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The SARS-CoV-2 virus (COVID-19) pandemic has exposed the lack of preparedness of many advanced countries and their 
methodology to bring it under control. Understanding the trajectory and spread pattern of virus carrying airborne respiratory aerosol 
droplets with quantifiable data can solidify or negate the guidelines for social distancing, and disease control and spread. Carbon 
nanotubes (CNT) sensors, CSM-eSTEP cough stimulator, optical particle sizer, and a particle image velocimetry (PIV) were used to: a) 
quantify velocity of exhaled air from cough under normal physiological condition, b) evaluate and quantify transport of aerosol 
particles from a simulated cough and c) dispersion characteristics of aerosol droplets within the six feet to validate guidelines set by 
CDC. This experimental trial validated that a cough (teenager and adult) air flow pressure is equivalent to 30-50 PSI compressed air 
flow from an orifice. The cough air flow trajectory was found to be detectable and quantifiable by sensors as far as 1.3 meters away 
from source. Further experimentation revealed a statistically high number (10 cm away, F(2,87)=4.76, p<0.012, and 1.8 m away, F
(2,87) = 4.18, p<0.018) of aerosols particles detected beyond the social distance guideline set by CDC. Lastly, the PIV and velocity 
vectors reveal the disorderly spread of the aerosol particles thus requiring thorough sanitization in addition to social distancing 
guidelines. In the future, different indoor criteria of humidity, temperature and HVAC air flow will be set to understand virus laden 
aerosol velocity vectors. 

 
Introduction 
 

Fear continues to intensify on the account of the constant surge in cases of the novel airborne virus, SARS-CoV-2 virus, or widely known as the 
coronavirus (COVID-19). Originating from Wuhan, China, the SARS-CoV-2 virus rapidly crossed Chinese borders, escalating to a global 
pandemic and ultimately residing in the United States, renouncing it as the center of the pandemic. The SARS-CoV-2 virus has infected over 181 
million cases globally with 3.93 million deaths as of June 2021 and is continuing to increase at an alarming rate by the day despite numerous 
guidelines that are put in place to curb the spread. The question here is: why is this disease not coming under control? Researchers are continuing to 
understand the trajectory of the virus to assist in disease control and spread (COVID-19 Map); that is why it is crucial to understand the vectors in 
the release of pulmonary pathogen laden muco-salivary fluids through a medium in terms of short-range and long-range aerosol droplet travel. 
Understanding this process will help with safety measures and guidelines on social behavior, personal hygiene, wearing masks, pre, and post-use 
sanitization, social distancing, and limitations on indoor and outdoor gatherings/activities.  

The Centers for Disease Control and Prevention (CDC), a public health institute, has inadequately equipped the public with information 
regarding the spread of the SARS-CoV-2 virus through particle characteristics. The CDC provides businesses, schools, offices, and places of public 
gathering, etc, compliance information stating mere inferences regarding the spread of the SARS-CoV-2 virus; such as, only stating an 
approximation that indoor ventilation systems and HVAC systems are more likely susceptible to disease spread and progression (personal and 
social activities). In addition, guidelines enforced by the CDC provide details and the nomenclature of disease progression only through fomite or 
contact surfaces, rather than close and long-range airborne virus proximities through several years of research and guidance in virology and germ 
theory. In fact, the CDC states, “there is growing evidence that droplets and airborne particles can remain suspended in the air and be inhaled by 
others in close proximity and can travel distances beyond six feet (for example, during choir practice, loud talking in restaurants, or heavy breathing 
in fitness classes)” (Jon, 2020). Emphasis is relied on the term, “growing evidence,” bringing to attention the unknown information about the 
airborne spread of the SARS-CoV-2 virus in long-range distances, contaminated surfaces, and points of accumulation in indoor conditions. This 
creates rising interest in understanding: 1) the mechanics of exhalation that induces the highest velocity to aerosol droplets carrying the virus, i.e, 
screaming, coughing, or sneezing, 2) indoor occupancy density (area per person) in places like offices, school classroom, department stores, etc. vs 
places where activities lead to physiological stress such as fitness center, indoor stadiums, or places of worship, 3) how the air travels through 
various indoor environments, its flow characteristics; such as, size and amount of aerosol suspension in the air that affect the transmission of virus/
aerosol particles and 4) decontamination process of commonplaces of use such as toilets, door handles/knobs, tables and chairs and indoor air vents.   

Many researchers have relied on previously completed research parameters with varying test criteria to develop their understanding of aerosol 
particle travel or by computer-simulated flow analysis. Specifically, the researchers create test models to understand how far the aerosol particles 
can potentially travel through piecing together parameters from several previously completed research. Not enough information is available from 
the researched articles that link the critical characteristics such as air flow pressure from cough, aerosol particle ejection velocity vectors, and 
spread patterns through the use of fast response sensors.  

Therefore, the purpose of this research is to quantitatively define characteristics of how airborne virus particles travel short-range and long-
range distances after an initial cough by a virus-host, essentially testing particle viability and profile. This research utilizes ultrafast carbon 
nanotube (CNT) flex and humidity sensors to first, measure actual breath exhalation and coughing pressure of two subjects to experimentally 
calibrate and simulate a human cough using a CSM-eSTEP and blaustein atomizing module (BLAM). This setup was intended to provide fast 
reliable data to map aerosol movement in time scale. Secondly, an optical particle sizer was used to measure aerosol particle size and dispersion rate 
over a distance of 1.8 m (6 feet - CDC guideline); and lastly, a particle image velocimetry (PIV) to validate the flow and velocity vector patterns for 
maximum accuracy and precision of recorded test data. Carbon nanotubes and the PIV system helped analyze and calculate the flow rate of aerosol 
and characteristics of particle profiles. This consists of calculating particle velocity, size, distribution, dispersion trends, and pressure peaks in 
particle dispersion in relation to time. If successful with this project, both qualitative and quantitative characteristics of exhalation from coughing 
along with characterizing particle parameter can assist in solidifying the ever-changing regulations for social distancing, wearing masks, and 
opening schools, offices, businesses, restaurants, and etc. to help decrease the disorderly spread of the SARS-CoV-2 virus.  
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Experimental Goal:  

1. When the CNT flex sensors were placed 10 cm from two participants under normal physiological conditions, the sensor's signal pattern could 
accurately measure a cough's pressure characteristics. This signal was matched to pressure release from compressed air to simulate an 
experimental cough using CSM-eStep and BLAM. 

2. When the placement of CNT flex sensors were gradually increased in axial distance away from a CSMe-STEP (cough simulator), then the 
sensor’s signal pattern was able to measure a cough’s pressure and aerosol decay over an increasing distance and accurately assess the 
detectable distance traveled by aerosol under the velocity of air flow.  

3. If two optical particle sizers were placed 10 cm and 1.8 m (6ft) apart from a BLAM orifice, then the quantity of aerosol particles and their 
sizes relative to the ambient room humidity particle number were measured to validate CDC guidelines. 

4. When a PIV (particle image velocimetry) was used to capture the aerosol particles released from the CSMe-STEP, then the MATLAB’s 
PIVlab software assisted in determining particle velocity vectors and particle trajectories. 

Airborne diseases consist of either an airborne virus (agent that hosts on human cells), bacteria (a microorganism), or fungi (spore-producing 
organism). Most commonly, airborne pulmonary diseases spread when someone speaks, coughs, sneezes, or spews their nasal or throat cavity 
mucus, making disease control challenging. Intense exhalation processes such as coughing and sneezing results in multiphase spewing clouds of 
moist air suspended droplets as vectors in the fastest transmission of pathogens. When a virus, bacteria laden particle, is coughed, the pathogen 
attaches to moisture particles through the air until it is introduced to another recipient to host on (Osborn, 2020). Worldwide guidelines currently 
state that when someone coughs or sneezes, it can spread up to 6 feet (1.8 m) (Stinchcombe). In addition, CDC has enforced all social distancing 
guidelines to a 6 feet (1.8 meter) distance between people in common areas.  

Qian et al. from the Southeast University School of Energy and Environment completed a study that was published in the Journal of Thoracic 
Disease and concluded the rudimentary knowledge of how virus droplets travel through the air. It was stated that when one sneezes or coughs, large 
amounts of moist particles, also known as large mucosa droplets, are released from the mouth or nose. These droplets tend to fall downward as 
influenced by gravitational forces, have a large diameter (for particles to be characterized as a large droplet, they must have a diameter of >5μm 
(microns)), and greater volume. However, some droplets will then dry out and attach to small particles of moisture through the air, in which they 
become droplet nuclei and can survive and remain in the air for long periods of time (Qian et al., 2018). Droplet nuclei because of their smaller 
volume and size, are predicted to travel farther because they have a smaller diameter and can be easily influenced by their surrounding environment 
(air, wind, vents). It is stated that droplet nuclei normally have a size of <0.5μm. When a particle reaches a diameter of <5μm it is characterized as 
an aerosol, therefore, droplet nuclei are a category of aerosols. However, measurable data has not been provided in understanding particle 
characteristics of droplet nuclei. For example, a study completed at the Massachusetts Institute of Technology (MIT) suggests that pathogen ridded 
aerosols can travel farther than most scientists expected (Bourouiba et al., 2013). This study at MIT, mathematically models how far aerosols travel, 
by using various patterns noticed from parameters found in other research. Specifically, this research fails to consider distinct and detailed time 
frameworks as aerosols diffuse from a cough, accumulation of exact particle size, velocity vectors, and an estimate of the number of particles from 
a vertical and horizontal projection through data collection. In addition, a study completed at the University of Nicosia stated that coughs without 
the influence of wind supposedly travel less than 1 meter (m) in distance because all the large droplets and droplet nucleus fall to the ground within 
0.12 - 0.2 seconds by the influence of gravity (Dbouk et al., 2005). The paper further shows that only increased wind between 4-12 kilometers per 
hour (km/h) allows particles to travel up to 6 m. This research, instead, focuses on validating the research findings under still environmental 
conditions. In addition, the researchers, state that they were unable to quantify the size of droplets that were released from their developed orifice, 
to further analyze the particle vectors.   

When a cough is released from a person’s mouth (simulated as pressurized moisture released through an orifice), it has an initial momentum. 
This can also be referred to as an initial thrust, allowing for buoyant droplets of aerosols to project upward against its weight and the force of 
gravity. This initial buoyancy creates a cough cloud, as shown in Figure 1. The initial density and pressure in the cough cloud is higher because 
there is an increase in crowdedness and as time progresses the pressure and velocity continue to decrease rapidly. According to Wei et al., the 
cough jet is characterized by two stages: the starting jet termed as direct spray region that occurs between 1-2 m from the source and the turbulent 
jet is dissolved in the room airflow that exists beyond 2 m (Wei et al., 2016). It is this second region of contamination that is of significance and 
much less is understood in terms of spread mechanism and control of the exposure. The first region data has to be validated to support the 
possibility of having a higher quantity of aerosol in the second region. 

 

Mechanics of cough, as explained in, “The Gross Science of a Cough and a Sneeze”, has various characteristics such as short, long, deep, and 
stifled, and carries varied amounts of body fluid as moisture or aerosol. Cough is a process of the body's reflux to rid irritants and prevent 
infections. The process first starts with a deep breath, an accumulation of expiratory volume is generated from a compression of air in the lungs and 
finally a forced release of air and saliva aerosol droplets through the mouth/orifice. Human saliva is a complex homogeneous fluid mixture of many 

Figure 1 shows projection of a cough cloud traveling 

linearly  
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volatile organic compounds such as salts, proteins and fatty acids in 97% water (Turner et al., 2006). This indicates that most of the content 
released when coughed, is composed of water, ridden with pathogens, and macromolecules. One cough produces approximately 0.6 to 1.6 L (liters) 
of airflow with an exit velocity of 10 m/s in a duration of 0.5 second. It can be assumed that the cough flow is analogous to laminar flow in the first 
stage of ejection and then becomes an interrupted jet. Other researchers have measured that the flow rate of droplets and aerosols, or the rate at 
which a cough is released, is approximately 0.1 mL/minute. Common parameters for pressure release for a cough, vary significantly according to 
previously completed research (Yuguo, 2017).  

In addition, these aerosols and large particles are initially carried through pressure released in relation to a patient's muscle contraction of the 
chest and abdomen. The pressure initially released from the orifice will decay as the particles travel further and further, gradually decreasing the 
velocity of the particles and as time progresses from the initial cough. The modeling of this cough process is similar to that of velocity of 
pressurized air escaping from an orifice and can be defined as: (velocity escaping compressed air) 

Where V2 is the velocity escaping air in m/sec, g is acceleration due to gravity (9.8 m/s^2, 32.16 ft/sec^2), k is 1.41 or the coefficient of 
compressed air, F is the temperature in degrees F, p2 is the atmospheric pressure (1 bar or 14.7 pounds per square inch (PSI)), and p1 is the pressure 
of air released from the compressed air container in bar/PSI (Engineers Edge, 2017).  

 

In this research, carbon nanotube sensors (CNT) were used to receive fast response data as well as understanding the time delay when particles 
reach certain distances after an initial simulated cough. Carbon nanotubes are adaptile rolled up sheets of hexagonal crystal lattices or graphene. 
They can be either categorized as a single-walled or a multi-walled carbon nanotubes. Single-walled carbon nanotubes have unique chirality and 
multi-walled carbon nanotubes have a high aspect ratio allowing them to have properties such as fast response time, mechanical strength, high 
carrying capacities, transparency, and high thermal conductivity (Wei et al., 2017). Specifically, multi-walled carbon nanotubes have a high aspect 
ratio or fast response time due to the increase in holes throughout the sheets of hexagonal crystal lattices allowing to absorb maximum material and 
signals from external forces (Ossola, 2015). This technology has recently been used in sensors due to their stiffness, robustness, elasticity, 
sensitivity, and fast response time (Electrical4U, 2020). These sensors have a response time of under 30 milliseconds, proven to be one of the 
fastest sensors available, allowing the CNT flex and humidity sensor to be able to accurately detect the time it takes for the particles to travel a set 
distance in milliseconds. In comparison, as shown in Figure 2, commonly sold sensors by Sensirion Sensors (a popular sensor company) have their 
fastest sensor, a Mass Flow Meter SPM3000, at a response rate of only 0.5 seconds (Digital Humidity Sensor SHT85 (RH/T)), hindering the 
accuracy of the sensors.  

 

Due to the fast response time of CNT humidity and flex sensor, they can be integrated for the purpose of understanding real time variation in 
pressure and humidity as a correlation for particle flow pressure and accumulation. In addition, the carbon nanotubes will also be placed in a linear 
flow path to understand the time the aerosol particles take to travel and what potential they have of reaching certain areas and extents to determine 
length of distance traveled to assist in creating a particle profile. 

A CSM-eSTEP (a puff generation machine) at the University of South Carolina lab was utilized to mechanically generate cough-like conditions 
at a predetermined adjustable pressure and flow rate for aerosol generation. The CSM-eSTEP is a driven control box with timer controller and valve 
operated by positive pressure (canister pressure is maintained within the system and is released in immediate surroundings when a valve opens). 
The CSM-eSTEP is connected to an compressed air cylinder, an automated syringe pump for metered liquid (water) delivery and a blaustein 
atomizing module (BLAM) orifice to imitate a human cough. This system mimics a human cough and for fixed flow rates and pressure. 

An optical particle sizer was utilized to understand the size of particles and the number of particles that can travel certain set distances. The 
optical particle sizer is a spectrometer that can categorize aerosol particle sizes at a 120-degree light into various size bins. Specifically, the optical 
particle sizer can sort particles and aerosols between the sizes of 0.3 to 10 µm through 16 channels and 10 bins (Optical Particle Sizer 3330). Due to 
the accuracy and specificity of the optical particle sizer, the distance of a cough can be measured, and the viability of pressure decay, diffusion, and 
horizontal and vertical trajectory can be supported. 

For this research project, a particle image velocimetry (PIV) at the University of South Carolina Lab will be used, similar to the research by 
Nishimura et al., 2013. A PIV is a method that allows for close 2D visualization of a space frame through a high-speed camera and a laser beam 
allowing for accurate understanding of particle location. The PIV will allow for a visual understanding of the particle flow characteristics through 
multiple picture frames of the aerosol particles by taking photographs at a time difference to calculate the average/common velocity field. The laser 
beam in the PIV focuses on the targeted area for a picture by creating a light sheet and illuminating the aerosol particle, perpendicular to the PIV, 
allowing the camera(s) to take the image. These pictures taken will then be analyzed through the PIV computer program, LAVISION-8 (Sick et al., 
2013) and MATLAB program, PIVLab. 

Figure 2 displays different types of Sensirion Sensors and their corresponding response rates. ("Digital Humidity Sensor SHT85 (RH/T)")  
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Methods 
 
Initial Parameter and Experimental Setup: 

To conduct this research, a LabVIEW program, as shown in Figure 3, was developed and programmed to connect CNT sensors and for data 
collection and graphical visualization. The LabVIEW program consists of the multiple tabs for easy menu navigation. The first tab: the Sensor 
Setting screen for selecting the sensors and attaching to the four channels of choice to the Teensy controller that allows for sensor calibration. The 
second tab: the DAQ tab to graphically monitor the signal on all four channels. The third tab: a data processing tab for data analysis and also 
allowed to have additional peripheral equipment to be controlled for equipment synchronization.  

Part 1. Setup of Simulated Cough Conditions: 

The first part of this study was to measure actual cough air pressure and amount of moisture released using a CNT flex and humidity sensors. 
The significance of this experiment was to understand the characteristics of exhalation and coughing and how this process can be simulated in a lab 
setting for accurately determining aerosol borne viral spread. This trial was performed only on two subjects (due to COVID restrictions), an adult 
(AK) and a teenager (SK) to understand the difference in pressure and moisture released from an actual cough. Pressure was measured as deflection 
of the flex sensor and humidity as percent change from ambient. Each subject had to cough 6 to 8 times in front of the sensors that were kept 
approximately 10 centimeters away from the mouth for three sets of data from each subject. Data was collected and tabulated using Microsoft 
Excel. Each data logging set was marked, “SK and AK Cough Set 1,2, or 3,” and repeated until three sets of data collection were completed.  

The second step was to use this actual cough pressure data and humidity value from the researched article, and create a laboratory setting to 
simulate human cough using a controlled pressure release from a compressed air cylinder, CSM-eStep, and BLAM atomizer. Pressure setting from 
the air cylinder was changed from a starting pressure of 1.0344 bar (15PSI) and an incremental step of 0.344 bar (5PSI) to final pressure of 3.8 bar 
(50PSI). Here on all the pressure units will be PSI for simplicity, but for calculations values were converted to SI.  The CSM-eSTEP was then set 
at 5 second between each cough for periods of 60 seconds. A calibrated flex sensor was placed 10 cm away from the orifice. The LabVIEW 
program was started, and data logging was turned on where data was collected for 60 seconds while the CSM-eSTEP simulator was running. The 
cough air pressure of the teen and adult cough was then matched with the pressure step from the simulated trials. The experimental set up was 
completed to establish the baseline of cough for easy cough stimulation. All trials were repeated five times for data accuracy.  

Part 2. Simulating Cough Air Pressure and Aerosol Decay Study 

The second part of this experiment was to understand the pressure and moisture decay over an increasing point of impact distance of 10 to 110 
cm. The significance of this experiment was to scientifically provide evidence of how far the pressurized airflow exiting the source exhibits laminar 
flow before getting diffused, thus understanding the aerosol spread in each space due to coughing. For consistent data collection, a sensor mounting 
fixture was created, as shown in Figure 4, to hold two flex sensors, that were placed in front of the CSM-eSTEP. Next, the CSM-eSTEP (sneeze/
cough stimulator) was set up and calibrated with the use of the pressure gauge and bottle tank, metal syringe, mechanical syringe pusher, and 
atomizer as shown in Figure 5.  

The air pressure was set at 30 PSI for the first trial and 40PSI for the second trial on the CSM-estep with a 5 second interval cough gap for a 60 
seconds trial period. The CSM-eSTEP program was started and data logging was turned on where data was collected for 60 seconds. These trials 
were repeated by moving the mount 10 cm away from the BLAM nozzle and data recorded for 60 trials. A total of 8 trials were conducted and data 
logged until a distance of 80 cm and 110 cm was reached away from the BLAM orifice. When the two sensors were placed at a fixed distance of 30 
cm apart, the time delayed sensor signal response from the first closest sensor (10 cm) to the second sensor signal was used to calculate the cough 
air flow speed travel of 30 cm and the data was analyzed for all 8 trials by averaging the results. 

Part 3. Optical Particle Sizer for aerosol particle count: 

In this part of the experiment, the sensor mounted fixture, CSM-eSTEP, mechanical syringe pusher, BLAM, metal syringe, and LabVIEW 
program (Figure 5) were utilized with an optical particle counter (Figure 6). The goal of this experiment is to use the results from part 1 and 2 to 
quantify the aerosol particle count to validate or recommend the social distance guidelines established by CDC.  
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Additionally, along with the flex sensors, an additional carbon nanotube humidity sensor was placed in channel 2 of the connecting teensy 
aurdino wires, 10 cm away from the BLAM. The same parameters of 30 PSI and 40 PSI pressure were released and a 0.1mm/min flow rate were 
repeated and set on the CSM-eSTEP and mechanical syringe pusher. The first optical particle sizer tube was attached next to the flex and humidity 
sensor, therefore, the humidity sensor, flex sensor, and optical particle sizer were all 10 cm away from the BLAM. The other optical particle sizer 
was placed 1.8 m away (6 feet to mark CDC guidelines) linearly. On the optical particle sizers, the data collection rate was at 1 second for a total of 
90 seconds shown above in Figure 6. The sensors were calibrated, and data logging was turned on the LabVIEW software along with all the other 
equipment at the same time and data was collected for a total of 3 times. 

This data was then tabulated in Microsoft Excel. The particles count data under each aerosol size bin was tabulated from 16 channels and 10 
bins from 10 cm to 1.8 m (6 ft) into a one-way ANOVA for each of the 3 trials. Additionally, a post hoc Tukey test was performed and interaction 
plots were created.  

Part 4. Particle Image Velocimetry (PIV): 

Lastly, a PIV was used along with the CSMe-STEP, mechanical syringe pusher, BLAM, and a green beam laser to take high speed photos of 
the particle and aerosol trajectories as shown in Figure 7. The main purpose of this last experiment is to use simulated aerosol dispersion along with 
PIV to establish aerosol travel trajectory. For this part of the experimentation at the University of South Carolina, a large clear test chamber was 
used. The two PIV cameras were positioned perpendicular to the green beam light laser and directly opposite to BLAM. The distance between two 
cameras was set 30 cm apart and calibrated to a 30 cm straight line inside of the ventilation chamber. The computer system connected to LaVISION 
8 software, PIV cameras were set at 50000us double frame mode, with a trigger rate and image rate of 5.33 Hz, and a recording length of 31 images 
for a duration of 5.821 seconds (each cough from the CSMe-STEP and BLAM was for 5 second periods). For safety, the caution laser light was 
turned on outside of the lab and everyone present in the lab room was required to wear safety glasses. The laser light was then turned on as shown 

Figure 4 is the wooden mount created and the attached flex sensors. 
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in Figure 8. The CSMe-STEP was started 5 times and after every 30 second interval, the PIV captured 31 images per trial. The picture frames were 
uploaded in MATLAB’s PIVlab processor to analyze frame sequences and calculate velocity vectors. 

 
Results  
 
Part 1. Simulated Cough Conditions Results: 

As stated in part 1 of this experiment, the goal was to determine the pressure required from the CSM-eSTEP that would best represent a cough 
signal. The best match data was selected, and the graphs were overlaid for comparison of flex sensor’s resistance of human cough and orifice 
pressure trials. As shown in the Figure 9, data was overlaid comparing SK cough to a 30 PSI pressure from the BLAM. The cough expended from 
participant SK is depicted on the primary axis with the blue line while the 30 PSI pressure is depicted by the orange line on the secondary axis. The 
SK cough averaged at 0.4 Ω (ohms) higher than the 30 PSI. Figure 9 accurately compares the pressure release from participant SK (blue line on 
primary axis), and the sensor deflection/bend resistance at 40 PSI released from the BLAM (orange line on secondary axis) was higher. The 
primary axis, SK cough, ranges between 220 to 223 Ω. On the secondary axis, the resistance in Ω, ranges between 227 to 230 Ω. The average 
change in resistance(Ω) between SK participant and 40 PSI pressure was approximately 0.9 Ω. This presents a large difference between flex on the 
sensor from the cough of SK participant and by a 40 PSI pressure. 

However, since ranges of coughs can vary significantly based on a participants age, lung volume, and cough characteristic, a second subject, an 
adult, AK’s cough signal, was recorded and the same trials were repeated using compressed air and CSM-eSTEP with increasing pressures. Figure 
10 shows the comparison of the pressure release from participant AK, blue line on primary axis, and the flex resistance at 40 PSI released from the 
BLAM, orange line on secondary axis. The primary axis, AK cough, ranges between 219 to 223 Ω (ohms). The secondary axis, resistance in Ω, 
ranges between 226.6 to 230.6 Ω. The average change in Ω between AK participant and 40 PSI pressure was approximately 1.2 Ω. In contrast to 
SK cough and 40 PSI, AK cough expended more resistance than 40 PSI. 

The results clearly show that for cough air pressure, signal data measured as flex sensor deflection is a reliable method to analyze cough cycle. 
Depending on the cough of a teenager and an adult, the air pressure release test from the compressed air tank closely matches between the low 
pressure of 30 PSI and high pressure of 40 PSI respectively. Some AK cough pressure signals were higher than the 40 PSI value while SK cough 
pressure signals were between 30- 40 PSI, it was estimated that a PSI level of 30-40 PSI would be most appropriate to represent a human cough.  
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Part 2. Simulated Cough Air Pressure and Aerosol Decay Study 

The time delay of bend signal from two flex sensors placed 30 cm apart on an axial plane from the BLAM nozzle, was used to calculate the 
pressure diffusion over time, and the sensors were subject to a releasing pressure of 30 PSI and 40 PSI (approximated as a simulated cough). Figure 
11 shows the signal plot from the trials with increasing distance of sensor away from BLAM nozzle until a final distance of 80 cm and 110 cm is 
achieved. Analysis of these graphical data also shows two critical experimental information a) intensity of the signal (nominal value to peak value) 
and b) amplitude of the signal (width of the signal wave). As it can be seen that with fixed air pressure of 30 and 40 PSI, the signal intensity 
continues to drop as the distance of the sensors increases from the BLAM orifice. The time difference, shown in Figure 12, was calculated between 
each visible peak between each 30 cm distance. Calculating the pressure peaks over time allows for the comparative analysis of how long it takes 
for the pressure simulating a cough to travel certain distances. This data also allows for the interpretation of the time decay as the distance 
increases. Max peaks for graph distance of 70-100 cm and 80-110 cm were incoherent due to weak signal, therefore, were excluded from data 
analysis and time peak to peak averages. When the flex sensors were placed 20 cm and 50 cm apart, the time difference between start of first signal 
to the start of second signal was 0.125 seconds. Similar calculations were done with increasing distances 30-60 cm, 40-70 cm, 50-80 cm, where the 
time difference was 0.2066 seconds, 0.2262 seconds, 0.2141 seconds, and 0.2478 seconds respectively. This shows that as the distance increased, 
the pressure intensity decreased and hence the time gap increased. This data analysis was repeated for 40 PSI which as shown in Figure 13. 

When the flex sensors were placed 10 cm and 40 cm apart, the time difference between start of first signal to the start of second signal was 
0.1048 seconds. Similar calculations were done with increasing distances 20-50 cm, 30-60 cm, 40-70 cm, 50-80 cm, the time difference was 0.1858 
seconds, 0.2063 seconds, 0.2252 seconds, 0.2738 seconds, respectively. Data from 40 PSI also shows that as the distance increased, the pressure 
intensity decreased, and the flow was clearly detectable as far away up to 110 cm. In conclusion, for both 30 PSI and 40 PSI, as the distance 
increased, the pressure decreased, but still detectable to conclude that there is enough kinetic energy to carry aerosol particles. The peak value of the 
pressure was calculated to understand the initial kinetic velocity induced in air due to pressure and decay over 30 cm. Using the velocity escaping 
compressed air equation, the velocity of air escaping from the orifice at 30PSI was 310 m/s and quickly decreased to 15.3 m/s after a distance of 30 
cm and at 40PSI the velocity was 325 m/s decreasing to 14 m/s after a distance of 30 cm .  

Part 3. Aerosol particle count using Optical Particle Sizer: 

Figure 14, shows the aerosol travel distance as detected by flex, humidity and OPS system combined. To understand aerosol particle size and 
horizontal distribution, a one-way ANOVA was performed on data collected by the optical particle sizers, one from 30 cm (1 ft) away from the 
BLAM and the other 1.8 m (6ft) away from the BLAM. There were a total of 3 trials, each trial was recorded in both optical particle sizers. The 
distribution of the particles were graphed on Microsoft Excel as shown bottom part of Figure 15.  
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The one-way ANOVA test between aerosol count at the ambient condition (without cough) and number of aerosol count at 30 cm and 1.8 m 
away was statistically significant. Specifically this occurred 30 cm away where, F(2,87)=4.76, p<0.012. This also occurred 1.8 m away where, F
(2,87)=4.18, p<0.018, suggesting that the null hypothesis was rejected and that the data presented a statistical significance between the number of 
ambient particles and the number of particles, both 30 cm and 1.8 m (6ft) away after a cough, as shown in Figure 16. 

Part 4: Particle Image Velocimetry: 

Lastly, as shown in Figure 17, images through the particle image velocimetry were taken to analyze the velocity vectors of the particle and 
image frames.  

In addition, these images were sequenced, and a region of interest was selected on MATLAB’s PIVlab processor. The data was then analyzed 
with an interrogation area of pass 1 at 30 px and pass 2 at 10 px and set into a velocity magnitude profile as shown in the bottom of Figure 17. With 
the help of PIVlab, it was found that the maximum velocity of a cough can range between 6 - 28 m/s when cough flow velocity is approximated as 
a steady jet. 

 
Discussion and Recommendations 
 
Part 1: 

It was stated that the purpose of Part 1 of this experiment was, to accurately measure a cough's pressure characteristics. In this experiment, the 
sensors were able to detect the smallest changes in exhalation force and humidity of breath conditions via cough or sneeze, therefore, accurately 
quantify intensity, and frequency with any external disruptions of the patient’s pre-existing conditions of pulmonary biomarkers such as dry cough, 
weezing, and bouts. The actual cough signal, when matched to the signal generated from controlled pressure release of a compressed air valve, can 
provide a reliable method to experimentally simulate cough using CSM-eStep and BLAM orifice. This experiment was successful in simulating the 
cough and the engineering goal was met. From part 1 cough data when matched with sensor signal of the air pressure test, it was noticeable that for 
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SK (teenager) the closest match was at 30 PSI. Similarly the cough from AK (adult) participant the closest pressure match was at 40 PSI. This 
showed that AK (adult participant) had a higher intensity cough, while SK (teenage participant) had a lower intensity cough. Also from the graph it 
is clear that no two coughs are similar in intensity for either an adult or a teenager thereby confirming the variations in cough pattern depending on 
the exhalation or ailment conditions. It can also be concluded that adult coughs generate higher amounts of aerosol humidity thus providing clear 
evidence that when the virus host is an adult, the probability of airborne disease transmission is highly likely.  Since the lung volume, capacity, and 
exhalation pressure vary for person to person, it was broadly concluded that between 30-50 PSI of compressed air release would be a simulated 
measurement for a human cough. 

Many researchers have developed quite complicated systems to fully evaluate the forced exhaled breath conditions, such as, a cough or a 
sneeze. Experiments published in the Physics of Fluids journal used a complicated double pass Schlieren setup for imaging human coughs and the 
subject had to continuously exhale for a period of time (Simha and Rao, 2020). Such measurements are only limited to patients that have the ability 
to be able to predict the onset of their medical condition and have to be able to continuously blow air to perform such expensive tests. These 
limitations can easily be overcome using CNT fast response flex and humidity sensors where the subject can be in any pulmonary condition and be 
of various age groups. This quantification of cough intensity is very important in understanding the flow pattern of the airborne pathogen traveling 
in air or indoor environment. One limitation of this research is that there were only two human participants in the study. For the future, a bigger 
sample size could further enhance the data validity. 

Part 2.  

For Part 2 of this experiment, it was stated that, “when CNT flex sensors are placed at gradually increasing distance from a CSMe-STEP (cough 
simulator) and BLAM atomizer, then the sensor’s signal pattern will be able to accurately measure a cough’s pressure and aerosol decay over 
increasing distance.” This experimental trial demonstrated the air flow transitioning from laminar to turbulent flow by measuring the signal 
dissipation, as shown in Figure 11 and 12, therefore, meeting this engineering goal. When the sensors were moved away from the BLAM orifice in 
increasing steps of every 10 cm, there was a non-linear increase in the average time it took for the pressurized air puff to bend the two sensors 30 
cm apart. This shows that as the distance increases, the kinetic energy of flowing air tends to decrease and diffuse rapidly, resulting in a decreasing 
deflection of the flex sensor. The time gap from the first sensor to the second sensor was also increasing drawing to a conclusion that supports the 
engineering goal. 

Through experiments published in Physics of Fluids, researchers have been able to demonstrate this phenomenon only by sophisticated PIV 
systems and then translating this to an image processing software to calculate the time taken for the sneeze or cough ejecta travel (Dbouk et al., 
2020). Agrawal et al. have shown in their research from mathematical calculations that the cough cloud travel lasts between 5s and 8s with a 
maximum time up to 14 s and the travel distance of 1.5 m to 3 m is easily achieved. Wei et al, had found that the airflow expulsion period of cough 
is 0.5 s, while Sharfman et al., found in their research that the airflow expulsion lasted 0.3 s (Liu & Wei, 2016). The conclusion of this research is 
that the cough of an adult was found to be in the range of 0.2 - 0.4 s. This can be explained by the time that occurs after initial flow velocity. When 
a participant coughs, a high source of pulmonary pressure assists in carrying the large drops through the cough cloud. However, after the initial 
cough cloud disperses, the pressure or flow velocity begins to rapidly decrease and diffuse through all directions, causing the flex sensor to have a 
lower bend resistance as the distance is increased. In addition, since the pressure is dispersed and initial velocity of the pressurized air is drastically 
reduced from the onset of the cough cloud, it takes longer for the air to reach distances that are gradually increasing, therefore, increasing the travel 
time. This was shown by calculations using the velocity escaping compressed air formula. The initial velocity of the pressure released from the 
orifice was calculated to be greater than 300 m/s, however, after 0.2 - 0.4 seconds, the pressure drastically dropped to 5 m/s to less than 0.9 m/s.  

Part 3: 

For Part 3 of this experiment, an analysis was completed to understand the dispersion of the aerosols. One-way ANOVA tests completed on the 
recorded data between the ambient conditions and simulated cough conditions shows that there was a p-value less than 0.015 for both 10 cm and 
1.8 m distance. Since the p-value was less than 0.01, the null hypothesis can be rejected stating that there was a significant difference in the amount 
of aerosol particles after a participant coughs from a distance of 30 cm and 1.8 m, in relative to the ambient number of particles without the cough 
spray. Current guidelines, as stated by the CDC, to follow proper social distancing guidelines, people from different households should remain at 
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least 6 feet (1.8 meters) apart, especially if a mask is not worn. As shown in Part 3 of this experiment, there were a significant number of particles 
that can travel beyond 6 ft. Further, this shows that a distance larger than 6ft (1.8m) should be maintained during cough or high stress exhalation to 
help halt the spread of the Sars-CoV-2 virus, as enhancement to current CDC guidelines. There has been a lot of research completed on 
understanding how far particles can travel, however, the research only consists of using various mathematical models to predict the projection of 
the large droplets and aerosols based on predicted aerosol sizes. For example, a study published in the Journal of Fluid Mechanics focused on 
creating a mathematical formula to predict the curvilinear projection of aerosols after the cough cloud has dispersed for various particle sizes. The 
researchers were able to predict that the aerosols can travel up to 6.7 m. While, another study published in the Journal of Physics of Fluids, used the 
Gaussian mathematical function to predict how far aerosols can travel after dispersion from a cough cloud when a mask is not worn. The 
researchers, Agarwal et al., predicted that in ambient conditions, the aerosols can travel between 1.5-3m (Agrawal et al., 2020). Lastly, another 
paper published in the Journal of Physics of Fluids, by Dbouk et al., used a series of conservation equations and computed droplet velocity using 
Newton’s second law of motion, to predict that aerosols in environmental conditions with no wind influence do not travel farther than 1 m (Dbouk 
et al., 2020). Although the researchers were able to predict the velocity and trajectory of particles and aerosols using mathematical modeling, their 
results were accompanied with many limitations due to lack of actual experimentation with ultra-fast sensors. In addition, most researchers arrived 
at different aerosol travel distance conclusions. This research, however, was able to successfully bridge that gap and complete experimental trials to 
understand the aerosol trajectory. It was found that the particles ranging in sizes between 0.3-0.5μm can travel further than 6 feet. A significant 
source of error while collecting particle sizer data was that the mount that held the carbon nanotube sensors potentially could have stopped different 
aerosol particles from reaching one of the particle sizers. 

Part 4: PIV 

It was stated that Part 4 of this experiment was to use the PIV to take highspeed pictures of the simulated cough from the orifice and analyze the 
data in MATLAB’s PIVlab to calculate the velocity vectors from the PIV images. Cough, as stated earlier, is a multiphase compressed air jet 
carrying large quantities of pathogen bearing large droplets, droplet nuclei, and aerosols. In this experiment the results of the PIV showed droplets 
exiting the orifice simulating the calibrated human cough. This is also confirmed by the calculated velocity vectors through PIVlab and flex sensor 
time delay velocity calculations. These images clearly show the linear jet cone projection in time elapsed references and the spread of qualitative 
characteristics of particle sizes, locations, and particle distribution. As seen in the images, as time elapses (0.1 to 3 s), this linear jet gradually 
translates to a wider cone shaped cloud. Based on the comparison between the PIV and the optical particle sizer aerosol distribution, it can be 
concluded that many tiny aerosol particles travel further than 1.8 m (6 ft). The indoor conditions with HVAC air speed can further influence the 
aerosol trajectories carrying airborne diseases rendering the 1.8 m social distancing rule insufficient. The shortcoming of this experiment is that the 
droplets or aerosol are spherical in shape and in reality, the viscosity of saliva creates ligaments and odd shaped suspended aerosol. Lastly, as 
depicted by Figure 17, not only do the aerosol particles travel in a linear pattern, however, many large droplets fall due to gravitational influence 
and particles can also travel, not only forward, but also backwards. In the future, it would be beneficial to further analyze the different directional 
flows of the aerosol particles using PIVlab.  

In conclusion, based on the 4 part trials, this research was able to successfully simulate human cough, measure the cough intensity and 
quantify its flow characteristics and velocity and pressure decay. The results clearly show that there is a large quantity of droplet and aerosol 
ejected from cough that travel significantly further than the 1.8 m social distancing guideline as recommended by CDC. It also confirms that 
whether it be indoor or outdoor conditions, these pathogen laden aerosols settle on various surfaces, therefore, requiring a thorough sanitization 
process which is not enforced under CDC guidelines. For the future, it would be key to understand how aerosol particles travel through different 
indoor environmental conditions, such as varying humidities, temperatures, and HVAC flow path. In addition, as this study focused on 
understanding the velocity characteristics of a cough, it would be beneficial to understand different modes of virus transmission, such as sneezing 
and talking. Not all parameters of this experiment that stimulated a cough are representative of an actual human cough with respect to the released 
amount of aerosol volume. Lastly, this project was only representative of two subjects in healthy conditions and their cough variance. It would also 
be beneficial to understand how cough pressure varies between different physiological conditions and a large number of participants. 
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Appendix A: 

 

Appendix A depicts images of viral aerosol particles collected from the PIV. 
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