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Abstract

Background

Environmental pollution in general, and radioactive contamination in particular, may deeply

affect host-parasite relationships and their consequences for the evolution of organisms.

The nuclear accident that occurred more than 30 years ago in Chernobyl resulted in signifi-

cant changes in diversity and richness of microbial communities that could influence charac-

teristics of animal-bacteria interactions, including host immune responses and competitive

interference by bacteria. Given the high mortality rate of birds breeding in radioactively con-

taminated zones, those with stronger defences against infections should experience signifi-

cant fitness advantages.

Methodology/Principal Findings

Here we characterized antimicrobial capacity of barn swallows (Hirundo rustica) from differ-

ent Ukrainian populations (subject to a gradient of ionizing radiation) against 12 bacterial

species. We also quantified constitutive innate immunity, which is the non-specific first bar-

rier of protection of hosts against microbial parasites. We found a positive association

between specific antimicrobial capacity of individual hosts and radiation levels in breeding

habitats even after controlling for other confounding variables such as sex and age. How-

ever, no significant relationship was found between immunocompetence (non-specific

response) and background radiation.

Conclusions/Significance

These results suggest that radiation selects for broad antimicrobial spectra of barn swal-

lows, although not for all bacterial strains. We discuss these results in the framework of

host-parasite evolution under extreme environmental conditions.
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Introduction

Host-parasite interactions are one of the main forces driving evolution [1]. Hosts are exposed

to a plethora of parasites with variable fitness consequences. Parasite-host associations may

depend on abiotic factors [2], so drastic changes in environmental conditions, such as contam-

ination, could alter these relationships [3]. Environmental pollution has been shown to influ-

ence not only the biology of parasites and hosts separately, but also the investment in defences

of hosts against parasites (reviewed in [3]).

Since 1945, nuclear weapons testing and accidents at nuclear facilities have increased ambi-

ent levels of ionizing radiation in many parts of the world and this can be considered an

extreme environmental perturbation resulting from human activities that has drastically

affected many natural populations [4]. The worst nuclear accident to date took place in 1986 at

the Chernobyl Nuclear Power Plant in Ukraine, during which huge amounts of radioactive

isotopes were released into the environment causing elevated mutation rates in organisms [5]

and altered ecosystem functioning [6]. Due to the proliferation of nuclear power plants in the

1960’s and 1970’s, and many new plants under construction around the world, there is an

increasing interest in studying effects of radiation on wildlife [7, 8, 9]. Chernobyl provides a

unique opportunity for studying the ecological and evolutionary consequences of ionizing

radiation on living organisms more than 30 years following the accident, allowing for assess-

ment of adaptations to this new environment.

Since host-parasite dynamics are affected by a variety of biotic and abiotic factors, including

physiological characteristics of counterparts, dynamics of host-parasite interactions are even

more complex in radioactively contaminated sites, because of uncertainty of the effects on dif-

ferent parasites and hosts [3]. On one hand, anthropogenic radiation has a negative effect on

abundance and diversity of microorganisms [10, 11]. However, due to short generation times,

some microorganisms can accumulate beneficial (and detrimental) mutations that allow them

to rapidly adapt to changes in their environment [12, 13], resulting in increases in abundance

and distribution of resistant species within radioactively contaminated areas [14, 15]. There-

fore, drastic environmental modifications after a nuclear accident may lead animals to con-

front a severely changed microbial community that, mainly because of the direct or indirect

negative effects of radiation on host phenotype [16], may become more virulent for hosts [17],

and increase the probability of successful infection. For instance, a significant percentage of

atypical mycobacteria occurred in cattle from polluted areas of Ukraine following the Cherno-

byl disaster [18]. Therefore, it is likely that host-parasites dynamics vary in areas differing in

radioactive contamination.

Animals living in radioactively contaminated areas experience depressed immunity, mainly

due to profound damage to their immune system, and this may result in faster disease progres-

sion [3, 16]. Supporting this hypothesis, birds living in Chernobyl have demonstrated low lev-

els of immune function [19], depressed levels of several types of leukocytes and

immunoglobulins, and smaller spleens [5, 19]. These effects could, among others, be due to the

high level of DNA damage experienced by birds living in contaminated areas [20, 21] that

would affect the dynamics and the outcomes of the interaction between hosts and parasitic

microorganisms.

In the present study, we characterized the immunological capacity to fight against species-

specific and general bacterial infections in barn swallows Hirundo rustica breeding along a gra-

dient of radioactive contamination in Ukraine (including populations from Chernobyl). First,

we directly measured the capacity of blood plasma from barn swallows to inhibit bacterial

growth by means of antagonistic plates in which the plasma is confronted with different stan-

dard bacterial strains. Second, we measured the constitutive innate immunity, which provides

Antimicrobial activity and radioactivity
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the first-line of protection against invading microbes. Specifically, we studied two humoral

components: natural antibodies and complements [22, 23, 24, 25] (Carroll & Prodeus, 1998;

Thorton et al. 1994; Ochsenbein & Zinklernagel, 2000; Matson et al., 2005).

Given the scenario described above, we might expect a lower defence capacity against

microorganisms in barn swallows living in more contaminated areas. Alternatively, selective

pressures exerted by evolving, more complex communities of microorganisms, together with

high mortality rates in barn swallow hosts in Chernobyl [26], may have accelerated the process

of adaptation in these bird populations. To date, there are very few examples of animals adapt-

ing to ionizing radiation in Chernobyl [27] but among these a higher level of resistance of

feathers to degradation by keratinolytic bacteria was found in barn swallows living in more

contaminated areas around Chernobyl [28]. In light of this prior finding, we predict that barn

swallows in Chernobyl will be more resistant to bacterial infections than control populations

given more than 30 years of selection following the accident.

Methods

Sampling procedure

Field work was performed in May-June 2015 in Ukraine. We sampled two populations inside

the Chernobyl Exclusion Zone (Rudnia (51.17.308N-29.46.536E) and Vesniane (51.17.845N-

30.38.451E), < 30 km from the nuclear power plant), whose ambient background radiation

levels were 1.5–2 μSv/h; another population outside but close to the exclusion zone (Dytiatki

(51.06.741N-30.10.340E), < 1 km), with background radiation levels of 0.2–0.5 μSv/h; and a

“clean” population located at> 100 km of the exclusion zone (Voronkov (50.22.235N-

30.89.967E), 0.02–0.12 μSv/h) (see Fig 1). The external radiation levels were measured at

ground level in each population (i.e., in each farm) using a hand-held dosimeter (Model:

Inspector, International Medcom, Inc., Sebastopol, CA, USA), which was deposited in the

ground until the measure stabilized. Values were highly consistent within sites among years.

For more details on study areas, see [11].

Barn swallows were captured by placing mist nets at the entrance of farm buildings where

they breed. The sex and age of each individual was determined because this could affect immu-

nocompetence, which is defined as the ability to raise an efficient defense against parasites

[30]. Since barn swallows show very low dispersal rates once they have chosen a breeding terri-

tory in their first year of life [31], and Ukrainian populations have been monitored since 2000,

the age of individual barn swallows in our study sites can be accurately estimated by consider-

ing unbanded birds at first capture as being yearlings (see procedure in [32]). Blood samples

were taken by puncturing the brachial vein and collected in heparinized capillary tubes. The

blood was deposited in a MiniCollect tube (0.8 mL, LH Lithium Heparin Sep.), and then

briefly centrifuged (12,000 g, 5 min) to separate the plasma fraction. Plasma was stored at

-20˚C until lab analyses could be performed during the following two months. Sampling effort

(i.e. time devoted to capture of birds) was similar in all populations. We captured in total 85

individuals, 41 females and 44 males; 15 individuals were captured in Rudnia (6 females and 9

males), Vesniane (6 females and 9 males) and Dytiatki (7 females and 8 males), and 40 individ-

uals (22 females and 18 males) in Voronkov.

Birds were captured and released about 10 min later. All individuals flew after release and

appeared to be unaffected by handling. No birds were damaged or died as a consequence of

manipulation. Permit for capturing, handling and blood withdrawal of the birds was given by

the Chernobyl Exclusion Zone Authority. No anesthesia, euthanasia, or any kind of animal

sacrifice was performed.

Antimicrobial activity and radioactivity
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Antimicrobial activity of plasma

Antimicrobial tests were performed against twelve indicator bacteria (listed in Table 1) from a

broad range of taxonomic groups. Antagonistic plates were prepared as follows: 15 mL of a cul-

ture medium previously prepared and sterilized (1.8% of brain–heart infusion (BHI) and 0.8%

agar in 0.1 M pH 7 phosphate buffer) was melted and then maintained at 50˚C for 10 min.

Then, 100 μL of a 12-h culture of each indicator bacteria (Table 1) was added to the medium,

vigorously vortexed and spread onto a Petri dish. After solidifying about 30 min later, 2 mL of

each plasma sample was placed on the plates and later incubated for 12 h at 28˚C. After incu-

bation, plates were checked for inhibition halos, that is, transparent zones around the plasma

in which the growth of the indicator bacterium was inhibited. Halos were measured (in mm)

from the limit of the plasma drop to the end of the halo (i.e., where the indicator bacteria

growth begins). Antagonistic tests against each species were made to all the samples in the

Fig 1. Map with all the study populations: (1) Vesniane, (2) Rudnia, (3) Dytiatki, and (4) Voronkov. The

arrow denotes the nuclear power plant. Adapted from [29].

https://doi.org/10.1371/journal.pone.0179209.g001

Table 1. Results of multiple regression analyses in which the radiation level was the independent variable, and inhibition capacity (i.e., halo size)

was the dependent variable. Q is the statistical probability after adjustment for number of tests. The asterisk (*) denote significant values.

Indicator bacteria Beta (SE) F d.f. R2 P Q N

Enteroccus faecium 0.39 (0.10) 15.02 1, 83 0.14 0.0002 0.0004* 85

Listeria monocytogenes 0.19 (0.10) 3.39 1, 82 0.03 0.06 0.06 84

Listeria inocua -0.32 (0.10) 9.63 1, 82 0.09 0.0026 0.003* 84

Lactobacillus paracasei -0.49 (0.09) 25.82 1, 82 0.23 <0.0001 0.0002* 84

Lactococcus lactis 0.60 (0.09) 42.94 1, 77 0.35 <0.0001 0.0002* 79

Lactobacillus plantarum 0.22 (0.11) 3.76 1, 74 0.03 0.05 0.06 76

Enterococcus faecalis 0.61 (0.09) 43.90 1, 72 0.37 <0.0001 0.0002* 74

Bacillus thuringiensis 0.61 (0.09) 41.54 1, 69 0.36 <0.0001 0.0002* 71

Bacillus licheniformis 0.40 (0.11) 13.55 1, 68 0.15 0.0004 0.0006* 70

Proteus sp. 0.37 (0.11) 10.86 1, 68 0.12 0.001 0.0015* 70

Bacillus megaterium -0.17 (0.12) 2.11 1, 65 0.01 0.15 0.15 67

Staphylococcus aureus 0.65 (0.09) 45.31 1, 62 0.41 <0.0001 0.0002* 64

https://doi.org/10.1371/journal.pone.0179209.t001

Antimicrobial activity and radioactivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0179209 June 29, 2017 4 / 12

https://doi.org/10.1371/journal.pone.0179209.g001
https://doi.org/10.1371/journal.pone.0179209.t001
https://doi.org/10.1371/journal.pone.0179209


same randomly selected order (listed in Table 1). For some of the samples, there was insuffi-

cient plasma for testing all indicator bacteria (N of each assay is given in Table 1).

Immune assays

We estimated the immune response mediated by natural antibodies and complement by fol-

lowing the procedure described by Matson et al. (2005). Briefly, 50 μL of plasma were serially

diluted in sodium phosphate buffer (PBS) in two consecutive polystyrene 96-well assay plates

where 25 μL of 1% rabbit blood cell suspension (Hemostat laboratories, Dixon, CA 95620,

USA) in PBS was added. Quantification of lysis and agglutination titers is assessed as the num-

ber of titers with the last plasma dilution at which the lysis or agglutination reaction of rabbit

blood was observed [25]. However, the quantity of barn swallow plasma did not reach 50 μL in

the majority of our samples, so we used 25 or 12.5 μL in the second or third titer depending on

availability. Since the lysis reaction occurred in the first titers and we did not have plasma in

some of them, we counted until the last titer in which the plasma had any activity (i.e., at the

end of the agglutination) to avoid bias due to the absence of plasma in the first titers. These val-

ues were used as indicators of immunocompetence. The agglutination and lysis variables (in

those samples for which we have both data, N = 16), were strongly positively correlated

(F = 22.80, d.f. = 1, 14, R2 = 0.59, P = 0.0003, estimate (SE) = 2.13 (1.09)). Samples in which the

activity was not detected were discarded from the analysis because we could not distinguish

between no activity or if it occurred in the first titers. We obtained information for 49

individuals.

Statistical analysis

The relationship among the antimicrobial activity of blood plasma and the background radia-

tion level was first evaluated separately for each indicator bacterium through multiple regres-

sion analysis, in which radiation was considered the predictor variable, and inhibition capacity

(i.e., halos size) the response variable. The false-discovery-rate (FDR) correction to establish

the appropriate Q values was used (procedure of Benjamini and Hochberg), which were the

calculated P values after FDR correction [33, 34].

To analyse the effect of background radiation on the global capacity of individuals of inhib-

iting bacterial growth, an antagonistic index was calculated as the average intensity of activity

against the number of indicator bacteria tested for each sample (i.e., a sum of all halos sizes

divided for the number of indicator bacteria tested for each sample). This index was log10-

transformed to adjust to a normal distribution, and the variance was homogenous (Levene’s

test, F = 0.67, d.f. = 1, 83, P = 0.41). In addition, all samples for which we had the values of anti-

microbial activity against all the indicator strains (N = 70) were included in a Principal Com-

ponent Analysis (PCA), to reduce the number of dependent variables and to assure statistical

independence. PCA factors were rotated (varimax normalized), and their significance estab-

lished by cross-validation. Antagonistic activity was summarized in five Principal Components

(PC) that explained 75.47% of the total variance, with each PC explaining 29.13, 18.94, 10.16,

9.72 and 7.50%, respectively. The resulting PCA appropriately captured variation in the 12 var-

iables since the estimated power of each of them varied between 0.68 and 0.89 [35]. The natural

antibody and complement variable was log10-transformed to adjust to a normal distribution.

General Linear Models (GLM) were performed. On the one hand, ANCOVA was used in

which background radiation and the other variables that could influence the immune

responses (i.e., sex and age) were included as predictor variables, while the antagonistic index

and the non-specific immune response mediated by natural antibody and complements were

the dependent variables of the models. On the other hand, we used the MANCOVA analysis

Antimicrobial activity and radioactivity
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with the same dependent variables but with all factors obtained in the PCA. All analyses were

performed with Statistica 7.1 software [36].

Results

Antimicrobial activity of plasma

Considering each indicator bacterium separately and after FDR correction, only B. megater-
ium, L. monocytogenes and L. plantarum had antimicrobial capacity in barn swallows that was

not related to background radiation (Table 1). For the two latter species, results are marginally

non-significant (P = 0.06, Table 1). In seven of the nine species for which a significant associa-

tion was detected, activity against indicator bacteria was higher in individuals that were cap-

tured in more contaminated areas (Table 1). Thas was also the case when considering

responses of the bacterial species that were marginally statistically significant (Table 1).

The global antagonistic index was positively related to background radiation level (F = 5.22,

d.f. = 1, 79, P = 0.02, β (SE) = 0.69 (0.30)), and neither sex (F = 2.07, d.f. = 1, 79, P = 0.15, β
(SE) = 0.20 (0.14)) nor age (F = 2.65, d.f. = 1, 79, P = 0.11, β (SE) = 0.10 (0.22)), nor their inter-

action with radiation (F = 0.55, d.f. = 1, 79, P = 0.46, β (SE) = -0.11 (0.14) and F = 1.58, d.f. = 1,

79, P = 0.21, β (SE) = -0.41 (0.32) respectively), explained an additional significant proportion

of variance (Fig 2).

Univariate analysis showed that the antagonistic index was reversed between sexes in B.

megaterium (females were more resistant, F = 6.59, d.f. = 1, 65, P = 0.012), and L. monocyto-
genes (the opposite trend, F = 6.07, d.f. = 1, 82, P = 0.015). In the case of E. faecium, there was a

marginally significant difference, with males being more resistant (F = 3.36, d.f. = 1, 83,

P = 0.070).

We also calculated the percentage of strains that were inhibited per sample, in those that

were tested at least against 6 strains (N = 75), but we did not find any effect of radiation

(F = 0.06, d.f. = 1, 69, P = 0.80), sex (F = 1.92, d.f. = 1, 69, P = 0.17), nor age (F = 0.72, d.f. = 2,

69, P = 0.49).

When considering PCA values to characterize antimicrobial activity, we detected signifi-

cant, positive effects of radiation level and sex, but no effect of age was found (Table 2). More-

over, the interaction between sex and radiation was marginally non-significant, while that was

not the case for radiation and age (Table 2).

Immunocompetence

Radiation and sex did not explain significant variation in the immune response (F = 0.96, d.f.

= 1, 43, P = 0.33, β (SE) = 0.42 (0.43) and F = 0.13, d.f. = 1, 43, P = 0.72, β (SE) = 0.07 (0.19)

respectively). However, there was a weak marginally non-significant association with age

(F = 3.47, d.f. = 1, 43, P = 0.07, β (SE) = 0.36 (0.19)). None of the interactions were significant

(radiation�sex: F = 0.23, d.f. = 1, 43, P = 0.63, β (SE) = 0.09 (0.19); radiation�age: F = 1.64, d.f.

= 1, 43, P = 0.21, β (SE) = -0.59 (0.46)).

Discussion

Our main finding was a positive relationship between capacity of barn swallow blood plasma

to inhibit bacterial growth and ambient background radiation levels of breeding sites. Such a

positive association was detected for more than 90% of the indicator bacteria assayed. Labora-

tory experiments exposing animals to ionising radiation have shown profound positive effects

on susceptibility to a range of bacterial pathogens, especially Listeria monocytogenes [37, 38].

Interestingly, our results suggest the opposite pattern in natural populations, and here we

Antimicrobial activity and radioactivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0179209 June 29, 2017 6 / 12

https://doi.org/10.1371/journal.pone.0179209


discuss the possibility that the detected patterns were due to natural selection purging immune

deficient individuals more rapidly in highly contaminated areas.

Interestingly, background radiation was the unique variable explaining variation in the

global antagonistic index (which include the number of bacteria that one sample can inhibit,

as well as the intensity of inhibition). We have previously demonstrated that birds from heavily

radioactively contaminated areas were those more resistant to feather degradation by keratino-

lytic bacteria [28]. Microbial communities in Chernobyl are altered and the phenotypic condi-

tion of hosts has deteriorated as a consequence of the nuclear accident (see Introduction).

Therefore, selection exerted by microorganisms on barn swallows may have purged those indi-

vidual birds with low capacity to defend themselves from bacterial infections. Data on recap-

tures in subsequent years will allow us to assess whether there is a relationship between

antimicrobial defence capacity and survival.

When considering the PCA results that summarise all antagonistic tests, background radia-

tion again explained variability among individuals, but in this case there was also an effect of

sex that differed among areas, i.e., plasma of males and females have different patterns of

capacity to inhibit different bacterial species depending on the radiation level. Therefore,

although both sexes of barn swallows captured in contaminated zones have a higher overall

capacity to inhibit bacteria, they inhibit diverse bacterial taxa differentially. Males and females

Fig 2. Variation in the global antagonistic index of female (left) and male barn swallows (right) under

different background radiation levels.

https://doi.org/10.1371/journal.pone.0179209.g002

Table 2. Results of a multivariate general linear model that explored the effects of background radiation, sex and age on the first principal compo-

nent of a PCA that included all antagonistic tests for bacteria.

Variable Wilks’ λ F5,60 P

Radiation 0.50 12.03 <0.0001

Sex 0.76 3.72 0.005

Age 0.97 0.34 0.88

Radiation*Sex 0.84 2.23 0.06

Radiation*Age 0.88 1.56 0.18

https://doi.org/10.1371/journal.pone.0179209.t002
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may encounter different bacterial communities since their behaviour differs during the breed-

ing season, when we collected the samples. Although individuals of the two sexes collaborate

in nest building, females spend more time inside the nests (laying eggs and incubating them)

than males [26]. In feathers, bacterial communities differ among the sexes [11], and also in

some defences against keratinolytic degradation [28]. In addition, the investment in reproduc-

tion may be lower in contaminated than in clean areas, since barn swallows experience

reduced reproductive success in Chernobyl [26]. This difference is more evident for females

that may invest more in self-maintenance.

Previous studies have detected reduced spleen size and lower lymphocyte counts and

immunoglobulin concentrations in barn swallows breeding in Chernobyl in comparison with

those breeding in non-contaminated control areas [19]. Moreover, individuals from Cherno-

byl were under higher immunological stress as showed by their heterophil:lymphocyte ratios

[19]. Thus, previous studies have suggested a negative relationship between immunity and

radiation. However, other variables indirectly related to immune capacity such as plasma anti-

oxidant capacity did not vary with radiation level [39]. Our results also failed to detect the

expected negative association between radiation and level of constitutive innate immune

response. Previous studies of natural antibodies and complement in barn swallows breeding in

uncontaminated zones showed that variation was explained by time during the breeding sea-

son and age of individuals [40]. In addition, they explained vital rates in females [40]. We also

found a weak relationship with age in our samples, although other factors related to contami-

nation may be influencing the results.

Although selection acting on the immune system of birds at Chernobyl during the last 30

years may explain inconsistency of results and the absence of a relationship between different

levels of radioactivity and innate immune response of individuals affected by the Chernobyl

catastrophe, this could also be due to different aspects of immune responses being investigated

in different studies. Different immune components are not necessarily positively related to

each other [41]. Although negative associations are consistent with a trade-off between differ-

ent components of immunity [42], other studies detected positive or no associations among

different lines of immunity [43]. Moreover, immunity is also related to a variety of physiologi-

cal characteristics such as growth, reproduction and survival that depend on environmental

factors and seasonality [44], which may have changed during the last 30 years.

In antagonistic tests we measured the specific response of plasma to bacterial growth,

which may provide positive relationships between inhibition capacity and radiation. There-

fore, it is possible that individuals that were able to defend themselves against bacterial infec-

tions are those that were favoured by natural selection. Interaction between radiation exposure

and virulence changes among pathogen species and depends on the dynamic relationship

between host and pathogens (reviewed in [3]). Considering possible changes driven by levels

of radioactivity, both in the pathogens (e.g., biology, ecology and occurrence, which could ulti-

mately increase their virulence) and in hosts (e.g., damage to the immune system), it is possible

that the associated strong selection pressure on hosts may result in rapid adaptive evolution of

the immune responses in birds living in this extreme and stressful environment. It is well doc-

umented that the Chernobyl disaster increased the occurrence of infectious diseases in humans

[45, 46]. The opposite pattern was however detected when studying wild animal populations

as shown by lower occurrence of infections caused by Mycobacterium spp. (which provokes

tuberculosis) in animals living in contaminated zones than in animals living in Ukrainian con-

trol areas [47, 48], perhaps because of selective mortality.

Pathogenicity of bacteria is controversial, since the same species may live in some organ-

isms without damaging them, while causing an infection under certain circumstances (e.g.

[49]). In the species tested in our study, we could group L. monocytogenes [50], E. faecalis [51],
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Proteus sp. [52] and Staphylococcus aureus [53] as potentially pathogenic, but also the three

Bacillus species since they are keratinolytic and could digest the feathers of their barn swallow

hosts (e.g. [54]). However, the only species in which no relationship with radiation was found

was B. megaterium. It is possible that for inhibiting feather-degrading microorganisms, other

mechanisms such as uropygial secretions or physical resistance to degradation may be more

developed [28]. Interestingly, both negative relationships between radiation and inhibition

capacity were against L. inocua and L. paracasei, both widely accepted as being non-pathogenic

bacterial species (e.g. [55, 56].

The mortality rate in birds living in Chernobyl is known to be much higher than that of

conspecifics living in control populations [57]. If mortality was associated with immune capac-

ity in animals, evolution of inmune response in the Chernobyl population should be detectable

after a few years, assuming some amount of heritable genetic variation for immune response.

Because microorganisms are able to rapidly evolve adaptive responses to radiation, animals

that were unable to overcome immune depression caused by radiation will be purged from

contaminated areas resulting in increased frequencies of adapted phenotypes in the popula-

tion. The abundance of birds in highly contaminated areas of Chernobyl is about two thirds

lower than in control areas [58]. Our results suggest that this elevated selection pressure has

resulted in more immuno-competent populations, at least when considering adaptive immune

responses mediated by particular antimicrobial agents (i.e. antibodies or immunoglobulins).

Infectious diseases are ubiquitous components of the biology of animals. Environmental

pollution has the potential to change ecological interactions between species, including those

among hosts and pathogens [59, 60, 61]. Although avian host-parasite relationships have been

intensively investigated in wild bird populations from different points of view (e.g. [62, 63,

64]), studies of the effects of environmental pollution on these interactions are rare [61]. How-

ever, it is apparent that exposure of organisms to ionizing radiation has considerable effects on

host-pathogen dynamics. In the present study, we add evidence to this by showing effects of

background radiation, under field conditions, to the capacity to fight against bacterial infec-

tions. Therefore, infectious diseases are clearly an important factor influencing the health of

wildlife exposed to elevated levels of ionizing radiation.
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11. Czirják GÁ, Møller AP, Mousseau TA, Heeb P (2010) Microorganisms associated with feathers of barn

swallows in radioactively contaminated areas around Chernobyl. Microb Ecol 60: 373–380. https://doi.

org/10.1007/s00248-010-9716-4 PMID: 20640571
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