A New Improvement of a Fibonacci Inequality

Quang Hung Tran

High School for Gifted Students, Vietnam National University at Hanoi, Hanoi, Vietnam

This paper provides an improvement to an inequality involving the Fibonacci sequence contained in [1,2].

1 Introduction

Throughout this article, the symbol F_n is the *n*th Fibonacci number $(n \ge 2)$. In [2] the following inequality is given

$$2(F_n^4 + F_{n+1}^4 + F_{n+2}^4) \left(\frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2}\right) > 81.$$
 (1)

In [1], an improvement to the inequality (1) is given as follows

$$2(F_n^4 + F_{n+1}^4 + F_{n+2}^4) \left(\frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2}\right) > 100.$$
 (2)

In this article, we present an improvement to the inequality (2) as follows

$$2(F_n^4 + F_{n+1}^4 + F_{n+2}^4) \left(\frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2}\right) > 158.$$
(3)

2 Some lemmas

In this section, we introduce a few lemmas aimed at obtaining (3).

Lemma 1. $\frac{F_{n+1}}{F_n} > 1$.

Proof. We have

$$\frac{F_{n+1}}{F_n} = \frac{F_n + F_{n-1}}{F_n} > 1.$$

Lemma 2. $\frac{F_n}{F_{n+1}} > \frac{1}{2}$.

Proof. We have

$$\frac{F_n}{F_{n+1}} = \frac{F_n}{F_n + F_{n-1}} > \frac{F_n}{2F_n} = \frac{1}{2}.$$

Lemma 3. $\frac{F_{n+2}}{F_n} > 2$.

Proof. We have

$$\frac{F_{n+2}}{F_n} = \frac{F_{n+1} + F_n}{F_n} = \frac{2F_n + F_{n-1}}{F_n} > 2.$$

Lemma 4. $\frac{F_{n+2}^2}{F_nF_{n+1}} > 4$.

Proof. By Cauchy-Swartz inequality, we have

$$\frac{F_{n+2}^2}{F_nF_{n+1}} = \frac{(F_n + F_{n+1})^2}{F_nF_{n+1}} > 4.$$

Lemma 5 (Extension of Candido's identity). Let F_n be nth Fibonacci number. Then

$$F_n^2 F_{n+1}^2 + F_{n+1}^2 F_{n+2}^2 + F_{n+2}^2 F_n^2 = \frac{F_n^4 + F_{n+1}^4 + F_{n+2}^4}{2}.$$

Proof. From Candido's identity (see [3, 4, 5]), we have

$$(F_n^2 + F_{n+1}^2 + F_{n+2}^2)^2 = 2(F_n^4 + F_{n+1}^4 + F_{n+2}^4)$$

which is equivalent to

$$2(F_n^2F_{n+1}^2+F_{n+1}^2F_{n+2}^2+F_{n+2}^2F_n^2)=F_n^4+F_{n+1}^4+F_{n+2}^4$$

or

$$F_n^2 F_{n+1}^2 + F_{n+1}^2 F_{n+2}^2 + F_{n+2}^2 F_n^2 = \frac{F_n^4 + F_{n+1}^4 + F_{n+2}^4}{2}.$$

3 Main proof

From Lemma 5, we have

$$2(F_{n}^{4} + F_{n+1}^{4} + F_{n+2}^{4}) \left(\frac{1}{F_{n}^{2}} + \frac{1}{F_{n+1}^{2}} + \frac{1}{F_{n+2}^{2}}\right)^{2}$$

$$= 2(F_{n}^{4} + F_{n+1}^{4} + F_{n+2}^{4}) \frac{(F_{n}^{2}F_{n+1}^{2} + F_{n+1}^{2}F_{n+2}^{2} + F_{n+2}^{2}F_{n}^{2})^{2}}{F_{n}^{4}F_{n+1}^{4}F_{n+2}^{4}}$$

$$= \frac{(F_{n}^{4} + F_{n+1}^{4} + F_{n+2}^{4})^{3}}{2F_{n}^{4}F_{n+1}^{4}F_{n+2}^{4}}.$$
(4)

Using the expansion

$$\frac{(a+b+c)^3}{abc} = \frac{a^3+b^3+c^3+6abc+3ab(a+b)+3bc(b+c)+3ca(c+a)}{abc} = 6+\left(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\right)+3\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right).$$

Take $a = F_n^4, b = F_{n+1}^4, c = F_{n+2}^4$, we get

$$\frac{(F_n^4 + F_{n+1}^4 + F_{n+2}^4)^3}{F_n^4 F_{n+1}^4 F_{n+2}^4} = 6 + \left(\left(\frac{F_n^2}{F_{n+1} F_{n+2}} \right)^4 + \left(\frac{F_{n+1}^2}{F_n F_{n+2}} \right)^4 + \left(\frac{F_{n+2}^2}{F_n F_{n+1}} \right)^4 \right) + 3 \left(\frac{F_n^4}{F_{n+1}^4} + \frac{F_{n+1}^4}{F_n^4} + \frac{F_{n+2}^4}{F_{n+2}^4} + \frac{F_{n+2}^4}{F_{n+2}^4} + \frac{F_{n+2}^4}{F_n^4} \right).$$
(5)

From Lemma 4, we have

$$\left(\frac{F_{n+2}^2}{F_n F_{n+1}}\right)^4 > 4^4 = 256.$$
(6)

From Lemma 3, we have

$$\left(\frac{F_{n+2}^2}{F_n}\right)^4 > 2^4 = 16.$$
(7)

From Lemma 1 and Lemma 2, we have

$$\left(\frac{F_{n+1}^2}{F_n}\right)^4 > 1, \ \left(\frac{F_{n+2}^2}{F_{n+1}}\right)^4 > 1, \ \left(\frac{F_n^2}{F_{n+1}}\right)^4 > \frac{1}{16}, \left(\frac{F_{n+1}^2}{F_{n+2}}\right)^4 > \frac{1}{16}.$$
 (8)

Using (6), (7), (8) to (5), we get

$$\frac{(F_n^4 + F_{n+1}^4 + F_{n+2}^4)^3}{F_n^4 F_{n+1}^4 F_{n+2}^4} > 6 + 256 + 3\left(16 + 1 + 1 + \frac{1}{16} + \frac{1}{16}\right) = \frac{2531}{8}.\tag{9}$$

Thus, from (9) and (4), we obtain

$$2(F_n^4 + F_{n+1}^4 + F_{n+2}^4) \left(\frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} + \frac{1}{F_{n+2}^2}\right)^2 > \frac{2531}{16} > 158.$$

We complete the proof.

References

- [1] Cameron T. C., Fidele F. N., Wei-Kai L., An improved Fibonacci inequality, Journal of the South Carolina Academy of Science, [2013], 11 (2), 8–9.
- [2] Baitinetu-Giurgiu, D. M. Elementary problems and solutions, The Fibonacci Quarterly, Vol 50, Num 2 (2012) 180–181.
- [3] B. A. Brousseau, Olde Fibonacci Curiosity Shoppe, The Fibonacci Quarterly 10.4 (1972): 441–43.
- [4] Candido, G, A Relationship Between the Fourth Powers of the Terms of the Fibonacci Series, Scripta Mathematica xvii No. 3–4 (1951): 230.
- [5] R. S. Melham, Ye Olde Fibonacci Curiosity Shoppe Revisited, The Fibonacci Quarterly, Vol 42, Num 2 (2004) 155–160.