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Analysis Methodology to Compute First- and Second-Order Sensitivities
of Flux Functionals in a Multiplying System with Source
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Abstract — This work presents an application of the Second-Order Adjoint Sensitivity Analysis Methodology
(2nd-ASAM) to the neutron transport Boltzmann equation that models a multiplying subcritical system comprising
a nonfission neutron source to compute efficiently and exactly all of the first- and second-order functional
derivatives (sensitivities) of a detector’s response to all of the model’s parameters, including isotopic number
densities, microscopic cross sections, fission spectrum, sources, and detector response function. As indicated by the
general theoretical considerations underlying the 2nd-ASAM, the number of computations required to obtain the
first and second orders increases linearly in augmented Hilbert spaces as opposed to increasing exponentially in
the original Hilbert space. The results presented in this work are currently being implemented in several
production-oriented three-dimensional neutron transport code systems for analyzing specific subcritical systems.

Keywords — Second-Order Adjoint Sensitivity Analysis Methodology, neutron transport in multiplying
systems with source, reaction rate detector response, first-order response sensitivities, second-order

response sensitivities.

I. INTRODUCTION

The computation of second-order response sensitivities
to model parameters is motivated by the need to overcome
the linearization limitation that is implicit in the use of
first-order sensitivities. During the 1970s, the field of reactor
physics provided pioneering works' > for computing
selected second-order response sensitivities of the system’s
effective multiplication factor and reaction rate ratios using
the adjoint neutron transport and/or diffusion equations.
These works generally indicated that the second-order
sensitivities of such responses to cross-section perturbations
were computationally expensive to obtain, requiring O(N(f)
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License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction in
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large-scale computations per response for a system compris-
ing N, model parameters, and were smaller than the corre-
sponding first-order sensitivities. Such indications may have
led to a diminishing interest in developing efficient methods
for computing second-order response sensitivities for
nuclear engineering systems.

While the interest in computing second-order response
sensitivities practically vanished in the nuclear engineering
field in the 1990s, interest in this topic became increasingly
evident in other fields, driven mostly by the knowledge
that second-order (Hessian) sensitivity —information
accelerates the convergence of optimization algorithms. In
structural mechanics,® for example, interest has been
focused primarily on the developing adjoint methods for
computing second-order sensitivity of structural responses
to variations of structural stiffness parameters. In
atmospheric sciences, * second-order adjoint models were
used to compute products between the Hessian of the cost
functional and a vector (representing a perturbation in
sensitivity analysis, a search direction in optimization, an
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eigenvector, etc.) to perform sensitivity analysis of the cost
function with respect to distributed observations, to study
the evolution of the condition number (the ratio of the
largest to smallest eigenvalues) of the Hessian during mini-
mization, and for sensitivity studies in three-dimensional
atmospheric chemical transport models. In the context of
parametric circuit analysis and optimization,” second-order
sensitivities for linear circuits were also computed, albeit
approximately. The availability (or unavailability) of
exactly computed second-order sensitivities affects
significantly many fields (e.g., optimization, data
assimilation/adjustment, model calibration and validation,
predictive modeling, and convergence of many numerical
methods).

The methods used in the works mentioned above were all
developed for specific, rather than general, applications for
which they usually estimated, rather than computed exactly
and inclusively, second-order response sensitivities to the
model’s parameters. Since the availability (or unavailability)
of exactly computed second-order sensitivities affects signif-
icantly many fields (e.g., optimization, data assimilation/
adjustment, model calibration and validation, predictive
modeling, and convergence of many numerical methods),
Cacuci'®'? developed the generally applicable Second-
Order Adjoint  Sensitivity — Analysis  Methodology
(2nd-ASAM). The 2nd-ASAM computes exactly and most
efficiently all of the second-order functional derivatives of
model responses to parameters and simultaneously verifies
them intrinsically by computing all of the mixed partial
sensitivities twice, using independently derived formulations.
The application of the 2nd-ASAM for nonlinear systems''
has been illustrated by means of a nonlinear heat conduction
benchmark problem.13 Furthermore, the 2nd-ASAM for
linear systems'*'? was applied to an illustrative linear neutron
diffusion problem'® aimed at highlighting the essential
contributions of the second-order sensitivities of a detector
response to changes in the underlying neutron cross sections.
This illustrative problem'® has shown that most of the
second-order relative detector sensitivities to cross sections
were actually larger than the corresponding first-order relative
sensitivities, contrary to the tacit assumption that
second-order sensitivities to cross sections are negligible in
neutron diffusion problems, which was prevalent in
sensitivity analysis works in the 1990s. In particular,
the second-order sensitivities were shown'* to be responsible
for causing (a) asymmetries in the response distribution and
(b) the expected value of the response to differ from the
computed nominal value of the response. Neglecting
the second-order sensitivities would nullify the third-order
response correlations and hence would nullify the skewness
of the response distribution. Consequently, any events
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occurring in a response’s long and/or short tails, which are
characteristic of rare but decisive events (e.g., major accidents
and catastrophes), would likely be missed.

The 2nd-ASAM for linear systems'®'? has also been
applied'>'® to compute the second-order sensitivities of the
temperature distributions within a model of a test section
comprising a heated rod surrounded by lead-bismuth
eutectic coolant. For this model, the 6 first-order
sensitivities and 21 distinct second-order sensitivities for
the temperature distribution at any location within the
heated rod (and/or on its surface), and a similar number of
first- and second-order sensitivities for the temperature
distribution at any location within the coolant, were
computed using only seven independent 2nd-ASAM
computations. For the thermal-hydraulic parameters used
in the test section benchmark, having mean values and
standard deviations typical of the conditions computed in
the preliminary conceptual design of the G4M reactor,'®
the second-order sensitivities caused the temperature
distributions within the rod, on the rod’s surface, and in
the coolant to become non-Gaussian, asymmetric, and
skewed toward temperatures higher than the respective
mean temperatures, as all three temperature distributions
turned out to have positive skewnesses. In particular, the
temperature distribution in the heated rod was skewed
significantly toward higher temperatures, indicating that
the conventional Gaussian-based metrics are not applicable
for performing conventional risk analysis for this important
safety margin indicator.

The 2nd-ASAM for linear systems'®'? has also been
applied by Cacuci and Favorite'’ to compute the
second-order  sensitivitics of  uncollided particle
contributions to radiation detector responses, demonstrating
once again its efficiency and accuracy. For a multiregion
two-dimensional cylindrical benchmark problem, all of the
benchmark’s 18 first-order sensitivities and 224 second-order
sensitivities of a detector’s response with respect to the
system’s isotopic number densities, microscopic cross
sections, source emission rates, and detector response
function were obtained exactly by requiring only 12 adjoint
large-scale transport computations. In contradistinction, 877
large-scale transport computations would have been needed
to compute the respective sensitivities using central finite
differences, and this number does not include the additional
calculations that would have been required to find
appropriate values of the parameter perturbations to use for
the respective central difference expressions.

The present work extends significantly the results
presented in Ref. 17 by applying the 2nd-ASAM to the
neutron transport equation that models a multiplying
subcritical system comprising a nonfission neutron
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source. Section II of this work recalls succinctly the
Boltzmann transport equation describing the transport of
neutrons within a finite multiplying medium with an
internal nonfission source, defining this physical system’s
parameters and responses. Section III presents the
construction of the First-Level Adjoint Sensitivity
System (1st-LASS) for the transport equation. The
1st-LASS is used for the efficient computation of the
first-order response sensitivities to variations in model
parameters, and it serves as the basis for the construction
of the Second-Level Adjoint Sensitivity System
(2nd-LASS). The actual construction of the 2nd-LASS
for the transport equation is presented in Sec. IV, which
also presents the specific expressions for computing
exactly and efficiently all of the second-order response
sensitivities to variations in model parameters.
Section V summarizes and concludes this work.

Il. THE NEUTRON TRANSPORT EQUATION MODELING
A MULTIPLYING SYSTEM WITH AN EXTERNAL SOURCE

The physical system considered in this work is a finite
medium of convex volume V' that contains fission and
nonfission sources of neutrons. The system’s outer boundary,
denoted as 0V, is considered to be perfectly well known, and
the system is considered to be placed in vacuum in order to
simplify the mathematical treatment by disregarding possible
effects of boundary perturbations; such perturbations will be
considered in subsequent work. The distribution of neutrons
in such a system is modeled using the standard form of the
time-independent integro-differential Boltzmann transport
equation:

L(a)o(r,Q,E) 20 Vo(r,Q,E) + Z,(t;r, E) o(r, Q, E)

J Ja’E (s;r,E - EQ — Q)o(r,Q' E’)
4n 0

JdQ’JdE x(p;r, E' — EWE (f;r, EN)o(r, Q' E’)

Owr.en). M)

subject to the customary vacuum boundary condition,
which specifies that there is no incoming flux of particles:

o(rs, Q,E)=0,r, €0V, Q2-n<0,0< E< o0, (2)

where n denotes the unit outward normal vector at any
point r; € OV on the body’s outer surface V.
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The macroscopic  cross  sections X,(t;r, E),
Zy(s;r,E' — E, Q' — Q), and vE/(f;r,E); the neutron
fission spectrum y(p;r,E’ — E); and the source
O(q;r,Q F) generally depend not only on the spatial
variable r, on the energy variable E, and possibly on the
solid angle € but also on imperfectly known scalar-valued
model parameters such as atomic number densities,
microscopic cross sections, and weighting functions.
Specifically, the macroscopic total cross section Z,(t; r, E)
is considered to depend on J, imprecisely known
scalar-valued model parameters denoted as ¢, i =
1,---,J;, which are considered to be the components of
a vector of model parameters defined as

té [l‘],...,t‘][]—r . (3)

Throughout this work, the dagger symbol (}) is used to
denote transposition. Similarly, the macroscopic scattering
cross section X (s;E' — E, Q' — Q) is considered to
depend on J; imprecisely known scalar-valued model
parameters denoted as s;, i = 1,...,J;, while the effective
macroscopic fission cross section vZ,(f;r, E’) is considered
to depend on J; imprecisely known scalar-valued model
parameters denoted as f;, i = 1, ...,J;, which are considered
to be the components of two vectors defined, respectively, as
follows:

s 2[5y, syl 4)

and

= [,ﬁ,...,fJ,,]T . (5)

Furthermore, the fission spectrum y(p;r,E’' — E) is
considered to depend on J, imprecisely known
scalar-valued parameters denoted as p;, i = 1, ...,.J,, while
the source Q(q; r, Q, E) is considered to depend on J, impre-
cisely known scalar-valued parameters denoted as
gi, i=1,...,J,, which are considered to be the component
two vectors of model parameters defined, respectively, as
follows:

p2 prps]’ (6)

and

q= [611,..-76111,]T : (7)
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The system response considered in this work is
a scalar-valued linear functional of the flux, denoted
as R(a,), which models a detector response of the
form

R(a,¢) 2 JdVJdQJdEZd(d; rQE)or,QE) , (8)
4 0

where X;(d;r,QF) denotes a (macroscopic cross-
section—like) function that models the interaction of
the detector with the incident particles and where the
vector o will be defined in Eq. (12). In general,
2s(d;r,Q.E) depends not only on the independent
variables r,Q E but also on J; imprecisely known
scalar-valued model parameters that are considered
to be components of the vector d, defined as

A2, .d)l . 9)

System responses of particular interest are (1) the scalar
flux at a spatial location ry, in which case

YSi(d;r, QE) =8(r —ry) , (10)

where r; represents the detector’s location, and (2) the
partial current density at a spatial location ry, in which
case

Zi(d;r, QE)=Q -nd(r—ry) . (11)
Since the response R(a,¢) defined in Eq. (8) depends
explicitly and/or implicitly, through the flux ¢(r, @, E),
on all of the imprecisely known model parameters
defined in Egs. (3) through (9), it will be convenient for
subsequent mathematical derivations to consider these
imprecisely known scalar-valued model parameters as
the components of a vector of model parameters, denoted
as a and defined as follows:

a é [(11 3oy an]T é [ta S, fa pP.q, d]T7
Jo 2 d+ T+ e, (12)
where J, denotes the total number of imprecisely known

scalar model parameters.
The nominal values of the model parameters will be

_i_
denoted as o £ [a‘f, oy agu} . Throughout this work, the

superscript 0 will be used, as needed, to denote nominal or
mean values. The nominal value of the flux, denoted as

@ANS
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¢’(r, Q. E) , is obtained by solving Egs. (1) and (2) using
the nominal parameter values a’. The nominal value of the
detector response, denoted as R((po, ao), is obtained by
evaluating Eq. (8) at the nominal flux and parameter values.

I1l. THE FIRST-LEVEL FORWARD AND ADJOINT SENSITIVITY
SYSTEMS FOR COMPUTING FIRST-ORDER RESPONSE
SENSITIVITIES TO VARIATIONS IN MODEL PARAMETERS

The total sensitivity, denoted as OR (ao,(po; o0, 8(1),
of the detector response defined in Eq. (8) to variations

a2 [day, ... 8aN ]Jr in the model parameters, around the
nominal values a, is obtained by applying the definition
of the Gateaux- (G-) differential to Eq. (8) at the nominal
parameter and flux values, to obtain

SR(a’, 9% 30, 50) é%{JdVJ dQ
4

[ etz

0

X [(po (r,Q,E) + &do(r,Q,E)|e = 0

= {3R(0. 0" 30) },, + {3R(o", 0" 30) },,,,  (13)

where the direct-effect term is defined as

X

;r, Q. E) +&d%,(r, Q,E)]

{6R(a%,¢% 8a)}, = |aV | dQ | dE
<]
x ¢°(r,Q,E)[8Z4(r, Q,E)] , (14)

and where the indirect-effect term is defined as

(3R (a,¢% 8a)}, = JdV J dQ JdE

4n 0
x 29(d%r,Q,E) 3¢(r,Q,E) . (15)
Since the nominal value ¢°(r, €, E) of the flux is known
after having solved Egs. (1) and (2) using the nominal
parameter values a’, it follows that the direct-effect term
defined in Eq. (14) can already be computed at this stage.
In contradistinction, however, the indirect-effect term defined
in Eq. (15) can be computed only after having determined the
flux variation 8¢(r,Q,FE), which is the solution of the
First-Level Forward Sensitivity ~System'¢'%!%:19
(1st-LFSS), which is derived, in turn, by G-differentiating
Egs. (1) and (2) to obtain
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W (a”)d9(r, @, E) = 0 (0, 9" 801) | (16)
together with boundary condition

dp(ry, Q,E) =0,r, €0V, Q2-n<0,0<E<oco. (17)

The operator L(!) ((10) and the source term Q') (ao, o’; 6(1) ,
which appear in Eq. (16), are defined as follows:

D (0)30(r, Q, E) 2 Q- V[so(r, @, E)] + =0 (£; 1, E)

x [5¢(r, Q, E)] —stz’ JdE’Zg(so;r,E’—»E,Q’—» Q)
4 0

x [3p(r, Q" E")] - Jdﬂ/ JdE’xo(po;rvE’ — E)
4n 0
x [V r E)| Bo(r, @', E)] (18)
and
0 (a0 80) £ 30(q; 1, Q.E) — 8%,(t; v, E)g°(r, Q, E)

J o(r, Q' E

4

J EN[6Zs(s;m E' — E, Q" — Q)]
!

JdQ/ dE' 8y(p;r,E' — E)@’(r, Q' E")

X [VOZ?(f; r,E/)} + JdQ’J dE'y"(p;r,E’ — E)
' 0
4n
x ¢'(r, Q" E")3[vE/(f;r,E")] . (19)

Although L1V (a°) = L(a?), as expected, and as confirmed
by comparing Eqs. (18) and (1), solving the 1st-LFSS
defined by Egs. (16) and (17) is computationally
expensive since the 1st-LFSS would need to be solved
anew for every variation do;, i = 1,..., N, in the model
parameters, which affects the source term Q') ((10, o'; 6(1).
The computationally expensive evaluation of the indirect-
effect term by using Eq. (15) can be avoided'®'*'*" by
expressing this indirect-effect term in terms of the solution of
the 1st-LASS, which is constructed by implementing the
following sequence of steps:

Step I: Inthe space L, (V x Q x E) of square-integrable
functions, define the inner product (u(r, @, ), v(r, Q, E))
of two functions u(r,Q E)e€L(VxQxE) and
v(r,Q,E) € L(V x Q x E) as follows:

NUCLEAR SCIENCE AND ENGINEERING - VOLUME 193 - JUNE 2019

(u(r,Q,E), (r,Q,E)
J JdQJdEurQE )u(r, Q,E) . (20)
4 0

Step 2: Denote the Hilbert space endowed with the inner
product defined in Eq. (20) as H(;, and form the inner product

of Eq. (18) with a yet undefined function y(!)(r, Q, E) to
obtain

o) -

(v (r,2.E).

Q(1>(u0,(p0;8a)> . (21)

1

Step 3: In the Hilbert space H(j), define the formal adjoint

operator, denoted as A )( ), of L(a), through
relationship

(w, LW (a%)30) 4y = (30, 41 (a”)y)
+ P [&p, \v(”} : (22)
where

AV @y £ —0 o VyV(r,Q,E) + 3, (t:1, E) y (r, Q, E)

s

4n

dE'S (s;r,E — E',Q — Q" y(r, Q' E')

o—3

o0
—VE(f;1, E) Jdﬂl JdE/x(p; r.E—E)y(r,Q E'),
4n 0

(23)

and where the bilinear concomitant PV [5¢, (V] is defined
on the phase-space boundary (0V x 0Q) as follows:

o0

P [&p, w“ﬂ A JdE J Q J Q- n[dp
0 Q.-n<0 oV

x (r,Q, E)yV(r, Q, E)dA — JdE aQ J Q- ndop
0 Q-n>0 ov
x (r, 2, )y (r,Q,E)dA . (24)

In order to simplify the notation, the superscript 0 denoting
nominal values will be omitted henceforth. This
simplification should not cause any loss of clarity since it
will become clear from the context which quantities are to
be evaluated/computed using the nominal values for the
model parameters.
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Step 4: Identify the term on the left side of Eq. (22)
with the indirect-effect term defined in Eq. (15), and use
Eq. (22) in conjunction with the boundary conditions
given in Eq. (17) to construct the following Ist-LASS
for the first-level adjoint function ') (r, Q):

AV (@) yV(r,Q,E) = 24(d%r,Q,E) , (25)
together with adjoint boundary condition
v (r, QE) =0,r,cdV,Q-n>0, (26)

which is selected in order to cause the bilinear concomitant
P [S(p, \y(l)] in Eq. (24) to vanish.

Step 5: Use the 1st-LFSS defined by Egs. (25) and (26)
together with Egs. (21) and (22) to obtain expression for the
indirect-effect term [see Eq. (15)], in terms of the first-level
adjoint function y(!)(r, Q, E):

{SR(a, o; w, Sa)}md = <\|/(1)(r,Q,E), Q<')(a07(p°;6a)>(l)
(27)

The Hilbert space Hy), endowed with the customary inner
product defined in Eq. (20), yields the customary adjoint
Boltzmann operator shown in Eq. (23). The use of H(;) allows
the 1st-LASS to be solved by only slightly modifying the
numerical methods wused for solving the original
Egs. (1) and (2), namely, by reversing the sign of the solid
angle and reversing the order of integration over the energy
variable. As is also well known, the 1st-LASS is independent
of parameter variations, so it needs to be solved just once for
each particular form of the source term X,(d;r,Q,F) to
obtain the corresponding first-level adjoint function
v (r,Q,E). Subsequently, the indirect-effect term is
computed efficiently, once y(!)(r, Q, E) is available, by per-
forming the integrations (quadratures) indicated in Eq. (27).

Replacing Eqs. (27) and (14) in Eq. (13) yields the
following expression for the total first-order response
sensitivity in  terms of the first-level adjoint
function ¢! (r, Q, E):

8R(a, ¢; y', 8a) = JdV J aQ J dE 824(r,Q,E)o(r, Q. E)
4 0

+ (v (r, Q. E), Q(')(a°7<p°;6(1)>(1)

Ve R (a, ¢; y)
A s W .
2 n;l:l R S0y, (28)

@ANS

The partial first-order response sensitivities, denoted as
aR(u,(p; w(l))/ﬁaml,ml =1,..,N,, to a generic
parameter a,,,, are obtained from Eq. (28) by identifying
the quantities that multiply the wvarious parameter
variations d0,,, have the following expressions:

OR(a,9; y'V) 5 OR(a, ¢; y)
a(lj o aZ‘J

For j=1,...,J;:

- —Ja’V J aQ l dE v (r,Q,E)o(r, Q. E)
)

4n
0%, (t;r, E
Ty 29
ey (29)
Forj:],...,JY; ((L(P v )é ((l,(p \j )
aajﬁLj aS/
:JdVJdQJdE \V(U(LQ,E)J 10
4n 0 4n
1 X (s;r,E' - E, Q' — Q
X JdE/ <s5r7 — L, — )(p(r,g/,E/) :
aSj
0
(30)
R (e, @; y) o OR(a, p; yV
For j=1,..,J;: (“v(P v )é (a(p v )
00, 447 of;
4n 0 4m
o[vE,(f;r, E’
Xx(p;r,E’eE)[Vf”(—’r’)](p(rvch,) ;
o
G1)
For j=1,..,J,: (av(l) v )é (o, 9; v )
a("Jt+Js+J/~+j apj
4n 0 4
00 . ,
X J dE/ wvzf(i‘; I',E/)
X o(r, Q' E') (32)
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OR (0, ¢; y'") 5 OR(a, @; y! T e0(qr Q.E
For j=1,..,J,: (093 v )é (o, 03 v ):JdVJdQJdE Mw(‘)(r,Q,E) : (33)
00U 4, 47+, +/ 0q; ; ) 0g;
and
OR (o, ; w'V) A OR(a,q; y T 0%.(ar,Q.E
Forj=1,...Js: (0,03 1) OR(o @5 vT) JdVJdQJdE M@(r,ﬂ,m . (34)
OO, -+, +Jy 0d; i ) od;

The same model parameter could appear in the definitions of more than one macroscopic cross section. For example,
the isotopic number density of some element, generically denoted as »;, could be an imprecisely known model
parameter that might appear in the definitions of the total, scattering, and fission macroscopic cross sections, as well
as in the source term Q(q;r, Q, E). In such a case, the sensitivity of the response to the model parameter N; would be
the sum of the corresponding partial sensitivities computed from Egs. (29), (30), (31), and (33), namely,

oR (o, 93 y") 4 T 30(q;1, Q.E)

v
i ©  OvEs(fr,E’
+JdVJdQJdE \y(l)(r,Q,E)J dQ/J g LE G EY)]
4n 0 ON;
4 0

T 0

0%, (t;r,E)

4

dv J dQ J dE yV (r,Q,E)o(r, Q. E) N

4 0 !

T % S(srE' —EQ —Q

dVJdQJdE W(U(LQ,E)J dQ’J gpt B E 2 EQ — Q)
4n 0 ON;

0

o(r,Q' E")

4n

x(psr, E' — E)o(r, Q" E') . (35)

IV. THE SECOND-LEVEL FORWARD AND ADJOINT SENSITIVITY SYSTEMS FOR COMPUTING SECOND-ORDER RESPONSE
SENSITIVITIES TO VARIATIONS IN MODEL PARAMETERS

The second-order response sensitivities will be obtained by applying the 2nd-ASAM developed by
Cacuci,lof12 which relies on the construction of a 2nd-LASS for each of the first-order sensitivities defined
by Egs. (29) through (34).

IV.A. Computation of the Second-Order Sensitivities 9*R (0, ;") 3600, j = L,..., Ji; My = 1,..., Jg

The second-order sensitivities 9*R (a, 0; \y“))/(atj) (Oom,), j=1,....J;; my =1,...,J,, are obtained by determining
the G-differential of the first-order sensitivity given in Eq. (29), which yields the following expression:

oR(a, ¢; yV) OR (a, p; yV OR (e, 3 vV

s[REo v [ [or(eev )] f[oR@ey ] 30

0t 0t ) 0y ;

dir ind
where
OR(a, ¢; y!) i Ot

5|CR (0.0 v) A ldVJdQ JdE y(r,Q,E)o(r,Q,E) Y w&md =L (37)

01 dir T 0 st Ol

NUCLEAR SCIENCE AND ENGINEERING - VOLUME 193 - JUNE 2019 &ANS



362 CACUCI - COMPUTING SENSITIVITIES OF FLUX FUNCTIONALS

and
R (0. o: yV N
{S[MH é—JdVJdQJdE
3 |
ind 4n 0
< o (e, 2.5)] (r. 2, 1) ZAEDE)
3

- JdV J dQ J dE [60(r,Q, E)] vV (r, Q. E)

4 0
0%, (t:r, E
o EBERE) (38)
o

The direct-effect term defined in Eq. (37) can be
computed immediately. On the other hand, the
indirect-effect term defined in Eq. (38) can be
computed only after having obtained the solution
dp(r,Q,E) of the 1st-LFSS and the wvariation
Sy (r,Q,E) in the first-level adjoint function
v (r,Q,E). It has already been discussed in Sec. III
that it is computationally expensive to obtain
dp(r,Q,E) since the Ist-LFSS would need to be
solved anew for every wvariation in the model

parameters. Furthermore, the function dy(!)(r,Q, E)
is the solution of the system of equations obtained
by G-differentiating the 1st-LASS [see Eqs. (25) and
(26)], namely,

AD () 5y (r, @, E) = 0©) (ao,\u(l);Sa) (39)

and

Sy (r, QE)=0,r,€dV,Q - n>0, (40)
where
o (ao, y; 6(1) 2 554, Q.E) — 5%,(r, E)y(r, Q, E)

+ Jdﬂ’ Ja’E’ [6Z,(r,E — E',Q — Q" yV(r, Q' E")
0

4n
+38[vZ/(r, E)] J @’ JdE Yy(pir E — E )y
4n 0

X (r,Q" E") + [vZf(f;r,E)} JdQ’JdE’
4n 0
x Sy(psr, E— ENy(r, Q' E') . (41)

@ANS

It is evident from Egs. (39) and (40) that the evaluation of the
function dy!) (r, Q, E) is just as expensive computationally
as determining the variation d¢(r,Q,E) by solving the
Ist-LFSS. The system comprising Egs. (39) and (40) is
called'®'? the Second-Level Forward Sensitivity System
(2nd-LFSS). To avoid the need for solving the 2nd-LFSS,
the indirect-effect term defined in Eq. (38) will be expressed
in terms of a 2nd-LASS, which will be constructed by follow-
ing the general principles introduced by Cacuci,'®™'? compris-
ing the following sequence of steps.

Step 1. Define an inner product <u(2)(r,Q,E),

v@(r,Q,E)) of two functions

@) vector-valued

_i_
uW(r,QE 2 [uf)(r, Q. E), i (r, Q,E)} and

T
vO(r, @, E) & [vﬁz)(r, Q, k), vgz) (r, Q, E)} , with
WP (r, @ E) €L (V x @ x E), & (r, Q, E)
e LV xQ@xE), WrQE) € Ly(VxQxE), and
véz) (r,Q,E) € Ly (V x Q x E), as follows:

—

W (r,Q,E), v (r,QE))

[o ¢}

2
Ay JdV J aQ J dEu (r, Q,ENW? (r,Q,E) . (42)
J=1 it 0

Step 2: Define a Hilbert space, denoted as Hy),
which is endowed with the inner product defined
in Eq. (42). For a matrix-valued linear operator

@ ;0
L? & (lel) L%), define its formal adjoint

Ly 15
A (4D 4@
operator, denoted as A = 1 A12 , through

the following relationship:

where P [u®, v(®] denotes the corresponding bilinear
concomitant on the boundary (07 x 0Q x OF).

Step 3: Apply the definition provided in Eq. (42) to form

the inner product of Egs. (39) and (16) with a yet undefined

1

function ¥ (r, @,E) £ [y (r, @, ), y(r, 2, B)]

where wf}(r,ﬂ,E) €LV xQxE) and \V%(r,Q,E)
€ L,(V x @ x E), to obtain
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Ja’V dQJdEWE (r, @, E) A (0)5y) (r, Q, E)
dEY)(r, Q. E)L" (a)0(r, @, E)

|
+JdVJdQ
-

av J a2 | dE vy (r, @, E)0% (a,yY; 50)

0%8 S 3

+JdVJdQJdE\V2](l‘ Q. £)0"(a, ¢;5a) . (44)

Step 4: Use the relation shown in Eq. (43) to recast the
left side of Eq. (44) in the following form:

JdV dQ JdEw§>(r9E) )(@)dy(r, Q, E)
in 0
+ |av | d@ | dEvE)(r, @, E)LY (0)50(r, Q. E)
4n 0
— |av | a0 dESw(l)(r,Q,E)[A“)(u)] v (r,Q,E)
4n 0
+|av | ae | dE so(r, @)L W
(P(l', )L ((l) \VZ,j(rvgaE)
S0
2 2
2 [&p, Sy; wi}wéﬂ : (45)
where the symbol []° indicates adjoint and

P2 {S(p Sy T i,\yg)} denotes the corresponding

bilinear concomitant on the domain’s boundary, similar
to the bilinear concomitant shown in Eq. (24).

Step 5: Use the boundary conditions shown in Egs. (17)

and (40), and impose on the function \y}2)(r,Q,E) &}

T
[\ygzz(r Q.E), \ygj)(r Q E)} the boundary conditions
i) (r, @, E)= 0,1, € 0V,2 - n>0 and y(r,, Q, E) =
0, r,€0V,Q-n>0, to cause the bilinear concomitant

){5([’ Sy, s 1,\|/§ iJ in Eq. (45) to vanish.

Step 6: Noting that [4")(a)]" = L") (a) = L(a) and
[LD(a)]" =4V (a) and identifying the right side of
Eq. (45) with the indirect-effect term defined in Eq. (38)
yield Egs. (46) through (49):
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2 A 2
L(a®)y)(r, @,E) 2 Q- Vi) (r, @, E)
+ 301, E)y ) (r, Q,E) — J dQ’ J dE’
47 0
x 20(s%rE' - E,Q" — Q)y\)(r,Q,E")

L
— JdQ’ J dE'xo(pO;r,E’ R E) [v02,9(f°;r,E')}
4n 0
o (t;r, E
x g2 (r, Q,E") = —(Po(r,Q,E)%,
j
j=1,0J, 6)

subject to boundary condition
Y (1, @,E) = 0,1, €3V, Q - n < 0,
j - 1, ...,J[ (47)

and

A(l)(ao)\y%(r QE) 2 -0V

+ 20 (% E)\uzz(r Q.F)

) (r, Q. E)

o]

— JdQ’JdE/Zg(so;r,EaE’,Q — Q)

4n 0 E)} Jdg/

4n

X wg?}(r, Q' E')— [VOZ?-(fO;r,

deE
0

= _W(l)(r> Q,E)

'(p%r,E—E') ()(rﬂ’ E')

o, (t% r,E
ox,(¢r, E) ),jzl,...,J,, (48)
3

subject to the following boundary condition

\Véz,i‘(l‘s,ﬂ,E) —0,r, €3V, Q- n>0,
Equations (46) through (49) constitute the 2nd-LASS for

the second-level adjoint function w}”(r,ﬂ,E) 2

[wf}(r, QE) , yr,Q.E) ] j=1,...Ji , which will
be used to evaluate the indirect-effect term defined in Eq. (38).

Step 7: Use Eqs. (46) and (48) together with
Egs. (41) through (45) in Eq. (38) to obtain the
following expression for the indirect-effect term:

@ANS
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4n

R : N 00 00
{5 l(“’a("t"’)] } - JdV J a0 J dE v (r, @, E)0®) (a, y; Sa) n JdV J a0 J dEV?(r,Q,E)
/ ind 4 0 A 0

W0, ¢;80), j=1,...J; . (50)

Step 8: Replacing the expressions of 0®) (o, y!); 3a) and Q') (0; @; 3@), respectively, in Eq. (50) and subsequently

using Egs. (50) and (37) in Eq. (36) yields

(o 0]

Ji 2 .
5 %, (tr, Q. E) &mz}

oR (a, ¢; w)
—2 2P Il = g | d@ | dE vV (r, Q. E QFE
5 v (r, Q. E)o(r,Q.E){ > 34,00,

m2:1

4n 0
0

J.
2 < azd(d;r,QaE)

+ |av | a0 dEwﬁ,}(r,g,E){E =S8,
h p 0 my=1 m

o0

J,
L0, (t;r, Q, E
— |av | ae [ dEV? (r, 0, E)y' (r,Q,E){§ %5%}
n

4n 0 my=1
o

+JdVJdQ dwaj.(r,sz,E)J aQ’ JdE’\y(l)(r,Q’,E/){
0 ' 4n

Js 0Zs(s;r,E - E' Q — Q)
5 s
= OSm,

[o¢]

I3[V (f;r, E T
+JdVJdQ dEw%(nQ,E){ZWSﬁM JdQ’JdE’x(p;r7E—>E’)\y(l)(r,ﬂ’,E’)
my 0

my=1 4n

+ JdV J dQ | dEw(r,Q,E) [vE/ (f;1, E)] J aQ’ J dE"yV(r, Q' E')
4n 0 4n 0
0 J,
(2) . aQ(q’ r, 97 E)
+ JdV J aQ J dE\l’z,m, (I‘, Q, E){ Z TMSQmZ

0
i J
N 0% (tr,Q F
- JdV J dQ J dE\ugz)](r Q E)(p(r,Q,E){ Z %Stmz}
m

m2:l

0Xs(s;r,E' - E, Q' — Q)B }
Sy

0
/! / /! /
+JdVJdQJdE\|/2J(r7Q,E Jdﬂ JdE(prQ ){E .
0

4n my=1

0
i @) Ny pon ) N~ oxpsr,E' — E)
dEy; j(r,Q.E) | dQ' | dE'[VE/(f;r,E")]o(r, Q' E’) Za—5pmz
4n 0 4 my=1 Pm,
l

I OVE(fr, )]
. ZAGERE)
dE'o(r,Q' E' (Par,E/*E){ZTWm ,

mzil

+JdVJdQ dES)(r,Q,E) Jdﬂ’

4n

|
|

(51)

The second-order partial sensitivities 0°R (a,(p; \V(l)) / 0tj00,y,, j=1,...,Ji; my=1,...,J,, can now be determined by

identifying in Eq. (51) the quantities multiplying the parameter variations da,,,, which yields the following expressions:
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0*%,(t;r, Q,F)
01,0t

3*R(a,¢; v 1).“,(2) ©0
. b b b j (1)
for jmy =1,..,J;: =—|dV [ dQ | dE v (r,Q, E)o(r,Q,E)
01,0ty
0

4n

0X(t;r,Q, E) .

- JdV J de j dE [y (r, 2 B (1, Q. B) + 5 (r @ E)o(r, Q.F)| =222 (2)
my
4n 0

R (@, 0 w3y T
for ]Zla,Jla m2:1a“~7Js: :JdVJdQJdE\V(2>
4n 0

TR i(r,Q,E) JdQ’ JdE’\y(l)(r,Q’,E’)
[jOS my 0

4n

S (s:rE—E.Q— Q' T
K (ST ; - )+JdVJdQJdEw§2}(r,Q,E)JdQ'
sz ’
0

4n 4n

0Xs(s;r,E - E' Q— Q)

x JdE’ o(r, Q' E' ; (53)
OSpm,
0

2 o0
. 62R<0,,(p; W(l);“’]( >) () a[VZf(f;l‘,E)]
for j=1,..,J;; my=1,.,Jr: 50, = |aV | dQ dE‘I’Lj(r’QvE)T

S my J
4n 0

8 Jdg/ JdE’x(p;r,E —E"Wy(r,Q" E') + JdVJdQ JdE\lff,}(raﬂyE) stz’ JdE/
4 0 0 0

4n 4n

a[ve(f;r, E'
><<p(r,9’,E/)>c(p;r,E—>E’)—[V AULLUIY

54
afmz > ( )
R (a0 v v T o
for j=1,.Js my=1,..J,: 5 = +JdVJdQJdE\yg&(r,Q,E)[vZf(f;r,E)]
S it 0
T ox(p:r. E — E' 1
x JdQ’JdE’\y(l)(r,Q’,E’) x(p,ré - )+JdVJdQJdE\|/g.(r,Q,E)
4 0 P 4 0
T v E' - E
x Jdg’JdE’[vzf<f;r,E’)]<p(r,sz’,E’)M : (55)
p 0 | %,
azR(a,(p; \v“);w(z)) T 20(q; v, Q.E
for j=1,..J my=1,..,J,: 5150 I ) JdVJdQJdE\y%(r,Q,E)% : (56)
] my in 0 my
and
azR(a,(P; \v(“;\v(z)) T 0S,(d;r, Q. E
for j=1,..J; my=1,...Jy: — ’ :JdVJdQJdwa}(r,Q,E)% . (57)
J my my
4 0
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IV.B. Computation of the Second-Order Sensitivities

0*R(a,@;w ™)/ 0500, j= 1, Js; My = 1,0 g
The second-order sensitivities 0°R(a, ¢; y(!))/
(05,) (00, ). (0s;) (O, ), j=1,...,Js ma =1,...,J, are

obtained by determining the G-differential of the first-order
sensitivity defined in Eq. (30), which yields the following
expression:

5| R o w) | [ 1OR (@03 yD)
asj B asj dir
OR (e, p; V)
et
5 ind

where for j=1,...,J:

OR (a, ¢; w1 1
st dir

4n 0

X (r,Q, E) JdQ’ JdE’(p(r,Q’,E’)
4m 0

" i 0*Zy(s;r E' - E,. Q' — Q)

aS/asmz

Osm, , (59)

m2:1

and where for j=1,...,J;:

R (a, ; y» T
%Fﬁﬂﬂjﬂ épdﬂﬁﬂwm
asj ind

4n 0

(r,QF)

0Xs(s;r,E' - E, Q" — Q)
6sj

X dQ’Ja’E’ o(r, Q' E")
0

in

+ dVJdQ JdE v (r,Q E) stz’
0

4n 4n

dE'
g

0Xs(s;r,E' - E, Q' — Q)
Js;

do(r, Q' E") . (60)

The direct-effect term defined in Eq. (59) can be computed
immediately. On the other hand, the indirect-effect term
defined in Eq. (60) can be computed only after having
obtained the solution d¢(r,Q,E) of the 1st-LFSS and the
solution &y (r,Q,E) of the 2nd-LFSS defined in
Egs. (39) and (40). To avoid the need for solving the
1st-LFSS and the 2nd-LFSS, the indirect-effect term defined
in Eq. (60) will be expressed in terms of a 2nd-LASS, which

@ANS
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will be constructed by following the same sequence of steps
as previously outlined in Sec. IV.A. Thus, applying the
definition provided in Eq. (42) to form the inner product of
Egs. (39) and (16) with a yet undefined function

0% (r,Q E) £ [ )(r, Q,E), 0)(r, 0 E)}T where

07) (r,QE) € Lry(V x @x E) and 05)(r,Q,E) € L,
(V x Q x E), yields a relation that is similar to Eq. (45),

except that the components of \|1(2)

;” are replaced by the

corresponding components of 9]@ (r,Q, E), namely,

JdVJdQJdEe (r, @, E) A" (0)5y! (r,Q,E)+JdVJdQ

41 0 4n

x | dEOT)(r, @, )L™ (a)30(r, @, E) = JdVJdQ

X

S —— R} O —— Y

2 2
dE6] (1,2, £)0% (0,4);50) +JdVJd9JdEe;j
4n 0

[o.¢]

x (r,Q,E)0" (a, p; 5a) = J JdQJdES\V (r,Q,E)
4n 0

l

X{Au(a)} 0 (r, Q. E) J J dQ | dE ¢(r, Q)

4n
*

x [L0(@)] 0F)(r, @, E) + P2 [0, 3y"; o),

07,00 . (61)
The bilinear concomitant P?)[5¢, dy'!; v i, \yé i] in
Eq. (61) will vanish by imposing the boundary conditions
01 (r,, Q,E) = 0,1, € 0V, Q- n < 0 and 05 (r,, @, E) =
0, ry € 3V, Q- n > 0. Noting that [4")(a)]" = L (a) =
L(a) and [L( (a )] = A" (a) and identifying the rightmost

side of Eq. (61) with the indirect-effect term defined in Eq.
(60) yields the following 2nd-LASS for the components of

the second-level adjoint function (-)](2) (r,Q,E):

L(6”)07(r, @, E) £ @ - VO (r,Q, E) + = (£'; r, E)

x 07 (r, @, E) —Jdﬂ’ JdE’Zg(so;nE’ —E,Q' - Q)

4n

0
x 0 (r, Q. E) JdQ’JdE’ [VOE})(fO;r,E’)}
4 0

L (%1, E' — E)oY(r,Q,E) = Jdg’ JdE’
4n 0
" 0Z(s;r,E'—E, Q' —Q)

o(r,Q" E"), j=1,...,J; (62)
6sj
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and

AV ()05 (r, @, E) £~ - V0T (r, @, E) + 20 (t% r, E)0)(r, @, E) — JdQ’JdE'zg(SO;r,E_)E’,Q - Q)
0

4n
X 00)(r, @' E') = VE) (15, E) | Jdﬂ’ JdE °(p’r,E—E') 07)(r, Q" E) = JdQ’JdE’w(l)
4 0 4n 0

0Z(s;r,E—E' Q— Q'

>< (r7Q/7E,) : (S’ r’ : — )7 j: ]‘7"""]5 9 (63)
Os;
subject to the following boundary condition:
9 (rS,Q E)=0,Q-n<0; 92m (rg, Q,E)=0,Q2-n>0; ry,ecdV,j=1,..,J; . (64)

Using Egs. (61) through (64) in Eq. (60) yields the following expression for the indirect-effect term:

5| R (0 v) J J QJdE (r,2,5)0% (a,yV;50) + JdVJdQJdEegz}
asj ind 4n 0 4n 0 ’
x (r,Q,E)0" (0, 9;80), j=1,..,J; . (65)

Replacing the expressions of 0 (a°, y!V;8a) and Q' (0; ¢;3a) from Eqs. (41) and (19), respectively, in Eq. (65);
replacing the resulting expression together with the direct-effect term from Eq. (59) into Eq. (58); and subsequently
identifying the quantities multiplying the parameter variations da,,, ,my = 1,...,J, , in Eq. (58) yield the following

expressions for the second-order partial sensitivities 0°R <a, o; y; Oj( )/(as_,) (aamz), j=1 . J,my=1,..J4

2 00
&R (@, s w;0/") -
Forj=1,..,J5; my=1,....J;: =—\|dV | dQ dE[O1
statmz ’

4n 0

+ 02 (r, Q. E)o(r, Q. E)

o’R (a, o; w; 9}2>) I
Forj=1,...J; my=1,..J: = JdV J aQ J dE v (r,Q E)
05708,
0

T P (sirE > E,Q —Q T
X dQ’JdE/(p(r,Q’,E’) (SrE ~EQ - )+JdVJd JdEG (r,Q,E)
J 0508,
4 0 4 0
T S(s:r.E—E' Q—Q T
x | a@’ JdE’w“)(r,sz',E’)a (s, g kel )+JdVJdQJdEe§2}(r,Q,E)
Sim ‘
4 0 : 4 0
o . / /
« [ao JdE’(p(r,Q’,E’)aZS(S’r’E;E ,Q — Q) : (67)
J S,
47 0
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2 00
For j=1,..,J 1,....J, aZR(a’(P; w<1>;9} )) JdVJdQJdEG(Z)( Q E)a[vzf(f;r’m
or j=1,...,J5 my=1,..,J¢: = (r,Q,E)——"— =
2 / asj G/ pa 0 Ly fm,
X Jdﬂ’ JdE’X(p; r,E— E/)W(l)(r,Q’7E/) + JdVJdQJdE@g}(r,Q,E)
4n 0 4n 0
T oWV, (f:r, E'
S R %)% : (68)
4n 0 "
R (a, o; y; 9,(»2)) T,
For j=1,..,J5; my=1,...J,: = JdVJdQ JdEeﬁ \(r,Q, E)[VE/(f; 1, E)] stz'
0s;0pm, ’/
4 0 4n
T o(pir.E — E' T
X JdE’\y(l)(r,Q’,E’) X(p’%’ - )+JdVJdQJdE6%(r,Q,E)
0 P in 0
T v E' > E
x Jdﬂ’ JdE’[vz_,-(f;r,E’)}cp(r,Q’,E’) % : (69)
An 0 P
o) S e
Forj=1. .. Jom=1 ..J: = |av | ag | aE0?(r. @ ) S0 E) 70
orjy s ey sy MY 3 ey dyg asjaqmz J J J 2,J(r7 ) ) aqm2 5 ( )
4n 0
and
azR(a,cp; w“);B}z)) T 0%y (d;r, Q. E)
Forj=1 ..Jo m=1 .J: = |av | ae | aE0?(r. @ £) ELS 255 71
Or] ) IS m2 ) ? d asjadmz J 4J7; J)\ 1,](r7 Y ) admz ( )

It is important to note that the forward and adjoint
operators appearing on the left side of the 2nd-LASS
defined by Egs. (62), (63), and (64) for the second-level

adjoint function Bj(»z) are the same operators as appearing on
the left side of the 2nd-LASS defined by Egs. (46) through
(49) for the second-level adjoint function \y_;z), the forward

operator being the same as on the left side of the original
transport Eq. (1), while the adjoint operator is the same as
that appearing in the 1st-LASS, namely, Eq. (25).
Furthermore, the forward and, respectively, adjoint func-
tions are subject to the same forward and, respectively,
adjoint (vacuum) boundary conditions. Only the source
terms on the left sides of the respective forward, 1st-
LASS, and 2nd-LASS differ from each other. Therefore,
the same forward and adjoint software packages can be used
for solving numerically the various equations underlying
the 1st-LASS and the 2nd-LASS. Furthermore, the formal
expression of the indirect-effect term defined in Eq. (50)

@ANS

)

involving the function \|lj<-2 has the same formal expression

as the indirect-effect term defined in Eq. (65) involving the
function 9}2). Therefore, these indirect-effect terms can be
evaluated numerically (quantitatively) using the same soft-
ware package, while inputting the corresponding second-
level adjoint functions \|lj<-2) and 9}2). Consequently,

the second-order sensitivities shown in Eqs. (68) through
(71) have formally the same expressions as the second-order
sensitivities shown in Egs. (54) through (57), respectively,

except that the second-level adjoint function 9](2) in Egs.
(68) through (71) plays the role of the second-level adjoint

function \|(1<2) in Egs. (54) through (57). Thus, the software

package used for computing the sensitivities shown in Egs.
(54) through (57) can also be used for computing the sensi-
tivities shown in Egs. (68) through (71).

The expressions of the second-order sensitivities
computed using Eq. (66) must be identical to those
computed using Eq. (53).
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That is, forj=1,....,.J5; k=1,...,J;:

62R<u, o: \I’(l);0}<‘2)) ) 5 0%, (t;r, Q. E)
et = | [ ae [ aE [0 0.0 0.8+ 62,0, Bpotr, @, )| HUEDE)
SOl “

4n 0

O*R (D ey 00 00
a7(p9 \V a\llj (2) 1
= :JdVJdQJdEwlAk(r,Q,E)Jdg’ Ja’E’\V( (r, Q' E")
0 0

atkaS,'
X 4n 4n

0% (s;r.E — E',Q — Q' T
x s . )+JdVJdQJdE\|;§2,2(r,Q,E)
Sj ?

4n 0

o2 . ! !/
« [ae’ [aE" or, 0" gy elSHE—ELQ = QT (72)
b) b asj
0

4n

@
J

The relation shown in Eq. (72) provides an independent path for the mutual verification of the solutions y:~ and

(-)}2), j=1,...,J;s, of the respective 2nd-LASS.
IV.C. Computation of the Second-Order Sensitivities 0°R (a, @; w!")/0f0a,,, j= L., Jr; my = 1,.., Jy

The second-order sensitivities 0°R (0, 9; \y(l)) /(0f) (@), j=1,....,Jr; my =1,...,J, are obtained by determining
the G-differential of the first-order sensitivity defined in Eq. (31), which yields the following expression:

OR (0, y) | [ |OR(a 03 y) OR(a, ¢; yV) .
feg o) g

where for j =1,...,J;:

OR (a, ¢; y) 1 1
{8 [%] } 2 jdVJdQJdE v (r,Q,E) de’ JdE’ o(r, Q"  ENy(p;r,E' — E)
7 dir 4n 0 4n 0

I Ve (fir. E T
3 Mafmz + JdV J aQ J dE y!(r,Q,E) Jdgl
0

my=1 a];afmz 4n 4n
T (ot E! :
x(p;r, E' — E) a[vZf(f, r,E )]
dE’ Q' E' Opm 74
X J (P(r, ) )V;_l apmz p 2 afj ’ ( )
0 —

and where for j =1,...,J;:

{5 lwl } A JdV o J dE sy (r, @, E)| stz’ JdE’ o(r, Q' E)y(p: 1, E' — E)
ind 0

of:
) 4 0 4
o[V, (f;r, E’ T T o[V, (f;r, E’
x W+JdVJdQJdE v (r, @, E) JdQ’JdE’ Bo(r, @', ENy(p; 1, E’ HE)W . (75)
/ 4n 0 4 0 J
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The direct-effect term defined in Eq. (74) can be computed immediately. On the other hand, the
indirect-effect term defined in Eq. (75) can be computed only after having obtained the solution d¢(r,Q,E) of the
1st-LFSS and the solution 5w(1>(r, Q. E) of the 2nd-LFSS defined in Egs. (39) and (40). To avoid the need for solving
the 1st-LFSS and the 2nd-LFSS, the indirect-effect term defined in Eq. (75) will be expressed in terms of the solution of a
2nd-LASS, which will be constructed by following the same sequence of steps as previously outlined in Secs. IV.A and IV.B.
Thus, applying the definition provided in Eq. (42) to form the inner product of Egs. (39) and (17) with a yet undefined function

T
u(r,Q,E) £ [ D(r, Q,E),ul(r, @ E)} , where u{”)(r, @, E) € Ly(V x @ x E) and u5)(r, ,E) € Ly(V x Q@ xE),

L
(2)

yields a relation that is similar to those shown in Eqgs. (45) and (61), except that the components of y;™ or 0/(2) (r,Q,E),

respectively, are replaced by the corresponding components of u}z) (r,Q, E), namely,

JdVJdQ:JOdEul i(r, Q JEYAD (a)dyD (r, Q,E) + JdVJdQIdEuZJ(r Q. E) LY (a)d0(r,Q, E)

4n 4n

= Ja’V J dQ J dEu(r,Q, E)Q® ((1, y(; 6(1) + JdV J dQ J dEu$)(r, @, E)0" (4, ¢; 30)
0 0

4 4n

- JdV J dQ J dE 5y (r, Q, E) [A(l)(a)} W2, Q)
4n 0
+ JdV J dQ J dE $0(r, Q) [L“)(a)} W2, Q.E) + [(Sq), sy; u®), ufi] . (76)
4n 0

The bilinear concomitant P [S(p, Sy Uy i,ugﬂ in Eq. (76) will vanish by imposing the boundary conditions

u(fj(rs,Q,E) =0,r, €0V,Q - n<0 and uzj(rs,Q E)=0,r, € 0V,Q - n>0. Noting that [4")(a)]" =LV (a) =
L(e) and [L( (o )] = A" (a) and identifying the rightmost side of Eq. (76) with the indirect-effect term defined in Eq.
(75) yields the following 2nd-LASS for the components of the second-level adjoint function u]( >(r, Q. E):

L(a")u)(r, @, E) £ Q o Vi) (r, @, E) + 20 (€, r, E)ui’(r, @, E)
- JdQ’ JdE’ZS(sO;r,E’ — E,Q' — Q)u)(r,Q,E) - Jdﬂ’ JdE’XO(pO;r,E/ —E)
47 0 47 0

0 [VZf(f; r, E’)}

= 1,.d (77
i J r (77)

2
X [VOZ})(fO;r,E/)}ugt)j(r,Q,E) = JdQ’ J dE’ (po(r,ﬂ’,E’)XO(pO;r,E’ — E)
4n 0

and

AD () (r, Q,E) £ —Q o Vil (r, @, E) + 0 (% 1, E) ul)(r, Q. E) — JdQ’ JdE’zf(so;r,E —~E Q-
0

4n

Xué)(rQ’E)[voz;%(fo;r,E)}JdQ/JdE (p% 1 E — E') i) (r, Q" E)
4n 0

oWVE (f; 1, E T
_ O (fir )] f(afr ) JdQ’JdE’ YO (r, @ EN  (p0ir E—E'), j=1,..J; (78)
j
4n 0
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subject to the following boundary condition:
s (6, QE) =0,Q - n>0; u)(r, QE) =0,Q-n<0; r,€dV; j=1,.J. (79)

Using Egs. (76) through (79) in Eq. (75) yields the following expression for the indirect-effect term:

R (e, g; y( i
s|R@ o v) L JdV J aQ J dE ui’(r, @, E)0 (m v 5a)
aﬁ ind 0 ’

4n

+ JdV J dQ J dEu) (r,Q, E)O" (a,0;80), j=1,...Js . (80)
4n 0

Replacing the expressions of O (a’, y(V;3a) and OV (a; ¢;3a) from Egs. (41) and (19), respectively, in Eq. (80);
replacing the resulting expression together with the direct-effect term from Eq. (74) into (73); and subsequently identifying
the quantities multiplying the parameter variations 8a,,,, m; = 1, ..., Jy, in Eq. (73) yields the following expressions for

the second-order partial sensitivities O°R (a, 0; \V(l); u]@)/(aﬁ) (O0y,), j =1,y my =1, Jy:

o°R (m ¢; w“);uf-z)) h
Forj=1,..,J: =1,...,J;: : =—|dV | dQ | dE
or j y ey dfs MR g eeeyJt aﬁatmz J J J
0

4n
0%, (t;r,Q F)
Ot, ’

x [ug%_}(r, Q, E)y(r, @, E) + u(r, 2, E)o(r, Q,E)] (81)

o

o R(“"P; ‘V(l);“f@) 2)
; 2
Forj=1,...J;; my=1,..,J: 3o, = JdV J dQ JdEulyj(r,Q,E) Jdﬂ’

4n 0 4n

1 S (st E—E.Q— Q' T
x JdE’\y(l)(r,Q’,E’) (1, ; ki >+JdVJdQ JdEuf}
sz ’
0 0

(r,QF)

4n

(st E—E'\Q— Q') (2)

X JdQ’ JdE’ o(r, Q' E')
OSpm,
4n 0

R (a, o; w; uf-z))
Forjzlv"'aJ; m2:1,~~«,J : =
4 4 o

O*[vE/(f;r, E)]

JdV J aQ J dE y(r,Q, E) J aQ’ J dE' ¢(r,Q' E"x(p;r,E' — E)
0 af]afmz

4n 0

o[V (f:r, E T
(r’Q’E)W J a’ JdE upir, E — Ey O (r, @', E)
my

4 l 4 0
T w(p;r, E' — E)3[vE/(f;r, E')]
4n fm, ’

0

+JdVJdQ dEu$)(r, Q. E) stz’ JdE’(p(r,Q’,E’) (83)
0

4n
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. O’R (a, ¢; y(l); u}”)
For j= 1,7‘]/" my = 17"'7‘]17 .

9fi0pm,
i T :r,E' — E)O|vX/(f;r, E’
JdVJdQJdE v (r, Q,E) JdQ’JdE’ o(r,@ g B ET = E) VE(f;r, E')]
apmz afj‘
4m 0 4n 0
+ JdVJdQ jdEuf).(r,Q,E) [vEf(f; 1'7E)] Jdgl JdE/‘l/u)(raQ/aE/)X(l)’g—))
an 0 4n 0 Prmy
T T . E/ E
+ JdVJdQ JdEuz?_z(r,Q,E) Jdﬂ/ JdE’[vZf(f; r,E’)](p(r,Q’,E’) % : (84)
4n 0 4 0 P,
azR(“,cp; \v“);“@) T 30(d:r. Q. E
FOI‘j = 17---,Jf'; nyp = 1, ...,Jq : ! — JdedQJdEugzi(r7ng) Q(qa r, s, ) : (85)
. aﬁaqm2 ’ aqmz
4n 0
and
azR(a;(P; \V(l);“/(z)) T ) (dl‘ O E)
Forj=1,...Jp; my=1,..,Jy: L L —Nav | a@ | dEuP (x, @, E)y =22 225 2) 36
or j y ey dfs M2 y ey dd Gﬁadmz J J J ul_’j(r, , ) admz ( )
4n 0

As discussed in Secs. IV.A and IV.B, it is important to note that the forward and adjoint operators appearing on the left

side of the 2nd-LASS defined by Egs. (77), (78), and (79) for the second-level adjoint function u}z) are the same operators as
) )
J
functions are subject to the same boundary conditions. Only the source terms on the left sides of the respective 2nd-LASSs
differ from each other. Therefore, the same forward and adjoint software packages can be used for solving numerically the
various forward and adjoint equations underlying the 1st-LASS and the 2nd-LASS. Furthermore, the indirect-effect terms

defined in Egs. (50), (65), and (80) involving the second-level adjoint functions \uj@), Bj@, and u}z) have the same formal
expression. Therefore, these indirect-effect terms can be evaluated numerically (quantitatively) using the same software
package, while inputting the corresponding second-level adjoint functions \;1_;2), 0](2
the second-order sensitivities computed using Eq. (81) must be identical to those computed using Eq. (54).

appearing on the left side of the 2nd-LASS for the second-level adjoint function 6;”" and \|Ij(-2 ; all of these second-level adjoint

), and 11](2), respectively. The expressions of

R (a,0; v;u) b
Thatis,forj=1,....Jr; k=1,..,J;: % = —JdVJdQJdE
’ 4n 0
oL (tr, Q,E
< [ulr. 2. B (r.9,8) + 4. @, Epo(r. @, )] T 2E)
k

o[vE/(f;r,E)|
Y%

stz’ J dE"y(p;r,E — E')yD(r, Q' E")
4n 0
[vE(fyr, E')]

dE' o(r, Q' E")y(p;r,E — E')
of;

+ JdV J dQ J dE ) (r,Q,E) J dQ’ (87)
0

4

Also, expressions of the second-order sensitivities computed using Eq. (82) must be identical to those computed
using Eq. (68).
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&R (a5 w;u) T
Thatis, forj = 1,....Jp; k=1,..,J;: - JdV J dQ JdEuf?,.(r, Q. F) JdQ’
4 0

aj;ask
4n
T S (st E—EQ— Q' T
« [ ey (.0 Fry ST _ésk 02— Q) +JdVJdQJdEu§?}(r,Q,E) JdQ’
0 4n 0 4
1 0Xs(s;r,E—-E',Q — Q) 62R<“’(P; \|/<1);0;2)>
dE’ Q' EH)—/22 ’ = :JdVJdQ
8 o(r, 2. E') Ok sk,
0 4
T o[V, (f:r, E 1
X dEef,Z(r, Q,E)w J Q' JdE’x(p; r,E— E Yy (r,Q' E'
0 / 4 0
T 1 o[VE(f:r, E
+ |av J o J dEOY) (r, Q. E) Jdﬂ’ JdE’(p(r, Q' Ey(pir, E' — E)W . (88)
' J
4 0 4n 0

The relation shown in Eq. (87) provides an independent path for the mutual verification of the solutions uj(-z) and
wj@ while Eq. (88) provides an independent path for the mutual verification of the solutions uj@and 0}2).

IV.D. Computation of the Second-Order Sensitivities 9°R(a, @; w")/Op;0a,,, j= 1., Jp; My = 1,..., Jy

The second-order sensitivities 0°R (a, 0; \u(l)) / (apj) (00,), j=1,...,Jp; my =1,...,J, are obtained by computing
the G-differential of the first-order sensitivities defined in Eq. (32), which yields the following expression:

OR ) OR (D) OR W
5| R e v)) [kt loRwewD) L )
@Pj apj dir apj »
R <y
where for j=1,...,J,: {5{%} }
dir

op;
EX JdV J aQ

4n

—l—JdVJdQ

4n

T & %y (p;r,E' — E)
£y (r.Q, E J Q’JdE’ s (f:r. ENo(r. Q' E’ Xp.T, ”
d v (ra ) ) d v f( . >(p(ra ) )W; apjépmz 6[) 2
) —

4n

. / Jr a > (f: E/
dE/(p<l‘,Q/,E/)aX<p’r7E _)E)Z [V f(’rv )}

dE v (r,Q,E) Jdﬂ’
ap] my=1 afmz

4n

&m, »  (90)

8 o3
O — 3

oR <y T
and where for j =1,...,J,: {8[M] } = JdVJdQJdE [SW(I)(raQaE)} JdQ’
ind

Op:
& 4n 0 4n
1 ou(pir, E' — E 1
X JdE’ o(r, Q' E" W (f; r,E’)X(p’r’a—_)) + JdV J 40 J dE y(r, Q,E)J aQ’
Dj 4n
0 4n 0

ox(p;r,E' — E)

X J dE" 3¢(r,Q" E" VX, (f;r,E")
0 %;
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The direct-effect term defined in Eq. (90) can be computed immediately. On the other hand, the
indirect-effect term defined in Eq. (91) can be computed only after having obtained the solution 8¢(r,Q, E) of
the 1st-LFSS and the solution SW(I)(r, Q. E) of the 2nd-LFSS defined in Egs. (39) and (40). To avoid the need for
solving the 1st-LFSS and the 2nd-LFSS, the indirect-effect term defined in Eq. (91) will be expressed in terms
of the solution of a 2nd-LASS, which will be constructed by following the same sequence of steps as has been
outlined in Secs. IV.A, IV.B, and IV.C. Thus, applying the definition provided in Eq. (42) to form the inner
product of Egs. (39) and (16) with a yet undefined function w< >(r QE)= [ gzz(r Q. E), w; ;(r Q E)}T, where

wE?}(r,Q,E) € L,(V x Q x E) and wg%?i(r,Q,E) € L,(V x @ x E), yields the relation

JdVidQIdEwlj(r Q,E) AN (a)dy) (r, Q,E) + JdVJﬁdQCIdEng(r Q. E)LY (a)d¢(r, Q, E)

JdV J aQ
4
JdV J dQ
4n

o[
4
@ . 2

The bilinear concomitant P [S(p, Sy ;Wi Wy J in Eq. (92) will vanish by imposing the boundary conditions

dEw(r, @, E)Q® (a,w(l);éa) + JdVJd Jdsz ) (r, 2, £)0"(a, ¢; 5a)
4 0

*

dE 3y (1,9, E) |4V (0)| wi?)(r.2,E)

[S) — o—%
Sy

dE 8(r,2)[L0(@)| W) (r, 2, E) + PP [5g, sy w2 w2 (92)

w(r,, @,E) = 0,1, €0V,Q - n< 0 and wi(r,,Q,E) = 0,r, € 0,2 - n>0. Noting that [4")(a)]" = L0)(a) =
L(a) and [V (a)] " = A" (a) and identifying the rightmost side of Eq. (76) with the indirect-effect term defined in Eq.
(91) yields the following 2nd-LASS for the components of the second-level adjoint function wj@(r7 QE):

L(o)w?)(r, . E) £ @ 0 Vi) (r, @, ) + Z) (€ 1. E)wi’)(r, . E)

— | dQ" | dE'S0(% v, E' — E, Q" — Q)wi(r,Q,E)

dE' 3 (p%5 1 E' — B) VE (1 1, E) |3, @, F)

ox(p;r,E' — E)
Op;

I
QL
2

|
S
2

o8 ceg o2

dE' ¢(r,Q" E"WE,(f;r,E’)
4n
and

A

AD (@) (r, @, E) £ —Q o« Vi (r, @, E) + 30 (1, E) Wi (r, @, E) — Jdg’ JdE’Zg(so;r,EaE’,Q - Q)
0

4

4n 0

ox(p;r,E — E')

, jJ=1,..,J,, (94)
Gpj L

= VE(f;1, E) JdQ’ JdE’ y(r, Q' E"
4n 0
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subject to the following boundary condition:

Wéz,’)nl (I‘S, Q7E) =0,Q-n>0;

w (r,, @,E) = 0,2 - n < 0;
ro eV, j=1,..,J,. (95)

As in Secs. IV.A, IV.B, and IV.C, the operators

appearing on the respective left sides of the

2nd-LASS for the second-level adjoint function Oj@,

functions are subject to the same boundary conditions.
Only the source terms on the left sides of the
respective  2nd-LASSs differ from each other.

Therefore, the same forward and adjoint software

all of these second-level adjoint

appearing on the left side of the 2nd-LASS defined by
Egs. (93), (94), and (95) for the second-level adjoint

function w/(-2>(r,Q,E) are the same operators as

packages can be used for solving numerically the
various forward and adjoint equations underlying
the 1st-LASS and the 2nd-LASS.

Using the 2nd-LASS defined by Egs. (93), (94), and (95) together with Eq. (92) into Eq. (91) yields the following
expression for the indirect-effect term:

oR (e, @; y) T
{6 lwl } - JdV J a0 J dE w(r, , E)0® (a, w0 &1) + JdV J a0
ind 0

apj 4n 4
x JdEwg?_}(r,9,E)Q<1>(a,<p;8a), j=1,00d,. (96)
0

The indirect-effect term defined in Eq. (96) has the same formal expression as the indirect-effect terms defined in

Egs. (50), (65), and (80) involving the second-level adjoint functions \Vj@, Gj@,

effect terms can all be evaluated numerically using the same software package, while inputting the corresponding second-level

adjoint functions w}z), 0}2) , uj(.z),

Replacing the expressions of 0 (a°,y(V);3a) and OV (a; ¢; 3a) from Eqs. (41) and (19), respectively, in
Eq. (96); replacing the resulting expression together with the direct-effect term from Eq. (90) into (89); and
subsequently identifying the quantities multiplying the parameter variations da,,,, m, = 1,...,J, in Eq. yield the

and u}z), respectively. Therefore, these indirect-

and Wz(‘z) , respectively.

following  expressions for the second-order partial sensitivities 62R<a,(p; w(l);w;2)>/(ap,)(6amz),
F= 1y my =1, .0, Jy:

. O’R (w X w“%w}”)
For.]: 17"';Jp; mpy = 17"';Jl‘:

=—\|dV | dQ | dE
apjalm2 J J
4n 0
0% (tr, Q. F
X [Wf;(r,ﬂ,E)\VU)(r,Q,E) +wf} (r, Q. E)o(r, Q, E)] t(at ) ’ o
my
@2R<a,(p; \V(I)QWJ@) -
Forj: 1’.“7‘]1); mz = 11"'7JS : apjasmz :JdVJ\dQJ\dEWLJ(r,Q,E)
4n 0
XJdglJdE’\I](l)(r’Q/7EI)azs(s;r,E—>E/7Q_)Q/)
OSm,
4n 0
00 00 0 (s;1,E E' O Q'
+JdVJdQJdEW§2i(r’Q’E)Jdg/ JdEl (P(r,g/,El) (S,r, g , N ) , (98)
) -
4n 0 in 0
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R (a5 v w) b
For j=1,...J,; my=1,...J;: = JdVJdQJdE v (r,Q,E) stz’
ap]afl"nz
4n 0 4n
T ou(pir E' — E)O[VE/(f;r,E")] T 0[vE/(f:x, E)
;T B — E)o|vare(fir, @) vZ(f;r,
x | dE" o(r, 0", E") KL +JdVJdQJdEw (r,Q,E) L2
o apj af my A 0 L./ af my
x | dQ’ JdE’x(p; r,E— E WD (r,Q' E') + JdV J dQ J dEw) (r,Q, E)
47 0 4n 0
1 o[vss(t;r, E
% dQ/JdE/(p(r,Q’,E/)x(p;r,E'HE) [V fa(fsr> )} : (99)
<) my
4n 0

2 00
. OR (a5 v W) . /
FOI'] = 17"'7Jp; mp = 17"'7Jp : apap = JdVJdQ JdE \ (r,Q,E) Jdg
JEEmy
0

4n 4n

y(p:r,E' — E
dE'vE(f;7v,E )o(r, Q' E') xpir, BT — E)
apjapmz

O —_— R

T T Ox(p;r,E — E’
+ JdV J dQ J dEw) (v, Q, E) VE/(f; 1, E)] J dQ’ J dE' v (r, Q' E) %
it 0 in 0 Pm,
b T ox(p;r,E' — E
+ JdV J o Jdwa}(r, Q. E) J aQ’ Ja’E’ VE(f;r,E')]o(r, Q' E') % . (100)
n 0 in 0 Pm,
OR (a, 05 vs W) 1 20(q;r, @, E
Forj=1,..Jy; my=1,...J,: ’ :JdVJdQJdEWf),.(r,Q,E)Q(q’r”); (101)
apjanz i 0 - aCImz

and

azR(a ¢ \v(‘)'w(-z)) T o5 (d:
P VLW ) @) Zi(d;r, Q,E)
= |dV | dQ | dE (r,Q F)———~ . 102
O, Jar [ [aeur.0.n G0 (102
4n 0

The expressions of the second-order sensitivities computed using Eq. (97) must be identical to those computed using Eq. (55).

OR (a, 05 vs W)

Forj=1,...,J,; my=1,..,J;:

That is,For j = 1,....J; k=1,...J; : = —JdV J do J dE [w§2>.(r,9,E)w<‘>(r,g,E)
ap_,atk )
47 0
2 (D). (2) 0
oS, (t;r, Q, E 6R(‘17(P,\V A )
+w§2>.(r,g,E)(p(r,9,E)] ACLILLYNS ! :Jdr/JdQJdEw?,i(r,Q,E)
Y o dt,0p; :
4 0
T ox(p:r.E — E’ T
x [vZ(f:r, E)] JdQ’ JdE’\y“)(r,Q’,E’)%—l-JdVJdQJdwa,z(r,Q,E)
47 0 / 4 0
T ox(p:r,E' — E
X stz’JarE’[vz,-(f;r,E’)]cp(r,Q’,E’)"@”r’a_>> : (103)
‘ P
4 0
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The relation expressed by Eq. (103) provides an independent mutual verification of the second-level adjoint

) )

functions w;™ and ;. Furthermore, the expressions of the second-order sensitivities computed using Eq. (98) must

be identical to those computed using Eq. (69).

R (@, 05 vs W)

Op;Osi

Thatis, Forj=1,....J,; k=1,...J;:

0X(s;r,E - E',Q — Q)
ask

= JdVJdQJdEwI (r, Q. E) JdQ’ JdE/\y(‘)(r,Q’,E’)
4n 0 4n 0
0X(s;r,E—-E' Q— Q)
aSk

+JdVJdQJdEW§2§(r Q. E) Jdﬂ’ JdE’ o(r, Q' E’)
0 0

62R<(l,(l); \V(l)’Gj(Z)) 1 2) . /OO 1. (1) / ’
— 55p) = [aV | dQ | dEB [ (r,Q,E) [VE/(f;r,E)] | dQ' | dE" vV (r, Q" E")
0 0

4n
ox(p;r,E' — E)

. (104
op; (104)

ox(p;1r,E — E' 1 1
X % + JdVJ dQ J dE 0% (r, Q. E) Jdg’ J dE'[vZ (. E')] o(r, @', E')
Pj ’
0 0

4n 4n

The relation expressed by Eq. (104) provides an independent mutual verification of the second-level adjoint

functions w ) and 9 Finally, the expressions of the second-order sensitivities computed using Eq. (99) must be
identical to those computed using Eq. (84).

TR (“,cp; \|/<”;W<'2)> i i
That is,For j = 1,...,Jp; k=1,..,J;: :JdVJ aQ J dE vV (r,Q E) stz’ JdE’ o(r,Q' E")
apjaﬁ{ 0 0

4n

ox(p;r,E' — E)O[vE/(f;r, E')] j J T o[vE/(f;r,E)]
X : 1 |av | de | dEwW® (x QF)—F——— >
o, % J B (0 E) =00
X J dQ’ J dE'y(p;v,E — E" W (r,Q' E') + JdV J dQ J dEw)(r, Q. E)
0 0

4n 4n

a[VZf(f; r, E)] _ O*R (a,q); \II(U;“J(-Z))
Ui ip;

X Jdﬂ/ JdE/(P(r,Q',E/)X(p;r,E’ — E)
4n
oy(p;r,E' — E)O[vE/(f;r,E)]
s U

0

= JdVJdQ JdE v (r, Q. E) JdQ’ JdE/ o(r,Q' E"
4n 4n 0

ox(p;r, E— E')

J j JdEulk (r,Q,E)[vE/(f; 1, E)] Jdﬂ’ JdE’\y“)(r,Q’,E’) 5
7
0

4
ox(p;r,E' — E)
p; '

+ JdV J dQ J dE u)(r, Q, E) J dQ’ J dE' [vE;(f;r,E")]o(r, Q' E') (105)
0 0

4n 4n
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The relation shown in Eq. (105) provides an
independent path for the mutual verification of the

solutions w](.z) and u}z) .

IV.E. Computation of the Second-Order Sensitivities
O*R(a, @; w)/3q;0a,,, j= 1., Jg; My =
1o o

The second-order sensitivities 0°R(a, ¢; y(!))/

x (8g;)(@oum,), j=1,....J5; my=1,...,J, are obtained

by computing the G-differential of the first-order sensitiv-

ities defined in Eq. (33), which yields the following
expression:

5|OR (@9 w1 [ 1oR(a, 05 y)
a(/]j a(/]j dir

where forj =1, ...,J;:

R (a. o w) T
5|0k 0 v7) JdV J a0 J dE v (r, Q, E)
aqj dir 4 0

1 20(q;r, Q, E)
=1 aCIja‘bnz

[I>

8¢m, (107)

and where forj =1,...,J,,

JdV J dQ
4n

O — R

{8 laR (a, 0; \|/<1>)

0q;

}ind 2 JdV J dQ

4n

00(q; 1, 2, E)

X
0q;

dE 3y (r,Q,E) (108)

O —_— R

The direct-effect term defined in Eq. (107) can be
computed immediately. On the other hand, the indirect-
effect term defined in Eq. (108) can be computed only after
having obtained the solution dy(!) (r, Q, E) of the 2nd-LFSS
defined in Egs. (39) and (40). To avoid the need for solving
the 1st-LFSS and the 2nd-LFSS, the indirect-effect term
defined in Eq. (108) will be expressed in terms of the solution
of a 2nd-LASS, which will be constructed by following the
same sequence of steps as has been outlined in
Secs. IV.A through IV.D. In contradistinction to the situations
encountered in Secs. IV.A through IV.D, however, the
indirect-effect term defined in Eq. (108) does not depend on
the solution 8¢(r, Q, F) of the 1st-LFSS. Consequently, the
2nd-LASS that needed to be constructed for the alternative
computation of the indirect-effect term defined in Eq. (108)
will turn out to consist of a single (rather than two) operator
equation to be satisfied by a second-level adjoint function that
will turn out to have just a single nonzero component.
Proceeding formally and applying the definition provided in
Eq. (42) to form the inner product of Egs. (39) and (16) with

a yet undefined function gfz)(r,Q,E) £ [gf}(r,Q,E),

t
g QE)|, where g (r,QE) € L(V x @ x E)

and gg.(r, Q. E) € L(V x Q x E) yield the relation:

dE g\ (r, 2, E)A" (@)oy) (r, @, E) + JdV J dQ J dE g1)(r, @, E)LY (0)50(r, @, E)
0

4n

- JdV J dQ | dEg{)(r,Q,E)0? (a, w; 8(1) + JdV j dQ JdE gy ) (r, 2, E)0" (., ¢; 301)
0

2) ,2)

4n

2 (r, Q,E) + JdV J 40 JdE So(r, Q) [L(l)(a)} e, Q)
0

(109)

The bilinear concomitant P() [Sq), Sy, giw g ,} in Eq. (109) will vanish by imposing the boundary conditions

g(r, Q.E) = 0,1, €0V, Q - n< 0 and gy }(r,, Q,E) = 0,1, €0V, - n>0. Noting that [A")(@)]" = L) (a) =
L(a) and [L(l)(a)]* = AW (a) and identifying the rightmost side of Eq. (109) with the indirect-effect term defined in
Eq. (108) yield the following 2nd-LASS for the components of the second-level adjoint function g(2> (r,Q,E):

@ANS

>
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L(a®)g/(r, Q. E) £ Q o Vgi'\(r,Q,E)

+20(t%r E)gﬁj(r Q.E) J

x (s%r,E' — E,Q' — Q) gi_’)j(r,Q,E)

o0
JdE'zg
0

— JdQ’ JdE'xO(po;r,E’ — E) [VOZ?(fO;r,E')}
4n 0
00(q; 1, 2, E)

,j=1,...J (110)
0g; !

2
x gi)r,QE) =

and

A

AV (0 g (r, @, E) £ —Q 0 Vgi(r,Q,E)

+30(€ 1, E) g5 )(r, Q,E) — JdQ’JdE’Zf
4n 0
x (s%r,E—E Q- Q) g(rQ E
- V2 E Jdﬂ’ JdE’ L (p%ir, E — E)
0

4

ng}(r,ﬂ’,E ) =0,j=1,..,J,, (111)
subject to the following boundary condition:
® (r, QE)=0,Q - n>0;
gzl’m](rﬁ 9 ) - 9 n B
g2i(r, Q,E) = 0,0 - n<0;
r,eol; j=1,...,J;. (112)

It is evident that the unique solution of the homogeneous
linear Eq. (111) subject to the linear homogeneous bound-
ary condition Eq. (112) is

g (LQE) =0,j=1,.J. (113)

The nonzero component gi )(r Q. E) of the second-level

t
adjoint function g]( )(r,Q,E) A [gf)].(r,ﬂ,E),O} is
computed using the forward transport solver with the
source shown on the right side of Eq. (110). Using the
2nd-LASS defined by Egs. (111) and (112) together with
Eq. (109) into Eq. (108) yields the following expression
for the respective indirect-effect term:
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oR (at, g5y 1
5 |OR (e 0 v") :JdVJdQJdEggzg
;i ind 4 0

x (r,Q,E)Q? (a, \|/<”;5u>,
=1,y (114)

Replacing the expression of O (a,yV;8a) from

Eq. (41) into Eq. (114); replacing the resulting expression

together with the direct-effect term from Eq. (107) into

(106); and subsequently identifying the quantities

multiplying the parameter variations da,,,, my =1,...,Jq,

in Eq. (106) yield the following expressions for the second-
partial

- 62R(a,(P; wm;g}z))/
0g;) (00y,), j= 1,...,J,

q> M2 = 1, ...,Jai

order sensitivities

R (a,05 v;g”)

Forj=1,...,J,; =1,..,J;:
orj 3 7Jq: my ) >Jt 6qj‘a[mz
—JdV J do J dE g (r,, E)y" (r,Q, E)
4 0
X (t;r, Q F
 ZErQE) (115)
Oty
Forj=1,...,J; my=1,..,J:
R (a, o; y(; g,@)
0q;0s/m,
o e aesten
4n 0
X JdQ’ JdE/\y“)(r,Q’,E/)
4 0
S(s:rE—E'Q— Q'
% a (s,r, - ) - ) ; (116)
0Sm,
R (a,(P; w“);g]@)
Forj=1,...,J,; my=1,....J:
o ! 04,0
a[vEf(f;r,E)]

- JdV J dQ JdE g (r,Q,E)
0

4n

fom,

X Jdg’ JdE'X(p;r,E—>E')\|/(1)(r,ﬂ’,E') ;o (117)
4n 0

@ANS
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R (a0 ;)

For j=1,...,J; my=1,....J,:

a‘Ijaprnz
T T (p:r.E— E'
= v [de [ azg? w0 m s wrm)] [0’ [ae v 0 HREREZED )
4n 0 4n 0 sz
62R<a o; (V) g( )) o0 320(a:
. ? ? j Q(q’r7Q7E)
Forj=1,...J; m=1,..J,: :JdVJdQJdE y(r,Q ) —=> 27/ . 119
J q 2 q 6%6sz ) ) ( ) aqjaqmz ( )
and
R (a5 v:g”) T 3%, (d; 1, @, E)
Forj=1,..J; my=1,..Jy — |av |dae | dEcP (v, @, ) =022 20 7). 120
Or] I 1Y (g m2 ) sJd aqjadm J J J gl.](r7 I ) admz ( )

The expressions of the second-order sensitivities computed using Eq. (115) must be identical to those computed
using Eq. (56).

_ R (a0 ;) T o 1
Thatis, forj=1,...J;; k=1,...,J;: 343 = —JdVLndQ J dEglﬁj(r,Q,E)\y( )

@

2 (). o0
0, (t;r,Q,E) 0 R(a,(p, VLY ) J J J @) 00(q;r, Q.E)
QF = = |dV| dQ | dE QF)———~ . 121
X (l’, ) ) atk atkaqj dn Wz’k(r; 9 ) aqj ( )

The relation expressed by Eq. (121) provides an independent mutual verification of the second-level adjoint
functions g}z) and wj@. The expressions of the second-order sensitivities computed using Eq. (116) must be identical
to those computed using Eq. (70).

R (a0 v g”) T T
Thatis, forj=1,...,J,; k=1,..,J5: = JdVJdQ J dEg%(r,Q,E) JdQ' JdE'\u“)(r,Q’,E’)
4 0 0

0q;0sy
’ 4m
0X(s;r,E — E' Q — Q) 62R<“’(P; "’(1);9](2)> 1 00(q;r, Q.E)
x 8 ’ = = JdVJdQJdEej,ﬁ(r,Q,E)# . (122)
Osy 0sx0q; ’ Oq;
’ 4n 0 ’

The relation expressed by Eq. (122) provides an independent mutual verification of the second-level adjoint

functions g_/(z) and ()_1(2). The expressions of the second-order sensitivities computed using Eq. (117) must be identical
to those computed using Eq. (85).

. azR(“’(P; W(l);g}2)> T @) O[vE/(f;r,E)]
Thatis, for j=1,....J,; k=1,...,J: = JdVJdQJdEglﬂj(r,ﬂ,E)'—
0

%% 4 i
/OC / Ny (1) Y azR(a,(p, v 1>’“J(2))
X | dQ JdE ;r,E— E r,Q E') =
J 0 x(p W ) &0

qQr,QE)

- JdVJdQJdEuf,Z(r,Q,E) o0( . (123)
, ”
4n 0
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The relation shown in Eq. (123) provides an
independent path for the mutual verification of the

solutions g](-z) and u}
order sensitivities computed using Eq. (118) must be
identical to those computed using Eq. (101).

R (a5 v;g)

) The expressions of the second-

That is, for j=1,...,J;

k=1,...,J,:
)Y p aq]@pk

= JdV J dQ | dE g (v, Q. E) Ve, (f; x, E)]

4n

O — 3

ox(p;r,E—E')

X JdQ’ JdE’\y“)(r,Q’,E’)
0 apmz

4n

R (0, ¢; y; w?
_ox . ):JdVJdQ

B Opk0q; ;
T

00(q;r,Q.E)

124
0q; (124)

x JdEwgz,i(r,Q,E)
0

The relation shown in Eq. (124) provides an independent path

for the mutual verification of the solutions gj(»z) and w}z).

IV.F. Computation of the Second-Order Sensitivities
R0, @; W) /000, j= 1, Jgs iy = 1,0,

The second-order sensitivities 0°R(a, @; y(1))/
(aa_})(aamz), j=1,..,J4 my=1,....J,, are obtained
by computing the G-differential of Eq. (34), which yields
the following expression:

5 |OR(@ 03 w') | [ < 1OR (e, 03 w'Y)
adj - adj dir

OR(a, ¢; yV)
Ul ®

(125)

where forj =1,...,J; :

oR(a. o v T
5| R (@ o)L s JdV J e J dE o(r,Q, E)
ad; )

U 4n 0

Jq

Z 0*24(d;r, Q, E)

dm,
odody, O

(126)

my=1

and where forj =1,...,J; :
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oR(a. ¢: w() T
5M éJdVJdQJdE&p
od, y
in 0

4

0%y (d;r, Q. E)
ad;

The direct-effect term defined in Eq. (126) can be
computed immediately. On the other hand, the indirect-
effect term defined in Eq. (127) can be computed only
after having obtained the solution d¢(r, 2, E) of the 1st-
LFSS defined in Egs. (16) and (17). To avoid the need for
solving the 1st-LFSS, the indirect-effect term defined in
Eq. (127) will be expressed in terms of the solution of
a 2nd-LASS, which will be constructed by following the
same sequence of steps as has been outlined in Secs. IV.A
through IV.E. As indicated in Eq. (127), the indirect-effect
term defined does not depend on the solution Sy (r, Q, E)
of'the 2nd-LFSS. Consequently, the 2nd-LASS that needed
to be constructed for the alternative computation of the
indirect-effect term defined in Eq. (127) will (also) turn
out to consist of a single operator equation, for a second-
level adjoint function that will turn out to have just a single
nonzero component. Proceeding formally and applying the
definition provided in Eq. (42) to form the inner product of
Egs. (39) and (16) with a yet undefined function

2 A 2 2
b(r,2,5) 2 [h7)(r,Q.E),  A)(r, @ E),  where

x (r,Q,E) (127)

2
h2(r,Q,E) € Ly(V x @ x E)

L,(V x Q x E) yield the relation:

JdV J o J dERY)

and A (r,Q,E) €

(r, @, E) A" (a)dy" (r, Q, E)
4n 0

2
+ JdV J dQ J dE W) (r, 2, E)LY (0)30(r, @, E)
0

4n

= ar [ ae [ dznl)r. 0. 2107 (a y;50)
4n 0

J

4 JdV J dQ J dE RS (v, 2, E)0" (a, ¢; 50)
4n 0

- JdV J dQ J dE 5y (r, Q. E) [A“)(a)} W (r, Q)
4n 0
W] n?
+ [dV | dQ | dE 3¢(r, Q) L' (a) | h; ;(r,Q,E)
0

(128)

@ANS
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The bilinear concomitant P() [&p, sy; n2 B2

1,0
@)

conditions %,

2’j
(r, @,E) = 0,r, €0V, Q- n< 0 and 4} (r,, @,E) = 0,r, € 0V, -n> 0. Noting that [4")(a)]"
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} in Eq. (128) will vanish by imposing the boundary

LV (a) = L(a) and [LV(a)]" = 4" (a) and identifying the rightmost side of Eq. (128) with the indirect-effect term
defined in Eq. (127) vyield the following 2nd-LASS for the components of the second-level adjoint

function hj@ (r,Q E):

L(0®)h?)(r,,E) £ @ o VAP (r, Q. E) + 50 (€ v, E)h7) (x, @, E)

and

A(U(ao)hg)/.(r,Q,E) 2

o0

l
2
N stz’ JdE’XO (p% 1. E' — E) [voz}(fo; r,E’)}hi}(r, Q.E) =0,
0
Jq

—Qe Vi

dE'22(s;1,E' — E, Q' — Q)h(r,Q,E)

- stz' JdE'zf(sO;r,E —E'.Q— Q') i (r, Q' E')

4n 0

— [voz;). (%, E)} JdQ’ T

4
o azd(d: r, Qa E)

=1,..
ad] ) J )
subject to the following boundary condition:
7 (s, Q,E) = 0,2 -1 < 0;
Sy, Q,E) = 0,9 -n>0;
r,edl; j=1,..,J;. (131)

It is evident that the unique solution of the
homogeneous linear Eq. (129) subject to the linear

homogeneous  boundary condition shown in
Eq. (131) is
R QE) =0,j=1,...J, . (132)

The nonzero component hf}(r, Q. E) of the second-level

T
adjoint function h;z)(r,Q,E) A [O, h%(r,ﬂ,E}} is

computed using the adjoint transport solver with the
source shown on the right side of Eq. (130). Using the

@ANS

(129)
o) (0, Q. E) + Z) (1, E) ) (r, @, E)
dE' " (p%r,E — E') h%(r, Q' E")
Wy (130)

2nd-LASS defined by Eqgs. (130) and (131) together with
Eq. (128) into Eq. (127) yields the following expression
for the respective indirect-effect term:

OR (0, 9; y T
5| R@ e v | _ JdV J ) J dE hY)
0d; o "

(133)

Replacing the expression of Q') (a, ¢; 8a) from Eq. (19)
into Eq. (133); replacing the resulting expression together
with the direct-effect term from Eq. (126) into Eq. (125);
and subsequently identifying the quantities multiplying the
parameter variations O0,,,,m, =1,...,Jy, in Eq. (125)
yields the following expressions for the second-order

J

partial sensitivities 62R<u,(p; \y(l);h(2>) /(0d;) (Boi,),

i= 1, dy my =1, Jy
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R(a,¢; y;h? T o%(t;r, Q. E
Forj=1,...Js, my=1,..J: ( 0 ! ):_JdVJdgJdEhg?}(r,g,E)gp(r,Q,E)¥ ;o (134)
J tmz 4n 0 A tmz

&R (@, s w;h) x

. b) B b § 2
Forj=1,...Ja; my=1,..J: 5005, —JdVJdQJdEhgﬁ}(r,Q,E)
4n 0

o . / /
x Jdﬂ’ JdE’(p(r,Q’,E’)azS(s’r’E;E Llind LI (135)
sz
4 0
2 (1) (2)) 00
For j=1,...Jg; my=1,...J;: ° R<a # :JdVJdQJdEh@(r Q.E)
) 9 9 9 ad,@fmz 27] ) )
’ 4 0
1 o[V, (f: v, E'
X Jdﬂ’JdE’(p(r,Q’,E’)X(p;r,E’ —>E>W : (136)
4n 0 "
GZR(a,cp; \v“);h}z)) T
For j=1,...Js; my=1,...J,: = |aV | dQ | dERY)(r, Q. E
01‘] 9 yJd> ny ) 'Y p a(jlame J J J 27](1‘7 I )
4n 0
T 1, E’ E
X Jdﬂ'JdE'[vZf(f;r,E’)](p(r,Q',E’) M ; (137)
4n 0 P
62R<a 0; w(l)'h(2)> i 20(a:
. . . e > (2) Q(q’rvgaE) .
F =1,... =1,... : = |dV Q|dEW (r,Q F)————— = 1
or j s Jgy mo T 5dam Jd Jd Jd h2ﬁj(r, E) S ; (138)
4 0
and
62R<a 0; w(l)'h@) i > :
) s W iy Zd(d,r,Q,E)
F =1,..,J4 =1,.. : = |dV | dQ | dE QF)—Fm——- . 139
or j ) 7Jd, ny 5 aJd adj@dmz J J J (P(r> ) ) adjadmZ ( )
4 0

The expressions of the second-order sensitivities computed using Eq. (134) must be identical to those computed
using Eq. (57).

'R (w02 v:h”) e
. . s s 5 )
Thatis, forj=1,....J45 k=1,...,J;, 3d 0 = —JdV J dQ JdEhz,f

' 0

2 (D). o0
os(tr.Q. F O°R o, 0, Yo,
x (r,Q,E)p(r,Q,E) at ’art; ) _ ( 5i5d / >:JdVJdQJdE\V(12)
J
0

0Xy(d;r, Q, F)

x (r,Q,E) 3
J

(140)

The relation expressed by Eq. (140) provides an independent mutual verification of the second-level adjoint

functions h;z) and \yj(-z). The expressions of the second-order sensitivities computed using Eq. (135) must be identical
to those computed using Eq. (71).
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R (a, o; yh; h]@)

Thatis, forj=1,....J5; k=1,.. J;:
at is, for j s ooy Jd 3d 05

- JdV J dQ J dE WY (r,Q, E) J Q' J dE' ¢(r, Q' E')

4n 0 4n 0
0Xs(s;Tr,E—E' Q— Q)
X
aSk
aZR(a 0 \|/<”'9(2>> % o5 (d:
7 >0 (2) Zd(darvﬂvE)
= = |dV | dQ | dE QF)——""——~ . 141
350, Jov | an | azofi0.5) =0 (4
4 0

The relation expressed by Eq. (141) provides an independent mutual verification of the second-level adjoint

functions hj(»z) and 9}2).The expressions of the second-order sensitivities computed using Eq. (136) must be identical
to those computed using Eq. (86).

o*R (@ 05 v;hf”)
Thatis, for j=1,....J45 k=1,....Jr: '

— JdV J o J dE W) (r, Q. E) J dQ’ J dE' ¢(r,Q' E’)
4n 0 4n 0
G[VZf(f; r, E)]

xx(p;r,E' — E) o
my

R (a,¢; yV;u® T o8, (d:r. Q. E
_ ( ’ ) :JdVJdQJdEuQ(r,Q,E)M : (142)
0f,0d; ’
0

od;
4n !

The relation shown in Eq. (142) provides an independent path for the mutual verification of the solutions h}z) and
u}z). The expressions of the second-order sensitivities computed using Eq. (137) must be identical to those computed
using Eq. (102).

2
. . 62R<a,cp; y; >)
Thatis, for j=1,...,Js; k=1,..,J,:

T T . /
= JdV J aQ J dE b)) (x, Q. E) J dQ’ J dE' [V, (51, E")]o(r, Q" E") w
‘ ' Pm,
4n 0 4n 0

62R(a 0; \Vu).w(z)) 0 5 .

_ P VELW ) @) Tq(d;r,Q,E)

— - dVJdQJdEw (r,Q,E) =S D52) (143)
dpiod; J ) od;

The relation shown in Eq. (143) provides an independent path for the mutual verification of the solutions hj(-2) and
w}z). The expressions of the second-order sensitivities computed using Eq. (138) must be identical to those computed
using Eq. (120).
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2 (D).
6R(a,<p, yih

)
N——

Thatis, forj=1,....J4 k=1,...,J;:

Od;0qy
T 00(q; ¥, Q.E
:JdVJdQJdEh (r.0, F) L& &E)
Oqi
4 0
R (a5 v";g”) T
_ ' av | ae | dE
0qi0d; J J J Bl
4 0
O, (d;r, Q, E
v (r’ng)M (144)

0d;

The relation shown in Eq. (144) provides an inde-
pendent path for the mutual verification of the solutions

@) and g;z).

IV.G. Impact of Second-Order Sensitivities on
Response Expected Value, Variance, and
Skewness

Knowledge of the first- and second-order sensitivities
is required to compute the following moments of the
response distribution:

1. The expected value of a response R:

Na2

O)

E(R) = R(a®) +

t\.)l»—‘

folv

“N

i=1

where s; denotes the standard deviation of the model
parameter «.

2. The variance of response:

(R)_i OR\? 2+1z“:
var = 6a Si 2i:1

i=1

3. The skewness y, of response:

s (R)

71 (R) :W )

OR\?O'R .
where p;(R) = 32 5 % 251 denoted the third

central moment of the response dlstrlbution.
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V. MULTIGROUP APPROXIMATION EXPRESSIONS OF THE
2ND-LASS AND SECOND-ORDER RESPONSE
SENSITIVITIES

In the standard multigroup approximation, the system
response defined in Eq. (8) takes on the following expression:

G

ZJ stz ZE(dS:r, Q) ¢%(r, Q) ,  (145)

g:

where
¢4 (r, Q) = multigroup flux
G = total number of energy groups considered
for representing the physical system

2% (d%; r, Q) = multigroup approximation of the function
that models the interaction of the detector
with the incident particles,

A . .
and where each vector d = [df -~ } is considered
g

to comprise, as components, a total of Jy, imprecisely
known model parameters that characterize Zg(dg T, Q),
within each group g=1,...,G, where G denotes the
total number of energy groups considered for
representing the physical system. In general, the number
of components of d® may vary from group to group.
The multigroup flux ¢f(r, Q) appearing in Eq. (145)
is the solution of the standard multigroup approximation
of the forward neutron transport equation and vacuum
boundary condition defined in Egs. (1) and (2), namely,
L2 (a)p#

(r, Q)

=04(¢%r,Q), g=1,..,G (146)

and
¢ (rs, Q,E) =0,r, €0V, Q - n<0, (147)

where 0%(q¢;r,Q) denotes the group source and the
operator L&(a)p2(r, Q) is customarily defined as follows:

20 Vs (r, Q) + 5 (1) ¢*(r, Q)

dQ’Egg/ﬁg(sg/g;r,Q’ — Q) ¢ (r, Q")

g'=l 4
g / ’ 4 ’ ’
=) |denyETE (pg g;r) (v=)* (fg ;r)@g (r.Q"),
g'=l 4
g=1,..G (148)
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The definition of the group total macroscopic cross
section Xf(t8;r), the group fission macroscopic cross
section (vZf)g(fg ;r), the multigroup scattering transfer
matrix Z¢ ~¢(s2'¢;1, Q' — Q), and the fission spectrum
matrix are defined in the customary way ¢ ¢ (pg s r).
Denoting the adjoint multigroup flux as y(1):¢(r, Q), the
multigroup approximation of the adjoint neutron transport
operator defined in Eq. (23) is customarily defined as

A

AV @)y V4(r, @) 2~ Vy (1. @)

G
+ () V@) =) 7| de'srd
g=l
X (sgg/; r,Q — Q’) v (r, Q)
; g’
— VIS (& r J aQ’ gﬁg( 8 ;r)
2 ( )ng 4@ (p
x €k Q) g=1,..,G . (149)
Just as for the multigroup detector cross section
2%(d%;r,Q), which depends on the vector of model
parameters d® for each group g=1,...,G, each
multigroup total macroscopic cross section Xf(t8;r) is

_l_
considered to depend on t¢& & [tf ,...,zﬁJ imprecisely

known model parameters, where J;; denotes the total
number of model parameters that characterize X§(t¢;r)
in each group g=1,...,G. Similarly, the multigroup
scattering transfer matrix X8 ¢ (s® Q' — Q) is con-
. ; l
sidered to depend on the vector '8 £ [sf £ s §‘% } ,

g8

comprising Jyg, imprecisely known model parameters
within each group g,g’=1,...,G. The macroscopic
group fission cross section is denoted as (vZf)g(fg;r)
considered to vector

and s depend on the

fg& = [ P T ]T, comprising J imprecisely known
model parameters within each group g=1,...,G.
Furthermore, the fission spectrum matrix is defined as
¢ ~¢(p%'¢;r) and is considered to depend on the vector

pee & [pl , .,pgrg,} , comprising J,gr, imprecisely
re'e

known model parameters within each  group

g,g' =1,...,G. Finally, the group source is denoted as

0%(q%;r,Q) and is considered to depend on the vector

q¢ 4 {61 4 ..-,qig} , comprising J,; imprecisely known

scalar-valued parameters within each group g =1, ..., G.
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As in Secs. 11, 111, and 1V, the total number of impre-
cisely known model parameters will be denoted by the

vector a 2 [al,...,(xJa]T. To simplify the notation, the
superscripts g and g’, which denote the group
dependence of the vectors df, t, s8'e £ pg/g, qs,
and of their components, will not be shown explicitly
in the multigroup derivations in the remainder of this
work.

In the multigroup approximation, the exact
expressions given in Eqs. (29) through (34) for the
first-order sensitivities take on the following approximate
expressions:

OR(a, ; W) _ zG:JdVJdQ\V “(r, Q)

atj g=1 4n
o=f(t,r, E
X(pg(r,ﬂ) t(:ra )7
o

(150)

=2 _|d

aR( 1 G
=1

J dQ y¢(r, Q)

[}

zG:JdQ,azgﬂger/_)sz)
— st
g'=lj

(152)

L EG:J Jdﬂ\y 2(r, Q)

&= 4n

—_

Opj
)° fr(pg(rQ)

G g =g (-
.S J o )
g'=
x (v
A (153)

J=
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oR (o . Q
(0.0 ) _ 5 for [ 2GR 0 e (154
0g; = 0q;
and
OR(aw. 0: w)) & ozt (d; 1, @
M:ZJdVJdQM(Pg(KQ)a Jj=Lda s (155)
od, =) 0d;

where the vector-valued quantity y!)(r, Q) 2 [\y“)’l(r, Q),...,.yDg(r Q) ...y, Q)]Jr comprises as components
the multigroup adjoint fluxes ') £(r, Q), which are obtained as the solutions of the multigroup approximation of the
1st-LASS given by Egs. (25) and (26), namely,

AV @)y 2(r, @) =25 (d%r,Q), g=1,..,G, (156)
subject to adjoint boundary condition:
yE(r Q) =0 ,r,c0V,Q -n>0. (157)
V.A. Multigroup Expressions of 82/?/81‘,-80(,,,2, j=1. 0y m=1..1

For the sake of simplicity, the functional dependence of the response R will be omitted henceforth.
In the multigroup approximation, the expressions of 0°R JOt; 00, j=1,....Ji; my=1,...,J, take on the following
forms:

o’R G o’ (t;r, Q)
_ . _ (1)’ t s Ly
Form, =1,...,J,: R ZJdVJde g(r,g)q)g(r,g)4atjatm
g=l 4 :
G
0Zf (tr, Q
=3 [ar [de v n s 0) - o e )] B sy
g=1 4n "
o*R G i G , oxE~8 (s;1,Q — Q)
For my =1,...,J; : 5 ngJdVJdQ\VU (r,Q) Z_Jdﬂ 2 (r, Q') o
= i =
S [ aou@ o) S [ dorof (r.0n 05 L Er2— Q) 150
+Z 4 \V2.j (I', )Z ¢ (l’, ) asm ’ ( 5 )
g=1 p g'=1; 2
2R G )¢ G 6{(v2f)g’(f; r)}
F =1,..,J: = av | d@yl?; dQ’ ¢f (r, Q") x84 (p;r) ————4
ormy = Ly e ;J J vy, 5 (r, @ le (r, Q') x5 (psx) o
- 4n 4n
G G
o[(vEy)*(f;1)] , '
2), g f 2 /.,8— . (1), N .
+ ZJdVJdQ\ij (r,Q)—afm Z dQ 'y (p;r)y Ve (r, Q) ; (160)
g=1 4n : g =1 4
R G 2.2 " o (p;)
F =1,y = dv | dQ Q) (v dQ'y o)Lt 27
or ms v . ;J J vy &(r, v f Z:J r, " .
G
' / x5 (ps )
! 4 . / 4 .
+ZJdVJd9\V2 (r,ﬂ)g/z1 Jdﬂ (vZ)® (f;r)e® (r, @ )T, (161)
4 T 4n
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o’R G 2), g 00%(q;r, Q)
F =1,..,J;: dv | dQ Q) ——""1—; 162
or my ) 0dm ;J J V2, (r, Q) 3 ; (162)
4n
and
PR < ) ozt (d;r, Q)
F =1,. v | dQy, 74 (r,Q) — L= 163
or m WJa 53dy, ZJ J vy o (r, Q) od, (163)
- 4n
where
¢2(r, Q) = solution of the multigroup approximation of the forward neutron transport Eqs. (146)
and (147)
v £(r, Q) = solution of the multigroup approximation of the 1st-LASS represented by Egs. (156) and
(157), respectively
wgzi € and \|/2 *€(r, Q) = solutions of the multigroup approximation of the 2nd-LASS represented by Eqgs. (164),
(165), and (166)
oxf(t;r)
2), ;
L@V @) = () = s g 16 (164)
and
oxf (t% r
2), ) B . .
ADE ()5 (r, Q) = —\y(l)'g(r,ﬂ)té—tj), j=1,..J; g=1,..,G, (165)
subject to the following boundary conditions:
Der, 0)=0,Q-n<0; yWEr, Q) =0,Q2 n>0; s j=1,0di; g=1,..,G 166
\Vl,j (rm )_ ) n 5 \V2,j (rm )_ ) n ;I S V’ J= 7"'7Jt: g=1,.., . ( )

V.B. Multigroup Expressions of aZR/as,aa,,,z, J=1 0 m =1 Jg

The approximate multigroup expressions of 0°R/ 05 00y, j=1,...,J5; my =1,...,J, are as follows:

O°R . & o)
Form =1, 5o = —;JdVJdQ[ (r, @y 2(r, @) + 0 (r, @) (r, Q)]
- 4n
0Zf (t;r, Q)
P S R/ 16
o, (167)
O*R G G ) %38 (s;1, Q' — Q)
F =1,..,J: av | d@ y2(r,Q stz’ gr, Q)22
or m A le [0 vieir.) > [anrerin o) TS

4n 4n

G G !
, %8¢ (s;1r,Q — Q)
(1), / s >
+ E: J JdQG £(r, Q) E JdQ yiE (r, Q) T

I
g g 7l4n

G —g!
oz (s;r, Q — Q)
i s s Ly .
+> J Jdne rQ)§ Jdﬂ Q') . ; (168)

g=1
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azR g J J (2) 6 [(VZf)g(f r)] G ’
Formy =1,...,J;: = av | dQe” 4 (r, Q —’Jdﬂ’ v (pr )y (r, Q'
’ T a0 g; ) Ly 08 s ; (p; )y (r, 27)
G G Gl [(sz)gl (f; r)}
2), g ! - .
+ ZJdVJdQBZ_J (r,Q) JdQ Zq)g 2 78 (psr )af—m’ (169)
g=1 4 g'=l :
For my — 1,.dy: O J Jdge“)grﬂ )[(vEr)* (f:r) XG:JdQ’ <(r,0) 2200
2 yee9dp - as]apmz p 1 1 J “f — apmz
4n =l jn
G G
, a g —»g .

+ZJ Jdﬂe ZJ vzf )}pg (r,sz’)w; (170)

=17 g=1; Pm,

o°R G 00%(q; 1, )

F =1,.. it 20\ Lkl A
ormy =1,...J,: 55, ;JdVJdﬂezj (r, Q) g (171)
- 4n
and
For my = 1,. O inVJdQ 02 (r, ) ozy(d;r, @) (172)
2= stadmz — LJj ’ admz .

4n

In Egs. (167) through (172), the functions 9( ) £(r,Q) and 92 y £(r, Q) are the solutions of the following 2nd-LASS:

G
3 8 (s, Q' — Q)
1% (a”) 01 *(r, @ ZJ"Q/ Sars. ) ) =y g = 1,6 (173)
g'=1, /
and
1 (2) G ’ azgﬂg, (S;I‘,Q — Q/)
AN2(0)057 4 (r, Q) = Jdﬂ’\u(‘)vg (r@) ——= i=1dsg=1,..G, (174)
’ Sj

g'=l 4n
subject to the following boundary condition:

02 %(r,, @) =0,2-n>0; 67¢(r, 2)=0,Q - n<0; 1, €0V j=1,.,J;; g=1,..,G. (175)

The expressions of the second-order sensitivities computed using Eq. (167) must be identical to those computed using
Eq. (159).

O’R G 2).¢
. L ‘ _ . (1), g (2).¢g g
That is, for j = 1, .., Js, k=1,...J; : s = ZJdVJdQ[el (r, )y ¢(r, Q) + 67 4(r, Q)¢ (r,g)}

=f(tr,Q) 'R G JdVJdQ G Jdg' r.’ )azw’(s;r,g_a/)
oty 6tk6s] 7 1 aSj
- (). S o a on 0 (51,2 — Q)

+ > |ar [deyl Q)Y | dQ ¢t (r. Q) - : (176)
g=l an g'=14 J
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V.C. Multigroup Expressions of aZR/a;;aamz, j=1..0sm=1..1

The approximate multigroup expressions of GZR/ Ofi 00, j=1,....,Jr; my =1,...,J, are as follows:

o’R oS (t;r, Q
Form, =1,...,J;: T ZJdV J aQ [ug%}’g(r,ﬂ)w(l)'g(r,ﬂ) + ug?}’g(r,ﬂ)@g(r, Q)} —,é,r, ) ;
ﬁ tmz g=1 n tmz
(177)
0’R G G , 0zt (5,1, Q — Q
For my = 1,...,J;: s ZJdV J dgufjfg(r, Q) Z Jdﬂ'\y(l)’g (r,Q")— (sé:’ — Q)
J~Omy g=1 in g'=1 mp
L & , oxe e (5,1, Q — Q)
+ 3 av | a0l 4 (r0) Y | a0’ ¢f' (r, @) s ; (178)
g=1 4 g'=lj e
R [ @3 [ 2| (vE)* (1)
Form, =1,...,J;: = Jd JdQ\y Jdﬂ Q)¢ ~8(p;r)
aflafmz g=1 n g/:1 n aﬁafmz
G o[vzs(f;r, E)] &
+3° |av | deu®(r, @) i fa( r.E) > | e (o )y (r )
g=1 47 fmz g'=1 4
G G g'—g 0 (VZf) (f r)
+ 3 |av [ doudfre) Y stz’ (r,Q'E)% (p:1) [ } ; (179)
g=1" 4un ’ g/:1 47[ af"”z
1 O EG: av | do EG: d@' gt (r,0) 2 _B0) 0] (v=)* (£:1)|
Formy; =1,...,J,: J VJ y!! J ’
P afapmz g= 1 dn g /=1 apmz aﬁ
G G /
, oxe=¢ (p;
+ZJ Ja’ﬂ uy; E(r, Q)[(vEf) (f; r ZJ g (r,Q')Xaim’r)
g=1 g'=1} Pmy
4 4n
. @) . : : O 4 (ps 1)
+3 JdV J AU (r,2) Y J aQ’ [(vz,-)g (f; r)} ¢ (r, @) LB (180)
g=1 4n g'=l 4n Pm,
F | ... OF XG: JdV J Q2 (r, @) 22 E T ) (181)
ormy=1,...,J;,: = Uy ) — Q. >
’ R~ T A O,
and
F Loy DR i JdV J T G (182)
or = . = (r —a - - 7,
ny y ey dd aﬁadmz — ul,j ) =y adm2
- 4n

In Egs. (177) through (182), the functions u§2> (r,Q) and u2 #(r,Q) are the solutions of the following
2nd-LASS:
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ol (v=)E (£ r
) i

—1,.,J58=1,..,G (183)

OQ

and

8. G
AD2(a®)ud) 5 (r, Q) :—a[(vzf)f(f’r)] > JdQ’ v, yE (p%r) L =1, g=1,...G,  (184)
j g'=

of.
141'[
subject to the following boundary condition:
U (6, 2)=0.2 - n>0; u)4(r, Q) =00 n<0; r,edV; j=1,..J;g=1.,G. (185)

The expressions of the second-order sensitivities computed using Eq. (177) must be identical to those computed
using Eq. (160).

I i IR - 2),g @), g
Thatis, forj=1,...J;; k=1,...J;: oot ;JdVJdQ[”l (e, @)y (r, Q) + uy ) (r, Q)A(r, Q)}
- 4n
axf(tr,Q) R J J G J , ,
dVv | dQ Q dQ’ of (r.Q") v¢ % (p:
i T onof Z ‘I’zk (r,Q) Z 9° (r, Q") x® “#(p;r)
4

I—
g'=l 47

0 [(sz)g’ (f; r)}
%

X

- ZJdVJdQ Vi3 Q)% Zjdﬂ’ =g ()€ (r, Q1) . (186)

I —
4n g _147[

Also, expressions of the second-order sensitivities computed using Eq. (178) must be identical to those computed
using Eq. (169).

o*R G J J G J
Thatis,forj=1,...Jr; k=1,...,J;: dv | dou'? dQ' y'"E (r, Q
J 'f 6f6sk gz:; ] 1, 1 gzz:l )
ot (s;r, @ - Q') & G , 05878 (s;1,Q — Q
% s (S r, — ZJ Jdﬂ uz <r79) Z Jdg/@g (I‘,Q/) s (Sgal;k — )
— /:14
PR _ J J ) of(vzy)* . /
_ =N |av [a0 0 ’g(r,Q)J Q'S = (prr )y Ve (r, Q)
6[(\/2/-)g (f; r)]

G G
+ Z JdV J dQ eg?,}g(r, Q) J dQ’ Z 0% (r, Q") ~¢(p; 1) (187)
g'=l1

g=1 4 4n

ofj
V.D. Multigroup Expressions of azﬁ/ap,-aa,,,z, J=Loudymy=1,.Jy

The approximate multigroup expressions of 0°R JOp; 00y, j=1,...,Jp; my =1,...,J, are as follows:

R G
For my = Lwdy i o= =3 [av| a [l 5. @ #(r,2) 4wl (r. g% )
apjatmz g:1 A ? 7.
ozt (t;r,Q
% (b1, Q) (188)

Otym,
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aZR G G

— . /

For my = 1,...,J;: i EI:JdVJdeU §_ JdQ (r,Q")
4n -

057 (5;r, Q@ — Q') <
x s (S r, - )+Z

G
. JdV J Aoy 4 (r, @) J dQ’ ¢f' (r, Q")
Sm2 g=1 4n g'=1 4n
oz (5,1, Q — Q)

08y,

; (189)

g/
azR G J J G axg'ﬂg (p r) 0 [(VZf) (f, l‘)]
For my =1,...,J; av | d@y") g(r, Q Jdﬂ'(pg r,Q' d
2 f apjafmz _1 ( ) g’z=l i ( ) apj af;’nz
G o[ (vEr)*(£;1)] & , ,
+ZJdVJde1; (r,Q)TZ dQ' y&=¢ (p;r)yE (r, Q")
&=l 4 : g'=1 4
G G 6[(v2f)g/(f; r)}
/ [ . .
—l—ZJdVJdezj (r,Q)Z JdQ g (r, Q" )y® g(p,r)T ; (190)
g=1 p g'=1 4 2
PR C J j G o' 2 (p; 1)
Form, =1,...,J, : dv | d@y!-g( Jdﬂ’ VI (1) |0f (r, Q') ———
=t = S far [aet - oo o) o e ST
G G ’
oxs ¢ (psr)
+Zjd Jdel £(r, Q) [(vE,)¥ (£; 1) Z stz' S (0 PR L
g=1 4 =1 4 Qsz
. z / : o 2 (p; 1)
+Zjd Jdez £(r, Q) Z JdQ’ {(vZf)g (f; r)}(pg (r,Q’)ai’ ; (191)
g=1 4n g'= 4n P,
For Lo OR inVJ ) 00%(q;r, @) (192)
my=1,...,J,: = = 2.
’ T Op0gm, Om,
and
°R G @) oxé(d; r, Q)
F =1,..,Jy =" |av | d@awl?:4(r,Q - 193
or = Ldat gz = S fav [l S ST (199)

In Egs. (188) through (193), the functions ugz) (r,Q) and u2 g(r Q) are the solutions of the following
2nd-LASS:

oy (ps )
op;

L (0®) w4 (r, Q) = EG: Jdﬂ’ (r, Q") (vZ)* (f; 1) ,

47[

g’
=1,. =1,..,G (194)

N OxEE (ps )

7j:17-“7J;g:17"'7G7 195

'—1

[}

4
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subject to the following boundary condition:

Wi (1, Q) =0,Q-n>0; w8, Q) =00 n<0;r,edV;j=1,.J;5g=1.,G. (196)

The expressions of the second-order sensitivities computed using Eq. (188) must be identical to those computed using
Eq. (161).

. . Gl G 2 2),
Thatis, for j=1,...,J,; k=1,...,J;: 6p/atk ZJdVJdQ [W(l z &(r, Q)\V(l),g(nﬂ) —‘rwg,;g(r, Q)4 (r, Q)}
B 4n
oxf(t;r,Q) O°R G ) e 1 e ,
T o oudp ZJdVJdﬂ v S ) [(v) (f,r)]Z:JdQ v (r, Q)
! 4n g714n
oy~ (p;r) J J G J / o % (pyr)
x L _BU LNy |ldey (vE)E (0] ¢ (r, 07y K_EBEE) 17
) Z | n )3 a0 [(m)" @o]er ) g 197)

Furthermore, the expressions of the second-order sensitivities computed using Eq. (189) must be identical to those computed
using Eq. (170).

- O*R G G
Thatis, forj=1,...J;k=1,..,J: ZJdVJdel ; Z Jdg v 1)g (r, Q)
Op;Os; o =)
4 4n
X (s;r, Q — Q' G G , 03¢ (s:r. Q — O
x & (s’ar’ — @) +ZJdVJde2J ZJdQ’ ¢ (r, Q") — (S’ar’ —9)
Sk g=1 g'=1 Sk
4n 4n
PR _§ @) . OrE (ps )
= = 5" |av | a6l (r, 0)[(vx)) J g () 2 (P31)
OsxOp; ZJ J Lk (r, Vf Z (r, ) op;
g=1 p =1, 4
G G ’
.’ ox 4 (ps 1)
+ JdVJdQ@ (r,Q,E) J (vZr) (f;r) 0% (r,Q") : (198)

Finally, the expressions of the second-order sensitivities computed using Eq. (190) must be identical to those computed using
Eq. (180).

R G G
Thatis, for j=1,....J,; k=1,..,Jr: ——= = JdVJdQW JdQ' (r,Q
P 'f apjaﬁc g; ] 24 )

e % (p;r) @ |:(V2f) (f; r)]

Ve r)| & , ,
+ZJdVJdQW1 ) (r 79)%2 JdQ/Xg_}g (p;l')\u(')"g (r, Q")

Op; i ) 7 =)
. & , 3| (vz)¥ (£:7)
ZJdVJdQWZJ Z Jdgl Q' )E eg(p;r)g
g=1 4n g'=1j aﬁ‘
g/
O’R G J J G J angﬁg (P' l‘) 0 {(vE/‘) (f; r)}
= — = dv | dQ dQ/ I' o) 5
9fOp; gzz; : W z:: P ) Op; ofy
G G ag’ (.
+ZJdVJdQ “112 (rQ vZf (f;r) ZJdQ/\V(I g’ rg)ax ap(l),r)
=1 4n g’:l J
G G , , g,
> J‘W J a9 uy (r, @) Y JdQ/[(VEf)g ;)]0 (r, ") axa—p(p,r) . (199)
&= 4n g'=1 4 7
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V.E. Multigroup Expressions of aZR/aq,aamz, J= 1y m =1, Jy

The multigroup form of the 2nd-LASS to be solved for the components gizj £(r, Q) and gézj £(r, Q) needed for computing
the multigroup expressions of the second-order sensitivities 0°R/ 0qj 00y, j=1,....,J4; my =1,....J, is as follows:
0 1, Q
12(0”)g P 5 (r, @) = Qg(g’r’ ) -1 g g=1,....G (200)
9
and
2), - )
ADE(a)g Q) =0, j=1,..J;5 g=1,...G, (201)
subject to the following boundary condition:
P, @) =0,2-n<0; g4r, Q) =02 n>0r,€dV; j=1,...J; g=1,..,G 202
gl,j (rS7 )_ I n s gz,j (rS7 ) ] n T € ] ] IR R’k g PR . ( )

It is evident that the unique solution of the homogeneous linear Eq. (201) subject to the linear homogeneous boundary
condition in Eq. (202) is

g Q) =0,j=1,..J;; g=1,..,G. (203)

The approximate multigroup expressions of 0°R/ 0q; 0,, j =1,...,Jy5 my =1,...,J, are as follows:

o°R & 0z (t;r, Q
Forj=1,....J;sm=1,..,J;: 307 ZJdVJngU (r, Q)w() g(r, Q) té ) : (204)
q; tmz g=1 i Imy
a2R G G
Forj=1,...J; my=1,.,J: :ZJdVJngl ZJdQ’ (r, Q")
@qjasmz =1 i g,=1
g—g' (o '
o X878 (s;r,Q — Q) ; (205)
OSym,
& Y e, o L) (E1)]
Forj=1,...J5 my=1,...Js: = JdVJng (r, Q) ——2L "
I 7 040 m, ; ) Ly om,
G
3 [ a0z iy 0 (206)
=1y
2 G
Forj:1>"'7‘]; m2:15 7J aR dV ng() r,Q VZ'gf;l‘
q D 1,j f
aq]ame g= 1 pa
G g (1
x stz’ ¢ (r, @) L BT) (207)
g'=1 apmz
4
PR ¢ 0 (qr, Q)
Forj=1,...J,; my=1,....J,: JdVJdQ \V(l),g r,Q-—->'"" . 208
g 2 g aqjaqmz gzz; in ( ) 6%6sz ( )
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and

o’R G oz (d; r, Q)
i=1,...J,; = av | d@ ¢ P, @) 2202 209
Forj=1,..,J; my=1,. aq,a i ZJ J g1 (r,Q) o, (209)

4

The expressions of the second-order sensitivities computed using Eq. (204) must be identical to those computed
using Eq. (162).

o’R G oxs (t;r, Q
Thatis, forj=1,....J;; k=1,..,J;1 ——= —ZJdVJngf}’g(r, Q)w(l)’g(r,Q)M

6qjatk pr P oty
R J J @) 304 (q; 1, Q)
dv | d@ vy 4 (r, Q) =222 210
atkaqj g; Wz,k ( ) aqj ( )

4

The expressions of the second-order sensitivities computed using Eq. (205) must be identical to those computed
using Eq. (171).

o’R G G ,
Thatis, forj=1,...J,; k=1,..J;:=——= ZJdVJdQ g )y stz’w“)g (r, Q")
aqjaSk =1 i ' g'=1 i
o E (i1, Q- Q) PR & J J @) 00%(q; 1, Q)
X s A% = = dv | de o) ¢(r,Q) =222 211
aSk askaqj gz:; ] 2.k ( ) aqj ( )

The expressions of the second-order sensitivities computed using Eq. (206) must be identical to those computed
using Eq. (181).

62R<u o; y; g ( > G o[ (vE)*(f;
: .- Cp_ . BV 8 )" (f51)]
Thatis, for j=1,...,J;; k=1,...,J;: 343, ggl J Jndﬂ g (r,Q)—afk

o°R (a, o; y; uj@)
9fk0q;

G

/:l

oQ

G
0 ;r,Q
= JdV J dQ 2 (r, ) & Q) (212)
— ’ 0q;
g=1 4n
The expressions of the second-order sensitivities computed using Eq. (207) must be identical to those computed
using Eq. (192).

IR
Thatis, for j=1,....J,;; k=1,...,J,: = ZJdVJdQ g?).’g(r,ﬂ)[(vZf)g(f; r)
OqiOp 4= ; "" '
X i Jdﬂ’ &' (r, Q") Oy % (psr) _ O°R inVJdQ (2)-2(p Q)—an(q;r’Q) (213)
’ s = = Wa , .
= v Opi opdg; =) 2k dg;
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V.F. Multigroup Expressions of aZR/ad,aamz, j=1,..,

- COMPUTING SENSITIVITIES OF FLUX FUNCTIONALS

-/d; my = 1,...,/0

The multigroup form of the 2nd-LASS to be solved for the components hfj.’g (r,Q) and h%’g (r, Q) needed for

computing the multigroup expressions of the second-order sensitivities 0°R /0d; 00, j=1,....Ja; my=1,...,
follows:
LE(0) A (@) =0, j=1,...J; g=1,...,G
and
0xé(d;r, Q
AN (VR (r, Q) = M j=1,.J;g=1,..,G,
j od;
subject to the following boundary condition:
R E(r, @) = 0,2 n<0; A4, Q)=0,Q n>0; 1, €V, j=1,.,J5 g=1,..,G.

Jy 18 as

(214)

(215)

(216)

It is evident that the unique solution of the homogeneous linear Eq. (214) subject to the linear homogeneous

boundary condition in Eq. (216) is

K, 2)=0,j=1,..,

The approximate multigroup expressions of O*R /0d; 00, j =

o’R G
Formy =1,..,J;: = —ZJdVJdQ hSE (r, @)¢% (r, )
adjatmz g=1 i -
O0’R G
For my =1,...,J;: 555, Z}JdVJdQ h2j

4n
" X (51, Q — Q')

>

OSm,

F =
or my ad]afmz
’ 4n

0 [(vilf)g/(f; r)} .
Ofm, ’

X

O*R
Formy =1,...,J,: 6d6p
my g= 1

G
= JdV J dQ
4n
, g' =g (p:
X (Pg (l’, Q/) aX ap (pv l‘) :
my
o°R G

Formy, =1,...,J;: 6d6q
my

@ANS

IR _§ o) 2
1oy = |av | aQ nyy#(
=1

ledVJdQ K4 (r, Q)

&= 4

Jy o g=1,...,G.

1,....Js; my=1,...,J, are as follows:

oZf(t;r, Q)
Oty, ’

inQ’ Q')

!

g'=ly

Q) (psr)

Q)zG:JdQ’

g'=1,

hz,

!

g'=1

XG: Jdﬂ vz, (f; r)]
4

00%(q;r,Q)
aqmz ’
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and

O°R =8 (d; 1, Q)

G

— 4 —ar ' ' 7

5d0d,, ;JdVJdgm(r,m 2dddy (223)
- 4

For my=1,...,J;:

The expressions of the second-order sensitivities computed using Eq. (218) must be identical to those computed
using Eq. (163).

. _ O°R & 2).g oZf (t;r, Q)
That is,for j=1,...J5; k=1,..,J;: m:—;JdVJdQ hy (r,Q)(pg(r,Q)T
- 4
B %R B EG:JdVJdQ (2)’g(r Q) 0z (d;r, Q) (224)
T ouod L Vi A0 od,

4n

The expressions of the second-order sensitivities computed using Eq. (219) must be identical to those computed
using Eq. (172).

aZR G G
That is,for j = 1,....Js; k=1,..,J;: ZJdVJthzj (r, Q) Zjdsz’

adjﬁsk pa g,:1
0z 8 (s;r, Q' — Q) o0’R G J J @ 0z8(d;r, Q)
o = = |av | d@ 6y} f(r, Q) L2 22
x aSk askadj Z el,k (I', ) ad] ( 5)

The expressions of the second-order sensitivities computed using Eq. (220) must be identical to those computed
using Eq. (182).

. . 62R g (2), g G / / / [
That is, for j=1,...,Jz k:l,...,Jf:W:gZ;JdVJdQ hy (r,Q)gZIJdQ o (r, Q") “4(p;r)
- 41 T 4n
6{(v2f.)g’(f; l‘)} O*R G aZg(d'r g)
| = =" |av [a@ ul)(r,@,B) FC 270 226
T w oiod, ;J J il @ E) =55, (226)
’ - 4n ’

The expressions of the second-order sensitivities computed using Eq. (221) must be identical to those computed
using Eq. (193).

O’R

G
That is, for j=1,...Js; k=1,....J,: 57 ZJ Jdﬂh (r,Q)
Pk
g=1

x ZG: Jdﬂ’[(vzf)g'(f; r)}(pg’(r,gf)w

4

1y Opk
PR 0w £ 0 oxs(d;r, Q) -
= 6pkadj = Z; dV d Wl,k (r, )T . ( 7)

4n

NUCLEAR SCIENCE AND ENGINEERING - VOLUME 193 - JUNE 2019 &ANS



398  CACUCI

The expressions of the second-order sensitivities
computed using Eq. (222) must be identical to those
computed using Eq. (209).

0’R
Jd; k= 1,...,J :

That is,for j=1,..., 0 A
6dj@qk

G .
= JdV J o W (r, Q) Clqir, @)

g=1 an

4n

PR E @) oxé(d; r, Q)
= =Y |av | dQ g} S (r, @) L
0q,0d,; ZJ VJ &1k (r, Q) od,

g=1 4n

(228)

V.G. Second-Order Derivatives of Typical Multigroup Cross
Sections with Respect to Typical Model Parameters

A generic macroscopic group cross section
Z4(t;r, Q) for a neutron interaction of type x (e.g.,
absorption, scattering, fission, and total) can be typically
represented as fOllOWS‘

ZngrQ

g A gi g
G = ZNw S
i=1

5T, Q
(229)

where for each energy group g =1,...,G, the various

quantities are defined as follows:

0% = imprecisely known microscopic cross section
for the neutron interaction of type x, for isotope

i, in group g

1 = total number of distinct isotopes involved in the
neutron interaction of type x

ij = imprecisely known isotopic atomic number
density of isotope i in group g, for the neutron
interaction of type x, in the j’th material con-
tained in the heterogeneous medium under
consideration

af (r, Q) = spatial variation, in group g, characterizing the
j’th material contained in the heterogeneous
medium under consideration, while N» is the
total number of materials contained in this med-
ium; boundary and interface perturbations are
disregarded in this work, which means that
a}g(r, Q) is not subject to uncertainties, and

where

@ANS
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x,10 x,10 0 x, 10 Vx, 10 %20 Yx20 00 STy 20

025, s N G5 NEK, 03, |

denotes the vector of imprecisely known scalar-valued
model parameters for the neutron interaction of type x, in
group g, for all isotopes and all materials involved in the
definition of Z8(B,; r, Q).

The partial first-order derivatives of X (BS; r, Q) can
be readily obtained from Eq. (229) as follows:

Bg A |:Ngz Ggl Ngl Ggl Ngz Ggl Ng]
X

ozs( §;r,Q)

2 =l (r,Q), i= 1,1,
g5l X)) ? ’ ) P
ON;
j=1,..., Ny (230)
and
oXE (B r, Q ;
X(x—i) N (r,Q), i=1,..,1I;
a0y
J=1. Nu. (231)

The nonzero partial second-order derivatives of
5 ( §';r,9) can be readily obtained from Egs. (230)
and (231) as follows:

622§( Q)

(o) (eetf) )

j= , N

2 (r, Q), 1,....1;
(232)

The macroscopic group absorption cross section can
typically be represented in the form given in Eq. (229).
Often, the macroscopic group fission cross section
[(vZf)g(f; r)| can also be represented in the form given
in Eq. (229), namely,

~

Ao
[(vZr)%( = Ng’ (vo ff”;bf r),
Jj=1 i=1

(233)

where I; denotes the total number of fissionable isotopes
in energy group g and in the j’th material contained in the
heterogeneous medium under consideration. The partial
first- and second-order derivatives of [(vzf)g(f; r)] can
be readily obtained from Eq. (233) as follows:

0 (v, )¥(1:)]

S = (o O)EBE(r), i= 1,1
S

J=1,.; Nu; (234)
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0 [(vEf)g(f' r)]

— N9 Bé(r,Q
6(\/(5)/‘5; fi (r, €2),
i=1,dp j =1, Ny s (235)
and
llx) (e )] BnQ),i=1,...1
(av) (eet) )
=1, N (236)

When the number of neutrons per fission v and the respective
microscopic fission cross section o are provided separately,
with accompanying uncertainties (e.g., standard deviations),
then the derivatives provided in Egs. (234) through (236) are
to be expanded accordingly using the customary chain
derivation.

For the j’th material, and energy groupg =1,...,G ,
the material scattering cross section of order / can also be
written in the form shown in Eq. (229), namely,

A

N,
) = D0 YN )

s,i Vs,

B

(237)
Jj=1 i=1

where I; denotes the total number of scattering isotopes.
Often, the group source 0%(q;r, Q) and Z¥(d;r, Q) can
also be represented in the form shown in Eq. (229).

VI. CONCLUSIONS

The following conclusions can be drawn based on the
results that have been presented in this work:

1. As is well-known,'®'? a single 1st-LASS needs to
be solved in order to compute all first-order response
sensitivities to all N, model parameters.

2. For each model parameter, a single 2nd-LASS
needs to be solved for computing the corresponding
mixed second-order sensitivities. Hence, computing all
of the Ny(N,+1)/2 second-order sensitivities could
theoretically require solving at most N, 2nd-LASSs. In
practice, however, the number of computations is much
less, as has been shown in Refs. 11 and 13 through 17. In
particular, the results in Ref. 17 show that only 12 large-
scale adjoint particle transport computations were
required by using the 2nd-ASAM to compute all of the
detector’s response to the flux of uncollided particles for
the 18 first-order sensitivities and 224 second-order

NUCLEAR SCIENCE AND ENGINEERING - VOLUME 193 - JUNE 2019

sensitivities, in contrast to the 877 large-scale forward
particle transport calculations needed to compute the
respective sensitivities using central finite differences,
and this number did not include the additional
calculations that were required to find appropriate
values of the perturbations to use for the central
differences.

3. The solution of each of the 2nd-LASSs is a two-
component vector-valued second-level adjoint function,
except for the 2nd-LASS that corresponds to model
parameters that appear linearly in the response under
consideration, in which case the vector-valued
second-level adjoint function may have a null
component.

4. Solving each of the 2nd-LASSs involves the
inversion of the same operators as need to be inverted
for solving the original transport equation and/or the Ist-
LASS. Only the various source terms on the right sides of
the 2nd-LASSs may differ from each other. Therefore,
the same software can be used to solve both the 1st-LASS
and the 2nd-LASS.

5. The computation of the second-order sensitivities
involves the evaluations of integrals of the same form
as those needed for computing the first-order sensitiv-
ities. Therefore, the same software can be used for
computing both the first-order and the second-order
sensitivities.

6. Each of the mixed second-order sensitivities is
computed twice, using two distinct second-level adjoint
functions. Consequently the 2nd-ASAM possesses an
inherent solution verification mechanism that enables
and ensures the accuracy verification of the solutions of
all of the 2nd-LASSs.

7. For the reaction rate (detector) response consid-
ered in this work, it may be advantageous to compute
the second-order sensitivities in the following order of
increasing computational demands:

a. computation of O°R(a, @
Jd, my = 1 Ja

b. computation of 62R(
g my =1,y

¢. computation of 62R(u,(p;
1,...J; my=1,..,Jy4

d. computation of 3°R(a,
Lde ma =1, .o

e. computation of  R(a,0

Dy my =1,y

f. computation of azR(
1,...,Jp, my = 1,..., o-

y) /od; D0y, j =1,
y) /3g; 00, j =1,
V) (1) (). =
y)) /0s; 00ty , j =
v) /0f; 00k,

i=1,.
vy /op; 0oy, j =

@ANS



600  CACUCI - COMPUTING SENSITIVITIES OF FLUX FUNCTIONALS

Acknowledgments

The author gratefully acknowledges the support of, thor-
ough review by, and constructive discussions with Jeffrey
A. Favorite, of Los Alamos National Laboratory, which has
provided funding for his work.

ORCID

Dan Gabriel Cacuci @ http://orcid.org/0000-0001-5417-
5701

References

1. H. MITANI, “Higher-Order Perturbation Method in
Reactor Calculation,” Nucl. Sci. Eng., 51, 180 (1973);
https://doi.org/10.13182/NSE51-180.

2. Y. SEKI, “Evaluation of the Second-Order Perturbation
Terms by the Generalized Perturbation Method,” Nucl. Sci.
Eng., 51, 243 (1973); https://doi.org/10.13182/NSE51-243.

3. A. GANDINI, “Implicit and Explicit Higher-Order
Perturbation Methods for Nuclear Reactor Analysis,” Nucl.
Sci. Eng., 67, 347 (1978); https://doi.org/10.13182/NSE78-5.

4. E. GREENSPAN, D. GILAI, and E. M. OBLOW, “Second-
Order Generalized Perturbation Theory for Source-Driven
Systems,” Nucl. Sci. Eng., 68, 1 (1978); https://doi.org/10.
13182/NSE68-1-1.

5.D. G. CACUCI et al,, “Developments in Sensitivity
Theory,” Proc. Topl. Mtg. Advances in Reactor Physics
and Shielding, Sun Valley, Idaho, September 14—19, 1980,
p- 692, American Nuclear Society (1980).

6. K. DEMS and Z. MROZ, “Variational Approach to First-
and Second-Order Sensitivity Analysis of Elastic
Structures,” Int. J. Solids Struct., 21, 637 (1985); https://
doi.org/10.1002/nme.1620210405.

7. Z. WANG et al.,, “The Second Order Adjoint Analysis:
Theory and Applications,” Meteor. Atmos. Phys., 50, 3
(1992); https://doi.org/10.1007/BF01025501.

8. D. N. DAESCU and I. M. NAVON, “Sensitivity Analysis in
Nonlinear Variational Data Assimilation: Theoretical Aspects
and Applications,” Advanced Numerical Methods for
Complex Environmental Models: Needs and Availability,
Chap. 4B, pp. 276-300, I. FARAGO, A. HAVASI, and
Z. ZLATEV, Eds., Bentham Science Publishers (2014).

9. M. H. NEGM et al.,, “Wideband Second-Order Adjoint
Sensitivity Analysis Exploiting TLM,” [EEE Trans.

@ANS

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Microw. Theory Tech., 62, 3, 389 (2014); https://doi.org/
10.1109/TMTT.2014.2299521.

D. G. CACUCI, “Second-Order Adjoint Sensitivity Analysis
Methodology (2nd-ASAM) for Computing Exactly and
Efficiently First- and Second-Order Sensitivities in
Large-Scale Linear Systems: 1. Computational Methodology,”
J. Comput. Phys., 284, 687 (2015); https://doi.org/10.1016/].
jcp.2014.12.042.

D. G. CACUCI, “The Second-Order Adjoint Sensitivity
Analysis Methodology for Nonlinear Systems—I:
Theory,” Nucl. Sci. Eng., 184, 16 (2016); https://doi.org/
10.13182/NSE16-16.

D. G. CACUCI, The Second-Order Adjoint Sensitivity
Analysis Methodology, CRC Press, Taylor & Francis
Group, Boca Raton, Florida (2018).

D. G. CACUCI, “The Second-Order Adjoint Sensitivity
Analysis Methodology for Nonlinear Systems—II:
Illustrative Application to a Nonlinear Heat Conduction
Problem,” Nucl. Sci. Eng., 184, 31 (2016); https://doi.org/
10.13182/NSE16-31.

D. G. CACUCI, “Second-Order Adjoint Sensitivity
Analysis Methodology (2nd-ASAM) for Computing
Exactly and Efficiently First- and Second-Order
Sensitivities in Large-Scale Linear Systems: II. Illustrative
Application to a Paradigm Particle Diffusion Problem,”
J. Comput. Phys., 284, 700 (2015); https://doi.org/10.
1016/j.jcp.2014.11.030.

D. G. CACUCI, “Second-Order Adjoint Sensitivity and
Uncertainty Analysis of a Heat Transport Benchmark
Problem—I: Analytical Results,” Nucl. Sci. Eng., 183, 1
(2016); https://doi.org/10.13182/NSE15-81.

D. G. CACUCI et al., “Second-Order Adjoint Sensitivity
and Uncertainty Analysis of a Heat Transport Benchmark
Problem—II: Computational Results Using G4M Reactor
Thermal-Hydraulic Parameters,” Nucl. Sci. Eng., 183, 22
(2016); https://doi.org/10.13182/NSE15-80.

D. G. CACUCI and J. A. FAVORITE, “Second-Order
Sensitivity Analysis of Uncollided Particle Contributions to
Radiation Detector Responses,” Nucl. Sci. Eng., 190, 2, 105
(2018); https://doi.org/10.1080/00295639.2018.1426899.

D. G. CACUCI, “Sensitivity Theory for Nonlinear Systems:
I. Nonlinear Functional Analysis Approach,” J. Math. Phys.,
22, 2794 (1981); https://doi.org/10.1063/1.525186.

D. G. CACUCI, “Sensitivity Theory for Nonlinear
Systems: II. Extensions to Additional Classes of
Responses,” J. Math. Phys., 22, 2803 (1981); https://doi.
org/10.1063/1.524870.

NUCLEAR SCIENCE AND ENGINEERING - VOLUME 193 - JUNE 2019


https://doi.org/10.13182/NSE51-180
https://doi.org/10.13182/NSE51-243
https://doi.org/10.13182/NSE78-5
https://doi.org/10.13182/NSE68-1-1
https://doi.org/10.13182/NSE68-1-1
https://doi.org/10.1002/nme.1620210405
https://doi.org/10.1002/nme.1620210405
https://doi.org/10.1007/BF01025501
https://doi.org/10.1109/TMTT.2014.2299521
https://doi.org/10.1109/TMTT.2014.2299521
https://doi.org/10.1016/j.jcp.2014.12.042
https://doi.org/10.1016/j.jcp.2014.12.042
https://doi.org/10.13182/NSE16-16
https://doi.org/10.13182/NSE16-16
https://doi.org/10.13182/NSE16-31
https://doi.org/10.13182/NSE16-31
https://doi.org/10.1016/j.jcp.2014.11.030
https://doi.org/10.1016/j.jcp.2014.11.030
https://doi.org/10.13182/NSE15-80
https://doi.org/10.13182/NSE15-81
https://doi.org/10.1080/00295639.2018.1426899
https://doi.org/10.1063/1.525186
https://doi.org/10.1063/1.524870
https://doi.org/10.1063/1.524870

	Application of the Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology to Compute First- and Second-Order Sensitivities of Flux Functionals in a Multiplying System With Source
	Publication Info

	Abstract
	I.  INTRODUCTION
	II.  THE NEUTRON TRANSPORT EQUATION MODELING AMULTIPLYING SYSTEM WITH AN EXTERNAL SOURCE
	III.  THE FIRST-LEVEL FORWARD AND ADJOINT SENSITIVITY SYSTEMS FOR COMPUTING FIRST-ORDER RESPONSE SENSITIVITIES TO VARIATIONS IN MODEL PARAMETERS
	IV.  THE SECOND-LEVEL FORWARD AND ADJOINT SENSITIVITY SYSTEMS FOR COMPUTING SECOND-ORDER RESPONSE SENSITIVITIES TO VARIATIONS IN MODEL PARAMETERS
	IV.A.  Computation of the Second-Order Sensitivities ∂2R(α,φ;ψ(1))/∂tj∂αm2, j = 1,..., Jt; m2 = 1,..., Jα
	IV.B.  Computation of the Second-Order Sensitivities ∂2R(α,φ;ψ(1))/∂sj∂αm2, j = 1,..., Js; m2 = 1,..., Jα
	IV.C.  Computation of the Second-Order Sensitivities ∂2R(α, φ; ψ(1))/∂fj∂αm2, j = 1,..., Jf; m2 = 1,..., Jα
	IV.D.  Computation of the Second-Order Sensitivities ∂2R(α, φ; ψ(1))/∂pj∂αm2, j = 1,...,Jp; m2 = 1,...,Jα
	IV.E.  Computation of the Second-Order Sensitivities ∂2R(α, φ; ψ(1))/∂qj∂αm2, j = 1,...,Jq; m2 = 1,...,Jα
	IV.F.  Computation of the Second-Order Sensitivities ∂2R(α, φ; ψ(1))/∂dj∂αm2, j = 1,...,Jd;m2 = 1,...,Jα
	IV.G.  Impact of Second-Order Sensitivities on Response Expected Value, Variance, and Skewness

	V.  MULTIGROUP APPROXIMATION EXPRESSIONS OF THE 2nd-LASS AND SECOND-ORDER RESPONSE SENSITIVITIES
	V.A.  Multigroup Expressions of ∂2R/∂tj∂αm2, j = 1,...,Jt; m2 = 1,...,Jα
	V.B.  Multigroup Expressions of ∂2R/∂sj∂αm2, j = 1,...,Js; m2 = 1,...,Jα
	V.C.  Multigroup Expressions of ∂2R/∂fj∂αm2, j = 1,...,Jf; m2 = 1,...,Jα
	V.D.  Multigroup Expressions of ∂2R/∂pj∂αm2, j = 1,...,Jp; m2 = 1,...,Jα
	V.E.  Multigroup Expressions of ∂2R/∂qj∂αm2, j = 1,...,Jq; m2 = 1,...,Jα
	V.F.  Multigroup Expressions of ∂2R/∂dj∂αm2, j = 1,...,Jd; m2 = 1,...,Jα
	V.G.  Second-Order Derivatives of Typical Multigroup Cross Sections with Respect to Typical Model Parameters

	VI.  CONCLUSIONS
	Acknowledgments
	References

