces extra lattice oxygen into the material and makes the presence of oxygen vacancies unlikely in oxidizing atmospheres. Sr₀.₉₉Ti₀.₈Nb₀.₂O₃ shows relatively low electrical conductivity in air due to lack of either electronic charge carriers (Ti³⁺) or ionic charge carriers (Vₒ²⁻). Introducing acceptor dopants such as Na⁺ and K⁺ to the A-site is expected to mitigate the depression of oxygen vacancies by the donor dopant Nb⁵⁺. As shown in Fig. 4, Na₀.₁Sr₀.₉Ti₀.₈Nb₀.₂O₃ and

<table>
<thead>
<tr>
<th>Lattice parameter (Å ± 0.001)</th>
<th>Sr₀.₉₉Ti₀.₈Nb₀.₂O₃</th>
<th>Na₀.₁Sr₀.₉Ti₀.₈Nb₀.₂O₃</th>
<th>K₀.₁Sr₀.₉Ti₀.₈Nb₀.₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidizing</td>
<td>3.9219(3)</td>
<td>3.9164(3)</td>
<td>3.9213(6)</td>
</tr>
<tr>
<td>Reducing</td>
<td>3.9273(6)</td>
<td>3.9295(3)</td>
<td>3.9305(4)</td>
</tr>
</tbody>
</table>

Fig. 3 SEM images captured from the fracture surface of (a) Sr₀.₉₉Ti₀.₈Nb₀.₂O₃, (b) Na₀.₁Sr₀.₉Ti₀.₈Nb₀.₂O₃, and (c) K₀.₁Sr₀.₉Ti₀.₈Nb₀.₂O₃ bar samples sintered at 1400 in 5% H₂/N₂ and EDX spectra of (d) Na₀.₁Sr₀.₉Ti₀.₈Nb₀.₂O₃, and (e) K₀.₁Sr₀.₉Ti₀.₈Nb₀.₂O₃.

Fig. 4 Electrical conductivity in air measured for samples sintered in air at 1400 °C.
K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ demonstrated improved conductivity in air. Furthermore, the electrical conductivity of K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ was one order of magnitude higher than that of Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ in air. Li et al. also reported that either A-site deficiency or acceptor doping will improve the ionic conductivity of donor-doped SrTiO$_3$ by introducing more oxygen vacancies.23,24

Fig. 5a shows the electrical conductivity measured between 400 °C and 800 °C in H$_2$ for bar samples sintered at 1400 °C in 5% H$_2$/N$_2$. For each point, the data were recorded after holding the sample at the temperature for 2 h. Generally, the electrical conductivity of the three samples is high and above 100 S cm$^{-1}$ at all the tested temperatures, indicating that electronic compensation occurred in the samples after reduction. The electrical conductivity of Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ was between 150 and 203 S cm$^{-1}$ and it is almost independent of temperature. Similar results were also reported by Gross et al. for the same composition.20 Since metallic behavior is expected for electronically compensated Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$, such conduction behavior indicates the nonequilibrium state of the sample. The conductivity of Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ only slightly surpasses the conductivity measured for Na$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ at 800 °C but is still lower than the conductivity measured for K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ at all testing temperatures. The conductivity of K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ ranged from 1180 S cm$^{-1}$ at 400 °C to 272 S cm$^{-1}$ at 800 °C and that of Na$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ ranged from 340 S cm$^{-1}$ at 400 °C to 151 S cm$^{-1}$ at 800 °C. Both K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ and Na$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ showed metallic type electrical conduction behavior. The conductivity results shown in Fig. 5a suggest that Na or K doping accelerates the charge compensation process of Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ in reducing atmospheres. Such improvement can be probably attributed to the higher mobility of Na$^+$ or K$^+$ during sintering and the improved oxide ion conductivity at high temperatures.

Fig. 5b shows the electrical conductivity measured for bar samples sintered at 1500 °C in 5% H$_2$/N$_2$. As sintering temperature increased, the relative density of the Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ bar sample increased to above 95%. Due to further reduction at higher temperature, the conductivity of Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ samples increased dramatically with the value ranging from 2319 S cm$^{-1}$ at 400 °C to 508 S cm$^{-1}$ at 800 °C and a metallic behavior was observed, indicating that the samples sintered at higher temperature more closely approach the equilibrium state in reducing atmospheres. The conductivity of K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ and Na$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ did not change significantly, suggesting that the alkali metal doped samples are more easily equilibrated at lower temperatures. The conductivity of K$_{0.1}$Sr$_{0.9}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ even dropped slightly after raising the sintering temperature to 1500 °C which may be attributed to the further loss of K content. The improvement in reducibility in Na or K doped Sr$_{0.99}$Ti$_{0.8}$Nb$_{0.2}$O$_3$ was further confirmed by recording electrical conductivity variation as a function of time.
of the bar samples sintered in air after switching the sample environment from N₂ to H₂ at 800 °C and the results are shown in Fig. 6. The samples were all well sintered and their relative densities were all about 95% such that the impact of microstructure can be neglected. Generally, the conductivities of the samples are higher than those measured in air but still much lower than those measured for samples sintered in reducing atmospheres. Na₀.₉₉ändigels_sintered in reducing atmospheres. Na₀.₉₉₉₈ for Sr₀.₉₉₉₈Nb₀.₂O₃ and K₀.₉₉₉₈Nb₀.₂O₃ exhibited relatively higher conductivity upon reduction for a short period. Within 10 h, the electrical conductivity of Na₀.₉₉₉₈Nb₀.₂O₃ and K₀.₉₉₉₈Nb₀.₂O₃ increased to above 1 S cm⁻¹ while that of Sr₀.₉₉₉₈Nb₀.₂O₃ was still less than 0.6 S cm⁻¹.

3.4 Polarization resistance under anodic conditions

The donor doping effect on the anode performance of Sr₀.₉₉₉₈Nb₀.₂O₃ was studied in symmetric cells. Impedance spectra of the electrodes fabricated on YSZ pellets were tested in wet H₂ (3 vol% H₂O). Fig. 7 shows the Nyquist plots recorded at 850 °C for Na₀.₉₉₉₈Nb₀.₂O₃, Na₀.₉₉₉₈Nb₀.₂O₃ and K₀.₉₉₉₈Nb₀.₂O₃ electrodes fired at 1300 °C in 5% H₂/N₂ for 2 h. Depressed arcs can be observed which represent the H₂-oxidation processes in the electrodes. Ohmic resistance from the electrolyte, electrodes and lead wires determined by the first intersection of the arc and x-axis was removed from the spectra for a clear comparison. The difference between the two intersections of the arcs is the polarization resistance which is determined by the contributions from the charge transfer process, adsorption and dissociation of H₂, and desorption of H₂O. As shown in Fig. 7, the polarization resistance of Na and K doped samples is evidently smaller than that of Sr₀.₉₉₉₈Nb₀.₂O₃. This can be presumably attributed to the higher oxygen vacancy concentration in the Na or K-doped samples which benefits the charge transfer process by improving the oxide ionic conductivity in the electrolyte and the lower partial pressures of H₂ and O₂ due to the partial pressure of H₂O in the reducing atmosphere.

4 Conclusions

Enhanced electrical conductivity has been observed in Na or K doped SrTi₀.₈Nb₀.₂O₃ sintered at lower temperatures. Due to either the low melting point of Na and K oxides or a slight A-site deficiency of the sintered samples, Na or K doped SrTi₀.₈Nb₀.₂O₃ exhibited improved sinterability. The substitution of Sr⁺⁺⁺ by Na⁺ or K⁺ improves the equilibration kinetics of Nb-doped SrTiO₃ in reducing atmospheres and the electrochemical activity for H₂ oxidation when used as an SOFC anode material.

Acknowledgements

This work was supported as part of the HeteroFoaM Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001061.

References