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62INFN Sezione di Trieste and Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
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We study the process eþe− → eþe−η0 in the double-tag mode and measure for the first time the
γ⋆γ⋆ → η0 transition form factor Fη0 ðQ2

1; Q
2
2Þ in the momentum-transfer range 2 < Q2

1, Q
2
2 < 60 GeV2.

The analysis is based on a data sample corresponding to an integrated luminosity of around 469 fb−1
collected at the PEP-II eþe− collider with the BABAR detector at center-of-mass energies near 10.6 GeV.

DOI: 10.1103/PhysRevD.98.112002

I. INTRODUCTION

In this article, we report on the measurement of the
γ⋆γ⋆ → η0 transition form factor (TFF) by using the
two-photon-fusion reaction

eþe− → eþe−η0

illustrated by the diagram in Fig. 1. The TFF is defined via
the amplitude for the γ⋆γ⋆ → η0 transition

T ¼ −i4παϵμνβγε
μ
1ε

ν
2q

β
1q

γ
2Fη0 ðQ2

1; Q
2
2Þ; ð1Þ

where α is the fine structure constant, ϵμναβ is the totally
antisymmetric Levi-Civita tensor, ε1;2 and q1;2 are the
polarization vectors and four-momenta, respectively, of
the spacelike photons, Q2

1;2 ¼ −q21;2, and Fη0 ðQ2
1; Q

2
2Þ is

the transition form factor.
We measure the differential cross section of the

process eþe− → eþe−η0 in the double-tag mode, in
which both scattered electrons1 are detected (tagged).
The tagged electrons emit highly off-shell photons
with momentum transfers q2eþ ¼ −Q2

eþ ¼ ðpeþ − p0
eþÞ2

and q2e− ¼ −Q2
e− ¼ ðpe− − p0

e−Þ2, where pe� and p0
e� are

the four-momenta, respectively, of the initial- and final-
state electrons. We measure for the first time Fη0 ðQ2

1; Q
2
2Þ

in the kinematic region with two highly off-shell photons
2 < Q2

1, Q2
2 < 60 GeV2. The η0 transition form factor

Fη0 ðQ2; 0Þ in the spacelike momentum transfer region and
in the single-tag mode was measured in several previous
experiments [1–5]. The most precise data at large Q2

were obtained by the CLEO [4] experiment, and then
by the BABAR [5] experiment, in the momentum trans-
fer ranges 1.5 < Q2 < 30 GeV2 and 4<Q2< 40GeV2,
respectively.
Many theoretical models exist for the description of the

TFFs of pseudoscalar mesons, FPðQ2
1; 0Þ and FPðQ2

1; Q
2
2Þ

(see e.g., Refs. [6–9]). Measurement of the TFF at large Q2
1

and Q2
2 allows the predictions of models inspired by

perturbative QCD (pQCD) to be distinguished from those
of the vector dominance model (VDM) [10–12]. The tree-
level diagrams for VDM and pQCD approaches are shown
in Fig. 2. In the case of only one off-shell photon, both
classes of models predict the same asymptotic dependence
FPðQ2; 0Þ ∼ 1=Q2 as Q2 → ∞, while for two off-shell
photons the asymptotic predictions are quite different,
FðQ2

1; Q
2
2Þ ∼ 1=ðQ2

1 þQ2
2Þ for pQCD, and FðQ2

1; Q
2
2Þ ∼

1=ðQ2
1Q

2
2Þ for the VDM model.

FIG. 1. The diagram for the eþe− → eþe−η0 process.
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II. THEORETICAL APPROACH
TO THE FORM FACTOR Fη0 ðQ2

1;Q
2
2Þ

As a consequence of η − η0 mixing, the η0 wave function
can be represented as the superposition of two quark-flavor
states [13],

jη0i ¼ sinϕjni þ cosϕjsi; ð2Þ

where

jni ¼ 1ffiffiffi
2

p ðjūui þ jd̄diÞ; jsi ¼ js̄si: ð3Þ

For the mixing angle ϕ we use the value ϕ ¼ ð37.7� 0.7Þ°
[14]. The η0 transition form factor is related to the form
factors for the jni and jsi states through

Fη0 ¼ sinϕFn þ cosϕFs: ð4Þ

For large values of momentum transfer, pQCD predicts
that the form factors Fn and Fs can be represented as a
convolution of a hard scattering amplitude TH and a
nonperturbative meson distribution amplitude (DA) ϕn;s,

Fn;sðQ2
1; Q

2
2Þ ¼

Z
1

0

THðx;Q2
1; Q

2
2; μÞϕn;sðx; μÞdx; ð5Þ

where x is the longitudinal momentum fraction of the quark
struck by thevirtual photon in the hard scattering process. For
the renormalization scale μ, we take μ2 ¼ Q2 ¼ Q2

1 þQ2
2 as

proposed in Ref. [15] and for its asymptotic form ϕn;s [16],

ϕn;s ¼ 2Cn;sfn;s6xð1 − xÞð1þOðΛ2
QCD=μ

2ÞÞ; ð6Þ

where the charge factors are Cn ¼ 5=ð9 ffiffiffi
2

p Þ and Cs ¼ 1=9,
the weak decay constants for the jni and jsi states are fn ¼
ð1.08� 0.04Þfπ and fs ¼ ð1.25� 0.08Þfπ [14], fπ ¼
130.4� 0.2 MeV is the pion decay constant, and ΛQCD is
the QCD scale parameter.
In the case of two highly off-shell photons,

THðx;Q2
1; Q

2
2Þ can be represented as

THðx;Q2
1; Q

2
2Þ ¼

1

2

1

xQ2
1 þ ð1 − xÞQ2

2

ð7Þ

·

�
1þ CF

αsðμ2Þ
2π

tðx;Q2
1; Q

2
2Þ
�
þ ðx → 1 − xÞ ð8Þ

þOðα2sÞ þOðΛ4
QCD=Q

4Þ; ð9Þ

where (x → 1 − x) stands for the first term with replace-
ment of x by 1 − x, αsðμ2Þ is the QCD coupling strength,
and CF ¼ ðn2c − 1Þ=ð2ncÞ ¼ 4=3 is a color factor. The
expression for the next-to-leading order (NLO) component
tðx;Q2

1; Q
2
2Þ can be found in Ref. [15], while the leading-

order (LO) expression corresponds to tðx;Q2
1; Q

2
2Þ ¼ 0.

Combining Eqs. (4)–(7) we obtain the pQCD prediction for
Fη0 ðQ2

1; Q
2
2Þ at large Q2

1 and Q2
2,

Fη0 ðQ2
1; Q

2
2Þ ¼

�
5

ffiffiffi
2

p

9
fn sinϕþ 2

9
fs cosϕ

�Z
1

0

dx
1

2

6xð1 − xÞ
xQ2

1 þ ð1 − xÞQ2
2

�
1þ CF

αsðμ2Þ
2π

tðx;Q2
1; Q

2
2Þ
�
þ ðx → 1 − xÞ:

ð10Þ

(a) (b)

FIG. 2. The Feynman diagrams for the process γ⋆γ⋆ → η0 in the VDM (a) and pQCD (b).
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Significant effort has been invested to determine the DAs
of pseudoscalar mesons at intermediate values of momen-
tum transfer [15–19]. In contrast to the case of one off-shell
photon, the TFF for two off-shell photons is almost
insensitive to the shape of the DA, because the amplitude
Eq. (7) is finite at the end points x ¼ 0 and x ¼ 1.
According to the VDM model the TFF for the case of

two off-shell photons is

Fη0 ðQ2
1; Q

2
2Þ ¼

Fη0 ð0; 0Þ
ð1þQ2

1=Λ2
PÞð1þQ2

2=Λ2
PÞ

; ð11Þ

where ΛP is the pole mass parameter (see e.g., Ref. [11]). In
the case of the η0 meson,ΛP is found to be 849� 6 MeV=c2

from the approximation of Fη0 ðQ2; 0Þ with one off-shell
photon [14]. The value of Fη0 ð0; 0Þ can be obtained from the
measured value of the η0 two-photon width Γη0→2γ ¼ 4.30�
0.16 keV [20] using the formula [16]

Fð0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Γη0→2γ

πα2m3
η0

s
¼ 0.342� 0.006 GeV−1: ð12Þ

III. THE BABAR DETECTOR AND DATA SET

The data used in this analysis were collected with the
BABAR detector at the PEP-II2 asymmetric-energy eþe−
collider, at the SLAC National Accelerator Laboratory.
A total integrated luminosity of 468.6 fb−1 [21] is used,
including 424.7 fb−1 collected at the peak of ϒð4SÞ
resonance and 43.9 fb−1 collected 40 MeV below the
resonance.
The BABAR detector is described in detail elsewhere

[22,23]. Charged particles are reconstructed using a
tracking system, which includes a silicon vertex tracker
(SVT) and a drift chamber (DCH) inside a 1.5 T axial
magnetic field. Separation of pions and kaons is accom-
plished by means of the detector of internally reflected
Cherenkov light and energy loss measurements in the SVT
and DCH. Photons are detected in the electromagnetic
calorimeter (EMC). Muon identification is provided by the
instrumented flux return.
Signal eþe− → eþe−η0 events are simulated with the

Monte Carlo (MC) event generator GGResRc [24].
Because the Q2

e− , Q2
eþ distributions are peaked near 0, MC

events are generated with the requirement Q2
e−ðQ2

eþÞ >
2 GeV2. This restriction corresponds to the limit of detector
acceptance for the tagged electrons. The transition form
factor in simulation is assumed to be constant. TheGGResRc
event generator includes next-to-leading-order radiative
corrections to the Born cross section calculated according
to Ref. [25]. In particular, it generates extra soft photons
emitted by the initial- and final-state electrons. The maxi-
mum center-of-mass (c.m.) energy of the photon emitted

from the initial state is required to be less than 0.05
ffiffiffi
s

p
, whereffiffiffi

s
p

is the eþe− c.m. energy.

IV. EVENT SELECTION

The decay chain η0 → πþπ−η → πþπ−2γ is used to
reconstruct the η0 meson candidate.
An initial sample of events with at least four tracks

and two photon candidates is selected. Tracks must have a
point of closest approach to the nominal interaction point
that is within 2.5 cm along the beam axis and less than
1.5 cm in the transverse plane. The track transverse
momenta must be greater than 50 MeV=c. Electrons and
pions are separated using a particle identification (PID)
algorithm based on information from the Cherenkov
detector, EMC, and the tracking system. An event is
required to contain two electron and two pion candidates.
The electron PID efficiency is better than 98%, with the
pion misidentification probability below 10%. The pion
PID efficiency is 98%, with an electron misidentification
probability of about 7%.
To recover electron energy loss due to bremsstrahlung,

the energy of all the calorimeter showers close to the
electron direction (within 35 and 50 mrad for the polar
and azimuthal angle, respectively) is combined with the
measured energy of the electron track. The resulting
c.m. energy of the electron candidate must be greater
than 0.2 GeV.
The photon candidates are required to have an energy in

the laboratory frame greater than 30 MeV. Two photon
candidates are combined to form an η candidate. Their
invariant mass is required to be in the 0.45–0.65 GeV=c2

range. We apply a kinematic fit to the two photons, with an
η mass constraint to improve the precision of their
momentum measurement. An η0 candidate is formed from
a pair of oppositely charged pion candidates and an η
candidate. The η0 candidate invariant mass must be in the
range of 0.90–1.02 GeV=c2.
The final selection uses tagged electrons and is based on

variables in the c.m. frame of the initial eþ and e−. The total
momentum of the reconstructed eþe−η0 system (P⋆

eþe−η0
2)

must be less than 0.35 GeV=c. The distribution of the total
momentum is shown in Fig. 3 for data and simulated signal
events. The total energy of the eþe−η0 systemmust be in the
range of 10.30–10.65 GeV as indicated by the arrows in
Fig. 4. To reject background from QED events, require-
ments on the energies of the detected electron and positron
are applied. The two-dimensional distributions of the
electron c.m. energy versus the positron c.m. energy are
shown in Fig. 5 for data and simulated signal events. The
lines indicate the boundary of the selection area. Events that
lie above and to the right of the lines are rejected.

2The superscript asterisk indicates a quantity calculated in the
eþe− c.m. frame.
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The distribution of the η candidate mass versus the η0 one
for the selected data and simulated signal samples is shown
in Fig. 6. A clustering of events in the central region of
the data distribution corresponds to the two-photon η0
production. To further suppress background we require
that the invariant mass of the η candidate be in the range
0.50–0.58 GeV=c2, as shown by the horizontal lines in
Fig. 6. For events with more than one η0 or e� candidate
(about 10% of the selected events), the candidate with
smallest absolute value of the total momentum of the
eþe−η0 system in the c.m. frame is selected.
Data events that pass all selection criteria are divided into

five (Q2
e− , Q2

eþ) regions, as illustrated on Fig. 7 for events
with 0.945 < Mπþπ−η < 0.972 GeV=c2. Because of the
symmetry of the process under the exchange of the e−

with the eþ, regions 3 and 4 each include two disjunct

regions, mirror symmetric with respect to the diagonal. The
number of signal events (Nevents) in each (Q2

e− , Q2
eþ) region

is obtained from a fit to the πþπ−η invariant mass spectrum
with a sum of signal and background distributions as shown
in Fig. 8. The signal line shape is obtained from the signal
simulation, while the background is assumed to be linear.
The fitted numbers of events for the five (Q2

e− ,Q2
eþ) regions

are listed in Table I. The total number of signal events is
46.2þ8.3

−7.0 . For regions 2 and 5 we also use conservative
estimates of the number of signal events as upper limits at
90% C.L. using the Feldman-Cousins approach [26].
To estimate the uncertainty related to the description of

the background, we repeat the fits using a quadratic
background shape. The deviation in the fitted number of
signal events is 1.7%. The uncertainty associated with the
signal shape (3.3%) is estimated by including in the signal

, GeV-eE*

, G
eV

+ e
E

*

0

1

2

3

4

5

6

Elenergycm
Entries  942

Mean x   4.336

Mean y   3.832

RMS x   1.056

RMS y    1.23

Elenergycm
Entries  942

Mean x   4.336

Mean y   3.832

RMS x   1.056

RMS y    1.23(a)

, GeV-eE*
0 1 2 3 4 5 6 0 1 2 3 4 5 6

, G
eV

+ e
E

*

0

1

2

3

4

5

6

Elenergycm
Entries  34763

Mean x   3.205

Mean y   3.176

RMS x   1.294

RMS y   1.275

Elenergycm
Entries  34763

Mean x   3.205

Mean y   3.176

RMS x   1.294

RMS y   1.275(b)

FIG. 5. Distribution of the positron c.m. energy versus the electron c.m. energy for data (a) and simulated signal events (b). The lines
indicate the boundary of the selection area. Events that lie above and to the right of the lines are rejected.

DeltaP
Entries  6129

Mean   0.5761

RMS    0.4279

 (GeV/c)’η-e+eP*
0 0.5 1 1.5 2

E
ve

nt
s

0

200

400

600
DeltaP

Entries  6129

Mean   0.5761

RMS    0.4279

FIG. 3. Distribution of the total momentum of the eþe−η0
system in the c.m. frame. The filled histogram shows the data.
The open histogram represents MC simulation normalized to the
number of events in data. Events with P⋆

eþe−η0 < 0.35 GeV=c
(indicated by the arrow) are retained for further analysis.

DeltaE
Entries  2407

Mean    10.59

RMS    0.3116

 (GeV)’η-e+eE*
9.5 10 10.5 11 11.5

E
ve

nt
s

0

50

100

150

200
DeltaE

Entries  2407

Mean    10.59

RMS    0.3116

FIG. 4. Distribution of the total energy of the eþe−η0 system in
the c.m. frame. The filled histogram shows the data. The open
histogram represents MC simulation normalized to the number of
events in data. The arrows indicate the boundaries of the region
used to select event candidates.

J. P. LEES et al. PHYS. REV. D 98, 112002 (2018)

112002-6



probability function a mass shift ΔMπþπ−η ¼
−0.48 MeV=c2 and additional Gaussian smearing width
σðMπþπ−ηÞ ¼ 1 MeV=c2. These parameters are obtained
from our previous study of γγ� → η0 events [5], based on
single-tagged events, where the statistical precision was
significantly larger. The total systematic uncertainty (3.7%)
is obtained by adding the individual terms in quadrature.
Following the methods developed in the single-tag

analysis of Ref. [5], we have studied possible sources
of peaking background: eþe− annihilation into hadrons,
the two-photon process eþe− → eþe−η0π0, and the vector
meson bremsstrahlung processes eþe−→eþe−ϕ→eþe−η0γ

and eþe− → eþe−J=ψ → eþe−η0γ. As in Ref. [5], the
impact of these processes on the results is found to be
negligible.

V. DETECTION EFFICIENCY

The detection efficiency (ε) is determined from MC
simulation in the (Q2

e− , Q2
eþ) plane as the ratio of the

selected over generated events and is shown in Fig. 9. The
detector acceptance limits the efficiency at small momenta
and the minimummeasurableQ2 is 2 GeV2. The difference
between the energies of the eþ and e− beams at PEP-II
leads to an asymmetry in the dependence of the efficiency
on Q2

eþ and Q2
e− .

Because of the symmetry of the form factor
Fη0 ðQ2

1; Q
2
2Þ ¼ Fη0 ðQ2

2; Q
2
1Þ, we use the notation

Q2
1 ¼ maxðQ2

eþ ; Q
2
e−Þ; Q2

2 ¼ minðQ2
eþ ; Q

2
e−Þ: ð13Þ

Since signal MC events are generated with a constant TFF,
the average detection efficiency for the specific (Q2

1, Q
2
2)

region is calculated as the ratio of the following integrals:

εtrue ¼
R
εðQ2

1; Q
2
2ÞF2

η0 ðQ2
1; Q

2
2ÞdQ2

1dQ
2
2R

F2
η0 ðQ2

1; Q
2
2ÞdQ2

1dQ
2
2

; ð14Þ

where the form factor is described by Eq. (10). The
obtained values of the detection efficiency for the five
(Q2

1, Q
2
2) regions are listed in Table I.

The systematic uncertainties related to the detection
efficiency are listed in Table II. The uncertainties related
to track reconstruction, η → 2γ reconstruction, trigger and
filters, and the pion PID were studied in our previous
single-tag analysis [5]. To estimate the efficiency uncer-
tainty related to other selection criteria, we apply a less
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TABLE I. The weighted averages Q2
1 and Q2

2 for the (Q
2
1, Q

2
2) region, the boundaries of the (Q

2
1, Q

2
2) region, the detection efficiency

(εtrue), the radiative correction factor (R), the number of selected signal events (Nevents), the cross section (d2σðQ2
1; Q

2
2Þ=ðdQ2

1dQ
2
2Þ) with

its statistical uncertainty, and the γ⋆γ⋆ → η0 transition form factor (FðQ2
1; Q

2
2Þ) with the statistical, systematic, and model uncertainties

(see the text). All presented upper limits correspond to 90% C.L.

Q2
1, Q

2
2 (GeV2) (Q2

1, Q
2
2) region (GeV2) εtrue R Nevents

d2σ=ðdQ2
1dQ

2
2Þ

×104 ðfb=GeV4Þ
FðQ2

1; Q
2
2Þ

×103 (GeV−1)

6.48, 6.48 2 < Q2
1, Q
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strict condition on a criterion, perform the procedure of
background subtraction described in the previous section,
and calculate the ratio of the number of selected events in
data and simulation. We consider the less strict require-
ments P⋆

eþe−η0 < 1 GeV=c, 10.20 < E⋆
eþe−η0 < 10.75 GeV,

0.48 < Mγγ < 0.60 GeV=c2, and remove the requirements
on Eeþ and Ee− entirely. The quadratic sum of the
deviations from the nominal value of the ratio (11%) is
used as the total systematic uncertainty of the detection
efficiency.

VI. CROSS SECTION AND FORM FACTOR

The differential Born cross section for the process
eþe− → eþe−η0 is calculated as

d2σ
dQ2

1dQ
2
2

¼ 1

εtrueRLB
d2N

dQ2
1dQ

2
2

; ð15Þ

where d2N=ðdQ2
1dQ

2
2Þ is the number of signal events in the

(Q2
1, Q

2
2) region divided by the area of this region, L is the

integrated luminosity, and R is a radiative correction factor
accounting for distortion of the Q2

1;2 spectrum due to the
emission of photons from the initial state and for vacuum
polarization effects. The factor B is the product of the
branching fractions Bðη0 → πþπ−ηÞBðη → γγÞ ¼ 0.169�
0.003 [20]. The radiative correction factor R is determined
using simulation at the generator level, i.e., without detector
simulation. The Q2

1;2 spectrum is generated using only the
pure Born amplitude for the eþe− → eþe−η0 process, and
then using a model with radiative corrections included. The
factorR is evaluated as the ratio of the second spectrum to the
first. The values of the cross section for the five (Q2

1, Q
2
2)

regions are listed in Table I. The cross section in the entire
range of momentum transfer 2 < Q2

1, Q
2
2 < 60 GeV2 is

σ ¼ 11.4þ2.8
−2.4 fb; ð16Þ

where the uncertainty is statistical. The systematic uncer-
tainty includes the uncertainty in the number of signal events
associated with background subtraction (Sec. IV), the
uncertainty in the detection efficiency (Sec. V), the uncer-
tainty in the calculation of the radiative correction (1%) [25],
and the uncertainty in the integrated luminosity (1%) [21].
All sources of systematic uncertainty in the cross section are
summarized in Table II. The total systematic uncertainty
(12%) is the sum in quadrature of all the systematic
contributions. The model uncertainty is discussed below.
To extract the TFF we compare the value of the measured

cross section fromEq. (15)with the calculated one. The latter
is evaluated using F2

η0 ðQ2
1; Q

2
2Þ obtained from Eq. (10).

Therefore, the measured form factor is determined as

F2ðQ2
1; Q

2
2Þ ¼

ðd2σ=ðdQ2
1dQ

2
2ÞÞdata

ðd2σ=ðdQ2
1dQ

2
2ÞÞMC

F2
η0 ðQ2

1; Q
2
2Þ; ð17Þ

where F2
η0 ðQ2

1; Q
2
2Þ and ðd2σ=ðdQ2

1dQ
2
2ÞÞMC correspond

to Eq. (10).
The average momentum transfer squared for each (Q2

1,
Q2

2) region is calculated using the data spectrum normalized
to the detection efficiency,

Q2
1;2 ¼

P
iQ

2
1;2ðiÞ=εðQ2

1; Q
2
2ÞP

i1=εðQ2
1; Q

2
2Þ

: ð18Þ

For regions 1, 2, and 5, the Q2
1 and Q2

2 are additionally
averaged.
The model uncertainty arises from the model depend-

ence of ðd2σ=ðdQ2
1dQ

2
2ÞÞMC and εtrue. Repeating the

calculation of Eqs. (14), (15), and (17) with a constant
TFF, we estimate the model uncertainty. In the case of the
cross section it is about 60% because of the strong
dependence of εtrue on the input model for TFF at small
values of Q2

1 and Q
2
2. However, the transition form factor is

much less sensitive to the model.
The obtained values of the transition form factor are

listed in Table I and are represented in Fig. 10 by the

TABLE II. The sources of the systematic uncertainties in the
eþe− → eþe−η0 cross section.

Source Uncertainty (%)

π� identification 1.0
e� identification 1.0
Other selection criteria 11.0
Track reconstruction 0.9
η → 2γ reconstruction 2.0
Trigger, filters 1.3
Background subtraction 3.7
Radiative correction 1.0
Luminosity 1.0
Total 12%
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FIG. 9. Detection efficiency as a function of the momentum
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triangles. The error bars attached to the triangles indicate
the statistical uncertainties. The quadratic sum of the
systematic and model uncertainties is shown by the shaded
rectangles. The open and filled squares in Fig. 10 corre-
spond to the LO and NLO pQCD predictions [Eq. (10)],
respectively. The NLO correction is relatively small. The
measured TFF is, in general, consistent with the QCD
prediction. The circles in Fig. 10 represent the predictions
of the VDM model [Eq. (11)], which exhibits a clear
disagreement with the data.

VII. SUMMARY

We have studied for the first time the process eþe− →
eþe−η0 in the double-tag mode and have measured the

γ⋆γ⋆ → η0 transition form factor in the momentum-transfer
range 2 < Q2

1, Q
2
2 < 60 GeV2. The measured values of the

form factor are in agreement with the pQCD prediction and
contradict the prediction of the VDM model.
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squares) pQCD predictions and the VDM predictions (circles).
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