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Abstract: With the improvement of human living standards, users’ requirements have changed
from function to emotion. Helping users pick out the most suitable product based on their
subjective requirements is of great importance for enterprises. This paper proposes a Kansei
engineering-based grey relational analysis and techniques for order preference by similarity to ideal
solution (KE-GAR-TOPSIS) method to make a subjective user personalized ranking of alternative
products. The KE-GRA-TOPSIS method integrates five methods, including Kansei Engineering
(KE), analytic hierarchy process (AHP), entropy, game theory, and grey relational analysis-TOPSIS
(GRA-TOPSIS). First, an evaluation system is established by KE and AHP. Second, we define a
matrix variate—Kansei decision matrix (KDM)—to describe the satisfaction of user requirements.
Third, the AHP is used to obtain subjective weight. Next, the entropy method is employed to
obtain objective weights by taking the KDM as input. Then the two types of weights are optimized
using game theory to obtain the comprehensive weights. Finally, the GRA-TOPSIS method takes
the comprehensive weights and the KMD as inputs to rank alternatives. A comparison of the
KE-GRA-TOPSIS, KE-TOPSIS, KE-GRA, GRA-TOPSIS, and TOPSIS is conducted to illustrate the
unique merits of the KE-GRA-TOPSIS method in Kansei evaluation. Finally, taking the electric drill
as an example, we describe the process of the proposed method in detail, which achieves a symmetry
between the objectivity of products and subjectivity of users.

Keywords: KE-GRA-TOPSIS; KE; AHP; entropy; game theory; GRA-TOPSIS; personalized product
evaluation

1. Introduction

Products are the material basis for the survival and development of enterprises [1,2]. With
the increasing market competition, only by launching products that meet users’ requirements can
enterprises increase user satisfaction, stimulate their purchase desire, and boost sales [3,4]. In this case,
developing an appropriate method to rank products that reflect user satisfaction is critical. As living
level improving, users’ requirements changing from function to emotion, which has been studied
using Kansei engineering (KE) approach. The “Kansei” is a Japanese word that contains sensibilities,
impressions, and emotions of human [5,6]. Different users may prefer different products. Therefore,
this paper aims to make a subjective user personalized ranking of products and pick out the most
suitable one for users. The product selection issue can be seen as a multi criteria decision-making
(MCDM) problem.

MCDM involves a complex external environment and many different attributes. Many methods
have been proposed to solve the MCDM problem. The techniques for order preference by similarity to
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ideal solution (TOPSIS) is one of effective and powerful methods, which was developed by Hwang
and Yoon [7]. Its conception is to find a positive ideal solution (PIS) and a negative ideal solution (NIS)
as comparison standards for each alternative. By comparing the degree of differentiation between
the ideal solutions and alternatives, the disparity of alternatives can be acquired. The most suitable
alternative should be nearest to the PIS and farthest from the NIS. Lei et al. [8] applied the TOPSIS
method to assess engines. The closeness, which is used to rank alternatives, is obtained by calculating
the Euclidean distance between the alternative and the ideal solutions. They selected circulating
water temperature difference, engine oil temperature, turbocharger’s boost temperature, intercooler’s
decreased temperature, fuel consumption, and maximum torque as criteria for evaluation. The six
criteria are positive indicators, which means that the higher the better. Therefore, take maximum
values to construct the PIS and minimum values to build the NIS.

In TOPSIS, measuring the separation of each alternative from the PIS and NIS is a critical
part. Moreover, there are other distance metrics besides Euclidean distance, such as Manhattan [9],
Chebyshev [10], Hamming [11], and Minkowski [12], etc. In MCDM, since it is impossible to build
a unique mathematical model to compare the performance of these distance metrics, the selection
always depends on the decision-maker’s (DM’s) assessments [13]. Moreover, Euclidean distance is the
most popular distance metrics [14].

With the deepening realization about the TOPSIS method, some extended methods have emerged.
Sakthivel et al. [15] combined grey relational analysis (GRA) with TOPSIS to propose the GAR-TOPSIS
method. Its closeness is a combination of the grey relational degree and the Euclidean distance. They
selected brake thermal efficiency, exhaust gas temperature, oxides of nitrogen, smoke, hydrocarbon,
carbon monoxide, and carbon dioxide as criteria to evaluate fuel blends. The seven criteria are cost
criteria, which means that the lower the better. Therefore, take minimum values to construct the
PIS and maximum values to build the NIS. Şengül et al. [16] adopted fuzzy TOPSIS to rank power
stations. The fuzzy ideal solutions are used instead of the ideal solutions to calculate the closeness.
They selected nine criteria, including both benefit and cost criteria. The fuzzy PIS is constructed with
maximum values of benefit criteria (CO2 emission, job criterion, efficiency, installed capacity, and the
amount of energy produced) and minimum values of cost criteria (investment cost, operation cost,
land use, and payback period). The fuzzy NIS is constructed with benefit criteria’s minima and cost
criteria’s maxima.

As mentioned above, in TOPSIS and its extension methods, their criteria are function property
values (such as charging efficiency in the power station ranking problem), either the higher the better, or
the lower the better. For the human perception of products, people only care about whether the criteria
satisfy their requirements, rather than the exact values of the criteria. The more user requirements
(which are usually subjective) are satisfied the better, and vice versa. Considering the huge difference
between the criteria users used in the perceptual evaluation and the objective criteria measured from
the products, TOPSIS and its extension methods cannot be used directly to make a subjective user
personalized ranking of products. Since KE is a feasible method of processing criteria for user-based
evaluation, it can make the processed criteria suitable for applying TOPSIS and its extension methods to
user-specific subjective product evaluation. Moreover, since perception is uncertain and GRA-TOPSIS
can measure the uncertainty between things [13,17], this research adapts GRA-TOPSIS and KE to rank
product alternatives.

Determining the weight of individual criterion is an essential part of the TOPSIS and its extension
methods. Once the weight is determined, all alternatives can be compared based on the aggregate
performance of all criteria. The weights of criteria are categorised as subjective, objective, and
combinative. The subjective weighting method based on subjective preferences of the DM or expert,
including the Delphi method [18], the AHP method [19], the stepwise weight assessment ratio analysis
(SWARA) [20], the factor relationship (FARE) [21], the best–worst method (BWM) [22], KEmeny median
indicator ranks accordance (KEMIRA) [23], etc. As the number of criteria increases, the MCDM problem
can become intricate, and the DM/expert may not be able to assign a precise weight for each criterion.
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The objective weighting method extracts statistical weights through dispersion analyses of the data,
including entropy [24], data envelopment analysis (DEA) [25], and the criteria importance through
inter-criteria correlation (CRITIC) method [26]. The combinative weighting method is a compromise
between the subjective and objective [27]. It can not only express the preference of the DM/expert, but
also consider the intrinsic information of criteria. Concretely, the subjective and objective weights
are combined by the combination principle to obtain comprehensive weights. Commonly used
combination principles are multiplication, addition, game theory [28], and evidence theory [29,30].
AHP and entropy are the most useful and practical methods. We believe that reasonable weights
should take into account both subjective preferences and objective information. Therefore, this paper
uses AHP and entropy to obtain two types of weights and integrate them based on game theory.

Table 1 summarizes some methods of MCDM in the literature. Although various extended TOPSIS
methods have been successful in ranking alternatives, there are few approaches from the Kansei point
of view. Due to the complexity and uncertainty of the perception, product evaluation becomes a very
complicated task. Therefore, this paper integrates five methods (KE, AHP, entropy, game theory, and
GRA-TOPSIS) to construct a hybrid KE-GRA-TOPSIS method, which ranks alternatives from criteria
and users’ requirements. The main contributions of this paper are summarized as follows.

1. We define a matrix variate (Kansei decision matrix, KDM) to describe the satisfaction of user
requirements. The KDM taking a user’ requirements as the PIS, and the farthest from requirements
constitute the NIS. To extend MCDM methods to user-specific subjective product evaluation, we
replace the decision matrix with KDM.

2. Taking the KDM as input, the entropy method is used to acquire the objective weights. Moreover,
adopt AHP to get subjective weights. Then, the game theory is used to optimize the two types of
weights to obtain comprehensive weights, which is one of the inputs of KE-GRA-TOPSIS.

3. We combine AHP and KE to construct user requirements into a hierarchy (evaluation system).
Specifically, we adopt AHP to establish a hierarchical structure, and KE is used to obtain criteria
and indexes.

4. Taking the electric drill as an example, we compared DM’s choice with the ranking results of
KE-GRA-TOPSIS, KE-TOPSIS, KE-GRA, GRA-TOPSIS, and TOPSIS methods. It is shown that
KE-GRA-TOPSIS outperforms other methods in terms of accuracy.

The rest of this paper is organized as follows. In Section 2, we present the general framework
firstly. Then we describe the KE, AHP, entropy method, game theory, and GRA-TOPSIS method in
detail. In Section 3, the feasibility and effectiveness of the proposed method is verified through an
example, and the related experimental results are presented. Finally, the conclusions of this study are
provided in Section 4.

Table 1. Survey of methods of multicriteria decion-making (MCDM).

Author, Year
and Reference

Methods Summary

Hu (2007) [9] TOPSIS/
Genetic algorithm

-Proposed a TOPSIS based single-layer perceptron.
-The genetic algorithm is used to determine the weights.
-Taken the Choquet integral-based Manhattan distance into account.

Wang et al.
(2014) [10]

TOPSIS -Introduced TOPSIS into equipment selection problem under the
manufacturing environment.

Ertuğrul
(2010) [11]

Fuzzy TOPSIS -Adopted fuzzy TOPSIS for facility location selection.
-The fuzzy number represents the rating of alternatives’ criteria.
-The closeness is determined by FNIS and FPIS.

Lin et al.
(2008) [12]

GRA-TOPSIS -GRA-TOPSIS can deal with uncertain information.
-Used the Minkowski distance to calculate the closeness.

Oztaysi
(2014) [13]

GRA-TOPSIS/AHP -Calculated the subjective weights by AHP.
-Used GAR-TOPSIS to evaluate the foreign trade company.
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Table 1. Cont.

Author, Year
and Reference

Methods Summary

Pham et al.
(2017) [18]

Fuzzy TOPSIS/
Fuzzy Delphi/Delphi

-Used Delphi method to identify criteria.
-Established the triangular fuzzy number and calculate the weights
of each criterion by the fuzzy Delphi method.
-Adopted fuzzy TOPSIS to evaluate the logistics center.

Santos et al.
(2019) [24]

Fuzzy TOPSIS/Entropy -Calculated the objective weights by entropy.
-Established the fuzzy decision matrix, FPIS, and FNIS.
-Fuzzy TOPSIS is used to rank green supplier.

Wang et al.
(2019) [25]

TOPSIS/DEA -DEA is used to determine the relative efficiency of similar units.
-Adopted TOPSIS to evaluate the End-of-life vehicle.

Wu et al.
(2018) [27]

AHP/GRA/Entropy -AHP is used to establish a hierarchy and calculate subjective
weights.
-Calculated objective weights based on entropy.
-Proposed a new formula to combine the objective and subjective
weights.
-Adopted GRA to evaluate the coal-fired power unit.

Sun et al.
(2016) [28]

Fuzzy set theory/Fuzzy
AHP/Entropy/
Game theory

-Adopted the fuzzy set theory to get the basic probability
assignments.
-The objective and subjective weights are calculated by fuzzy AHP
and entropy, and then they are integrated by game theory.
-Proposed a modified evidence combination to obtain the
assessment result.

Liu et al.
(2018) [30]

Evidence theory/Game
theory/Entropy/Analytic
network process (ANP)

-The subjective and objective weights are obtained by ANP and
entropy respectively.
-Game theory is used to obtain comprehensive weights.-Evidence
theory is used for supplier selection.

Kirubakaran
(2015) [31]

GRA-TOPSIS/FAHP -Adopted FAHP to compute the criteria weights.
- GRA–TOPSIS is used to rank alternatives.

Lai et al.
(2015) [32]

Fuzzy comprehensive
evaluation (FCE)/Game
theory/ AHP/Entropy

-The subjective and objective weights are obtained by AHP and
entropy respectively. Then, game theory is used to optimize them.
-FCE is adopted to evaluate flood risk.

Tang et al.
(2019) [33]

GRA-TOPSIS/Entropy -Entropy is employed to obtain the objective weights of criteria.
-GRA-TOPSIS is adopted to evaluate urban sustainability.

2. Methods

2.1. Research Framework

To make a subjective user personalized ranking of alternative products, this research combines
KE, AHP, entropy, game theory, and GRA-TOPSIS to form a KE-GRA-TOPSIS method. As shown
in Figure 1, the KE-GRA-TOPSIS method contains three parts. In part 1, the KE and AHP methods
are used to construct a hierarchical evaluation structure for products. In part 2, the AHP method is
used to calculate the subjective weights, which must pass a consistency check. Moreover, the semantic
differential (SD) method is used to construct the KDM based on the initial decision matrix and user
requirements. Then, the entropy method is used to calculate the objective weights. Finally, game
theory is used to obtain the optimal weights based on subjective weights and objective weights. The
optimal weights are later used in the GRA-TOPSIS method. In part 3, the weighted matrix is formed
based on the KDM and the comprehensive weights in part 2. Next, determine the ideal solutions.
Then, calculate the Euclidean distance and grey relational degree between each alternative and the
ideal solutions. After that, we can obtain integrated results and closeness. Finally, all the alternatives
are ranked in a descending order based on the value of closeness. The alternatives with higher rank
can meet user requirements better.
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structure by Kansei engineering (KE) and analytic hierarchy process (AHP). In part 2, the 
comprehensive weights are obtained based on AHP, KE, entropy, and game theory. In part 3, the 
KE-GRA-TOPSIS method is used to rank the alternatives. 
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comprehensive evaluation of humans, which plays a vital role in product design. Sometimes even 
users cannot express their requirements with clear words. Research on Kansei is an important means 
of meeting user needs. KE is a combination of Kansei and engineering, and it is one of the main areas 
of ergonomics [34]. In ergonomics and psychology, adjectives are often used to describe persons 
feeling of products. Since there may be correlations, redundancies, and similarities between 
adjectives, a pair of adjectives with opposite meanings can better reflect human psychology. In KE, 
such words are called as Kansei words [6]. 

The SD method is widely used to quantify human perception [5,35,36]. The SD scale is the key 
to the SD method, which consists of bipolar scales and N-point rating scale. Typically, the bipolar 
scale is a pair of Kansei words, and the grade of N is five, seven, and nine. An example of a 
seven-point scale is shown in Figure 2. 

 
Figure 2. Example of a seven-point scale. “1” indicates that the product looks extremely female, “2” 
indicates quite female, “3” indicates slightly female, “4” indicates neither female nor masculine, “5” 
indicates slightly masculine, “6” indicates quite masculine, and “7” indicates extremely masculine. 

Figure 1. The Kansei engineering-based grey relational analysis and techniques for order preference
by similarity to ideal solution (KE-GRA-TOPSIS) framework. In part 1, we construct an evaluation
structure by Kansei engineering (KE) and analytic hierarchy process (AHP). In part 2, the comprehensive
weights are obtained based on AHP, KE, entropy, and game theory. In part 3, the KE-GRA-TOPSIS
method is used to rank the alternatives.

2.2. KE Method

Kansei refers to the feelings that people experience when the outside world stimulates them.
The stimulation includes many aspects such as sight, hearing, touch, and smell. Kansei is a
comprehensive evaluation of humans, which plays a vital role in product design. Sometimes
even users cannot express their requirements with clear words. Research on Kansei is an important
means of meeting user needs. KE is a combination of Kansei and engineering, and it is one of the main
areas of ergonomics [34]. In ergonomics and psychology, adjectives are often used to describe persons
feeling of products. Since there may be correlations, redundancies, and similarities between adjectives,
a pair of adjectives with opposite meanings can better reflect human psychology. In KE, such words
are called as Kansei words [6].

The SD method is widely used to quantify human perception [5,35,36]. The SD scale is the key to
the SD method, which consists of bipolar scales and N-point rating scale. Typically, the bipolar scale is
a pair of Kansei words, and the grade of N is five, seven, and nine. An example of a seven-point scale
is shown in Figure 2.
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Figure 2. Example of a seven-point scale. “1” indicates that the product looks extremely female, “2”
indicates quite female, “3” indicates slightly female, “4” indicates neither female nor masculine, “5”
indicates slightly masculine, “6” indicates quite masculine, and “7” indicates extremely masculine.

Users evaluate the perception (“Criteria” axis) of the product ("Alternatives" axis) based on the SD scale
("Scales" axis) to obtain a matrix (Figure 3). The matrix represents users’ Kansei evaluation of the product.
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As user requirements U= {Uj, j = 1, 2, . . . , n} of products vary from person to person. Therefore, we
define a KDM B to describe the degree of satisfaction. In matrix B, the user requirements constitute the
PIS, and the farthest values from requirements constitute the NIS. Matrix B (Equation (2)) is constructed
by Equation (3).
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{
bi j

}
=


b11 b12 . . . b1n
b21 b22 . . . b2n

...
...

. . .
...

bm1 bm2 . . . bmn

 (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (2)

bi j = N −
∣∣∣U j − hi j

∣∣∣ (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (3)

where bij is an element of matrix B corresponding to the jth criterion of ith alternative. N is the grade of
the SD scale.

2.3. AHP Method

The AHP is a combination of qualitative and quantitative analysis, which was proposed by
Saaty [37,38]. The core concept of AHP is decomposing a complex problem into a hierarchic structure,
and assess the relative importance of these criteria by pairwise comparison. The hierarchy is constructed
in such a way that the goal is at the top, criteria and indexes are in the middle, and alternatives at the
bottom, as shown in Figure 4. The criteria link the alternatives to the goal. In this research, we take
Kansei words as indexes.
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Using the AHP to obtain weights, the pairwise comparison matrix is necessary. It is constructed
by comparing the importance of two factors using Saaty scale. The detailed assignment of the Saaty
scale is shown in Table 2. For n factors, the total number of comparisons is C2

n = n × n(n − 1)/2.

Table 2. The Saaty scale [38].

Definition oij

Factor i is as important as factor j 1
Factor i is slightly more important than factor j 3
Factor i is obviously more important than factor j 5
Factor i is strongly more important than factor j 7
Factor i is extremely more important than factor j 9
The median of the adjacent judgments above 2,4,6,8

Let O represent an n × n pairwise comparison matrix, which is described in Equation (4). oij is the
importance of the ith to the jth factor. For matrix O, the diagonal elements are self-comparison. Thus,
oij = 1, where i = j. oij and oji are symmetric about the diagonal of the matrix. Thus, oij = 1/oji, where oij
> 0.

O =
{
oi j

}
=


o11 o12 . . . o1 j
o21 o22 . . . o2 j

...
...

. . .
...

oi1 oi2 . . . oi j

 (i, j = 1, 2, . . . , n), (4)

The subjective weight matrix W1 = (w1, w2, . . . , wn) is obtained by Equation (5). Moreover, the
objective weight is later used in game theory.

wi =

n∏
j=1

n
√oi j

n∑
i=1

n∏
j=1

n
√oi j

(i, j = 1, 2, . . . , n), (5)

The maximum eigenvalue λmax of O is obtained by Equation (6).

λmax =
n∑

i=1

(Ow)i
nwi

(i, j = 1, 2, . . . , n), (6)

A consistency check is necessary to ensure the rationality of the pairwise comparison matrix.
Consistency Ratio (CR) is an indicator of consistency, it is calculated by Equation (7).

CR =
CI
RI

=
λmax − n
(n− 1)RI

, (7)

where n is the number of criteria. Consistency Index (CI) is estimated as (λmax − n)/(n − 1). Random
index (RI) is defined in Table 3. If CR ≤ 0.1, the comparison matrix is reasonable; otherwise, it needs to
be modified.

Table 3. Random index (RI) values computed by Saaty [37].

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

2.4. Entropy Method

The information entropy theory was first introduced to information systems from thermodynamics
by Shannon [39]. According to the information entropy theory, the entropy can reflect the degree of
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diversity within a criterion dataset [26,27]. The greater the degree of diversity, the higher the weight of
this criterion, and vice versa.

In this research, the entropy method begins with the Kansei matrix B, which described in
Equation (1). To determine objective weights by the entropy method, matrix B needs to be normalized.
The normalized matrix P can be represented as Equation (8). pij is the normalized value, which can be
calculated by Equation (9).

P =
{
pi j

}
m×n

=


p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

. . .
...

pm1 pm2 . . . pmn

 (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (8)

pi j =
bi j

m∑
i=1

bi j

(i = 1, 2 . . .m, j = 1, 2, . . . , n), (9)

The entropy of the jth criterion (Ej) can be calculated by Equation (10).

E j = −K
m∑

i=1

(
pi j ln pi j

)
( j = 1, 2, . . . , n), (10)

where K = 1/ln(m) is constant.
The degree of divergence (dj) can be calculated by Equation (11).

d j = 1− E j ( j = 1, 2, . . . , n), (11)

dj is the inherent contrast intensity of Cj. The more divergent the performance rating pij is, the
more critical the criterion Cj is for the problem.

The objective weight (W2 = {wi, j = 1, 2, . . . , n}) for each criterion Cj (j = 1, 2, . . . , n) is calculated
by Equation (12). Moreover, the objective weight is later used in game theory.

w j =
d j

n∑
j=1

d j

( j = 1, 2, . . . , n), (12)

2.5. Game Theory

As mentioned previously, there are certain drawbacks whether objective or subjective weighting
methods. The objective weight neglects the DM’s preference and the actual situation. Conversely, the
subjective weight neglects the intrinsic information of the criteria. Therefore, the comprehensive weights,
combining the subjective and objective weights with a combination principle, is more reasonable.

Game theory is a method originated from modern mathematics, and it is employed to obtain
the optimum equilibrium solution among two or more participants [28,30,32]. In game theory, each
participant wants to maximize his payoff, which requires them to reach a collective decision that
makes every participant obtain the best payoff. The decision involves consensus and compromises.
In this research, to make the comprehensive weight have both the subjective preference and objective
information, we regard this problem as a “weight” game, the subjective and objective weights are
participants, and comprehensive weights are the collective decision.

A basic weight vector set W = {W1, W2, . . . , WL} is constructed by L kinds of weights. A possible
weight set is constructed by arbitrary linear combinations of L vectors. It can be described as
Equation (13).
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W =
L∑

k=1

αkwT
k (αk > 0), (13)

where α = (α1, α2, . . . , αL) is the weight coefficient and w is a possible weight vector in set W.
According to the game theory, the obtain of the optimum equilibrium weight vector w* can be

regarded as optimization of αk. The αk is a linear combination. The optimization is aiming to minimize
the deviation between w and wk. It can be expressed as Equation (14).

min

∥∥∥∥∥∥∥
L∑

k=1

αkwT
k −ωi

∥∥∥∥∥∥∥
2

(i = 1, 2, . . . , L), (14)

The optimal first-order derivative condition of Equation (14) is shown in Equation (15), based on
the differentiation property of the matrix.

L∑
k=1

αkwiwT
k = wiwT

i (i = 1, 2, . . . , L), (15)

Equation (15) can be converted into a system of linear equations as shown in Equation (16).
w1wT

1 w1wT
2 . . . w1wT

L
w2wT

1 w2wT
2 . . . w2wT

L
...

...
. . .

...
wLwT

1 wLwT
2 . . . wLwT

L



α1

α2
...
αL

 =


w1wT
1

w2wT
2

...
wLwT

L

, (16)

α can be calculated by Equation (16) and normalized by Equation (17).

a∗k =
αk

L∑
k= 1

αk

(k = 1, 2, . . . , L), (17)

Lastly, the comprehensive weight w* is calculated by Equation (18). The comprehensive weight is
later used in the GRA-TOPSIS method.

w∗ =
L∑

k=1

αkwT
k , (18)

2.6. GRA-TOPSIS Method

In 1994, Tzeng et al. [40] illustrated similarities of the grey relation model and TOPSIS in the
input and process. In a subsequent study [17], they proposed the GRA-TOPSIS method to evaluate
alternatives. The idea of the GRA-TOPSIS method is as follows. First, construct a PIS and NIS through
the TOPSIS method. Secondly, adopt GRA to calculate the gray correlation degree. Third, calculate
the Euclidean distance by TOPSIS. Finally, aggregate the gray correlation degree and the Euclidean
distance to obtain the closeness [33]. According to the closeness, the alternatives are ranked. The
specific steps are as follows.

Step 1: Constructing the decision matrix.
In this research, we replace the decision matrix with the KDM B, which is described in Equation (2).
Step 2: Calculating the normalized decision matrix.
The normalized decision matrix R is described in Equation (19). rij is the normalized value, which

can be calculated by Equation (20).
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R =
{
ri j

}
=


r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...
rm1 rm2 . . . rmn

 (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (19)

ri j =
bi j√
m∑

i= 1
b2

i j

(i = 1, 2, . . . , m, j = 1, 2, . . . , n), (20)

Step 3: Calculating the weighted decision matrix.
The matrix Z is based on the matrix B and the comprehensive weight w* = (w1, w2, . . . , wn). It is

described in Equation (21). zij is the weighted value, which can be calculated by Equation (22).

Z =
{
zi j

}
=


z11 z12 . . . z1n
z21 z22 . . . z2n

...
...

. . .
...

zm1 zm2 . . . zmn

 (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (21)

zi j = ri jw j (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (22)

Step 4: Determining the ideal solutions.
The ideal solutions include the PIS A+ = (z+1 , z+2 , . . . , z+n ) and NIS A− = (z−1 , z−2 , . . . , z−n ). They are

determined by Equations (23) and (24), respectively.

z+j = maxzi j (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (23)

z−j = min zi j (i = 1, 2, . . . , m, j = 1, 2, . . . , n), (24)

Step 5: Calculating the separation of each alternative from the PIS and NIS.
We use Euclidean distance to measure the separation of each alternative from the PIS and NIS.

The separations are defined in Equations (25) and (26).

D+
i = ‖zi −A+

‖2 =

√√√√ n∑
j=1

(
zi j − z+j

)2

(i = 1, 2, . . . , m), (25)

D−i = ‖zi −A−‖2 =

√√√√ n∑
j=1

(
zi j − z−j

)2

(i = 1, 2, . . . , m), (26)

where D+
i represents the distance between alternative Ai and A+. D−i represents the distance between

alternative Ai and A−.
Step 6: Calculating the grey relational coefficients.
The grey relational coefficients can be calculated by Equations (27) and (28), respectively.

v+i j =

min
i

min
j

∣∣∣∣z+j − zi j

∣∣∣∣+ ρ max
i

max
j

∣∣∣∣z+j − zi j

∣∣∣∣∣∣∣∣z+j − zi j

∣∣∣∣+ ρ max
i

max
j

∣∣∣∣z+j − zi j

∣∣∣∣ =
ρw j

w j − zi j + ρw j
(i = 1, 2, . . . , m, j = 1, 2, . . . , n), (27)

v−i j =

min
i

min
j

∣∣∣∣z−j − zi j

∣∣∣∣+ ρ max
i

max
j

∣∣∣∣z−j − zi j

∣∣∣∣∣∣∣∣z−j − zi j

∣∣∣∣+ ρ max
i

max
j

∣∣∣∣z−j − zi j

∣∣∣∣ =
ρw j

zi j + ρw j
(i = 1, 2, . . . , m, j = 1, 2, . . . , n), (28)
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where ρ is the distinguishing coefficient, ρ ε [0, 1]; ρ = 0.5 is usually applied following the rule of least
information [41].

Step 7: Calculating the grey relational degree and integrated results.
The grey relational degrees are calculated by Equations (29) and (30), respectively.

v+i =
1
n

n∑
j=1

v+i j (i = 1, 2, . . . , m), (29)

v−i =
1
n

n∑
j=1

v−i j (i = 1, 2, . . . , m), (30)

The dimensionless processing is performed on D+
i , D−i , v+i and v−i , and the integrate results are

obtained by Equations (31) and (32).

s+i = β
D+

i

max(D+
i )

+γ
v+i

max(v+i )
(i = 1, 2, . . . , m), (31)

s−i = β
D−i

max(D−i )
+γ

v−i
max(v−i )

(i = 1, 2, . . . , m), (32)

where β is the influence coefficient of the distance from alternative to the ideal solution on the closeness.
γ is the influence coefficient of the grey relational degree of the alternative and the ideal solution on
the closeness. β, γ ε [0, 1], β + γ = 1.

Step 8: Calculating the closeness and ranking the alternatives.
The closeness Ci is defined to determine the ranking order of all alternatives. It is calculated by

Equation (33).

Ci =
s+i

s+i + s−i
(i = 1, 2, . . . , m), (33)

If the alternative Ai is closer to A+ and farther from A−, Ci is more approximate to 1. Therefore,
we can pick out the best-fit one among all alternatives.

3. Empirical Study

To illustrate the possibilities for the application of the proposed method, we conducted a case
study of electric drill selection. It has the following steps; (1) use KE and AHP to construct an evaluation
structure, (2) adopt AHP to obtain the subjective weights, (3) adopt entropy to obtain the objective
weights, (4) employ game theory to get the comprehensive weights, (5) adopt the SD method to build
the KDM, and (6) use GRA-TOPSIS to rank alternatives.

3.1. Evaluation System and Alternatives

To evaluate the perception of electric drills, we use AHP and KE to establish a hierarchy
shown in Figure 5. The target layer has only one element, which is product selection. We have
identified six criteria as the dimensions for Kansei evaluation: “Gender”, “Acceptance”, “Structure”,
“Popularity”, “Weight sense”, and “Technical sense”. Each criterion includes a pair of Kansei words.
“Gender” comprising “Female” and “Masculine”. “Acceptance” comprising “Unique” and “Ordinary”.
“Structure” comprising “Simple” and “Refined”. “Popularity” comprising “Modern” and “Traditional”.
“Weight sense” comprising “Light” and “Steady”. “Technical sense” comprising “Technical” and
“Artificial”. The difference in the color, trigger switch, air vent, chuck, model, name label, etc. of
electric drills has led to different evaluation results. We selected 14 electric drills as the alternatives,
and they are shown in Figure 6.
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3.2. Criteria Weighting

In this research, we take the DM (also called as user) requirements as “extremely masculine”,
“slightly ordinary”, “quite simple”, “slightly modern”, “quite light”, and “slightly technical”. We need
to match an electric drill closest to the DM requirements in the given 14 alternatives. Based on the
7-point SD scale, the DM requirements can be expressed as U = [7,5,2,3,2,3]. The selection of the electric
drill is as follows.

First, the DM is invited to construct a pairwise comparison matrix based on Equation (1). Then,
according to Equations (5) and (6), the subjective weights and the maximum eigenvalue are obtained.
Finally, we finished the consistency check based on Equation (7). The results are shown in Table 4.

Table 4. The pairwise comparison matrix and weight.

a1 a2 a3 a4 a5 a6 w 1

a1 1 1/3 2 1/2 2 1/2 0.1221
a2 3 1 3 2 3 1 0.2852
a3 1/2 1/3 1 1/2 1 1/3 0.0807
a4 2 1/2 2 1 2 1/2 0.1647
a5 1/2 1/3 1 1/2 1 1/3 0.0807
a6 2 1 3 2 3 1 0.2666

1 λmax = 6.008, CI = 0.0176, RI = 1.24, CR = 0.0142 < 0.1, the consistency check is passed.

We constructed the questionnaire (Figure 7) and invited 30 people (10 designers and 20 consumers)
to evaluate of 14 electric drills in six dimensions, and the average of the results (Table 5) constitute an
initial decision matrix H.
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Table 5. The evaluation results from questionnaires.

Alternative
Mean of the Evaluation

Female-
Masculine

Unique-
Ordinary

Simple-
Refined

Modern-
Traditional

Light-
Steady

Technical-
Artificial

A1 3.3 2.7 3.2 1.5 5 3.1
A2 5.5 3 5 2.2 5.5 2.5
A3 3.5 5.5 2.5 2 3.3 3.3
A4 6.5 2.5 5.5 6 5.3 3.8
A5 5 2.7 6 5.5 4.7 4.7
A6 1.5 3.5 1.7 3.3 3 2.7
A7 5.2 3 5.3 5.3 4.8 6
A8 6.2 3.6 6.3 5.5 5.3 5.8
A9 2.5 5.1 3 2.6 4.9 2
A10 2.5 4.7 1.5 2.5 4.8 3.1
A11 6.1 2 6.3 6.3 5.6 4.6
A12 6.5 2.6 6.5 5.8 5.3 3.5
A13 3.6 3 2.1 3.1 4.5 3.1
A14 6.2 3.6 5 5.6 6 5.5

According to Equations (3) and (9), the KDM B and the normalized matrix P are obtained as

B =



3.3 4.7 5.8 5.5 4 6.9
5.5 5 4 6.2 3.5 6.5
3.5 6.5 6.5 6 5.7 6.7
6.5 4.5 3.5 4 3.7 6.2

5 4.7 3 4.5 4.3 5.3
1.5 5.5 6.7 6.7 6 6.7
5.2 5 3.7 4.7 4.2 4
6.2 5.6 2.7 4.5 3.7 4.2
2.5 6.9 6 6.6 4.1 6
2.5 6.7 6.5 6.5 4.2 6.9
6.1 4 2.7 3.7 3.4 5.4
6.5 4.6 2.5 4.2 3.7 6.5
3.6 5 6.9 6.9 4.5 6.9
6.2 5.6 4 4.4 3 4.5



P =



0.0515 0.0633 0.0899 0.0739 0.069 0.0834
0.0858 0.0673 0.062 0.0833 0.0603 0.0786
0.0546 0.0875 0.1008 0.0806 0.0983 0.081
0.1014 0.0606 0.0543 0.0538 0.0638 0.075

0.078 0.0633 0.0465 0.0605 0.0741 0.0641
0.0234 0.074 0.1039 0.0901 0.1034 0.081
0.0811 0.0673 0.0574 0.0632 0.0724 0.0484
0.0967 0.0754 0.0419 0.0605 0.0638 0.0508

0.039 0.0929 0.093 0.0887 0.0707 0.0726
0.039 0.0902 0.1008 0.0874 0.0724 0.0834

0.0952 0.0538 0.0419 0.0497 0.0586 0.0653
0.1014 0.0619 0.0388 0.0565 0.0638 0.0786
0.0562 0.0673 0.107 0.0927 0.0776 0.0834
0.0967 0.0754 0.062 0.0591 0.0517 0.0544


Then the entropy E and objective weight w of each criterion are calculated by using

Equations (10)–(12). The specific calculation results are shown in Table 6.

Table 6. The entropy and objective weight.

Female-
Masculine

Unique-
Ordinary

Simple-
Refined

Modern-
Traditional

Light-
Steady

Technical-
Artificial

E 0.9729 0.9953 0.976 0.9919 0.9933 0.9942
w 0.355 0.0614 0.3141 0.1064 0.0872 0.0758

We have acquired subjective and objective weights, and then we will optimize them based on
game theory. Using Equations (16) and (17), we can get the weight coefficient α = (0.4331,0.5669).
According to Equation (18), the comprehensive weight is obtained, i.e., w* = (0.2541, 0.1583, 0.213,
0.1316, 0.0844, 0.1584).
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3.3. Alternative Ranking

According to Equations (20) and (22), the normalized matrix R and the weighted decision matrix
Z are obtained as

R =



0.1812 0.2337 0.3172 0.2709 0.2534 0.3078

0.302 0.2487 0.2187 0.3053 0.2217 0.2899

0.1922 0.3233 0.3554 0.2955 0.3611 0.2988

0.3569 0.2238 0.1914 0.197 0.2344 0.2765

0.2745 0.2337 0.1641 0.2216 0.2724 0.2364

0.0824 0.2735 0.3664 0.33 0.3801 0.2988

0.2855 0.2487 0.2023 0.2315 0.2661 0.1784

0.3404 0.2785 0.1476 0.2216 0.2344 0.1873

0.1373 0.3432 0.3281 0.325 0.2597 0.2676

0.1373 0.3332 0.3554 0.3201 0.2661 0.3078

0.3349 0.1989 0.1476 0.1822 0.2154 0.2408

0.3569 0.2288 0.1367 0.2068 0.2344 0.2899

0.1977 0.2487 0.3773 0.3398 0.2851 0.3078

0.3404 0.2785 0.2187 0.2167 0.19 0.2007



Z =



0.046 0.037 0.0676 0.0356 0.0214 0.0487

0.0767 0.0394 0.0466 0.0402 0.0187 0.0459

0.0488 0.0512 0.0757 0.0389 0.0305 0.0473

0.0907 0.0354 0.0408 0.0259 0.0198 0.0438

0.0698 0.037 0.0349 0.0292 0.023 0.0374

0.0209 0.0433 0.078 0.0434 0.0321 0.0473

0.0725 0.0394 0.0431 0.0305 0.0225 0.0283

0.0865 0.0441 0.0314 0.0292 0.0198 0.0297

0.0349 0.0543 0.0699 0.0428 0.0219 0.0424

0.0349 0.0527 0.0757 0.0421 0.0225 0.0487

0.0851 0.0315 0.0314 0.024 0.0182 0.0382

0.0907 0.0362 0.0291 0.0272 0.0198 0.0459

0.0502 0.0394 0.0804 0.0447 0.0241 0.0487

0.0865 0.0441 0.0466 0.0285 0.016 0.0318


According to Equations (23) and (24), the positive ideal solution A+ and the negative ideal solution

A− are determined, that is, A+ = [0.0907 0.0543 0.0804 0.0447 0.0321 0.0487], A− = [0.0209 0.0315
0.0291 0.024 0.016 0.0283]. Then, the distances and the grey relational coefficients are obtained by
Equations (25)–(30), which is shown in Table 7.

Table 7. The distance and the grey relational coefficient.

Alternative D+ D− v+ v−

A1 0.0515 0.0522 0.404 0.6598
A2 0.042 0.0637 0.405 0.6556
A3 0.0427 0.0643 0.4191 0.6249
A4 0.0495 0.0726 0.3998 0.6733
A5 0.057 0.0511 0.3952 0.6832
A6 0.0707 0.0594 0.4153 0.6464
A7 0.0516 0.0548 0.3957 0.6816
A8 0.0572 0.0671 0.3962 0.6851
A9 0.0581 0.0545 0.41 0.6495
A10 0.0569 0.0601 0.4134 0.6418
A11 0.0607 0.065 0.3915 0.6988
A12 0.0585 0.0723 0.3987 0.6793
A13 0.0439 0.0668 0.4151 0.6343
A14 0.0455 0.0693 0.3978 0.6781

To illustrate the unique merits of KE-GRA-TOPSIS in Kansei evaluation, a comparison of
KE-GRA-TOPSIS, KE-TOPSIS, and KE-GRA is conducted in this study. In Equations (31) and (32), β
and γ denote the proportion of TOPSIS and GRA in GRA-TOPSIS, respectively. When β = 1, γ = 0
indicates only the TOPSIS method is used; when β = 0, γ = 1 indicates only the GRA method is used.
According to Equations (31) and (32), the comparison integrated results are obtained in Table 8.

According to Equation (33), the closeness and ranking of KE-GRA-TOPSIS, KE-TOPSIS, and
KE-GRA are obtained. The comparison results are shown in Table 9.
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Table 8. The comparison integrated results.

Alternative
KE-GRA-TOPSIS 1 KE-TOPSIS KE-GRA

s+ s− s+ s− s+ s−

A1 0.8464 0.8312 0.7288 0.7184 0.964 0.9441
A2 0.7805 0.9078 0.5946 0.8775 0.9664 0.9381
A3 0.8019 0.8895 0.6039 0.8848 1 0.8942
A4 0.8274 0.9817 0.7009 1 0.954 0.9634
A5 0.875 0.8403 0.807 0.7031 0.943 0.9776
A6 0.9954 0.8716 1 0.8181 0.9909 0.925
A7 0.8368 0.865 0.7293 0.7547 0.9442 0.9753
A8 0.8774 0.9522 0.8093 0.9242 0.9455 0.9803
A9 0.8999 0.8395 0.8214 0.7497 0.9784 0.9294
A10 0.8958 0.8726 0.805 0.8269 0.9866 0.9183
A11 0.8963 0.9475 0.8584 0.895 0.9342 1
A12 0.8894 0.9836 0.8273 0.9951 0.9515 0.9721
A13 0.8056 0.9136 0.6207 0.9195 0.9906 0.9076
A14 0.7965 0.9619 0.6437 0.9534 0.9493 0.9704

1 We take β = γ = 0.5 in KE-GRA-TOPSIS.

Table 9. The comparison results.

Alternative
The Closeness Ranking

KE-GRA-TOPSIS KE-TOPSIS KE-GRA KE-GRA-TOPSIS KE-TOPSIS KE-GRA DM

A1 0.5045 0.5036 0.5052 5 4 7 5
A2 0.4623 0.4039 0.5074 12 12 6 12
A3 0.4741 0.4056 0.5279 10 11 1 10
A4 0.4574 0.4121 0.4975 13 10 8 11
A5 0.5101 0.5344 0.491 3 2 12 3
A6 0.5332 0.55 0.5172 1 1 4 1
A7 0.4917 0.4915 0.4919 6 6 11 6
A8 0.4795 0.4669 0.491 8 8 13 8
A9 0.5174 0.5228 0.5128 2 3 5 2
A10 0.5066 0.4933 0.5179 4 5 3 4
A11 0.4861 0.4896 0.483 7 7 14 7
A12 0.4748 0.454 0.4946 9 9 9 9
A13 0.4686 0.403 0.5218 11 14 2 14
A14 0.453 0.403 0.4945 14 13 10 13

Bold indicates inconsistency with the DM’s ranking results.

As shown in Table 8, both KE-GRA-TOPSIS and KE-TOPSIS recommend A6 as the best-fit
product for user requirements (“extremely masculine”, “slightly ordinary”, “quite simple”, “slightly
modern”, “quite light”, and “slightly technical”). This predicted result is the same as the DM’s
choice. KE-GRA recommends A3 as the best-fit product. In this experiment, the DM is the user,
so we take the DM’s ranking results as the comparison standard for the other three methods. The
symbol ‘�’ means “better than”, and the DM’s ranking can be expressed as A6 � A9 � A5 � A10 �

A1 � A7 � A11 � A8 � A12 � A3 � A4 � A2 � A14 � A13. The ranking of KE-GRA-TOPSIS is
A6 � A9 � A5 � A10 � A1 � A7 � A11 � A8 � A12 � A3 � A13 � A2 � A4 � A14. Compared to the
standard, the order of A4, A13, and A14 are confused. Three out of fourteen are wrong. The ranking
of KE-TOPSIS is A6 � A5 � A9 � A1 � A10 � A7 � A11 � A8 � A12 � A4 � A3 � A2 � A14 � A13. The
order of A1 and A10 is reversed, as are A3 and A4, A5 and A9. Six out of fourteen are wrong. The ranking
of KE-GRA is A3 � A13 � A10 � A6 � A9 � A2 � A1 � A4 � A12 � A14 � A7 � A5 � A8 � A11. Only
A12 is correct. These results imply that the KE-GRA-TOPSIS method has the highest accuracy, followed
by the KE-TOPSIS method, and the KE-GAR method has the lowest accuracy. This experiment verifies
the feasibility of the KE-GRA-TOPSIS method.

Figure 8 is drawn according to the closeness results in Table 9. As shown in Figure 8, there is a big
gap in the closeness of alternatives in KE-TOPSIS, because it only considers the distance of alternatives,
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amplifying the evaluation results. The gap between alternatives in KE-GRA is relatively small, as this
method focuses on the connection between criteria but ignores the distance between alternatives. The
KE-GRA-TOPSIS takes into account both the connections between the criteria and the distance between
alternatives, so its closeness is more in line with the actual situation.
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Figure 8. The closeness comparison results.

We also compared the choice of DM with the results of KE-GRA-TOPSIS, GAR-TOPSIS, KE-TOPSIS,
and TOPSIS. The comparison results are shown in Table 10. Since the accuracy of KE-GRA is too low
to be effective, we canceled it in the comparative method. As shown in Table 10, KE-GRA-TOPSIS
has the highest accuracy rate of 78.6%, followed by 57.2% of KE-TOPSIS. Moreover, the accuracies
of GAR-TOPSIS and TOPSIS are 7.2% and 0, respectively. Figure 9 is drawn according to Table 10.
In Figure 9, we can easily find that the results of KE-GAR-TOPSIS and KE-TOPSIS are similar, while
GRA-TOPSIS and TOPSIS are similar. Furthermore, the results of KE-GAR-TOPSIS and KE-TOPSIS
are roughly consistent with the DM’s choice. This experiment verifies the TOPSIS and its extension
methods cannot be used directly to make a subjective user personalized ranking of products.

Table 10. The ranking comparison results.

Alternative KE-GRA-TOPSIS GRA-TOPSIS KE-TOPSIS TOPSIS DM

A1 5 8 4 7 5
A2 12 1 12 3 12
A3 10 2 11 1 10
A4 13 3 10 5 11
A5 3 12 2 13 3
A6 1 14 1 10 1
A7 6 13 6 14 6
A8 8 11 8 11 8
A9 2 10 3 6 2
A10 4 7 5 4 4
A11 7 9 7 12 7
A12 9 5 9 8 9
A13 11 4 14 2 14
A14 14 6 13 9 13

Accuracy/% 78.6 0 57.2 7.2

Bold indicates inconsistency with the DM’s ranking results.

To illustrate the effectiveness of the proposed method, we invited another 10 participants to repeat
the experiment. Table 11 shows the requirements and ranking results given by the participants. It is
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worth noting that the subjective weights in AHP are adjustable. In this experiment, all the participants
agreed to use the weights in Table 4. The results are shown in Figure 10.
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Table 11. The requirements and ranking results of participants.

Participant Requirements Ranking

P1 [2 3 5 2 2 4] A12 � A11 � A8 � A4 � A14 � A5 � A7 � A2 � A13 � A3 � A10 � A6 � A1 � A9
P2 [6 5 4 5 6 3] A6 � A10 � A9 � A1 � A13 � A3 � A5 � A7 � A11 � A12 � A8 � A2 � A4 � A14
P3 [5 3 6 5 6 3] A6 � A10 � A9 � A3 � A13 � A1 � A14 � A8 � A4 � A12 � A2 � A7 � A11 � A5
P4 [3 6 2 3 4 5] A12 � A11 � A4 � A7 � A5 � A14 � A2 � A7 � A1 � A6 � A13 � A9 � A10 � A3
P5 [3 7 2 3 3 3] A11 � A12 � A4 � A8 � A5 � A7 � A14 � A2 � A1 � A6 � A13 � A9 � A10 � A3
P6 [5 3 5 5 5 5] A6 � A10 � A9 � A3 � A13 � A1 � A12 � A11 � A8 � A4 � A2 � A14 � A5 � A7
P7 [3 4 3 3 3 4] A12 � A11 � A8 � A4 � A14 � A5 � A7 � A2 � A6 � A10 � A9 � A13 � A1 � A3
P8 [5 3 5 6 7 6] A6 � A10 � A9 � A3 � A1 � A13 � A12 � A2 � A4 � A11 � A8 � A14 � A5 � A7
P9 [7 4 5 5 5 2] A6 � A10 � A9 � A3 � A1 � A13 � A7 � A5 � A8 � A11 � A14 � A2 � A12 � A4
P10 [1 6 2 4 2 5] A12 � A4 � A11 � A8 � A14 � A2 � A7 � A5 � A1 � A13 � A3 � A9 � A10 � A6
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Figure 10. The comparison results.

In Figure 10, the bar chart shows the correct ranking number and the line chart is the accuracy.
In KE-GRA-TOPSIS, the accuracy of U1–U10 is 85.7%, 100%, 85.7%, 100%, 100%, 100%, 85.7%, 100%,
100%, and 100%. Its average is calculated as 95.7%. In TOPSIS, the accuracy of U1–U10 is 85.7%, 85.7%,
85.7%, 85.7%, 85.7%, 85.7%, 71.4%, 85.7%, 100%, and 85.7%. Its average is calculated as 85.7%. Their
accuracy implies that the KE-GRA-TOPSIS and KE-TOPSIS perform well, and KE-GRA-TOPSIS is
more accurate than KE-TOPSIS.
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The above results show that the Kansei evaluation matrix is feasible, and the KE-GAR-TOPSIS
method can accurately rank products based on user requirements. An accurate prediction can lead to
an accurate recommendation. Moreover, the accurate recommendation can increase user satisfaction,
stimulate the purchase desire, and expand the sales of production enterprise. Furthermore, it can help
enterprises to increase market occupancy in the highly competitive marketplace.

4. Conclusions

We propose the KE-GRA-TOPSIS method to evaluate product design alternatives, according to
both the criterion and user requirements. Firstly, we use KE and AHP to establish an evaluation system.
Second, we use AHP to obtain subjective weights. Third, in order to get objective weights based on the
entropy method, we introduced a KDM, which is a combination of the initial decision matrix and user
requirements. In the process of constructing the KDM, we adopt an SD method and a formula to get
the corresponding values. Fourth, after obtaining two types of weights, we use game theory to get the
optimal weights. Finally, we construct a weighted matrix based on the optimal weights and the KDM
and use the GRA-TOPSIS method to rank the alternatives. Taking the electric drill as an example, we
demonstrate the effectiveness and feasibility of KE-GRA-TOPSIS. Moreover, through a comparison
experiment, we illustrate the unique merits of KE-GRA-TOPSIS in Kansei evaluation. Our method
realizes a symmetry between the objectivity of products and subjectivity of users. In the future, we
will devote to developing a software system based on the proposed method, providing a convenient
operation and interaction for users.
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11. Ertuğrul, İ. Fuzzy group decision making for the selection of facility location. Group Decis. Negot. 2011, 20,
725–740. [CrossRef]

12. Lin, Y.-H.; Lee, P.-C.; Ting, H.-I. Dynamic multi-attribute decision making model with grey number
evaluations. Expert Syst. Appl. 2008, 35, 1638–1644. [CrossRef]

13. Oztaysi, B. A decision model for information technology selection using AHP integrated TOPSIS-Grey: The
case of content management systems. Knowl. Based Syst. 2014, 70, 44–54. [CrossRef]

14. Wachowicz, T.; Błaszczyk, P. TOPSIS based approach to scoring negotiating offers in negotiation support
systems. Group Decis. Negot. 2013, 22, 1021–1050. [CrossRef]

15. Sakthivel, G.; Ilangkumaran, M.; Nagarajan, G.; Priyadharshini, G.V.; Dinesh Kumar, S.; Satish Kumar, S.;
Suresh, K.S.; Thirumalai Selvan, G.; Thilakavel, T. Multi-criteria decision modelling approach for biodiesel
blend selection based on GRA–TOPSIS analysis. Int. J. Ambient Energy 2014, 35, 139–154. [CrossRef]
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